2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
46 #include "blk-rq-qos.h"
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry
*blk_debugfs_root
;
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
58 DEFINE_IDA(blk_queue_ida
);
61 * For the allocated request tables
63 struct kmem_cache
*request_cachep
;
66 * For queue allocation
68 struct kmem_cache
*blk_requestq_cachep
;
71 * Controlling structure to kblockd
73 static struct workqueue_struct
*kblockd_workqueue
;
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
80 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
84 spin_lock_irqsave(q
->queue_lock
, flags
);
85 queue_flag_set(flag
, q
);
86 spin_unlock_irqrestore(q
->queue_lock
, flags
);
88 EXPORT_SYMBOL(blk_queue_flag_set
);
91 * blk_queue_flag_clear - atomically clear a queue flag
92 * @flag: flag to be cleared
95 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
99 spin_lock_irqsave(q
->queue_lock
, flags
);
100 queue_flag_clear(flag
, q
);
101 spin_unlock_irqrestore(q
->queue_lock
, flags
);
103 EXPORT_SYMBOL(blk_queue_flag_clear
);
106 * blk_queue_flag_test_and_set - atomically test and set a queue flag
107 * @flag: flag to be set
110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111 * the flag was already set.
113 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
118 spin_lock_irqsave(q
->queue_lock
, flags
);
119 res
= queue_flag_test_and_set(flag
, q
);
120 spin_unlock_irqrestore(q
->queue_lock
, flags
);
124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128 * @flag: flag to be cleared
131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
134 bool blk_queue_flag_test_and_clear(unsigned int flag
, struct request_queue
*q
)
139 spin_lock_irqsave(q
->queue_lock
, flags
);
140 res
= queue_flag_test_and_clear(flag
, q
);
141 spin_unlock_irqrestore(q
->queue_lock
, flags
);
145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear
);
147 static void blk_clear_congested(struct request_list
*rl
, int sync
)
149 #ifdef CONFIG_CGROUP_WRITEBACK
150 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 * flip its congestion state for events on other blkcgs.
156 if (rl
== &rl
->q
->root_rl
)
157 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
161 static void blk_set_congested(struct request_list
*rl
, int sync
)
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
166 /* see blk_clear_congested() */
167 if (rl
== &rl
->q
->root_rl
)
168 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
172 void blk_queue_congestion_threshold(struct request_queue
*q
)
176 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
177 if (nr
> q
->nr_requests
)
179 q
->nr_congestion_on
= nr
;
181 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
184 q
->nr_congestion_off
= nr
;
187 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
189 memset(rq
, 0, sizeof(*rq
));
191 INIT_LIST_HEAD(&rq
->queuelist
);
192 INIT_LIST_HEAD(&rq
->timeout_list
);
195 rq
->__sector
= (sector_t
) -1;
196 INIT_HLIST_NODE(&rq
->hash
);
197 RB_CLEAR_NODE(&rq
->rb_node
);
199 rq
->internal_tag
= -1;
200 rq
->start_time_ns
= ktime_get_ns();
203 EXPORT_SYMBOL(blk_rq_init
);
205 static const struct {
209 [BLK_STS_OK
] = { 0, "" },
210 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
211 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
212 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
213 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
214 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
215 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
216 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
217 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
218 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
220 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
225 /* everything else not covered above: */
226 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
229 blk_status_t
errno_to_blk_status(int errno
)
233 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
234 if (blk_errors
[i
].errno
== errno
)
235 return (__force blk_status_t
)i
;
238 return BLK_STS_IOERR
;
240 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
242 int blk_status_to_errno(blk_status_t status
)
244 int idx
= (__force
int)status
;
246 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
248 return blk_errors
[idx
].errno
;
250 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
252 static void print_req_error(struct request
*req
, blk_status_t status
)
254 int idx
= (__force
int)status
;
256 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
259 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
260 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
261 req
->rq_disk
->disk_name
: "?",
262 (unsigned long long)blk_rq_pos(req
));
265 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
266 unsigned int nbytes
, blk_status_t error
)
269 bio
->bi_status
= error
;
271 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
272 bio_set_flag(bio
, BIO_QUIET
);
274 bio_advance(bio
, nbytes
);
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
281 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
283 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
284 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
285 (unsigned long long) rq
->cmd_flags
);
287 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq
),
289 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
290 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
291 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
293 EXPORT_SYMBOL(blk_dump_rq_flags
);
295 static void blk_delay_work(struct work_struct
*work
)
297 struct request_queue
*q
;
299 q
= container_of(work
, struct request_queue
, delay_work
.work
);
300 spin_lock_irq(q
->queue_lock
);
302 spin_unlock_irq(q
->queue_lock
);
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
315 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
317 lockdep_assert_held(q
->queue_lock
);
318 WARN_ON_ONCE(q
->mq_ops
);
320 if (likely(!blk_queue_dead(q
)))
321 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
322 msecs_to_jiffies(msecs
));
324 EXPORT_SYMBOL(blk_delay_queue
);
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
335 void blk_start_queue_async(struct request_queue
*q
)
337 lockdep_assert_held(q
->queue_lock
);
338 WARN_ON_ONCE(q
->mq_ops
);
340 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
341 blk_run_queue_async(q
);
343 EXPORT_SYMBOL(blk_start_queue_async
);
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
354 void blk_start_queue(struct request_queue
*q
)
356 lockdep_assert_held(q
->queue_lock
);
357 WARN_ON_ONCE(q
->mq_ops
);
359 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
362 EXPORT_SYMBOL(blk_start_queue
);
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
378 void blk_stop_queue(struct request_queue
*q
)
380 lockdep_assert_held(q
->queue_lock
);
381 WARN_ON_ONCE(q
->mq_ops
);
383 cancel_delayed_work(&q
->delay_work
);
384 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
386 EXPORT_SYMBOL(blk_stop_queue
);
389 * blk_sync_queue - cancel any pending callbacks on a queue
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
406 void blk_sync_queue(struct request_queue
*q
)
408 del_timer_sync(&q
->timeout
);
409 cancel_work_sync(&q
->timeout_work
);
412 struct blk_mq_hw_ctx
*hctx
;
415 cancel_delayed_work_sync(&q
->requeue_work
);
416 queue_for_each_hw_ctx(q
, hctx
, i
)
417 cancel_delayed_work_sync(&hctx
->run_work
);
419 cancel_delayed_work_sync(&q
->delay_work
);
422 EXPORT_SYMBOL(blk_sync_queue
);
425 * blk_set_pm_only - increment pm_only counter
426 * @q: request queue pointer
428 void blk_set_pm_only(struct request_queue
*q
)
430 atomic_inc(&q
->pm_only
);
432 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
434 void blk_clear_pm_only(struct request_queue
*q
)
438 pm_only
= atomic_dec_return(&q
->pm_only
);
439 WARN_ON_ONCE(pm_only
< 0);
441 wake_up_all(&q
->mq_freeze_wq
);
443 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447 * @q: The queue to run
450 * Invoke request handling on a queue if there are any pending requests.
451 * May be used to restart request handling after a request has completed.
452 * This variant runs the queue whether or not the queue has been
453 * stopped. Must be called with the queue lock held and interrupts
454 * disabled. See also @blk_run_queue.
456 inline void __blk_run_queue_uncond(struct request_queue
*q
)
458 lockdep_assert_held(q
->queue_lock
);
459 WARN_ON_ONCE(q
->mq_ops
);
461 if (unlikely(blk_queue_dead(q
)))
465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 * the queue lock internally. As a result multiple threads may be
467 * running such a request function concurrently. Keep track of the
468 * number of active request_fn invocations such that blk_drain_queue()
469 * can wait until all these request_fn calls have finished.
471 q
->request_fn_active
++;
473 q
->request_fn_active
--;
475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
478 * __blk_run_queue - run a single device queue
479 * @q: The queue to run
482 * See @blk_run_queue.
484 void __blk_run_queue(struct request_queue
*q
)
486 lockdep_assert_held(q
->queue_lock
);
487 WARN_ON_ONCE(q
->mq_ops
);
489 if (unlikely(blk_queue_stopped(q
)))
492 __blk_run_queue_uncond(q
);
494 EXPORT_SYMBOL(__blk_run_queue
);
497 * blk_run_queue_async - run a single device queue in workqueue context
498 * @q: The queue to run
501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506 * has canceled q->delay_work, callers must hold the queue lock to avoid
507 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
509 void blk_run_queue_async(struct request_queue
*q
)
511 lockdep_assert_held(q
->queue_lock
);
512 WARN_ON_ONCE(q
->mq_ops
);
514 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
515 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
517 EXPORT_SYMBOL(blk_run_queue_async
);
520 * blk_run_queue - run a single device queue
521 * @q: The queue to run
524 * Invoke request handling on this queue, if it has pending work to do.
525 * May be used to restart queueing when a request has completed.
527 void blk_run_queue(struct request_queue
*q
)
531 WARN_ON_ONCE(q
->mq_ops
);
533 spin_lock_irqsave(q
->queue_lock
, flags
);
535 spin_unlock_irqrestore(q
->queue_lock
, flags
);
537 EXPORT_SYMBOL(blk_run_queue
);
539 void blk_put_queue(struct request_queue
*q
)
541 kobject_put(&q
->kobj
);
543 EXPORT_SYMBOL(blk_put_queue
);
546 * __blk_drain_queue - drain requests from request_queue
548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
550 * Drain requests from @q. If @drain_all is set, all requests are drained.
551 * If not, only ELVPRIV requests are drained. The caller is responsible
552 * for ensuring that no new requests which need to be drained are queued.
554 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
555 __releases(q
->queue_lock
)
556 __acquires(q
->queue_lock
)
560 lockdep_assert_held(q
->queue_lock
);
561 WARN_ON_ONCE(q
->mq_ops
);
567 * The caller might be trying to drain @q before its
568 * elevator is initialized.
571 elv_drain_elevator(q
);
573 blkcg_drain_queue(q
);
576 * This function might be called on a queue which failed
577 * driver init after queue creation or is not yet fully
578 * active yet. Some drivers (e.g. fd and loop) get unhappy
579 * in such cases. Kick queue iff dispatch queue has
580 * something on it and @q has request_fn set.
582 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
585 drain
|= q
->nr_rqs_elvpriv
;
586 drain
|= q
->request_fn_active
;
589 * Unfortunately, requests are queued at and tracked from
590 * multiple places and there's no single counter which can
591 * be drained. Check all the queues and counters.
