2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
57 #include "tick-internal.h"
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
67 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
69 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
70 .seq
= SEQCNT_ZERO(hrtimer_bases
.seq
),
74 .index
= HRTIMER_BASE_MONOTONIC
,
75 .clockid
= CLOCK_MONOTONIC
,
76 .get_time
= &ktime_get
,
79 .index
= HRTIMER_BASE_REALTIME
,
80 .clockid
= CLOCK_REALTIME
,
81 .get_time
= &ktime_get_real
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
96 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
97 /* Make sure we catch unsupported clockids */
98 [0 ... MAX_CLOCKS
- 1] = HRTIMER_MAX_CLOCK_BASES
,
100 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
101 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
102 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
103 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
106 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
108 int base
= hrtimer_clock_to_base_table
[clock_id
];
109 BUG_ON(base
== HRTIMER_MAX_CLOCK_BASES
);
114 * Functions and macros which are different for UP/SMP systems are kept in a
120 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
121 * such that hrtimer_callback_running() can unconditionally dereference
122 * timer->base->cpu_base
124 static struct hrtimer_cpu_base migration_cpu_base
= {
125 .seq
= SEQCNT_ZERO(migration_cpu_base
),
126 .clock_base
= { { .cpu_base
= &migration_cpu_base
, }, },
129 #define migration_base migration_cpu_base.clock_base[0]
132 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
133 * means that all timers which are tied to this base via timer->base are
134 * locked, and the base itself is locked too.
136 * So __run_timers/migrate_timers can safely modify all timers which could
137 * be found on the lists/queues.
139 * When the timer's base is locked, and the timer removed from list, it is
140 * possible to set timer->base = &migration_base and drop the lock: the timer
144 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
145 unsigned long *flags
)
147 struct hrtimer_clock_base
*base
;
151 if (likely(base
!= &migration_base
)) {
152 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
153 if (likely(base
== timer
->base
))
155 /* The timer has migrated to another CPU: */
156 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
163 * With HIGHRES=y we do not migrate the timer when it is expiring
164 * before the next event on the target cpu because we cannot reprogram
165 * the target cpu hardware and we would cause it to fire late.
167 * Called with cpu_base->lock of target cpu held.
170 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
172 #ifdef CONFIG_HIGH_RES_TIMERS
175 if (!new_base
->cpu_base
->hres_active
)
178 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
179 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
185 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
187 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
190 if (pinned
|| !base
->migration_enabled
)
192 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
196 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
204 * We switch the timer base to a power-optimized selected CPU target,
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
215 static inline struct hrtimer_clock_base
*
216 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
219 struct hrtimer_cpu_base
*new_cpu_base
, *this_cpu_base
;
220 struct hrtimer_clock_base
*new_base
;
221 int basenum
= base
->index
;
223 this_cpu_base
= this_cpu_ptr(&hrtimer_bases
);
224 new_cpu_base
= get_target_base(this_cpu_base
, pinned
);
226 new_base
= &new_cpu_base
->clock_base
[basenum
];
228 if (base
!= new_base
) {
230 * We are trying to move timer to new_base.
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
238 if (unlikely(hrtimer_callback_running(timer
)))
241 /* See the comment in lock_hrtimer_base() */
242 timer
->base
= &migration_base
;
243 raw_spin_unlock(&base
->cpu_base
->lock
);
244 raw_spin_lock(&new_base
->cpu_base
->lock
);
246 if (new_cpu_base
!= this_cpu_base
&&
247 hrtimer_check_target(timer
, new_base
)) {
248 raw_spin_unlock(&new_base
->cpu_base
->lock
);
249 raw_spin_lock(&base
->cpu_base
->lock
);
250 new_cpu_base
= this_cpu_base
;
254 timer
->base
= new_base
;
256 if (new_cpu_base
!= this_cpu_base
&&
257 hrtimer_check_target(timer
, new_base
)) {
258 new_cpu_base
= this_cpu_base
;
265 #else /* CONFIG_SMP */
267 static inline struct hrtimer_clock_base
*
268 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
270 struct hrtimer_clock_base
*base
= timer
->base
;
272 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
277 # define switch_hrtimer_base(t, b, p) (b)
279 #endif /* !CONFIG_SMP */
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
285 #if BITS_PER_LONG < 64
287 * Divide a ktime value by a nanosecond value
289 s64
__ktime_divns(const ktime_t kt
, s64 div
)
295 dclc
= ktime_to_ns(kt
);
296 tmp
= dclc
< 0 ? -dclc
: dclc
;
298 /* Make sure the divisor is less than 2^32: */
304 do_div(tmp
, (unsigned long) div
);
305 return dclc
< 0 ? -tmp
: tmp
;
307 EXPORT_SYMBOL_GPL(__ktime_divns
);
308 #endif /* BITS_PER_LONG >= 64 */
311 * Add two ktime values and do a safety check for overflow:
313 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
315 ktime_t res
= ktime_add_unsafe(lhs
, rhs
);
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
321 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
322 res
= ktime_set(KTIME_SEC_MAX
, 0);
327 EXPORT_SYMBOL_GPL(ktime_add_safe
);
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
331 static struct debug_obj_descr hrtimer_debug_descr
;
333 static void *hrtimer_debug_hint(void *addr
)
335 return ((struct hrtimer
*) addr
)->function
;
339 * fixup_init is called when:
340 * - an active object is initialized
342 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
344 struct hrtimer
*timer
= addr
;
347 case ODEBUG_STATE_ACTIVE
:
348 hrtimer_cancel(timer
