2 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2010 Orex Computed Radiography
7 * The code contained herein is licensed under the GNU General Public
8 * License. You may obtain a copy of the GNU General Public License
9 * Version 2 or later at the following locations:
11 * http://www.opensource.org/licenses/gpl-license.html
12 * http://www.gnu.org/copyleft/gpl.html
15 /* based on rtc-mc13892.c */
18 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
19 * to implement a Linux RTC. Times and alarms are truncated to seconds.
20 * Since the RTC framework performs API locking via rtc->ops_lock the
21 * only simultaneous accesses we need to deal with is updating DryIce
22 * registers while servicing an alarm.
24 * Note that reading the DSR (DryIce Status Register) automatically clears
25 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
26 * LP (Low Power) domain and set the WCF upon completion. Writes to the
27 * DIER (DryIce Interrupt Enable Register) are the only exception. These
28 * occur at normal bus speeds and do not set WCF. Periodic interrupts are
29 * not supported by the hardware.
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/workqueue.h>
43 /* DryIce Register Definitions */
45 #define DTCMR 0x00 /* Time Counter MSB Reg */
46 #define DTCLR 0x04 /* Time Counter LSB Reg */
48 #define DCAMR 0x08 /* Clock Alarm MSB Reg */
49 #define DCALR 0x0c /* Clock Alarm LSB Reg */
50 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
52 #define DCR 0x10 /* Control Reg */
53 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
54 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
55 #define DCR_KSSL (1 << 27) /* Key-select soft lock */
56 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
57 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
58 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
59 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
60 #define DCR_FSHL (1 << 16) /* Failure state hard lock */
61 #define DCR_TCE (1 << 3) /* Time Counter Enable */
62 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
64 #define DSR 0x14 /* Status Reg */
65 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
66 #define DSR_ETBD (1 << 22) /* External tamper B detected */
67 #define DSR_ETAD (1 << 21) /* External tamper A detected */
68 #define DSR_EBD (1 << 20) /* External boot detected */
69 #define DSR_SAD (1 << 19) /* SCC alarm detected */
70 #define DSR_TTD (1 << 18) /* Temperature tamper detected */
71 #define DSR_CTD (1 << 17) /* Clock tamper detected */
72 #define DSR_VTD (1 << 16) /* Voltage tamper detected */
73 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
74 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
75 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
76 #define DSR_WEF (1 << 7) /* Write Error Flag */
77 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */
78 #define DSR_MCO (1 << 3) /* monotonic counter overflow */
79 #define DSR_TCO (1 << 2) /* time counter overflow */
80 #define DSR_NVF (1 << 1) /* Non-Valid Flag */
81 #define DSR_SVF (1 << 0) /* Security Violation Flag */
83 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
84 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
85 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
86 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
87 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
88 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
90 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */
92 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */
93 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
94 #define DTCR_TOE (1 << 8) /* time overflow enabled */
95 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
96 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */
97 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */
98 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */
99 #define DTCR_SAIE (1 << 3) /* SCC enabled */
100 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */
101 #define DTCR_CTE (1 << 1) /* clock tamper enabled */
102 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */
104 #define DGPR 0x3c /* DryIce General Purpose Reg */
107 * struct imxdi_dev - private imxdi rtc data
108 * @pdev: pionter to platform dev
109 * @rtc: pointer to rtc struct
110 * @ioaddr: IO registers pointer
111 * @clk: input reference clock
112 * @dsr: copy of the DSR register
113 * @irq_lock: interrupt enable register (DIER) lock
114 * @write_wait: registers write complete queue
115 * @write_mutex: serialize registers write
116 * @work: schedule alarm work
119 struct platform_device
*pdev
;
120 struct rtc_device
*rtc
;
121 void __iomem
*ioaddr
;
125 wait_queue_head_t write_wait
;
126 struct mutex write_mutex
;
127 struct work_struct work
;
132 * The DryIce unit is a complex security/tamper monitor device. To be able do
133 * its job in a useful manner it runs a bigger statemachine to bring it into
134 * security/tamper failure state and once again to bring it out of this state.
136 * This unit can be in one of three states:
138 * - "NON-VALID STATE"
139 * always after the battery power was removed
141 * if one of the enabled security events has happened
143 * if the unit works as expected
145 * Everything stops when the unit enters the failure state including the RTC
146 * counter (to be able to detect the time the security event happened).