594 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
595 drain
|= !list_empty(&q
->queue_head
);
596 for (i
= 0; i
< 2; i
++) {
597 drain
|= q
->nr_rqs
[i
];
598 drain
|= q
->in_flight
[i
];
600 drain
|= !list_empty(&fq
->flush_queue
[i
]);
607 spin_unlock_irq(q
->queue_lock
);
611 spin_lock_irq(q
->queue_lock
);
615 * With queue marked dead, any woken up waiter will fail the
616 * allocation path, so the wakeup chaining is lost and we're
617 * left with hung waiters. We need to wake up those waiters.
620 struct request_list
*rl
;
622 blk_queue_for_each_rl(rl
, q
)
623 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
624 wake_up_all(&rl
->wait
[i
]);
628 void blk_drain_queue(struct request_queue
*q
)
630 spin_lock_irq(q
->queue_lock
);
631 __blk_drain_queue(q
, true);
632 spin_unlock_irq(q
->queue_lock
);
636 * blk_queue_bypass_start - enter queue bypass mode
637 * @q: queue of interest
639 * In bypass mode, only the dispatch FIFO queue of @q is used. This
640 * function makes @q enter bypass mode and drains all requests which were
641 * throttled or issued before. On return, it's guaranteed that no request
642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643 * inside queue or RCU read lock.
645 void blk_queue_bypass_start(struct request_queue
*q
)
647 WARN_ON_ONCE(q
->mq_ops
);
649 spin_lock_irq(q
->queue_lock
);
651 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
652 spin_unlock_irq(q
->queue_lock
);
655 * Queues start drained. Skip actual draining till init is
656 * complete. This avoids lenghty delays during queue init which
657 * can happen many times during boot.
659 if (blk_queue_init_done(q
)) {
660 spin_lock_irq(q
->queue_lock
);
661 __blk_drain_queue(q
, false);
662 spin_unlock_irq(q
->queue_lock
);
664 /* ensure blk_queue_bypass() is %true inside RCU read lock */
668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
671 * blk_queue_bypass_end - leave queue bypass mode
672 * @q: queue of interest
674 * Leave bypass mode and restore the normal queueing behavior.
676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677 * this function is called for both blk-sq and blk-mq queues.
679 void blk_queue_bypass_end(struct request_queue
*q
)
681 spin_lock_irq(q
->queue_lock
);
682 if (!--q
->bypass_depth
)
683 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
684 WARN_ON_ONCE(q
->bypass_depth
< 0);
685 spin_unlock_irq(q
->queue_lock
);
687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
689 void blk_set_queue_dying(struct request_queue
*q
)
691 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
694 * When queue DYING flag is set, we need to block new req
695 * entering queue, so we call blk_freeze_queue_start() to
696 * prevent I/O from crossing blk_queue_enter().
698 blk_freeze_queue_start(q
);
701 blk_mq_wake_waiters(q
);
703 struct request_list
*rl
;
705 spin_lock_irq(q
->queue_lock
);
706 blk_queue_for_each_rl(rl
, q
) {
708 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
709 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
712 spin_unlock_irq(q
->queue_lock
);
715 /* Make blk_queue_enter() reexamine the DYING flag. */
716 wake_up_all(&q
->mq_freeze_wq
);
718 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721 void blk_exit_queue(struct request_queue
*q
)
724 * Since the I/O scheduler exit code may access cgroup information,
725 * perform I/O scheduler exit before disassociating from the block
730 elevator_exit(q
, q
->elevator
);
735 * Remove all references to @q from the block cgroup controller before
736 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 * e.g. blkcg_print_blkgs() to crash.
742 * Since the cgroup code may dereference the @q->backing_dev_info
743 * pointer, only decrease its reference count after having removed the
744 * association with the block cgroup controller.
746 bdi_put(q
->backing_dev_info
);
750 * blk_cleanup_queue - shutdown a request queue
751 * @q: request queue to shutdown
753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754 * put it. All future requests will be failed immediately with -ENODEV.
756 void blk_cleanup_queue(struct request_queue
*q
)
758 spinlock_t
*lock
= q
->queue_lock
;
760 /* mark @q DYING, no new request or merges will be allowed afterwards */
761 mutex_lock(&q
->sysfs_lock
);
762 blk_set_queue_dying(q
);
766 * A dying queue is permanently in bypass mode till released. Note
767 * that, unlike blk_queue_bypass_start(), we aren't performing
768 * synchronize_rcu() after entering bypass mode to avoid the delay
769 * as some drivers create and destroy a lot of queues while
770 * probing. This is still safe because blk_release_queue() will be
771 * called only after the queue refcnt drops to zero and nothing,
772 * RCU or not, would be traversing the queue by then.
775 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
777 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
778 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
779 queue_flag_set(QUEUE_FLAG_DYING
, q
);
780 spin_unlock_irq(lock
);
781 mutex_unlock(&q
->sysfs_lock
);
784 * Drain all requests queued before DYING marking. Set DEAD flag to
785 * prevent that q->request_fn() gets invoked after draining finished.
789 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
790 spin_unlock_irq(lock
);
793 * make sure all in-progress dispatch are completed because
794 * blk_freeze_queue() can only complete all requests, and
795 * dispatch may still be in-progress since we dispatch requests
796 * from more than one contexts.
798 * No need to quiesce queue if it isn't initialized yet since
799 * blk_freeze_queue() should be enough for cases of passthrough
802 if (q
->mq_ops
&& blk_queue_init_done(q
))
803 blk_mq_quiesce_queue(q
);
805 /* for synchronous bio-based driver finish in-flight integrity i/o */
806 blk_flush_integrity();
808 /* @q won't process any more request, flush async actions */
809 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
813 * I/O scheduler exit is only safe after the sysfs scheduler attribute
816 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
821 blk_mq_free_queue(q
);
822 percpu_ref_exit(&q
->q_usage_counter
);
825 if (q
->queue_lock
!= &q
->__queue_lock
)
826 q
->queue_lock
= &q
->__queue_lock
;
827 spin_unlock_irq(lock
);
829 /* @q is and will stay empty, shutdown and put */
832 EXPORT_SYMBOL(blk_cleanup_queue
);
834 /* Allocate memory local to the request queue */
835 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
837 struct request_queue
*q
= data
;
839 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
842 static void free_request_simple(void *element
, void *data
)
844 kmem_cache_free(request_cachep
, element
);
847 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
849 struct request_queue
*q
= data
;
852 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
854 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
861 static void free_request_size(void *element
, void *data
)
863 struct request_queue
*q
= data
;
866 q
->exit_rq_fn(q
, element
);
870 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
873 if (unlikely(rl
->rq_pool
) || q
->mq_ops
)
877 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
878 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
879 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
880 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
883 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
884 alloc_request_size
, free_request_size
,
885 q
, gfp_mask
, q
->node
);
887 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
888 alloc_request_simple
, free_request_simple
,
889 q
, gfp_mask
, q
->node
);
894 if (rl
!= &q
->root_rl
)
895 WARN_ON_ONCE(!blk_get_queue(q
));
900 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
903 mempool_destroy(rl
->rq_pool
);
904 if (rl
!= &q
->root_rl
)
909 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
911 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
, NULL
);
913 EXPORT_SYMBOL(blk_alloc_queue
);
916 * blk_queue_enter() - try to increase q->q_usage_counter
917 * @q: request queue pointer
918 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
920 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
922 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
925 bool success
= false;
928 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
930 * The code that increments the pm_only counter is
931 * responsible for ensuring that that counter is
932 * globally visible before the queue is unfrozen.
934 if (pm
|| !blk_queue_pm_only(q
)) {
937 percpu_ref_put(&q
->q_usage_counter
);
945 if (flags
& BLK_MQ_REQ_NOWAIT
)
949 * read pair of barrier in blk_freeze_queue_start(),
950 * we need to order reading __PERCPU_REF_DEAD flag of
951 * .q_usage_counter and reading .mq_freeze_depth or
952 * queue dying flag, otherwise the following wait may
953 * never return if the two reads are reordered.
957 wait_event(q
->mq_freeze_wq
,
958 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
959 (pm
|| (blk_pm_request_resume(q
),
960 !blk_queue_pm_only(q
)))) ||
962 if (blk_queue_dying(q
))
967 void blk_queue_exit(struct request_queue
*q
)
969 percpu_ref_put(&q
->q_usage_counter
);
972 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
974 struct request_queue
*q
=
975 container_of(ref
, struct request_queue
, q_usage_counter
);
977 wake_up_all(&q
->mq_freeze_wq
);
980 static void blk_rq_timed_out_timer(struct timer_list
*t
)
982 struct request_queue
*q
= from_timer(q
, t
, timeout
);
984 kblockd_schedule_work(&q
->timeout_work
);
988 * blk_alloc_queue_node - allocate a request queue
989 * @gfp_mask: memory allocation flags
990 * @node_id: NUMA node to allocate memory from
991 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
992 * serialize calls to the legacy .request_fn() callback. Ignored for
993 * blk-mq request queues.
995 * Note: pass the queue lock as the third argument to this function instead of
996 * setting the queue lock pointer explicitly to avoid triggering a sporadic
997 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
998 * the queue lock pointer must be set before blkcg_init_queue() is called.
1000 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
,
1003 struct request_queue
*q
;
1006 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
1007 gfp_mask
| __GFP_ZERO
, node_id
);
1011 INIT_LIST_HEAD(&q
->queue_head
);
1012 q
->last_merge
= NULL
;
1014 q
->boundary_rq
= NULL
;
1016 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
1020 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
1024 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
1025 if (!q
->backing_dev_info
)
1028 q
->stats
= blk_alloc_queue_stats();
1032 q
->backing_dev_info
->ra_pages
=
1033 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
1034 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
1035 q
->backing_dev_info
->name
= "block";
1038 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
1039 laptop_mode_timer_fn
, 0);
1040 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
1041 INIT_WORK(&q
->timeout_work
, NULL
);
1042 INIT_LIST_HEAD(&q
->timeout_list
);
1043 INIT_LIST_HEAD(&q
->icq_list
);
1044 #ifdef CONFIG_BLK_CGROUP
1045 INIT_LIST_HEAD(&q
->blkg_list
);
1047 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
1049 kobject_init(&q
->kobj
, &blk_queue_ktype
);
1051 #ifdef CONFIG_BLK_DEV_IO_TRACE
1052 mutex_init(&q
->blk_trace_mutex
);
1054 mutex_init(&q
->sysfs_lock
);
1055 spin_lock_init(&q
->__queue_lock
);
1057 q
->queue_lock
= lock
? : &q
->__queue_lock
;
1060 * A queue starts its life with bypass turned on to avoid
1061 * unnecessary bypass on/off overhead and nasty surprises during
1062 * init. The initial bypass will be finished when the queue is
1063 * registered by blk_register_queue().