);
349 debug_object_init(timer
, &hrtimer_debug_descr
);
357 * fixup_activate is called when:
358 * - an active object is activated
359 * - an unknown object is activated (might be a statically initialized object)
361 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
365 case ODEBUG_STATE_NOTAVAILABLE
:
369 case ODEBUG_STATE_ACTIVE
:
378 * fixup_free is called when:
379 * - an active object is freed
381 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
383 struct hrtimer
*timer
= addr
;
386 case ODEBUG_STATE_ACTIVE
:
387 hrtimer_cancel(timer
);
388 debug_object_free(timer
, &hrtimer_debug_descr
);
395 static struct debug_obj_descr hrtimer_debug_descr
= {
397 .debug_hint
= hrtimer_debug_hint
,
398 .fixup_init
= hrtimer_fixup_init
,
399 .fixup_activate
= hrtimer_fixup_activate
,
400 .fixup_free
= hrtimer_fixup_free
,
403 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
405 debug_object_init(timer
, &hrtimer_debug_descr
);
408 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
410 debug_object_activate(timer
, &hrtimer_debug_descr
);
413 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
415 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
418 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
420 debug_object_free(timer
, &hrtimer_debug_descr
);
423 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
424 enum hrtimer_mode mode
);
426 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
427 enum hrtimer_mode mode
)
429 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
430 __hrtimer_init(timer
, clock_id
, mode
);
432 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
434 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
436 debug_object_free(timer
, &hrtimer_debug_descr
);
440 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
441 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
446 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
447 enum hrtimer_mode mode
)
449 debug_hrtimer_init(timer
);
450 trace_hrtimer_init(timer
, clockid
, mode
);
453 static inline void debug_activate(struct hrtimer
*timer
)
455 debug_hrtimer_activate(timer
);
456 trace_hrtimer_start(timer
);
459 static inline void debug_deactivate(struct hrtimer
*timer
)
461 debug_hrtimer_deactivate(timer
);
462 trace_hrtimer_cancel(timer
);
465 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
466 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base
*cpu_base
,
467 struct hrtimer
*timer
)
469 #ifdef CONFIG_HIGH_RES_TIMERS
470 cpu_base
->next_timer
= timer
;
474 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
)
476 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
477 ktime_t expires
, expires_next
= { .tv64
= KTIME_MAX
};
478 unsigned int active
= cpu_base
->active_bases
;
480 hrtimer_update_next_timer(cpu_base
, NULL
);
481 for (; active
; base
++, active
>>= 1) {
482 struct timerqueue_node
*next
;
483 struct hrtimer
*timer
;
485 if (!(active
& 0x01))
488 next
= timerqueue_getnext(&base
->active
);
489 timer
= container_of(next
, struct hrtimer
, node
);
490 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
491 if (expires
.tv64
< expires_next
.tv64
) {
492 expires_next
= expires
;
493 hrtimer_update_next_timer(cpu_base
, timer
);
497 * clock_was_set() might have changed base->offset of any of
498 * the clock bases so the result might be negative. Fix it up
499 * to prevent a false positive in clockevents_program_event().
501 if (expires_next
.tv64
< 0)
502 expires_next
.tv64
= 0;
507 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
509 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
510 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
511 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
513 return ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
514 offs_real
, offs_boot
, offs_tai
);
517 /* High resolution timer related functions */
518 #ifdef CONFIG_HIGH_RES_TIMERS
521 * High resolution timer enabled ?
523 static int hrtimer_hres_enabled __read_mostly
= 1;
524 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
525 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
528 * Enable / Disable high resolution mode
530 static int __init
setup_hrtimer_hres(char *str
)
532 if (!strcmp(str
, "off"))
533 hrtimer_hres_enabled
= 0;
534 else if (!strcmp(str
, "on"))
535 hrtimer_hres_enabled
= 1;
541 __setup("highres=", setup_hrtimer_hres
);
544 * hrtimer_high_res_enabled - query, if the highres mode is enabled
546 static inline int hrtimer_is_hres_enabled(void)
548 return hrtimer_hres_enabled
;
552 * Is the high resolution mode active ?
554 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
556 return cpu_base
->hres_active
;
559 static inline int hrtimer_hres_active(void)
561 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases
));
565 * Reprogram the event source with checking both queues for the
567 * Called with interrupts disabled and base->lock held
570 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
572 ktime_t expires_next
;
574 if (!cpu_base
->hres_active
)
577 expires_next
= __hrtimer_get_next_event(cpu_base
);
579 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
582 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
585 * If a hang was detected in the last timer interrupt then we
586 * leave the hang delay active in the hardware. We want the
587 * system to make progress. That also prevents the following
589 * T1 expires 50ms from now
590 * T2 expires 5s from now
592 * T1 is removed, so this code is called and would reprogram
593 * the hardware to 5s from now. Any hrtimer_start after that
594 * will not reprogram the hardware due to hang_detected being
595 * set. So we'd effectivly block all timers until the T2 event
598 if (cpu_base
->hang_detected
)
601 tick_program_event(cpu_base
->expires_next
, 1);
605 * When a timer is enqueued and expires earlier than the already enqueued
606 * timers, we have to check, whether it expires earlier than the timer for
607 * which the clock event device was armed.