148 * The following events (when enabled) let the DryIce unit enter the failure
151 * - wire-mesh-tamper detect
152 * - external tamper B detect
153 * - external tamper A detect
154 * - temperature tamper detect
155 * - clock tamper detect
156 * - voltage tamper detect
157 * - RTC counter overflow
158 * - monotonic counter overflow
161 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
162 * can only detect this state. In this case the unit is completely locked and
163 * must force a second "SYSTEM POR" to bring the DryIce into the
164 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
165 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
166 * a battery power cycle is required.
168 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
169 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
170 * task, we bring back this unit into life.
174 * Do a write into the unit without interrupt support.
175 * We do not need to check the WEF here, because the only reason this kind of
176 * write error can happen is if we write to the unit twice within the 122 us
177 * interval. This cannot happen, since we are using this function only while
178 * setting up the unit.
180 static void di_write_busy_wait(const struct imxdi_dev
*imxdi
, u32 val
,
183 /* do the register write */
184 writel(val
, imxdi
->ioaddr
+ reg
);
187 * now it takes four 32,768 kHz clock cycles to take
188 * the change into effect = 122 us
190 usleep_range(130, 200);
193 static void di_report_tamper_info(struct imxdi_dev
*imxdi
, u32 dsr
)
197 dtcr
= readl(imxdi
->ioaddr
+ DTCR
);
199 dev_emerg(&imxdi
->pdev
->dev
, "DryIce tamper event detected\n");
200 /* the following flags force a transition into the "FAILURE STATE" */
202 dev_emerg(&imxdi
->pdev
->dev
, "%sVoltage Tamper Event\n",
203 dtcr
& DTCR_VTE
? "" : "Spurious ");
206 dev_emerg(&imxdi
->pdev
->dev
, "%s32768 Hz Clock Tamper Event\n",
207 dtcr
& DTCR_CTE
? "" : "Spurious ");
210 dev_emerg(&imxdi
->pdev
->dev
, "%sTemperature Tamper Event\n",
211 dtcr
& DTCR_TTE
? "" : "Spurious ");
214 dev_emerg(&imxdi
->pdev
->dev
,
215 "%sSecure Controller Alarm Event\n",
216 dtcr
& DTCR_SAIE
? "" : "Spurious ");
219 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Boot Tamper Event\n",
220 dtcr
& DTCR_EBE
? "" : "Spurious ");
223 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper A Event\n",
224 dtcr
& DTCR_ETAE
? "" : "Spurious ");
227 dev_emerg(&imxdi
->pdev
->dev
, "%sExternal Tamper B Event\n",
228 dtcr
& DTCR_ETBE
? "" : "Spurious ");
231 dev_emerg(&imxdi
->pdev
->dev
, "%sWire-mesh Tamper Event\n",
232 dtcr
& DTCR_WTE
? "" : "Spurious ");
235 dev_emerg(&imxdi
->pdev
->dev
,
236 "%sMonotonic-counter Overflow Event\n",
237 dtcr
& DTCR_MOE
? "" : "Spurious ");
240 dev_emerg(&imxdi
->pdev
->dev
, "%sTimer-counter Overflow Event\n",
241 dtcr
& DTCR_TOE
? "" : "Spurious ");
244 static void di_what_is_to_be_done(struct imxdi_dev
*imxdi
,
245 const char *power_supply
)
247 dev_emerg(&imxdi
->pdev
->dev
, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
251 static int di_handle_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
255 dev_dbg(&imxdi
->pdev
->dev
, "DSR register reports: %08X\n", dsr
);
257 /* report the cause */
258 di_report_tamper_info(imxdi
, dsr
);
260 dcr
= readl(imxdi
->ioaddr
+ DCR
);
262 if (dcr
& DCR_FSHL
) {
263 /* we are out of luck */
264 di_what_is_to_be_done(imxdi
, "battery");
268 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
269 * into the "NON-VALID STATE" + "FAILURE STATE"
271 di_what_is_to_be_done(imxdi
, "main");
276 static int di_handle_valid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
278 /* initialize alarm */
279 di_write_busy_wait(imxdi
, DCAMR_UNSET
, DCAMR
);
280 di_write_busy_wait(imxdi
, 0, DCALR
);
282 /* clear alarm flag */
284 di_write_busy_wait(imxdi
, DSR_CAF
, DSR
);
289 static int di_handle_invalid_state(struct imxdi_dev
*imxdi
, u32 dsr