1065 q
->bypass_depth
= 1;
1066 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS
, q
);
1068 init_waitqueue_head(&q
->mq_freeze_wq
);
1071 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1072 * See blk_register_queue() for details.
1074 if (percpu_ref_init(&q
->q_usage_counter
,
1075 blk_queue_usage_counter_release
,
1076 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1079 if (blkcg_init_queue(q
))
1085 percpu_ref_exit(&q
->q_usage_counter
);
1087 blk_free_queue_stats(q
->stats
);
1089 bdi_put(q
->backing_dev_info
);
1091 bioset_exit(&q
->bio_split
);
1093 ida_simple_remove(&blk_queue_ida
, q
->id
);
1095 kmem_cache_free(blk_requestq_cachep
, q
);
1098 EXPORT_SYMBOL(blk_alloc_queue_node
);
1101 * blk_init_queue - prepare a request queue for use with a block device
1102 * @rfn: The function to be called to process requests that have been
1103 * placed on the queue.
1104 * @lock: Request queue spin lock
1107 * If a block device wishes to use the standard request handling procedures,
1108 * which sorts requests and coalesces adjacent requests, then it must
1109 * call blk_init_queue(). The function @rfn will be called when there
1110 * are requests on the queue that need to be processed. If the device
1111 * supports plugging, then @rfn may not be called immediately when requests
1112 * are available on the queue, but may be called at some time later instead.
1113 * Plugged queues are generally unplugged when a buffer belonging to one
1114 * of the requests on the queue is needed, or due to memory pressure.
1116 * @rfn is not required, or even expected, to remove all requests off the
1117 * queue, but only as many as it can handle at a time. If it does leave
1118 * requests on the queue, it is responsible for arranging that the requests
1119 * get dealt with eventually.
1121 * The queue spin lock must be held while manipulating the requests on the
1122 * request queue; this lock will be taken also from interrupt context, so irq
1123 * disabling is needed for it.
1125 * Function returns a pointer to the initialized request queue, or %NULL if
1126 * it didn't succeed.
1129 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1130 * when the block device is deactivated (such as at module unload).
1133 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1135 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
1137 EXPORT_SYMBOL(blk_init_queue
);
1139 struct request_queue
*
1140 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1142 struct request_queue
*q
;
1144 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
, lock
);
1148 q
->request_fn
= rfn
;
1149 if (blk_init_allocated_queue(q
) < 0) {
1150 blk_cleanup_queue(q
);
1156 EXPORT_SYMBOL(blk_init_queue_node
);
1158 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
1161 int blk_init_allocated_queue(struct request_queue
*q
)
1163 WARN_ON_ONCE(q
->mq_ops
);
1165 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
, GFP_KERNEL
);
1169 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
1170 goto out_free_flush_queue
;
1172 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
1173 goto out_exit_flush_rq
;
1175 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
1176 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
1179 * This also sets hw/phys segments, boundary and size
1181 blk_queue_make_request(q
, blk_queue_bio
);
1183 q
->sg_reserved_size
= INT_MAX
;
1185 if (elevator_init(q
))
1186 goto out_exit_flush_rq
;
1191 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1192 out_free_flush_queue
:
1193 blk_free_flush_queue(q
->fq
);
1197 EXPORT_SYMBOL(blk_init_allocated_queue
);
1199 bool blk_get_queue(struct request_queue
*q
)
1201 if (likely(!blk_queue_dying(q
))) {
1208 EXPORT_SYMBOL(blk_get_queue
);
1210 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1212 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1213 elv_put_request(rl
->q
, rq
);
1215 put_io_context(rq
->elv
.icq
->ioc
);
1218 mempool_free(rq
, rl
->rq_pool
);
1222 * ioc_batching returns true if the ioc is a valid batching request and
1223 * should be given priority access to a request.
1225 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1231 * Make sure the process is able to allocate at least 1 request
1232 * even if the batch times out, otherwise we could theoretically
1235 return ioc
->nr_batch_requests
== q
->nr_batching
||
1236 (ioc
->nr_batch_requests
> 0
1237 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1241 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1242 * will cause the process to be a "batcher" on all queues in the system. This
1243 * is the behaviour we want though - once it gets a wakeup it should be given
1246 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1248 if (!ioc
|| ioc_batching(q
, ioc
))
1251 ioc
->nr_batch_requests
= q
->nr_batching
;
1252 ioc
->last_waited
= jiffies
;
1255 static void __freed_request(struct request_list
*rl
, int sync
)
1257 struct request_queue
*q
= rl
->q
;
1259 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1260 blk_clear_congested(rl
, sync
);
1262 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1263 if (waitqueue_active(&rl
->wait
[sync
]))
1264 wake_up(&rl
->wait
[sync
]);
1266 blk_clear_rl_full(rl
, sync
);
1271 * A request has just been released. Account for it, update the full and
1272 * congestion status, wake up any waiters. Called under q->queue_lock.
1274 static void freed_request(struct request_list
*rl
, bool sync
,
1275 req_flags_t rq_flags
)
1277 struct request_queue
*q
= rl
->q
;
1281 if (rq_flags
& RQF_ELVPRIV
)
1282 q
->nr_rqs_elvpriv
--;
1284 __freed_request(rl
, sync
);
1286 if (unlikely(rl
->starved
[sync
^ 1]))
1287 __freed_request(rl
, sync
^ 1);
1290 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1292 struct request_list
*rl
;
1293 int on_thresh
, off_thresh
;
1295 WARN_ON_ONCE(q
->mq_ops
);
1297 spin_lock_irq(q
->queue_lock
);
1298 q
->nr_requests
= nr
;
1299 blk_queue_congestion_threshold(q
);
1300 on_thresh
= queue_congestion_on_threshold(q
);
1301 off_thresh
= queue_congestion_off_threshold(q
);
1303 blk_queue_for_each_rl(rl
, q
) {
1304 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1305 blk_set_congested(rl
, BLK_RW_SYNC
);
1306 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1307 blk_clear_congested(rl
, BLK_RW_SYNC
);
1309 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1310 blk_set_congested(rl
, BLK_RW_ASYNC
);
1311 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1312 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1314 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1315 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1317 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1318 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1321 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1322 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1324 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1325 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1329 spin_unlock_irq(q
->queue_lock
);
1334 * __get_request - get a free request
1335 * @rl: request list to allocate from
1336 * @op: operation and flags
1337 * @bio: bio to allocate request for (can be %NULL)
1338 * @flags: BLQ_MQ_REQ_* flags
1339 * @gfp_mask: allocator flags
1341 * Get a free request from @q. This function may fail under memory
1342 * pressure or if @q is dead.
1344 * Must be called with @q->queue_lock held and,
1345 * Returns ERR_PTR on failure, with @q->queue_lock held.
1346 * Returns request pointer on success, with @q->queue_lock *not held*.
1348 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1349 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp_mask
)
1351 struct request_queue
*q
= rl
->q
;
1353 struct elevator_type
*et
= q
->elevator
->type
;
1354 struct io_context
*ioc
= rq_ioc(bio
);
1355 struct io_cq
*icq
= NULL
;
1356 const bool is_sync
= op_is_sync(op
);
1358 req_flags_t rq_flags
= RQF_ALLOCED
;
1360 lockdep_assert_held(q
->queue_lock
);
1362 if (unlikely(blk_queue_dying(q
)))
1363 return ERR_PTR(-ENODEV
);
1365 may_queue
= elv_may_queue(q
, op
);
1366 if (may_queue
== ELV_MQUEUE_NO
)
1369 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1370 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1372 * The queue will fill after this allocation, so set
1373 * it as full, and mark this process as "batching".
1374 * This process will be allowed to complete a batch of
1375 * requests, others will be blocked.
1377 if (!blk_rl_full(rl
, is_sync
)) {
1378 ioc_set_batching(q
, ioc
);
1379 blk_set_rl_full(rl
, is_sync
);
1381 if (may_queue
!= ELV_MQUEUE_MUST
1382 && !ioc_batching(q
, ioc
)) {
1384 * The queue is full and the allocating
1385 * process is not a "batcher", and not
1386 * exempted by the IO scheduler
1388 return ERR_PTR(-ENOMEM
);
1392 blk_set_congested(rl
, is_sync
);
1396 * Only allow batching queuers to allocate up to 50% over the defined
1397 * limit of requests, otherwise we could have thousands of requests
1398 * allocated with any setting of ->nr_requests
1400 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1401 return ERR_PTR(-ENOMEM
);
1403 q
->nr_rqs
[is_sync
]++;
1404 rl
->count
[is_sync
]++;
1405 rl
->starved
[is_sync
] = 0;
1408 * Decide whether the new request will be managed by elevator. If
1409 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1410 * prevent the current elevator from being destroyed until the new
1411 * request is freed. This guarantees icq's won't be destroyed and
1412 * makes creating new ones safe.
1414 * Flush requests do not use the elevator so skip initialization.
1415 * This allows a request to share the flush and elevator data.
1417 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1418 * it will be created after releasing queue_lock.
1420 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1421 rq_flags
|= RQF_ELVPRIV
;
1422 q
->nr_rqs_elvpriv
++;
1423 if (et
->icq_cache
&& ioc
)
1424 icq
= ioc_lookup_icq(ioc
, q
);
1427 if (blk_queue_io_stat(q
))
1428 rq_flags
|= RQF_IO_STAT
;
1429 spin_unlock_irq(q
->queue_lock
);
1431 /* allocate and init request */
1432 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1437 blk_rq_set_rl(rq
, rl
);
1439 rq
->rq_flags
= rq_flags
;
1440 if (flags
& BLK_MQ_REQ_PREEMPT
)
1441 rq
->rq_flags
|= RQF_PREEMPT
;
1444 if (rq_flags
& RQF_ELVPRIV
) {
1445 if (unlikely(et
->icq_cache
&& !icq
)) {
1447 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1453 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1456 /* @rq->elv.icq holds io_context until @rq is freed */
1458 get_io_context(icq
->ioc
);
1462 * ioc may be NULL here, and ioc_batching will be false. That's
1463 * OK, if the queue is under the request limit then requests need
1464 * not count toward the nr_batch_requests limit. There will always
1465 * be some limit enforced by BLK_BATCH_TIME.
1467 if (ioc_batching(q
, ioc
))
1468 ioc
->nr_batch_requests
--;
1470 trace_block_getrq(q
, bio
, op
);
1475 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1476 * and may fail indefinitely under memory pressure and thus
1477 * shouldn't stall IO. Treat this request as !elvpriv. This will
1478 * disturb iosched and blkcg but weird is bettern than dead.