609 * Called with interrupts disabled and base->cpu_base.lock held
611 static void hrtimer_reprogram(struct hrtimer
*timer
,
612 struct hrtimer_clock_base
*base
)
614 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
615 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
617 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
620 * If the timer is not on the current cpu, we cannot reprogram
621 * the other cpus clock event device.
623 if (base
->cpu_base
!= cpu_base
)
627 * If the hrtimer interrupt is running, then it will
628 * reevaluate the clock bases and reprogram the clock event
629 * device. The callbacks are always executed in hard interrupt
630 * context so we don't need an extra check for a running
633 if (cpu_base
->in_hrtirq
)
637 * CLOCK_REALTIME timer might be requested with an absolute
638 * expiry time which is less than base->offset. Set it to 0.
640 if (expires
.tv64
< 0)
643 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
646 /* Update the pointer to the next expiring timer */
647 cpu_base
->next_timer
= timer
;
650 * If a hang was detected in the last timer interrupt then we
651 * do not schedule a timer which is earlier than the expiry
652 * which we enforced in the hang detection. We want the system
655 if (cpu_base
->hang_detected
)
659 * Program the timer hardware. We enforce the expiry for
660 * events which are already in the past.
662 cpu_base
->expires_next
= expires
;
663 tick_program_event(expires
, 1);
667 * Initialize the high resolution related parts of cpu_base
669 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
671 base
->expires_next
.tv64
= KTIME_MAX
;
672 base
->hang_detected
= 0;
673 base
->hres_active
= 0;
674 base
->next_timer
= NULL
;
678 * Retrigger next event is called after clock was set
680 * Called with interrupts disabled via on_each_cpu()
682 static void retrigger_next_event(void *arg
)
684 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
686 if (!base
->hres_active
)
689 raw_spin_lock(&base
->lock
);
690 hrtimer_update_base(base
);
691 hrtimer_force_reprogram(base
, 0);
692 raw_spin_unlock(&base
->lock
);
696 * Switch to high resolution mode
698 static void hrtimer_switch_to_hres(void)
700 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
702 if (tick_init_highres()) {
703 printk(KERN_WARNING
"Could not switch to high resolution "
704 "mode on CPU %d\n", base
->cpu
);
707 base
->hres_active
= 1;
708 hrtimer_resolution
= HIGH_RES_NSEC
;
710 tick_setup_sched_timer();
711 /* "Retrigger" the interrupt to get things going */
712 retrigger_next_event(NULL
);
715 static void clock_was_set_work(struct work_struct
*work
)
720 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
723 * Called from timekeeping and resume code to reprogramm the hrtimer
724 * interrupt device on all cpus.
726 void clock_was_set_delayed(void)
728 schedule_work(&hrtimer_work
);
733 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*b
) { return 0; }
734 static inline int hrtimer_hres_active(void) { return 0; }
735 static inline int hrtimer_is_hres_enabled(void) { return 0; }
736 static inline void hrtimer_switch_to_hres(void) { }
738 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
739 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
740 struct hrtimer_clock_base
*base
)
744 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
745 static inline void retrigger_next_event(void *arg
) { }
747 #endif /* CONFIG_HIGH_RES_TIMERS */
750 * Clock realtime was set
752 * Change the offset of the realtime clock vs. the monotonic
755 * We might have to reprogram the high resolution timer interrupt. On
756 * SMP we call the architecture specific code to retrigger _all_ high
757 * resolution timer interrupts. On UP we just disable interrupts and
758 * call the high resolution interrupt code.
760 void clock_was_set(void)
762 #ifdef CONFIG_HIGH_RES_TIMERS
763 /* Retrigger the CPU local events everywhere */
764 on_each_cpu(retrigger_next_event
, NULL
, 1);
766 timerfd_clock_was_set();
770 * During resume we might have to reprogram the high resolution timer
771 * interrupt on all online CPUs. However, all other CPUs will be
772 * stopped with IRQs interrupts disabled so the clock_was_set() call
775 void hrtimers_resume(void)
777 WARN_ONCE(!irqs_disabled(),
778 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
780 /* Retrigger on the local CPU */
781 retrigger_next_event(NULL
);
782 /* And schedule a retrigger for all others */
783 clock_was_set_delayed();
786 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
788 #ifdef CONFIG_TIMER_STATS
789 if (timer
->start_site
)
791 timer
->start_site
= __builtin_return_address(0);
792 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
793 timer
->start_pid
= current
->pid
;
797 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
799 #ifdef CONFIG_TIMER_STATS
800 timer
->start_site
= NULL
;
804 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
806 #ifdef CONFIG_TIMER_STATS
807 if (likely(!timer_stats_active
))
809 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
810 timer
->function
, timer
->start_comm
, 0);
815 * Counterpart to lock_hrtimer_base above:
818 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
820 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
824 * hrtimer_forward - forward the timer expiry
825 * @timer: hrtimer to forward
826 * @now: forward past this time
827 * @interval: the interval to forward
829 * Forward the timer expiry so it will expire in the future.