)
294 * lets disable all sources which can force the DryIce unit into
295 * the "FAILURE STATE" for now
297 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
298 /* and lets protect them at runtime from any change */
299 di_write_busy_wait(imxdi
, DCR_TDCSL
, DCR
);
301 sec
= readl(imxdi
->ioaddr
+ DTCMR
);
303 dev_warn(&imxdi
->pdev
->dev
,
304 "The security violation has happened at %u seconds\n",
307 * the timer cannot be set/modified if
308 * - the TCHL or TCSL bit is set in DCR
310 dcr
= readl(imxdi
->ioaddr
+ DCR
);
311 if (!(dcr
& DCR_TCE
)) {
312 if (dcr
& DCR_TCHL
) {
313 /* we are out of luck */
314 di_what_is_to_be_done(imxdi
, "battery");
317 if (dcr
& DCR_TCSL
) {
318 di_what_is_to_be_done(imxdi
, "main");
323 * - the timer counter stops/is stopped if
324 * - its overflow flag is set (TCO in DSR)
325 * -> clear overflow bit to make it count again
326 * - NVF is set in DSR
327 * -> clear non-valid bit to make it count again
328 * - its TCE (DCR) is cleared
329 * -> set TCE to make it count
330 * - it was never set before
331 * -> write a time into it (required again if the NVF was set)
334 di_write_busy_wait(imxdi
, DSR_NVF
, DSR
);
335 /* clear overflow flag */
336 di_write_busy_wait(imxdi
, DSR_TCO
, DSR
);
337 /* enable the counter */
338 di_write_busy_wait(imxdi
, dcr
| DCR_TCE
, DCR
);
339 /* set and trigger it to make it count */
340 di_write_busy_wait(imxdi
, sec
, DTCMR
);
342 /* now prepare for the valid state */
343 return di_handle_valid_state(imxdi
, __raw_readl(imxdi
->ioaddr
+ DSR
));
346 static int di_handle_invalid_and_failure_state(struct imxdi_dev
*imxdi
, u32 dsr
)
351 * now we must first remove the tamper sources in order to get the
352 * device out of the "FAILURE STATE"
353 * To disable any of the following sources we need to modify the DTCR
355 if (dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
| DSR_EBD
| DSR_SAD
|
356 DSR_TTD
| DSR_CTD
| DSR_VTD
| DSR_MCO
| DSR_TCO
)) {
357 dcr
= __raw_readl(imxdi
->ioaddr
+ DCR
);
358 if (dcr
& DCR_TDCHL
) {
360 * the tamper register is locked. We cannot disable the
361 * tamper detection. The TDCHL can only be reset by a
362 * DRYICE POR, but we cannot force a DRYICE POR in
363 * softwere because we are still in "FAILURE STATE".
364 * We need a DRYICE POR via battery power cycling....
368 * we cannot disable them without a DRYICE POR
370 di_what_is_to_be_done(imxdi
, "battery");
373 if (dcr
& DCR_TDCSL
) {
374 /* a soft lock can be removed by a SYSTEM POR */
375 di_what_is_to_be_done(imxdi
, "main");
380 /* disable all sources */
381 di_write_busy_wait(imxdi
, 0x00000000, DTCR
);
383 /* clear the status bits now */
384 di_write_busy_wait(imxdi
, dsr
& (DSR_WTD
| DSR_ETBD
| DSR_ETAD
|
385 DSR_EBD
| DSR_SAD
| DSR_TTD
| DSR_CTD
| DSR_VTD
|
386 DSR_MCO
| DSR_TCO
), DSR
);
388 dsr
= readl(imxdi
->ioaddr
+ DSR
);
389 if ((dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
390 DSR_WCF
| DSR_WEF
)) != 0)
391 dev_warn(&imxdi
->pdev
->dev
,
392 "There are still some sources of pain in DSR: %08x!\n",
393 dsr
& ~(DSR_NVF
| DSR_SVF
| DSR_WBF
| DSR_WNF
|
397 * now we are trying to clear the "Security-violation flag" to
398 * get the DryIce out of this state
400 di_write_busy_wait(imxdi
, DSR_SVF
, DSR
);
403 dsr
= readl(imxdi
->ioaddr
+ DSR
);
405 dev_crit(&imxdi
->pdev
->dev
,
406 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
408 di_what_is_to_be_done(imxdi
, "battery");
413 * now we have left the "FAILURE STATE" and ending up in the
414 * "NON-VALID STATE" time to recover everything
416 return di_handle_invalid_state(imxdi
, dsr
);
419 static int di_handle_state(struct imxdi_dev
*imxdi
)
424 dsr
= readl(imxdi
->ioaddr
+ DSR
);
426 switch (dsr
& (DSR_NVF
| DSR_SVF
)) {
428 dev_warn(&imxdi
->pdev
->dev
, "Invalid stated unit detected\n");
429 rc
= di_handle_invalid_state(imxdi
, dsr
);
432 dev_warn(&imxdi
->pdev
->dev
, "Failure stated unit detected\n");