1480 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1481 __func__
, dev_name(q
->backing_dev_info
->dev
));
1483 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1486 spin_lock_irq(q
->queue_lock
);
1487 q
->nr_rqs_elvpriv
--;
1488 spin_unlock_irq(q
->queue_lock
);
1493 * Allocation failed presumably due to memory. Undo anything we
1494 * might have messed up.
1496 * Allocating task should really be put onto the front of the wait
1497 * queue, but this is pretty rare.
1499 spin_lock_irq(q
->queue_lock
);
1500 freed_request(rl
, is_sync
, rq_flags
);
1503 * in the very unlikely event that allocation failed and no
1504 * requests for this direction was pending, mark us starved so that
1505 * freeing of a request in the other direction will notice
1506 * us. another possible fix would be to split the rq mempool into
1510 if (unlikely(rl
->count
[is_sync
] == 0))
1511 rl
->starved
[is_sync
] = 1;
1512 return ERR_PTR(-ENOMEM
);
1516 * get_request - get a free request
1517 * @q: request_queue to allocate request from
1518 * @op: operation and flags
1519 * @bio: bio to allocate request for (can be %NULL)
1520 * @flags: BLK_MQ_REQ_* flags.
1521 * @gfp: allocator flags
1523 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1524 * this function keeps retrying under memory pressure and fails iff @q is dead.
1526 * Must be called with @q->queue_lock held and,
1527 * Returns ERR_PTR on failure, with @q->queue_lock held.
1528 * Returns request pointer on success, with @q->queue_lock *not held*.
1530 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1531 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp
)
1533 const bool is_sync
= op_is_sync(op
);
1535 struct request_list
*rl
;
1538 lockdep_assert_held(q
->queue_lock
);
1539 WARN_ON_ONCE(q
->mq_ops
);
1541 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1543 rq
= __get_request(rl
, op
, bio
, flags
, gfp
);
1547 if (op
& REQ_NOWAIT
) {
1549 return ERR_PTR(-EAGAIN
);
1552 if ((flags
& BLK_MQ_REQ_NOWAIT
) || unlikely(blk_queue_dying(q
))) {
1557 /* wait on @rl and retry */
1558 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1559 TASK_UNINTERRUPTIBLE
);
1561 trace_block_sleeprq(q
, bio
, op
);
1563 spin_unlock_irq(q
->queue_lock
);
1567 * After sleeping, we become a "batching" process and will be able
1568 * to allocate at least one request, and up to a big batch of them
1569 * for a small period time. See ioc_batching, ioc_set_batching
1571 ioc_set_batching(q
, current
->io_context
);
1573 spin_lock_irq(q
->queue_lock
);
1574 finish_wait(&rl
->wait
[is_sync
], &wait
);
1579 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1580 static struct request
*blk_old_get_request(struct request_queue
*q
,
1581 unsigned int op
, blk_mq_req_flags_t flags
)
1584 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
: GFP_NOIO
;
1587 WARN_ON_ONCE(q
->mq_ops
);
1589 /* create ioc upfront */
1590 create_io_context(gfp_mask
, q
->node
);
1592 ret
= blk_queue_enter(q
, flags
);
1594 return ERR_PTR(ret
);
1595 spin_lock_irq(q
->queue_lock
);
1596 rq
= get_request(q
, op
, NULL
, flags
, gfp_mask
);
1598 spin_unlock_irq(q
->queue_lock
);
1603 /* q->queue_lock is unlocked at this point */
1605 rq
->__sector
= (sector_t
) -1;
1606 rq
->bio
= rq
->biotail
= NULL
;
1611 * blk_get_request - allocate a request
1612 * @q: request queue to allocate a request for
1613 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1614 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1616 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1617 blk_mq_req_flags_t flags
)
1619 struct request
*req
;
1621 WARN_ON_ONCE(op
& REQ_NOWAIT
);
1622 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
1625 req
= blk_mq_alloc_request(q
, op
, flags
);
1626 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1627 q
->mq_ops
->initialize_rq_fn(req
);
1629 req
= blk_old_get_request(q
, op
, flags
);
1630 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1631 q
->initialize_rq_fn(req
);
1636 EXPORT_SYMBOL(blk_get_request
);
1639 * blk_requeue_request - put a request back on queue
1640 * @q: request queue where request should be inserted
1641 * @rq: request to be inserted
1644 * Drivers often keep queueing requests until the hardware cannot accept
1645 * more, when that condition happens we need to put the request back
1646 * on the queue. Must be called with queue lock held.
1648 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1650 lockdep_assert_held(q
->queue_lock
);
1651 WARN_ON_ONCE(q
->mq_ops
);
1653 blk_delete_timer(rq
);
1654 blk_clear_rq_complete(rq
);
1655 trace_block_rq_requeue(q
, rq
);
1656 rq_qos_requeue(q
, rq
);
1658 if (rq
->rq_flags
& RQF_QUEUED
)
1659 blk_queue_end_tag(q
, rq
);
1661 BUG_ON(blk_queued_rq(rq
));
1663 elv_requeue_request(q
, rq
);
1665 EXPORT_SYMBOL(blk_requeue_request
);
1667 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1670 blk_account_io_start(rq
, true);
1671 __elv_add_request(q
, rq
, where
);
1674 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1675 struct hd_struct
*part
, unsigned long now
,
1676 unsigned int inflight
)
1679 __part_stat_add(cpu
, part
, time_in_queue
,
1680 inflight
* (now
- part
->stamp
));
1681 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1687 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1688 * @q: target block queue
1689 * @cpu: cpu number for stats access
1690 * @part: target partition
1692 * The average IO queue length and utilisation statistics are maintained
1693 * by observing the current state of the queue length and the amount of
1694 * time it has been in this state for.
1696 * Normally, that accounting is done on IO completion, but that can result
1697 * in more than a second's worth of IO being accounted for within any one
1698 * second, leading to >100% utilisation. To deal with that, we call this
1699 * function to do a round-off before returning the results when reading
1700 * /proc/diskstats. This accounts immediately for all queue usage up to
1701 * the current jiffies and restarts the counters again.
1703 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1705 struct hd_struct
*part2
= NULL
;
1706 unsigned long now
= jiffies
;
1707 unsigned int inflight
[2];
1710 if (part
->stamp
!= now
)
1714 part2
= &part_to_disk(part
)->part0
;
1715 if (part2
->stamp
!= now
)
1722 part_in_flight(q
, part
, inflight
);
1725 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1727 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1729 EXPORT_SYMBOL_GPL(part_round_stats
);
1731 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1733 req_flags_t rq_flags
= req
->rq_flags
;
1739 blk_mq_free_request(req
);
1743 lockdep_assert_held(q
->queue_lock
);
1745 blk_req_zone_write_unlock(req
);
1746 blk_pm_put_request(req
);
1747 blk_pm_mark_last_busy(req
);
1749 elv_completed_request(q
, req
);
1751 /* this is a bio leak */
1752 WARN_ON(req
->bio
!= NULL
);
1754 rq_qos_done(q
, req
);
1757 * Request may not have originated from ll_rw_blk. if not,
1758 * it didn't come out of our reserved rq pools
1760 if (rq_flags
& RQF_ALLOCED
) {
1761 struct request_list
*rl
= blk_rq_rl(req
);
1762 bool sync
= op_is_sync(req
->cmd_flags
);
1764 BUG_ON(!list_empty(&req
->queuelist
));
1765 BUG_ON(ELV_ON_HASH(req
));
1767 blk_free_request(rl
, req
);
1768 freed_request(rl
, sync
, rq_flags
);
1773 EXPORT_SYMBOL_GPL(__blk_put_request
);
1775 void blk_put_request(struct request
*req
)
1777 struct request_queue
*q
= req
->q
;
1780 blk_mq_free_request(req
);
1782 unsigned long flags
;
1784 spin_lock_irqsave(q
->queue_lock
, flags
);
1785 __blk_put_request(q
, req
);
1786 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1789 EXPORT_SYMBOL(blk_put_request
);
1791 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1794 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1796 if (!ll_back_merge_fn(q
, req
, bio
))
1799 trace_block_bio_backmerge(q
, req
, bio
);
1801 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1802 blk_rq_set_mixed_merge(req
);
1804 req
->biotail
->bi_next
= bio
;
1806 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1807 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1809 blk_account_io_start(req
, false);
1813 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1816 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1818 if (!ll_front_merge_fn(q
, req
, bio
))
1821 trace_block_bio_frontmerge(q
, req
, bio
);
1823 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1824 blk_rq_set_mixed_merge(req
);
1826 bio
->bi_next
= req
->bio
;
1829 req
->__sector
= bio
->bi_iter
.bi_sector
;
1830 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1831 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1833 blk_account_io_start(req
, false);
1837 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1840 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1842 if (segments
>= queue_max_discard_segments(q
))
1844 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1845 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1848 req
->biotail
->bi_next
= bio
;
1850 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1851 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1852 req
->nr_phys_segments
= segments
+ 1;
1854 blk_account_io_start(req
, false);
1857 req_set_nomerge(q
, req
);
1862 * blk_attempt_plug_merge - try to merge with %current's plugged list
1863 * @q: request_queue new bio is being queued at
1864 * @bio: new bio being queued
1865 * @request_count: out parameter for number of traversed plugged requests
1866 * @same_queue_rq: pointer to &struct request that gets filled in when
1867 * another request associated with @q is found on the plug list
1868 * (optional, may be %NULL)
1870 * Determine whether @bio being queued on @q can be merged with a request
1871 * on %current's plugged list. Returns %true if merge was successful,
1874 * Plugging coalesces IOs from the same issuer for the same purpose without
1875 * going through @q->queue_lock. As such it's more of an issuing mechanism
1876 * than scheduling, and the request, while may have elvpriv data, is not
1877 * added on the elevator at this point. In addition, we don't have
1878 * reliable access to the elevator outside queue lock. Only check basic
1879 * merging parameters without querying the elevator.