830 * Returns the number of overruns.
832 * Can be safely called from the callback function of @timer. If
833 * called from other contexts @timer must neither be enqueued nor
834 * running the callback and the caller needs to take care of
837 * Note: This only updates the timer expiry value and does not requeue
840 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
845 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
850 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
853 if (interval
.tv64
< hrtimer_resolution
)
854 interval
.tv64
= hrtimer_resolution
;
856 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
857 s64 incr
= ktime_to_ns(interval
);
859 orun
= ktime_divns(delta
, incr
);
860 hrtimer_add_expires_ns(timer
, incr
* orun
);
861 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
864 * This (and the ktime_add() below) is the
865 * correction for exact:
869 hrtimer_add_expires(timer
, interval
);
873 EXPORT_SYMBOL_GPL(hrtimer_forward
);
876 * enqueue_hrtimer - internal function to (re)start a timer
878 * The timer is inserted in expiry order. Insertion into the
879 * red black tree is O(log(n)). Must hold the base lock.
881 * Returns 1 when the new timer is the leftmost timer in the tree.
883 static int enqueue_hrtimer(struct hrtimer
*timer
,
884 struct hrtimer_clock_base
*base
)
886 debug_activate(timer
);
888 base
->cpu_base
->active_bases
|= 1 << base
->index
;
890 timer
->state
= HRTIMER_STATE_ENQUEUED
;
892 return timerqueue_add(&base
->active
, &timer
->node
);
896 * __remove_hrtimer - internal function to remove a timer
898 * Caller must hold the base lock.
900 * High resolution timer mode reprograms the clock event device when the
901 * timer is the one which expires next. The caller can disable this by setting
902 * reprogram to zero. This is useful, when the context does a reprogramming
903 * anyway (e.g. timer interrupt)
905 static void __remove_hrtimer(struct hrtimer
*timer
,
906 struct hrtimer_clock_base
*base
,
907 u8 newstate
, int reprogram
)
909 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
910 u8 state
= timer
->state
;
912 timer
->state
= newstate
;
913 if (!(state
& HRTIMER_STATE_ENQUEUED
))
916 if (!timerqueue_del(&base
->active
, &timer
->node
))
917 cpu_base
->active_bases
&= ~(1 << base
->index
);
919 #ifdef CONFIG_HIGH_RES_TIMERS
921 * Note: If reprogram is false we do not update
922 * cpu_base->next_timer. This happens when we remove the first
923 * timer on a remote cpu. No harm as we never dereference
924 * cpu_base->next_timer. So the worst thing what can happen is
925 * an superflous call to hrtimer_force_reprogram() on the
926 * remote cpu later on if the same timer gets enqueued again.
928 if (reprogram
&& timer
== cpu_base
->next_timer
)
929 hrtimer_force_reprogram(cpu_base
, 1);
934 * remove hrtimer, called with base lock held
937 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
, bool restart
)
939 if (hrtimer_is_queued(timer
)) {
940 u8 state
= timer
->state
;
944 * Remove the timer and force reprogramming when high
945 * resolution mode is active and the timer is on the current
946 * CPU. If we remove a timer on another CPU, reprogramming is
947 * skipped. The interrupt event on this CPU is fired and
948 * reprogramming happens in the interrupt handler. This is a
949 * rare case and less expensive than a smp call.
951 debug_deactivate(timer
);
952 timer_stats_hrtimer_clear_start_info(timer
);
953 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
956 state
= HRTIMER_STATE_INACTIVE
;
958 __remove_hrtimer(timer
, base
, state
, reprogram
);
964 static inline ktime_t
hrtimer_update_lowres(struct hrtimer
*timer
, ktime_t tim
,
965 const enum hrtimer_mode mode
)
967 #ifdef CONFIG_TIME_LOW_RES
969 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
970 * granular time values. For relative timers we add hrtimer_resolution
971 * (i.e. one jiffie) to prevent short timeouts.
973 timer
->is_rel
= mode
& HRTIMER_MODE_REL
;
975 tim
= ktime_add_safe(tim
, ktime_set(0, hrtimer_resolution
));
981 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
982 * @timer: the timer to be added
984 * @delta_ns: "slack" range for the timer
985 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
986 * relative (HRTIMER_MODE_REL)
988 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
989 unsigned long delta_ns
, const enum hrtimer_mode mode
)
991 struct hrtimer_clock_base
*base
, *new_base
;
995 base
= lock_hrtimer_base(timer
, &flags
);
997 /* Remove an active timer from the queue: */
998 remove_hrtimer(timer
, base
, true);
1000 if (mode
& HRTIMER_MODE_REL
)
1001 tim
= ktime_add_safe(tim
, base
->get_time());
1003 tim
= hrtimer_update_lowres(timer
, tim
, mode
);
1005 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1007 /* Switch the timer base, if necessary: */
1008 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1010 timer_stats_hrtimer_set_start_info(timer
);
1012 leftmost
= enqueue_hrtimer(timer
, new_base
);
1016 if (!hrtimer_is_hres_active(timer
)) {
1018 * Kick to reschedule the next tick to handle the new timer
1019 * on dynticks target.