433 rc
= di_handle_failure_state(imxdi
, dsr
);
435 case DSR_NVF
| DSR_SVF
:
436 dev_warn(&imxdi
->pdev
->dev
,
437 "Failure+Invalid stated unit detected\n");
438 rc
= di_handle_invalid_and_failure_state(imxdi
, dsr
);
441 dev_notice(&imxdi
->pdev
->dev
, "Unlocked unit detected\n");
442 rc
= di_handle_valid_state(imxdi
, dsr
);
449 * enable a dryice interrupt
451 static void di_int_enable(struct imxdi_dev
*imxdi
, u32 intr
)
455 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
456 writel(readl(imxdi
->ioaddr
+ DIER
) | intr
,
457 imxdi
->ioaddr
+ DIER
);
458 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
462 * disable a dryice interrupt
464 static void di_int_disable(struct imxdi_dev
*imxdi
, u32 intr
)
468 spin_lock_irqsave(&imxdi
->irq_lock
, flags
);
469 writel(readl(imxdi
->ioaddr
+ DIER
) & ~intr
,
470 imxdi
->ioaddr
+ DIER
);
471 spin_unlock_irqrestore(&imxdi
->irq_lock
, flags
);
475 * This function attempts to clear the dryice write-error flag.
477 * A dryice write error is similar to a bus fault and should not occur in
478 * normal operation. Clearing the flag requires another write, so the root
479 * cause of the problem may need to be fixed before the flag can be cleared.
481 static void clear_write_error(struct imxdi_dev
*imxdi
)
485 dev_warn(&imxdi
->pdev
->dev
, "WARNING: Register write error!\n");
487 /* clear the write error flag */
488 writel(DSR_WEF
, imxdi
->ioaddr
+ DSR
);
490 /* wait for it to take effect */
491 for (cnt
= 0; cnt
< 1000; cnt
++) {
492 if ((readl(imxdi
->ioaddr
+ DSR
) & DSR_WEF
) == 0)
496 dev_err(&imxdi
->pdev
->dev
,
497 "ERROR: Cannot clear write-error flag!\n");
501 * Write a dryice register and wait until it completes.
503 * This function uses interrupts to determine when the
504 * write has completed.
506 static int di_write_wait(struct imxdi_dev
*imxdi
, u32 val
, int reg
)
511 /* serialize register writes */
512 mutex_lock(&imxdi
->write_mutex
);
514 /* enable the write-complete interrupt */
515 di_int_enable(imxdi
, DIER_WCIE
);
519 /* do the register write */
520 writel(val
, imxdi
->ioaddr
+ reg
);
522 /* wait for the write to finish */
523 ret
= wait_event_interruptible_timeout(imxdi
->write_wait
,
524 imxdi
->dsr
& (DSR_WCF
| DSR_WEF
), msecs_to_jiffies(1));
528 } else if (ret
== 0) {
529 dev_warn(&imxdi
->pdev
->dev
,
530 "Write-wait timeout "
531 "val = 0x%08x reg = 0x%08x\n", val
, reg
);
534 /* check for write error */
535 if (imxdi
->dsr
& DSR_WEF
) {
536 clear_write_error(imxdi
);
541 mutex_unlock(&imxdi
->write_mutex
);
547 * read the seconds portion of the current time from the dryice time counter
549 static int dryice_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
551 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
554 now
= readl(imxdi
->ioaddr
+ DTCMR
);
555 rtc_time_to_tm(now
, tm
);
561 * set the seconds portion of dryice time counter and clear the
564 static int dryice_rtc_set_mmss(struct device
*dev
, unsigned long secs
)
566 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
570 dcr
= readl(imxdi
->ioaddr
+ DCR
);
571 dsr
= readl(imxdi
->ioaddr
+ DSR
);
573 if (!(dcr
& DCR_TCE
) || (dsr
& DSR_SVF
)) {
574 if (dcr
& DCR_TCHL
) {
575 /* we are even more out of luck */
576 di_what_is_to_be_done(imxdi
, "battery");
579 if ((dcr
& DCR_TCSL
) || (dsr
& DSR_SVF
)) {
580 /* we are out of luck for now */
581 di_what_is_to_be_done(imxdi
, "main");
586 /* zero the fractional part first */
587 rc
= di_write_wait(imxdi
, 0, DTCLR
);
591 rc
= di_write_wait(imxdi
, secs
, DTCMR
);
595 return di_write_wait(imxdi
, readl(imxdi
->ioaddr
+ DCR
) | DCR_TCE
, DCR
);
598 static int dryice_rtc_alarm_irq_enable(struct device
*dev
,
599 unsigned int enabled
)
601 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
604 di_int_enable(imxdi
, DIER_CAIE
);
606 di_int_disable(imxdi
, DIER_CAIE
);
612 * read the seconds portion of the alarm register.