1881 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1883 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1884 unsigned int *request_count
,
1885 struct request
**same_queue_rq
)
1887 struct blk_plug
*plug
;
1889 struct list_head
*plug_list
;
1891 plug
= current
->plug
;
1897 plug_list
= &plug
->mq_list
;
1899 plug_list
= &plug
->list
;
1901 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1902 bool merged
= false;
1907 * Only blk-mq multiple hardware queues case checks the
1908 * rq in the same queue, there should be only one such
1912 *same_queue_rq
= rq
;
1915 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1918 switch (blk_try_merge(rq
, bio
)) {
1919 case ELEVATOR_BACK_MERGE
:
1920 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1922 case ELEVATOR_FRONT_MERGE
:
1923 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1925 case ELEVATOR_DISCARD_MERGE
:
1926 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1939 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1941 struct blk_plug
*plug
;
1943 struct list_head
*plug_list
;
1944 unsigned int ret
= 0;
1946 plug
= current
->plug
;
1951 plug_list
= &plug
->mq_list
;
1953 plug_list
= &plug
->list
;
1955 list_for_each_entry(rq
, plug_list
, queuelist
) {
1963 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1965 struct io_context
*ioc
= rq_ioc(bio
);
1967 if (bio
->bi_opf
& REQ_RAHEAD
)
1968 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1970 req
->__sector
= bio
->bi_iter
.bi_sector
;
1971 if (ioprio_valid(bio_prio(bio
)))
1972 req
->ioprio
= bio_prio(bio
);
1974 req
->ioprio
= ioc
->ioprio
;
1976 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1977 req
->write_hint
= bio
->bi_write_hint
;
1978 blk_rq_bio_prep(req
->q
, req
, bio
);
1980 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1982 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1984 struct blk_plug
*plug
;
1985 int where
= ELEVATOR_INSERT_SORT
;
1986 struct request
*req
, *free
;
1987 unsigned int request_count
= 0;
1990 * low level driver can indicate that it wants pages above a
1991 * certain limit bounced to low memory (ie for highmem, or even
1992 * ISA dma in theory)
1994 blk_queue_bounce(q
, &bio
);
1996 blk_queue_split(q
, &bio
);
1998 if (!bio_integrity_prep(bio
))
1999 return BLK_QC_T_NONE
;
2001 if (op_is_flush(bio
->bi_opf
)) {
2002 spin_lock_irq(q
->queue_lock
);
2003 where
= ELEVATOR_INSERT_FLUSH
;
2008 * Check if we can merge with the plugged list before grabbing
2011 if (!blk_queue_nomerges(q
)) {
2012 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
2013 return BLK_QC_T_NONE
;
2015 request_count
= blk_plug_queued_count(q
);
2017 spin_lock_irq(q
->queue_lock
);
2019 switch (elv_merge(q
, &req
, bio
)) {
2020 case ELEVATOR_BACK_MERGE
:
2021 if (!bio_attempt_back_merge(q
, req
, bio
))
2023 elv_bio_merged(q
, req
, bio
);
2024 free
= attempt_back_merge(q
, req
);
2026 __blk_put_request(q
, free
);
2028 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
2030 case ELEVATOR_FRONT_MERGE
:
2031 if (!bio_attempt_front_merge(q
, req
, bio
))
2033 elv_bio_merged(q
, req
, bio
);
2034 free
= attempt_front_merge(q
, req
);
2036 __blk_put_request(q
, free
);
2038 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
2045 rq_qos_throttle(q
, bio
, q
->queue_lock
);
2048 * Grab a free request. This is might sleep but can not fail.
2049 * Returns with the queue unlocked.
2051 blk_queue_enter_live(q
);
2052 req
= get_request(q
, bio
->bi_opf
, bio
, 0, GFP_NOIO
);
2055 rq_qos_cleanup(q
, bio
);
2056 if (PTR_ERR(req
) == -ENOMEM
)
2057 bio
->bi_status
= BLK_STS_RESOURCE
;
2059 bio
->bi_status
= BLK_STS_IOERR
;
2064 rq_qos_track(q
, req
, bio
);
2067 * After dropping the lock and possibly sleeping here, our request
2068 * may now be mergeable after it had proven unmergeable (above).
2069 * We don't worry about that case for efficiency. It won't happen
2070 * often, and the elevators are able to handle it.
2072 blk_init_request_from_bio(req
, bio
);
2074 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
2075 req
->cpu
= raw_smp_processor_id();
2077 plug
= current
->plug
;
2080 * If this is the first request added after a plug, fire
2083 * @request_count may become stale because of schedule
2084 * out, so check plug list again.
2086 if (!request_count
|| list_empty(&plug
->list
))
2087 trace_block_plug(q
);
2089 struct request
*last
= list_entry_rq(plug
->list
.prev
);
2090 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
2091 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
2092 blk_flush_plug_list(plug
, false);
2093 trace_block_plug(q
);
2096 list_add_tail(&req
->queuelist
, &plug
->list
);
2097 blk_account_io_start(req
, true);
2099 spin_lock_irq(q
->queue_lock
);
2100 add_acct_request(q
, req
, where
);
2103 spin_unlock_irq(q
->queue_lock
);
2106 return BLK_QC_T_NONE
;
2109 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
2111 char b
[BDEVNAME_SIZE
];
2113 printk(KERN_INFO
"attempt to access beyond end of device\n");
2114 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
2115 bio_devname(bio
, b
), bio
->bi_opf
,
2116 (unsigned long long)bio_end_sector(bio
),
2117 (long long)maxsector
);
2120 #ifdef CONFIG_FAIL_MAKE_REQUEST
2122 static DECLARE_FAULT_ATTR(fail_make_request
);
2124 static int __init
setup_fail_make_request(char *str
)
2126 return setup_fault_attr(&fail_make_request
, str
);
2128 __setup("fail_make_request=", setup_fail_make_request
);
2130 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
2132 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
2135 static int __init
fail_make_request_debugfs(void)
2137 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
2138 NULL
, &fail_make_request
);
2140 return PTR_ERR_OR_ZERO(dir
);
2143 late_initcall(fail_make_request_debugfs
);
2145 #else /* CONFIG_FAIL_MAKE_REQUEST */
2147 static inline bool should_fail_request(struct hd_struct
*part
,
2153 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2155 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
2157 const int op
= bio_op(bio
);
2159 if (part
->policy
&& op_is_write(op
)) {
2160 char b
[BDEVNAME_SIZE
];
2162 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
2166 "generic_make_request: Trying to write "
2167 "to read-only block-device %s (partno %d)\n",
2168 bio_devname(bio
, b
), part
->partno
);
2169 /* Older lvm-tools actually trigger this */
2176 static noinline
int should_fail_bio(struct bio
*bio
)
2178 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2182 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
2185 * Check whether this bio extends beyond the end of the device or partition.
2186 * This may well happen - the kernel calls bread() without checking the size of
2187 * the device, e.g., when mounting a file system.
2189 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
2191 unsigned int nr_sectors
= bio_sectors(bio
);
2193 if (nr_sectors
&& maxsector
&&
2194 (nr_sectors
> maxsector
||
2195 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
2196 handle_bad_sector(bio
, maxsector
);
2203 * Remap block n of partition p to block n+start(p) of the disk.
2205 static inline int blk_partition_remap(struct bio
*bio
)
2207 struct hd_struct
*p
;
2211 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2214 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
2216 if (unlikely(bio_check_ro(bio
, p
)))
2220 * Zone reset does not include bi_size so bio_sectors() is always 0.
2221 * Include a test for the reset op code and perform the remap if needed.
2223 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
2224 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
2226 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
2227 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
2228 bio
->bi_iter
.bi_sector
- p
->start_sect
);
2237 static noinline_for_stack
bool
2238 generic_make_request_checks(struct bio
*bio
)
2240 struct request_queue
*q
;
2241 int nr_sectors
= bio_sectors(bio
);
2242 blk_status_t status
= BLK_STS_IOERR
;
2243 char b
[BDEVNAME_SIZE
];
2247 q
= bio
->bi_disk
->queue
;
2250 "generic_make_request: Trying to access "
2251 "nonexistent block-device %s (%Lu)\n",
2252 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2257 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2258 * if queue is not a request based queue.
2260 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2263 if (should_fail_bio(bio
))
2266 if (bio
->bi_partno
) {
2267 if (unlikely(blk_partition_remap(bio
)))
2270 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
2272 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
2277 * Filter flush bio's early so that make_request based
2278 * drivers without flush support don't have to worry
2281 if (op_is_flush(bio
->bi_opf
) &&
2282 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2283 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2285 status
= BLK_STS_OK
;
2290 switch (bio_op(bio
)) {
2291 case REQ_OP_DISCARD
:
2292 if (!blk_queue_discard(q
))
2295 case REQ_OP_SECURE_ERASE
:
2296 if (!blk_queue_secure_erase(q
))
2299 case REQ_OP_WRITE_SAME
:
2300 if (!q
->limits
.max_write_same_sectors
)
2303 case REQ_OP_ZONE_REPORT
:
2304 case REQ_OP_ZONE_RESET
:
2305 if (!blk_queue_is_zoned(q
))
2308 case REQ_OP_WRITE_ZEROES
:
2309 if (!q
->limits
.max_write_zeroes_sectors
)
2317 * Various block parts want %current->io_context and lazy ioc
2318 * allocation ends up trading a lot of pain for a small amount of
2319 * memory. Just allocate it upfront. This may fail and block
2320 * layer knows how to live with it.
2322 create_io_context(GFP_ATOMIC
, q
->node
);
2324 if (!blkcg_bio_issue_check(q
, bio
))
2327 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2328 trace_block_bio_queue(q
, bio
);
2329 /* Now that enqueuing has been traced, we need to trace
2330 * completion as well.
2332 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2337 status
= BLK_STS_NOTSUPP
;
2339 bio
->bi_status
= status
;
2345 * generic_make_request - hand a buffer to its device driver for I/O
2346 * @bio: The bio describing the location in memory and on the device.
2348 * generic_make_request() is used to make I/O requests of block
2349 * devices. It is passed a &struct bio, which describes the I/O that needs
2352 * generic_make_request() does not return any status. The
2353 * success/failure status of the request, along with notification of
2354 * completion, is delivered asynchronously through the bio->bi_end_io
2355 * function described (one day) else where.
2357 * The caller of generic_make_request must make sure that bi_io_vec
2358 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2359 * set to describe the device address, and the
2360 * bi_end_io and optionally bi_private are set to describe how
2361 * completion notification should be signaled.
2363 * generic_make_request and the drivers it calls may use bi_next if this
2364 * bio happens to be merged with someone else, and may resubmit the bio to
2365 * a lower device by calling into generic_make_request recursively, which
2366 * means the bio should NOT be touched after the call to ->make_request_fn.