1021 if (new_base
->cpu_base
->nohz_active
)
1022 wake_up_nohz_cpu(new_base
->cpu_base
->cpu
);
1024 hrtimer_reprogram(timer
, new_base
);
1027 unlock_hrtimer_base(timer
, &flags
);
1029 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1032 * hrtimer_try_to_cancel - try to deactivate a timer
1033 * @timer: hrtimer to stop
1036 * 0 when the timer was not active
1037 * 1 when the timer was active
1038 * -1 when the timer is currently excuting the callback function and
1041 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1043 struct hrtimer_clock_base
*base
;
1044 unsigned long flags
;
1048 * Check lockless first. If the timer is not active (neither
1049 * enqueued nor running the callback, nothing to do here. The
1050 * base lock does not serialize against a concurrent enqueue,
1051 * so we can avoid taking it.
1053 if (!hrtimer_active(timer
))
1056 base
= lock_hrtimer_base(timer
, &flags
);
1058 if (!hrtimer_callback_running(timer
))
1059 ret
= remove_hrtimer(timer
, base
, false);
1061 unlock_hrtimer_base(timer
, &flags
);
1066 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1069 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1070 * @timer: the timer to be cancelled
1073 * 0 when the timer was not active
1074 * 1 when the timer was active
1076 int hrtimer_cancel(struct hrtimer
*timer
)
1079 int ret
= hrtimer_try_to_cancel(timer
);
1086 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1089 * hrtimer_get_remaining - get remaining time for the timer
1090 * @timer: the timer to read
1091 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1093 ktime_t
__hrtimer_get_remaining(const struct hrtimer
*timer
, bool adjust
)
1095 unsigned long flags
;
1098 lock_hrtimer_base(timer
, &flags
);
1099 if (IS_ENABLED(CONFIG_TIME_LOW_RES
) && adjust
)
1100 rem
= hrtimer_expires_remaining_adjusted(timer
);
1102 rem
= hrtimer_expires_remaining(timer
);
1103 unlock_hrtimer_base(timer
, &flags
);
1107 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining
);
1109 #ifdef CONFIG_NO_HZ_COMMON
1111 * hrtimer_get_next_event - get the time until next expiry event
1113 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1115 u64
hrtimer_get_next_event(void)
1117 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1118 u64 expires
= KTIME_MAX
;
1119 unsigned long flags
;
1121 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1123 if (!__hrtimer_hres_active(cpu_base
))
1124 expires
= __hrtimer_get_next_event(cpu_base
).tv64
;
1126 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1132 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1133 enum hrtimer_mode mode
)
1135 struct hrtimer_cpu_base
*cpu_base
;
1138 memset(timer
, 0, sizeof(struct hrtimer
));
1140 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1142 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1143 clock_id
= CLOCK_MONOTONIC
;
1145 base
= hrtimer_clockid_to_base(clock_id
);
1146 timer
->base
= &cpu_base
->clock_base
[base
];
1147 timerqueue_init(&timer
->node
);
1149 #ifdef CONFIG_TIMER_STATS
1150 timer
->start_site
= NULL
;
1151 timer
->start_pid
= -1;
1152 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1157 * hrtimer_init - initialize a timer to the given clock
1158 * @timer: the timer to be initialized
1159 * @clock_id: the clock to be used
1160 * @mode: timer mode abs/rel
1162 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1163 enum hrtimer_mode mode
)
1165 debug_init(timer
, clock_id
, mode
);
1166 __hrtimer_init(timer
, clock_id
, mode
);
1168 EXPORT_SYMBOL_GPL(hrtimer_init
);
1171 * A timer is active, when it is enqueued into the rbtree or the
1172 * callback function is running or it's in the state of being migrated
1175 * It is important for this function to not return a false negative.
1177 bool hrtimer_active(const struct hrtimer
*timer
)
1179 struct hrtimer_cpu_base
*cpu_base
;
1183 cpu_base
= READ_ONCE(timer
->base
->cpu_base
);
1184 seq
= raw_read_seqcount_begin(&cpu_base
->seq
);
1186 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1187 cpu_base
->running
== timer
)
1190 } while (read_seqcount_retry(&cpu_base
->seq
, seq
) ||
1191 cpu_base
!= READ_ONCE(timer
->base
->cpu_base
));
1195 EXPORT_SYMBOL_GPL(hrtimer_active
);
1198 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1199 * distinct sections:
1201 * - queued: the timer is queued
1202 * - callback: the timer is being ran
1203 * - post: the timer is inactive or (re)queued
1205 * On the read side we ensure we observe timer->state and cpu_base->running
1206 * from the same section, if anything changed while we looked at it, we retry.
1207 * This includes timer->base changing because sequence numbers alone are
1208 * insufficient for that.
1210 * The sequence numbers are required because otherwise we could still observe
1211 * a false negative if the read side got smeared over multiple consequtive
1212 * __run_hrtimer() invocations.