613 * the fractional part of the alarm register is always zero.
615 static int dryice_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
617 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
620 dcamr
= readl(imxdi
->ioaddr
+ DCAMR
);
621 rtc_time_to_tm(dcamr
, &alarm
->time
);
623 /* alarm is enabled if the interrupt is enabled */
624 alarm
->enabled
= (readl(imxdi
->ioaddr
+ DIER
) & DIER_CAIE
) != 0;
626 /* don't allow the DSR read to mess up DSR_WCF */
627 mutex_lock(&imxdi
->write_mutex
);
629 /* alarm is pending if the alarm flag is set */
630 alarm
->pending
= (readl(imxdi
->ioaddr
+ DSR
) & DSR_CAF
) != 0;
632 mutex_unlock(&imxdi
->write_mutex
);
638 * set the seconds portion of dryice alarm register
640 static int dryice_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
642 struct imxdi_dev
*imxdi
= dev_get_drvdata(dev
);
644 unsigned long alarm_time
;
647 rc
= rtc_tm_to_time(&alarm
->time
, &alarm_time
);
651 /* don't allow setting alarm in the past */
652 now
= readl(imxdi
->ioaddr
+ DTCMR
);
653 if (alarm_time
< now
)
656 /* write the new alarm time */
657 rc
= di_write_wait(imxdi
, (u32
)alarm_time
, DCAMR
);
662 di_int_enable(imxdi
, DIER_CAIE
); /* enable alarm intr */
664 di_int_disable(imxdi
, DIER_CAIE
); /* disable alarm intr */
669 static const struct rtc_class_ops dryice_rtc_ops
= {
670 .read_time
= dryice_rtc_read_time
,
671 .set_mmss
= dryice_rtc_set_mmss
,
672 .alarm_irq_enable
= dryice_rtc_alarm_irq_enable
,
673 .read_alarm
= dryice_rtc_read_alarm
,
674 .set_alarm
= dryice_rtc_set_alarm
,
678 * interrupt handler for dryice "normal" and security violation interrupt
680 static irqreturn_t
dryice_irq(int irq
, void *dev_id
)
682 struct imxdi_dev
*imxdi
= dev_id
;
684 irqreturn_t rc
= IRQ_NONE
;
686 dier
= readl(imxdi
->ioaddr
+ DIER
);
687 dsr
= readl(imxdi
->ioaddr
+ DSR
);
689 /* handle the security violation event */
690 if (dier
& DIER_SVIE
) {
693 * Disable the interrupt when this kind of event has
695 * There cannot be more than one event of this type,
696 * because it needs a complex state change
697 * including a main power cycle to get again out of
700 di_int_disable(imxdi
, DIER_SVIE
);
701 /* report the violation */
702 di_report_tamper_info(imxdi
, dsr
);
707 /* handle write complete and write error cases */
708 if (dier
& DIER_WCIE
) {
709 /*If the write wait queue is empty then there is no pending
710 operations. It means the interrupt is for DryIce -Security.