2368 blk_qc_t
generic_make_request(struct bio
*bio
)
2371 * bio_list_on_stack[0] contains bios submitted by the current
2373 * bio_list_on_stack[1] contains bios that were submitted before
2374 * the current make_request_fn, but that haven't been processed
2377 struct bio_list bio_list_on_stack
[2];
2378 blk_mq_req_flags_t flags
= 0;
2379 struct request_queue
*q
= bio
->bi_disk
->queue
;
2380 blk_qc_t ret
= BLK_QC_T_NONE
;
2382 if (bio
->bi_opf
& REQ_NOWAIT
)
2383 flags
= BLK_MQ_REQ_NOWAIT
;
2384 if (bio_flagged(bio
, BIO_QUEUE_ENTERED
))
2385 blk_queue_enter_live(q
);
2386 else if (blk_queue_enter(q
, flags
) < 0) {
2387 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
2388 bio_wouldblock_error(bio
);
2394 if (!generic_make_request_checks(bio
))
2398 * We only want one ->make_request_fn to be active at a time, else
2399 * stack usage with stacked devices could be a problem. So use
2400 * current->bio_list to keep a list of requests submited by a
2401 * make_request_fn function. current->bio_list is also used as a
2402 * flag to say if generic_make_request is currently active in this
2403 * task or not. If it is NULL, then no make_request is active. If
2404 * it is non-NULL, then a make_request is active, and new requests
2405 * should be added at the tail
2407 if (current
->bio_list
) {
2408 bio_list_add(¤t
->bio_list
[0], bio
);
2412 /* following loop may be a bit non-obvious, and so deserves some
2414 * Before entering the loop, bio->bi_next is NULL (as all callers
2415 * ensure that) so we have a list with a single bio.
2416 * We pretend that we have just taken it off a longer list, so
2417 * we assign bio_list to a pointer to the bio_list_on_stack,
2418 * thus initialising the bio_list of new bios to be
2419 * added. ->make_request() may indeed add some more bios
2420 * through a recursive call to generic_make_request. If it
2421 * did, we find a non-NULL value in bio_list and re-enter the loop
2422 * from the top. In this case we really did just take the bio
2423 * of the top of the list (no pretending) and so remove it from
2424 * bio_list, and call into ->make_request() again.
2426 BUG_ON(bio
->bi_next
);
2427 bio_list_init(&bio_list_on_stack
[0]);
2428 current
->bio_list
= bio_list_on_stack
;
2430 bool enter_succeeded
= true;
2432 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
2435 q
= bio
->bi_disk
->queue
;
2436 bio_reassociate_blkg(q
, bio
);
2438 if (bio
->bi_opf
& REQ_NOWAIT
)
2439 flags
= BLK_MQ_REQ_NOWAIT
;
2440 if (blk_queue_enter(q
, flags
) < 0) {
2441 enter_succeeded
= false;
2446 if (enter_succeeded
) {
2447 struct bio_list lower
, same
;
2449 /* Create a fresh bio_list for all subordinate requests */
2450 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2451 bio_list_init(&bio_list_on_stack
[0]);
2452 ret
= q
->make_request_fn(q
, bio
);
2454 /* sort new bios into those for a lower level
2455 * and those for the same level
2457 bio_list_init(&lower
);
2458 bio_list_init(&same
);
2459 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2460 if (q
== bio
->bi_disk
->queue
)
2461 bio_list_add(&same
, bio
);
2463 bio_list_add(&lower
, bio
);
2464 /* now assemble so we handle the lowest level first */
2465 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2466 bio_list_merge(&bio_list_on_stack
[0], &same
);
2467 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2469 if (unlikely(!blk_queue_dying(q
) &&
2470 (bio
->bi_opf
& REQ_NOWAIT
)))
2471 bio_wouldblock_error(bio
);
2475 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2477 current
->bio_list
= NULL
; /* deactivate */
2484 EXPORT_SYMBOL(generic_make_request
);
2487 * direct_make_request - hand a buffer directly to its device driver for I/O
2488 * @bio: The bio describing the location in memory and on the device.
2490 * This function behaves like generic_make_request(), but does not protect
2491 * against recursion. Must only be used if the called driver is known
2492 * to not call generic_make_request (or direct_make_request) again from
2493 * its make_request function. (Calling direct_make_request again from
2494 * a workqueue is perfectly fine as that doesn't recurse).
2496 blk_qc_t
direct_make_request(struct bio
*bio
)
2498 struct request_queue
*q
= bio
->bi_disk
->queue
;
2499 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
2502 if (!generic_make_request_checks(bio
))
2503 return BLK_QC_T_NONE
;
2505 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
2506 if (nowait
&& !blk_queue_dying(q
))
2507 bio
->bi_status
= BLK_STS_AGAIN
;
2509 bio
->bi_status
= BLK_STS_IOERR
;
2511 return BLK_QC_T_NONE
;
2514 ret
= q
->make_request_fn(q
, bio
);
2518 EXPORT_SYMBOL_GPL(direct_make_request
);
2521 * submit_bio - submit a bio to the block device layer for I/O
2522 * @bio: The &struct bio which describes the I/O
2524 * submit_bio() is very similar in purpose to generic_make_request(), and
2525 * uses that function to do most of the work. Both are fairly rough
2526 * interfaces; @bio must be presetup and ready for I/O.
2529 blk_qc_t
submit_bio(struct bio
*bio
)
2532 * If it's a regular read/write or a barrier with data attached,
2533 * go through the normal accounting stuff before submission.
2535 if (bio_has_data(bio
)) {
2538 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2539 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
2541 count
= bio_sectors(bio
);
2543 if (op_is_write(bio_op(bio
))) {
2544 count_vm_events(PGPGOUT
, count
);
2546 task_io_account_read(bio
->bi_iter
.bi_size
);
2547 count_vm_events(PGPGIN
, count
);
2550 if (unlikely(block_dump
)) {
2551 char b
[BDEVNAME_SIZE
];
2552 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2553 current
->comm
, task_pid_nr(current
),
2554 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2555 (unsigned long long)bio
->bi_iter
.bi_sector
,
2556 bio_devname(bio
, b
), count
);
2560 return generic_make_request(bio
);
2562 EXPORT_SYMBOL(submit_bio
);
2564 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
2566 if (!q
->poll_fn
|| !blk_qc_t_valid(cookie
))
2570 blk_flush_plug_list(current
->plug
, false);
2571 return q
->poll_fn(q
, cookie
);
2573 EXPORT_SYMBOL_GPL(blk_poll
);
2576 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2577 * for new the queue limits
2579 * @rq: the request being checked
2582 * @rq may have been made based on weaker limitations of upper-level queues
2583 * in request stacking drivers, and it may violate the limitation of @q.
2584 * Since the block layer and the underlying device driver trust @rq
2585 * after it is inserted to @q, it should be checked against @q before
2586 * the insertion using this generic function.
2588 * Request stacking drivers like request-based dm may change the queue
2589 * limits when retrying requests on other queues. Those requests need
2590 * to be checked against the new queue limits again during dispatch.
2592 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2595 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2596 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2601 * queue's settings related to segment counting like q->bounce_pfn
2602 * may differ from that of other stacking queues.
2603 * Recalculate it to check the request correctly on this queue's
2606 blk_recalc_rq_segments(rq
);
2607 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2608 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2616 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2617 * @q: the queue to submit the request
2618 * @rq: the request being queued
2620 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2622 unsigned long flags
;
2623 int where
= ELEVATOR_INSERT_BACK
;
2625 if (blk_cloned_rq_check_limits(q
, rq
))
2626 return BLK_STS_IOERR
;
2629 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2630 return BLK_STS_IOERR
;
2633 if (blk_queue_io_stat(q
))
2634 blk_account_io_start(rq
, true);
2636 * Since we have a scheduler attached on the top device,
2637 * bypass a potential scheduler on the bottom device for
2640 return blk_mq_request_issue_directly(rq
);
2643 spin_lock_irqsave(q
->queue_lock
, flags
);
2644 if (unlikely(blk_queue_dying(q
))) {
2645 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2646 return BLK_STS_IOERR
;
2650 * Submitting request must be dequeued before calling this function
2651 * because it will be linked to another request_queue
2653 BUG_ON(blk_queued_rq(rq
));
2655 if (op_is_flush(rq
->cmd_flags
))
2656 where
= ELEVATOR_INSERT_FLUSH
;
2658 add_acct_request(q
, rq
, where
);
2659 if (where
== ELEVATOR_INSERT_FLUSH
)
2661 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2669 * @rq: request to examine
2672 * A request could be merge of IOs which require different failure
2673 * handling. This function determines the number of bytes which
2674 * can be failed from the beginning of the request without
2675 * crossing into area which need to be retried further.
2678 * The number of bytes to fail.
2680 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2682 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2683 unsigned int bytes
= 0;
2686 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2687 return blk_rq_bytes(rq
);
2690 * Currently the only 'mixing' which can happen is between
2691 * different fastfail types. We can safely fail portions
2692 * which have all the failfast bits that the first one has -
2693 * the ones which are at least as eager to fail as the first
2696 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2697 if ((bio
->bi_opf
& ff
) != ff
)
2699 bytes
+= bio
->bi_iter
.bi_size
;
2702 /* this could lead to infinite loop */
2703 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2708 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2710 if (blk_do_io_stat(req
)) {
2711 const int sgrp
= op_stat_group(req_op(req
));
2712 struct hd_struct
*part
;
2715 cpu
= part_stat_lock();
2717 part_stat_add(cpu
, part
, sectors
[sgrp
], bytes
>> 9);
2722 void blk_account_io_done(struct request
*req
, u64 now
)
2725 * Account IO completion. flush_rq isn't accounted as a
2726 * normal IO on queueing nor completion. Accounting the
2727 * containing request is enough.
2729 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2730 const int sgrp
= op_stat_group(req_op(req
));
2731 struct hd_struct
*part
;
2734 cpu
= part_stat_lock();
2737 part_stat_inc(cpu
, part
, ios
[sgrp
]);
2738 part_stat_add(cpu
, part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
2739 part_round_stats(req
->q
, cpu
, part
);
2740 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
2742 hd_struct_put(part
);
2747 void blk_account_io_start(struct request
*rq
, bool new_io
)
2749 struct hd_struct
*part
;
2750 int rw
= rq_data_dir(rq
);
2753 if (!blk_do_io_stat(rq
))
2756 cpu
= part_stat_lock();
2760 part_stat_inc(cpu
, part
, merges
[rw
]);
2762 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2763 if (!hd_struct_try_get(part
)) {
2765 * The partition is already being removed,
2766 * the request will be accounted on the disk only
2768 * We take a reference on disk->part0 although that
2769 * partition will never be deleted, so we can treat
2770 * it as any other partition.