1215 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1216 struct hrtimer_clock_base
*base
,
1217 struct hrtimer
*timer
, ktime_t
*now
)
1219 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1222 lockdep_assert_held(&cpu_base
->lock
);
1224 debug_deactivate(timer
);
1225 cpu_base
->running
= timer
;
1228 * Separate the ->running assignment from the ->state assignment.
1230 * As with a regular write barrier, this ensures the read side in
1231 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1232 * timer->state == INACTIVE.
1234 raw_write_seqcount_barrier(&cpu_base
->seq
);
1236 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1237 timer_stats_account_hrtimer(timer
);
1238 fn
= timer
->function
;
1241 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1242 * timer is restarted with a period then it becomes an absolute
1243 * timer. If its not restarted it does not matter.
1245 if (IS_ENABLED(CONFIG_TIME_LOW_RES
))
1246 timer
->is_rel
= false;
1249 * Because we run timers from hardirq context, there is no chance
1250 * they get migrated to another cpu, therefore its safe to unlock
1253 raw_spin_unlock(&cpu_base
->lock
);
1254 trace_hrtimer_expire_entry(timer
, now
);
1255 restart
= fn(timer
);
1256 trace_hrtimer_expire_exit(timer
);
1257 raw_spin_lock(&cpu_base
->lock
);
1260 * Note: We clear the running state after enqueue_hrtimer and
1261 * we do not reprogramm the event hardware. Happens either in
1262 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1264 * Note: Because we dropped the cpu_base->lock above,
1265 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1268 if (restart
!= HRTIMER_NORESTART
&&
1269 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1270 enqueue_hrtimer(timer
, base
);
1273 * Separate the ->running assignment from the ->state assignment.
1275 * As with a regular write barrier, this ensures the read side in
1276 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1277 * timer->state == INACTIVE.
1279 raw_write_seqcount_barrier(&cpu_base
->seq
);
1281 WARN_ON_ONCE(cpu_base
->running
!= timer
);
1282 cpu_base
->running
= NULL
;
1285 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
)
1287 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1288 unsigned int active
= cpu_base
->active_bases
;
1290 for (; active
; base
++, active
>>= 1) {
1291 struct timerqueue_node
*node
;
1294 if (!(active
& 0x01))
1297 basenow
= ktime_add(now
, base
->offset
);
1299 while ((node
= timerqueue_getnext(&base
->active
))) {
1300 struct hrtimer
*timer
;
1302 timer
= container_of(node
, struct hrtimer
, node
);
1305 * The immediate goal for using the softexpires is
1306 * minimizing wakeups, not running timers at the
1307 * earliest interrupt after their soft expiration.
1308 * This allows us to avoid using a Priority Search
1309 * Tree, which can answer a stabbing querry for
1310 * overlapping intervals and instead use the simple
1311 * BST we already have.
1312 * We don't add extra wakeups by delaying timers that
1313 * are right-of a not yet expired timer, because that
1314 * timer will have to trigger a wakeup anyway.
1316 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
))
1319 __run_hrtimer(cpu_base
, base
, timer
, &basenow
);
1324 #ifdef CONFIG_HIGH_RES_TIMERS
1327 * High resolution timer interrupt
1328 * Called with interrupts disabled
1330 void hrtimer_interrupt(struct clock_event_device
*dev
)
1332 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1333 ktime_t expires_next
, now
, entry_time
, delta
;
1336 BUG_ON(!cpu_base
->hres_active
);
1337 cpu_base
->nr_events
++;
1338 dev
->next_event
.tv64
= KTIME_MAX
;
1340 raw_spin_lock(&cpu_base
->lock
);
1341 entry_time
= now
= hrtimer_update_base(cpu_base
);
1343 cpu_base
->in_hrtirq
= 1;
1345 * We set expires_next to KTIME_MAX here with cpu_base->lock
1346 * held to prevent that a timer is enqueued in our queue via
1347 * the migration code. This does not affect enqueueing of
1348 * timers which run their callback and need to be requeued on
1351 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1353 __hrtimer_run_queues(cpu_base
, now
);
1355 /* Reevaluate the clock bases for the next expiry */
1356 expires_next
= __hrtimer_get_next_event(cpu_base
);
1358 * Store the new expiry value so the migration code can verify
1361 cpu_base
->expires_next
= expires_next
;
1362 cpu_base
->in_hrtirq
= 0;
1363 raw_spin_unlock(&cpu_base
->lock
);
1365 /* Reprogramming necessary ? */
1366 if (!tick_program_event(expires_next
, 0)) {
1367 cpu_base
->hang_detected
= 0;
1372 * The next timer was already expired due to:
1374 * - long lasting callbacks
1375 * - being scheduled away when running in a VM
1377 * We need to prevent that we loop forever in the hrtimer
1378 * interrupt routine. We give it 3 attempts to avoid
1379 * overreacting on some spurious event.