711 IRQ must be returned as none.*/
712 if (list_empty_careful(&imxdi
->write_wait
.head
))
715 /* DSR_WCF clears itself on DSR read */
716 if (dsr
& (DSR_WCF
| DSR_WEF
)) {
717 /* mask the interrupt */
718 di_int_disable(imxdi
, DIER_WCIE
);
720 /* save the dsr value for the wait queue */
723 wake_up_interruptible(&imxdi
->write_wait
);
728 /* handle the alarm case */
729 if (dier
& DIER_CAIE
) {
730 /* DSR_WCF clears itself on DSR read */
732 /* mask the interrupt */
733 di_int_disable(imxdi
, DIER_CAIE
);
735 /* finish alarm in user context */
736 schedule_work(&imxdi
->work
);
744 * post the alarm event from user context so it can sleep
745 * on the write completion.
747 static void dryice_work(struct work_struct
*work
)
749 struct imxdi_dev
*imxdi
= container_of(work
,
750 struct imxdi_dev
, work
);
752 /* dismiss the interrupt (ignore error) */
753 di_write_wait(imxdi
, DSR_CAF
, DSR
);
755 /* pass the alarm event to the rtc framework. */
756 rtc_update_irq(imxdi
->rtc
, 1, RTC_AF
| RTC_IRQF
);
760 * probe for dryice rtc device
762 static int __init
dryice_rtc_probe(struct platform_device
*pdev
)
764 struct resource
*res
;
765 struct imxdi_dev
*imxdi
;
766 int norm_irq
, sec_irq
;
769 imxdi
= devm_kzalloc(&pdev
->dev
, sizeof(*imxdi
), GFP_KERNEL
);
775 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
776 imxdi
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
777 if (IS_ERR(imxdi
->ioaddr
))
778 return PTR_ERR(imxdi
->ioaddr
);
780 spin_lock_init(&imxdi
->irq_lock
);
782 norm_irq
= platform_get_irq(pdev
, 0);
786 /* the 2nd irq is the security violation irq
787 * make this optional, don't break the device tree ABI
789 sec_irq
= platform_get_irq(pdev
, 1);
791 sec_irq
= IRQ_NOTCONNECTED
;
793 init_waitqueue_head(&imxdi
->write_wait
);
795 INIT_WORK(&imxdi
->work
, dryice_work
);
797 mutex_init(&imxdi
->write_mutex
);
799 imxdi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
800 if (IS_ERR(imxdi
->clk
))
801 return PTR_ERR(imxdi
->clk
);
802 rc
= clk_prepare_enable(imxdi
->clk
);
807 * Initialize dryice hardware
810 /* mask all interrupts */
811 writel(0, imxdi
->ioaddr
+ DIER
);
813 rc
= di_handle_state(imxdi
);
817 rc
= devm_request_irq(&pdev
->dev
, norm_irq
, dryice_irq
,
818 IRQF_SHARED
, pdev
->name
, imxdi
);
820 dev_warn(&pdev
->dev
, "interrupt not available.\n");
824 rc
= devm_request_irq(&pdev
->dev
, sec_irq
, dryice_irq
,
825 IRQF_SHARED
, pdev
->name
, imxdi
);
827 dev_warn(&pdev
->dev
, "security violation interrupt not available.\n");
828 /* this is not an error, see above */
831 platform_set_drvdata(pdev
, imxdi
);
832 imxdi
->rtc
= devm_rtc_device_register(&pdev
->dev
, pdev
->name
,
833 &dryice_rtc_ops
, THIS_MODULE
);
834 if (IS_ERR(imxdi
->rtc
)) {
835 rc
= PTR_ERR(imxdi
->rtc
);
842 clk_disable_unprepare(imxdi
->clk
);
847 static int __exit
dryice_rtc_remove(struct platform_device
*pdev
)
849 struct imxdi_dev
*imxdi
= platform_get_drvdata(pdev
);
851 flush_work(&imxdi
->work
);
853 /* mask all interrupts */
854 writel(0, imxdi
->ioaddr
+ DIER
);
856 clk_disable_unprepare(imxdi
->clk
);
862 static const struct of_device_id dryice_dt_ids
[] = {
863 { .compatible
= "fsl,imx25-rtc" },
867 MODULE_DEVICE_TABLE(of
, dryice_dt_ids
);
870 static struct platform_driver dryice_rtc_driver
= {
873 .of_match_table
= of_match_ptr(dryice_dt_ids
),
875 .remove
= __exit_p(dryice_rtc_remove
),
878 module_platform_driver_probe(dryice_rtc_driver
, dryice_rtc_probe
);
880 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
881 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
882 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
883 MODULE_LICENSE("GPL");