2772 part
= &rq
->rq_disk
->part0
;
2773 hd_struct_get(part
);
2775 part_round_stats(rq
->q
, cpu
, part
);
2776 part_inc_in_flight(rq
->q
, part
, rw
);
2783 static struct request
*elv_next_request(struct request_queue
*q
)
2786 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
2788 WARN_ON_ONCE(q
->mq_ops
);
2791 list_for_each_entry(rq
, &q
->queue_head
, queuelist
) {
2794 * If a request gets queued in state RPM_SUSPENDED
2795 * then that's a kernel bug.
2797 WARN_ON_ONCE(q
->rpm_status
== RPM_SUSPENDED
);
2803 * Flush request is running and flush request isn't queueable
2804 * in the drive, we can hold the queue till flush request is
2805 * finished. Even we don't do this, driver can't dispatch next
2806 * requests and will requeue them. And this can improve
2807 * throughput too. For example, we have request flush1, write1,
2808 * flush 2. flush1 is dispatched, then queue is hold, write1
2809 * isn't inserted to queue. After flush1 is finished, flush2
2810 * will be dispatched. Since disk cache is already clean,
2811 * flush2 will be finished very soon, so looks like flush2 is
2813 * Since the queue is hold, a flag is set to indicate the queue
2814 * should be restarted later. Please see flush_end_io() for
2817 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
&&
2818 !queue_flush_queueable(q
)) {
2819 fq
->flush_queue_delayed
= 1;
2822 if (unlikely(blk_queue_bypass(q
)) ||
2823 !q
->elevator
->type
->ops
.sq
.elevator_dispatch_fn(q
, 0))
2829 * blk_peek_request - peek at the top of a request queue
2830 * @q: request queue to peek at
2833 * Return the request at the top of @q. The returned request
2834 * should be started using blk_start_request() before LLD starts
2838 * Pointer to the request at the top of @q if available. Null
2841 struct request
*blk_peek_request(struct request_queue
*q
)
2846 lockdep_assert_held(q
->queue_lock
);
2847 WARN_ON_ONCE(q
->mq_ops
);
2849 while ((rq
= elv_next_request(q
)) != NULL
) {
2850 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2852 * This is the first time the device driver
2853 * sees this request (possibly after
2854 * requeueing). Notify IO scheduler.
2856 if (rq
->rq_flags
& RQF_SORTED
)
2857 elv_activate_rq(q
, rq
);
2860 * just mark as started even if we don't start
2861 * it, a request that has been delayed should
2862 * not be passed by new incoming requests
2864 rq
->rq_flags
|= RQF_STARTED
;
2865 trace_block_rq_issue(q
, rq
);
2868 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2869 q
->end_sector
= rq_end_sector(rq
);
2870 q
->boundary_rq
= NULL
;
2873 if (rq
->rq_flags
& RQF_DONTPREP
)
2876 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2878 * make sure space for the drain appears we
2879 * know we can do this because max_hw_segments
2880 * has been adjusted to be one fewer than the
2883 rq
->nr_phys_segments
++;
2889 ret
= q
->prep_rq_fn(q
, rq
);
2890 if (ret
== BLKPREP_OK
) {
2892 } else if (ret
== BLKPREP_DEFER
) {
2894 * the request may have been (partially) prepped.
2895 * we need to keep this request in the front to
2896 * avoid resource deadlock. RQF_STARTED will
2897 * prevent other fs requests from passing this one.
2899 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2900 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2902 * remove the space for the drain we added
2903 * so that we don't add it again
2905 --rq
->nr_phys_segments
;
2910 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2911 rq
->rq_flags
|= RQF_QUIET
;
2913 * Mark this request as started so we don't trigger
2914 * any debug logic in the end I/O path.
2916 blk_start_request(rq
);
2917 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2918 BLK_STS_TARGET
: BLK_STS_IOERR
);
2920 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2927 EXPORT_SYMBOL(blk_peek_request
);
2929 static void blk_dequeue_request(struct request
*rq
)
2931 struct request_queue
*q
= rq
->q
;
2933 BUG_ON(list_empty(&rq
->queuelist
));
2934 BUG_ON(ELV_ON_HASH(rq
));
2936 list_del_init(&rq
->queuelist
);
2939 * the time frame between a request being removed from the lists
2940 * and to it is freed is accounted as io that is in progress at
2943 if (blk_account_rq(rq
))
2944 q
->in_flight
[rq_is_sync(rq
)]++;
2948 * blk_start_request - start request processing on the driver
2949 * @req: request to dequeue
2952 * Dequeue @req and start timeout timer on it. This hands off the
2953 * request to the driver.
2955 void blk_start_request(struct request
*req
)
2957 lockdep_assert_held(req
->q
->queue_lock
);
2958 WARN_ON_ONCE(req
->q
->mq_ops
);
2960 blk_dequeue_request(req
);
2962 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2963 req
->io_start_time_ns
= ktime_get_ns();
2964 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2965 req
->throtl_size
= blk_rq_sectors(req
);
2967 req
->rq_flags
|= RQF_STATS
;
2968 rq_qos_issue(req
->q
, req
);
2971 BUG_ON(blk_rq_is_complete(req
));
2974 EXPORT_SYMBOL(blk_start_request
);
2977 * blk_fetch_request - fetch a request from a request queue
2978 * @q: request queue to fetch a request from
2981 * Return the request at the top of @q. The request is started on
2982 * return and LLD can start processing it immediately.
2985 * Pointer to the request at the top of @q if available. Null
2988 struct request
*blk_fetch_request(struct request_queue
*q
)
2992 lockdep_assert_held(q
->queue_lock
);
2993 WARN_ON_ONCE(q
->mq_ops
);
2995 rq
= blk_peek_request(q
);
2997 blk_start_request(rq
);
3000 EXPORT_SYMBOL(blk_fetch_request
);
3003 * Steal bios from a request and add them to a bio list.
3004 * The request must not have been partially completed before.
3006 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3010 list
->tail
->bi_next
= rq
->bio
;
3012 list
->head
= rq
->bio
;
3013 list
->tail
= rq
->biotail
;
3021 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3024 * blk_update_request - Special helper function for request stacking drivers
3025 * @req: the request being processed
3026 * @error: block status code
3027 * @nr_bytes: number of bytes to complete @req
3030 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3031 * the request structure even if @req doesn't have leftover.
3032 * If @req has leftover, sets it up for the next range of segments.
3034 * This special helper function is only for request stacking drivers
3035 * (e.g. request-based dm) so that they can handle partial completion.
3036 * Actual device drivers should use blk_end_request instead.
3038 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3039 * %false return from this function.
3042 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3043 * blk_rq_bytes() and in blk_update_request().
3046 * %false - this request doesn't have any more data
3047 * %true - this request has more data
3049 bool blk_update_request(struct request
*req
, blk_status_t error
,
3050 unsigned int nr_bytes
)
3054 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
3059 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
3060 !(req
->rq_flags
& RQF_QUIET
)))
3061 print_req_error(req
, error
);
3063 blk_account_io_completion(req
, nr_bytes
);
3067 struct bio
*bio
= req
->bio
;
3068 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
3070 if (bio_bytes
== bio
->bi_iter
.bi_size
)
3071 req
->bio
= bio
->bi_next
;
3073 /* Completion has already been traced */
3074 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
3075 req_bio_endio(req
, bio
, bio_bytes
, error
);
3077 total_bytes
+= bio_bytes
;
3078 nr_bytes
-= bio_bytes
;
3089 * Reset counters so that the request stacking driver
3090 * can find how many bytes remain in the request
3093 req
->__data_len
= 0;
3097 req
->__data_len
-= total_bytes
;
3099 /* update sector only for requests with clear definition of sector */
3100 if (!blk_rq_is_passthrough(req
))
3101 req
->__sector
+= total_bytes
>> 9;
3103 /* mixed attributes always follow the first bio */
3104 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
3105 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
3106 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
3109 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
3111 * If total number of sectors is less than the first segment
3112 * size, something has gone terribly wrong.
3114 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
3115 blk_dump_rq_flags(req
, "request botched");
3116 req
->__data_len
= blk_rq_cur_bytes(req
);
3119 /* recalculate the number of segments */
3120 blk_recalc_rq_segments(req
);
3125 EXPORT_SYMBOL_GPL(blk_update_request
);
3127 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
3128 unsigned int nr_bytes
,
3129 unsigned int bidi_bytes
)
3131 if (blk_update_request(rq
, error
, nr_bytes
))
3134 /* Bidi request must be completed as a whole */
3135 if (unlikely(blk_bidi_rq(rq
)) &&
3136 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
3139 if (blk_queue_add_random(rq
->q
))
3140 add_disk_randomness(rq
->rq_disk
);
3146 * blk_unprep_request - unprepare a request
3149 * This function makes a request ready for complete resubmission (or
3150 * completion). It happens only after all error handling is complete,
3151 * so represents the appropriate moment to deallocate any resources
3152 * that were allocated to the request in the prep_rq_fn. The queue
3153 * lock is held when calling this.
3155 void blk_unprep_request(struct request
*req
)
3157 struct request_queue
*q
= req
->q
;
3159 req
->rq_flags
&= ~RQF_DONTPREP
;
3160 if (q
->unprep_rq_fn
)
3161 q
->unprep_rq_fn(q
, req
);
3163 EXPORT_SYMBOL_GPL(blk_unprep_request
);
3165 void blk_finish_request(struct request
*req
, blk_status_t error
)
3167 struct request_queue
*q
= req
->q
;
3168 u64 now
= ktime_get_ns();
3170 lockdep_assert_held(req
->q
->queue_lock
);
3171 WARN_ON_ONCE(q
->mq_ops
);
3173 if (req
->rq_flags
& RQF_STATS
)
3174 blk_stat_add(req
, now
);
3176 if (req
->rq_flags
& RQF_QUEUED
)
3177 blk_queue_end_tag(q
, req
);
3179 BUG_ON(blk_queued_rq(req
));
3181 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
3182 laptop_io_completion(req
->q
->backing_dev_info
);
3184 blk_delete_timer(req
);
3186 if (req
->rq_flags
& RQF_DONTPREP
)
3187 blk_unprep_request(req
);
3189 blk_account_io_done(req
, now
);
3192 rq_qos_done(q
, req
);
3193 req
->end_io(req
, error
);
3195 if (blk_bidi_rq(req
))
3196 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3198 __blk_put_request(q
, req
);
3201 EXPORT_SYMBOL(blk_finish_request
);
3204 * blk_end_bidi_request - Complete a bidi request
3205 * @rq: the request to complete
3206 * @error: block status code
3207 * @nr_bytes: number of bytes to complete @rq
3208 * @bidi_bytes: number of bytes to complete @rq->next_rq
3211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3212 * Drivers that supports bidi can safely call this member for any
3213 * type of request, bidi or uni. In the later case @bidi_bytes is
3217 * %false - we are done with this request
3218 * %true - still buffers pending for this request
3220 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3221 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3223 struct request_queue
*q
= rq
->q
;
3224 unsigned long flags
;
3226 WARN_ON_ONCE(q
->mq_ops
);
3228 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3231 spin_lock_irqsave(q
->queue_lock
, flags
);
3232 blk_finish_request(rq
, error
);
3233 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3239 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3240 * @rq: the request to complete
3241 * @error: block status code
3242 * @nr_bytes: number of bytes to complete @rq
3243 * @bidi_bytes: number of bytes to complete @rq->next_rq
3246 * Identical to blk_end_bidi_request() except that queue lock is
3247 * assumed to be locked on entry and remains so on return.