1381 * Acquire base lock for updating the offsets and retrieving
1384 raw_spin_lock(&cpu_base
->lock
);
1385 now
= hrtimer_update_base(cpu_base
);
1386 cpu_base
->nr_retries
++;
1390 * Give the system a chance to do something else than looping
1391 * here. We stored the entry time, so we know exactly how long
1392 * we spent here. We schedule the next event this amount of
1395 cpu_base
->nr_hangs
++;
1396 cpu_base
->hang_detected
= 1;
1397 raw_spin_unlock(&cpu_base
->lock
);
1398 delta
= ktime_sub(now
, entry_time
);
1399 if ((unsigned int)delta
.tv64
> cpu_base
->max_hang_time
)
1400 cpu_base
->max_hang_time
= (unsigned int) delta
.tv64
;
1402 * Limit it to a sensible value as we enforce a longer
1403 * delay. Give the CPU at least 100ms to catch up.
1405 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1406 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1408 expires_next
= ktime_add(now
, delta
);
1409 tick_program_event(expires_next
, 1);
1410 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1411 ktime_to_ns(delta
));
1415 * local version of hrtimer_peek_ahead_timers() called with interrupts
1418 static inline void __hrtimer_peek_ahead_timers(void)
1420 struct tick_device
*td
;
1422 if (!hrtimer_hres_active())
1425 td
= this_cpu_ptr(&tick_cpu_device
);
1426 if (td
&& td
->evtdev
)
1427 hrtimer_interrupt(td
->evtdev
);
1430 #else /* CONFIG_HIGH_RES_TIMERS */
1432 static inline void __hrtimer_peek_ahead_timers(void) { }
1434 #endif /* !CONFIG_HIGH_RES_TIMERS */
1437 * Called from run_local_timers in hardirq context every jiffy
1439 void hrtimer_run_queues(void)
1441 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1444 if (__hrtimer_hres_active(cpu_base
))
1448 * This _is_ ugly: We have to check periodically, whether we
1449 * can switch to highres and / or nohz mode. The clocksource
1450 * switch happens with xtime_lock held. Notification from
1451 * there only sets the check bit in the tick_oneshot code,
1452 * otherwise we might deadlock vs. xtime_lock.
1454 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1455 hrtimer_switch_to_hres();
1459 raw_spin_lock(&cpu_base
->lock
);
1460 now
= hrtimer_update_base(cpu_base
);
1461 __hrtimer_run_queues(cpu_base
, now
);
1462 raw_spin_unlock(&cpu_base
->lock
);
1466 * Sleep related functions:
1468 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1470 struct hrtimer_sleeper
*t
=
1471 container_of(timer
, struct hrtimer_sleeper
, timer
);
1472 struct task_struct
*task
= t
->task
;
1476 wake_up_process(task
);
1478 return HRTIMER_NORESTART
;
1481 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1483 sl
->timer
.function
= hrtimer_wakeup
;
1486 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1488 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1490 hrtimer_init_sleeper(t
, current
);
1493 set_current_state(TASK_INTERRUPTIBLE
);
1494 hrtimer_start_expires(&t
->timer
, mode
);
1496 if (likely(t
->task
))
1497 freezable_schedule();
1499 hrtimer_cancel(&t
->timer
);
1500 mode
= HRTIMER_MODE_ABS
;
1502 } while (t
->task
&& !signal_pending(current
));
1504 __set_current_state(TASK_RUNNING
);
1506 return t
->task
== NULL
;
1509 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1511 struct timespec rmt
;
1514 rem
= hrtimer_expires_remaining(timer
);
1517 rmt
= ktime_to_timespec(rem
);
1519 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1525 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1527 struct hrtimer_sleeper t
;
1528 struct timespec __user
*rmtp
;
1531 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1533 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1535 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1538 rmtp
= restart
->nanosleep
.rmtp
;
1540 ret
= update_rmtp(&t
.timer
, rmtp
);
1545 /* The other values in restart are already filled in */
1546 ret
= -ERESTART_RESTARTBLOCK
;
1548 destroy_hrtimer_on_stack(&t
.timer
);
1552 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1553 const enum hrtimer_mode mode
, const clockid_t clockid
)
1555 struct restart_block
*restart
;
1556 struct hrtimer_sleeper t
;
1558 unsigned long slack
;
1560 slack
= current
->timer_slack_ns
;
1561 if (dl_task(current
) || rt_task(current
))
1564 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1565 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1566 if (do_nanosleep(&t
, mode
))
1569 /* Absolute timers do not update the rmtp value and restart: */
1570 if (mode
== HRTIMER_MODE_ABS
) {
1571 ret
= -ERESTARTNOHAND
;
1576 ret
= update_rmtp(&t
.timer
, rmtp
);
1581 restart
= ¤t
->restart_block
;
1582 restart
->fn
= hrtimer_nanosleep_restart
;
1583 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1584 restart
->nanosleep
.rmtp
= rmtp
;
1585 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1587 ret
= -ERESTART_RESTARTBLOCK
;
1589 destroy_hrtimer_on_stack(&t
.timer
);
1593 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1594 struct timespec __user
*, rmtp
)
1598 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1601 if (!timespec_valid(&tu
))
1604 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1608 * Functions related to boot-time initialization:
1610 static void init_hrtimers_cpu(int cpu
)
1612 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1615 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1616 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1617 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1620 cpu_base
->active_bases
= 0;
1621 cpu_base
->cpu
= cpu
;
1622 hrtimer_init_hres(cpu_base
);
1625 #ifdef CONFIG_HOTPLUG_CPU
1627 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1628 struct hrtimer_clock_base
*new_base
)
1630 struct hrtimer
*timer
;
1631 struct timerqueue_node
*node
;
1633 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1634 timer
= container_of(node
, struct hrtimer
, node
);
1635 BUG_ON(hrtimer_callback_running(timer
));
1636 debug_deactivate(timer
);
1639 * Mark it as ENQUEUED not INACTIVE otherwise the
1640 * timer could be seen as !active and just vanish away
1641 * under us on another CPU
1643 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
1644 timer
->base
= new_base
;
1646 * Enqueue the timers on the new cpu. This does not
1647 * reprogram the event device in case the timer
1648 * expires before the earliest on this CPU, but we run
1649 * hrtimer_interrupt after we migrated everything to
1650 * sort out already expired timers and reprogram the
1653 enqueue_hrtimer(timer
, new_base
);
1657 static void migrate_hrtimers(int scpu
)
1659 struct hrtimer_cpu_base
*old_base
, *new_base
;
1662 BUG_ON(cpu_online(scpu
));
1663 tick_cancel_sched_timer(scpu
);
1665 local_irq_disable();
1666 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1667 new_base
= this_cpu_ptr(&hrtimer_bases
);
1669 * The caller is globally serialized and nobody else
1670 * takes two locks at once, deadlock is not possible.
1672 raw_spin_lock(&new_base
->lock
);
1673 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1675 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1676 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1677 &new_base
->clock_base
[i
]);
1680 raw_spin_unlock(&old_base
->lock
);
1681 raw_spin_unlock(&new_base
->lock
);
1683 /* Check, if we got expired work to do */
1684 __hrtimer_peek_ahead_timers();
1688 #endif /* CONFIG_HOTPLUG_CPU */
1690 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1691 unsigned long action
, void *hcpu
)
1693 int scpu
= (long)hcpu
;
1697 case CPU_UP_PREPARE
:
1698 case CPU_UP_PREPARE_FROZEN
:
1699 init_hrtimers_cpu(scpu
);
1702 #ifdef CONFIG_HOTPLUG_CPU
1704 case CPU_DEAD_FROZEN
:
1705 migrate_hrtimers(scpu
);
1716 static struct notifier_block hrtimers_nb
= {
1717 .notifier_call
= hrtimer_cpu_notify
,
1720 void __init
hrtimers_init(void)
1722 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1723 (void *)(long)smp_processor_id());
1724 register_cpu_notifier(&hrtimers_nb
);
1728 * schedule_hrtimeout_range_clock - sleep until timeout
1729 * @expires: timeout value (ktime_t)
1730 * @delta: slack in expires timeout (ktime_t)
1731 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1732 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1735 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1736 const enum hrtimer_mode mode
, int clock
)
1738 struct hrtimer_sleeper t
;
1741 * Optimize when a zero timeout value is given. It does not
1742 * matter whether this is an absolute or a relative time.
1744 if (expires
&& !expires
->tv64
) {
1745 __set_current_state(TASK_RUNNING
);
1750 * A NULL parameter means "infinite"
1757 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1758 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1760 hrtimer_init_sleeper(&t
, current
);
1762 hrtimer_start_expires(&t
.timer
, mode
);
1767 hrtimer_cancel(&t
.timer
);
1768 destroy_hrtimer_on_stack(&t
.timer
);
1770 __set_current_state(TASK_RUNNING
);
1772 return !t
.task
? 0 : -EINTR
;
1776 * schedule_hrtimeout_range - sleep until timeout
1777 * @expires: timeout value (ktime_t)
1778 * @delta: slack in expires timeout (ktime_t)
1779 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1781 * Make the current task sleep until the given expiry time has
1782 * elapsed. The routine will return immediately unless
1783 * the current task state has been set (see set_current_state()).
1785 * The @delta argument gives the kernel the freedom to schedule the
1786 * actual wakeup to a time that is both power and performance friendly.
1787 * The kernel give the normal best effort behavior for "@expires+@delta",
1788 * but may decide to fire the timer earlier, but no earlier than @expires.
1790 * You can set the task state as follows -
1792 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1793 * pass before the routine returns.
1795 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1796 * delivered to the current task.
1798 * The current task state is guaranteed to be TASK_RUNNING when this
1801 * Returns 0 when the timer has expired otherwise -EINTR
1803 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1804 const enum hrtimer_mode mode
)
1806 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1809 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1812 * schedule_hrtimeout - sleep until timeout
1813 * @expires: timeout value (ktime_t)
1814 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1816 * Make the current task sleep until the given expiry time has
1817 * elapsed. The routine will return immediately unless
1818 * the current task state has been set (see set_current_state()).
1820 * You can set the task state as follows -
1822 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1823 * pass before the routine returns.
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task.
1828 * The current task state is guaranteed to be TASK_RUNNING when this
1831 * Returns 0 when the timer has expired otherwise -EINTR
1833 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1834 const enum hrtimer_mode mode
)
1836 return schedule_hrtimeout_range(expires
, 0, mode
);
1838 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);