3250 * %false - we are done with this request
3251 * %true - still buffers pending for this request
3253 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3254 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3256 lockdep_assert_held(rq
->q
->queue_lock
);
3257 WARN_ON_ONCE(rq
->q
->mq_ops
);
3259 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3262 blk_finish_request(rq
, error
);
3268 * blk_end_request - Helper function for drivers to complete the request.
3269 * @rq: the request being processed
3270 * @error: block status code
3271 * @nr_bytes: number of bytes to complete
3274 * Ends I/O on a number of bytes attached to @rq.
3275 * If @rq has leftover, sets it up for the next range of segments.
3278 * %false - we are done with this request
3279 * %true - still buffers pending for this request
3281 bool blk_end_request(struct request
*rq
, blk_status_t error
,
3282 unsigned int nr_bytes
)
3284 WARN_ON_ONCE(rq
->q
->mq_ops
);
3285 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3287 EXPORT_SYMBOL(blk_end_request
);
3290 * blk_end_request_all - Helper function for drives to finish the request.
3291 * @rq: the request to finish
3292 * @error: block status code
3295 * Completely finish @rq.
3297 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
3300 unsigned int bidi_bytes
= 0;
3302 if (unlikely(blk_bidi_rq(rq
)))
3303 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3305 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3308 EXPORT_SYMBOL(blk_end_request_all
);
3311 * __blk_end_request - Helper function for drivers to complete the request.
3312 * @rq: the request being processed
3313 * @error: block status code
3314 * @nr_bytes: number of bytes to complete
3317 * Must be called with queue lock held unlike blk_end_request().
3320 * %false - we are done with this request
3321 * %true - still buffers pending for this request
3323 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
3324 unsigned int nr_bytes
)
3326 lockdep_assert_held(rq
->q
->queue_lock
);
3327 WARN_ON_ONCE(rq
->q
->mq_ops
);
3329 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3331 EXPORT_SYMBOL(__blk_end_request
);
3334 * __blk_end_request_all - Helper function for drives to finish the request.
3335 * @rq: the request to finish
3336 * @error: block status code
3339 * Completely finish @rq. Must be called with queue lock held.
3341 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3344 unsigned int bidi_bytes
= 0;
3346 lockdep_assert_held(rq
->q
->queue_lock
);
3347 WARN_ON_ONCE(rq
->q
->mq_ops
);
3349 if (unlikely(blk_bidi_rq(rq
)))
3350 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3352 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3355 EXPORT_SYMBOL(__blk_end_request_all
);
3358 * __blk_end_request_cur - Helper function to finish the current request chunk.
3359 * @rq: the request to finish the current chunk for
3360 * @error: block status code
3363 * Complete the current consecutively mapped chunk from @rq. Must
3364 * be called with queue lock held.
3367 * %false - we are done with this request
3368 * %true - still buffers pending for this request
3370 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3372 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3374 EXPORT_SYMBOL(__blk_end_request_cur
);
3376 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3379 if (bio_has_data(bio
))
3380 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3381 else if (bio_op(bio
) == REQ_OP_DISCARD
)
3382 rq
->nr_phys_segments
= 1;
3384 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3385 rq
->bio
= rq
->biotail
= bio
;
3388 rq
->rq_disk
= bio
->bi_disk
;
3391 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3393 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3394 * @rq: the request to be flushed
3397 * Flush all pages in @rq.
3399 void rq_flush_dcache_pages(struct request
*rq
)
3401 struct req_iterator iter
;
3402 struct bio_vec bvec
;
3404 rq_for_each_segment(bvec
, rq
, iter
)
3405 flush_dcache_page(bvec
.bv_page
);
3407 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3411 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3412 * @q : the queue of the device being checked
3415 * Check if underlying low-level drivers of a device are busy.
3416 * If the drivers want to export their busy state, they must set own
3417 * exporting function using blk_queue_lld_busy() first.
3419 * Basically, this function is used only by request stacking drivers
3420 * to stop dispatching requests to underlying devices when underlying
3421 * devices are busy. This behavior helps more I/O merging on the queue
3422 * of the request stacking driver and prevents I/O throughput regression
3423 * on burst I/O load.
3426 * 0 - Not busy (The request stacking driver should dispatch request)
3427 * 1 - Busy (The request stacking driver should stop dispatching request)
3429 int blk_lld_busy(struct request_queue
*q
)
3432 return q
->lld_busy_fn(q
);
3436 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3439 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3440 * @rq: the clone request to be cleaned up
3443 * Free all bios in @rq for a cloned request.
3445 void blk_rq_unprep_clone(struct request
*rq
)
3449 while ((bio
= rq
->bio
) != NULL
) {
3450 rq
->bio
= bio
->bi_next
;
3455 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3458 * Copy attributes of the original request to the clone request.
3459 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3461 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3463 dst
->cpu
= src
->cpu
;
3464 dst
->__sector
= blk_rq_pos(src
);
3465 dst
->__data_len
= blk_rq_bytes(src
);
3466 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3467 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3468 dst
->special_vec
= src
->special_vec
;
3470 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3471 dst
->ioprio
= src
->ioprio
;
3472 dst
->extra_len
= src
->extra_len
;
3476 * blk_rq_prep_clone - Helper function to setup clone request
3477 * @rq: the request to be setup
3478 * @rq_src: original request to be cloned
3479 * @bs: bio_set that bios for clone are allocated from
3480 * @gfp_mask: memory allocation mask for bio
3481 * @bio_ctr: setup function to be called for each clone bio.
3482 * Returns %0 for success, non %0 for failure.
3483 * @data: private data to be passed to @bio_ctr
3486 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3487 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3488 * are not copied, and copying such parts is the caller's responsibility.
3489 * Also, pages which the original bios are pointing to are not copied
3490 * and the cloned bios just point same pages.
3491 * So cloned bios must be completed before original bios, which means
3492 * the caller must complete @rq before @rq_src.
3494 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3495 struct bio_set
*bs
, gfp_t gfp_mask
,
3496 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3499 struct bio
*bio
, *bio_src
;
3504 __rq_for_each_bio(bio_src
, rq_src
) {
3505 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3509 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3513 rq
->biotail
->bi_next
= bio
;
3516 rq
->bio
= rq
->biotail
= bio
;
3519 __blk_rq_prep_clone(rq
, rq_src
);
3526 blk_rq_unprep_clone(rq
);
3530 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3532 int kblockd_schedule_work(struct work_struct
*work
)
3534 return queue_work(kblockd_workqueue
, work
);
3536 EXPORT_SYMBOL(kblockd_schedule_work
);
3538 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3540 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3542 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3544 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3545 unsigned long delay
)
3547 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3549 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3552 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3553 * @plug: The &struct blk_plug that needs to be initialized
3556 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3557 * pending I/O should the task end up blocking between blk_start_plug() and
3558 * blk_finish_plug(). This is important from a performance perspective, but
3559 * also ensures that we don't deadlock. For instance, if the task is blocking
3560 * for a memory allocation, memory reclaim could end up wanting to free a
3561 * page belonging to that request that is currently residing in our private
3562 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3563 * this kind of deadlock.
3565 void blk_start_plug(struct blk_plug
*plug
)
3567 struct task_struct
*tsk
= current
;
3570 * If this is a nested plug, don't actually assign it.
3575 INIT_LIST_HEAD(&plug
->list
);
3576 INIT_LIST_HEAD(&plug
->mq_list
);
3577 INIT_LIST_HEAD(&plug
->cb_list
);
3579 * Store ordering should not be needed here, since a potential
3580 * preempt will imply a full memory barrier
3584 EXPORT_SYMBOL(blk_start_plug
);
3586 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3588 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3589 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3591 return !(rqa
->q
< rqb
->q
||
3592 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3596 * If 'from_schedule' is true, then postpone the dispatch of requests
3597 * until a safe kblockd context. We due this to avoid accidental big
3598 * additional stack usage in driver dispatch, in places where the originally
3599 * plugger did not intend it.
3601 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3603 __releases(q
->queue_lock
)
3605 lockdep_assert_held(q
->queue_lock
);
3607 trace_block_unplug(q
, depth
, !from_schedule
);
3610 blk_run_queue_async(q
);
3613 spin_unlock_irq(q
->queue_lock
);
3616 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3618 LIST_HEAD(callbacks
);
3620 while (!list_empty(&plug
->cb_list
)) {
3621 list_splice_init(&plug
->cb_list
, &callbacks
);
3623 while (!list_empty(&callbacks
)) {
3624 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3627 list_del(&cb
->list
);
3628 cb
->callback(cb
, from_schedule
);
3633 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3636 struct blk_plug
*plug
= current
->plug
;
3637 struct blk_plug_cb
*cb
;
3642 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3643 if (cb
->callback
== unplug
&& cb
->data
== data
)
3646 /* Not currently on the callback list */
3647 BUG_ON(size
< sizeof(*cb
));
3648 cb
= kzalloc(size
, GFP_ATOMIC
);
3651 cb
->callback
= unplug
;
3652 list_add(&cb
->list
, &plug
->cb_list
);
3656 EXPORT_SYMBOL(blk_check_plugged
);
3658 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3660 struct request_queue
*q
;
3665 flush_plug_callbacks(plug
, from_schedule
);
3667 if (!list_empty(&plug
->mq_list
))
3668 blk_mq_flush_plug_list(plug
, from_schedule
);
3670 if (list_empty(&plug
->list
))
3673 list_splice_init(&plug
->list
, &list
);
3675 list_sort(NULL
, &list
, plug_rq_cmp
);
3680 while (!list_empty(&list
)) {
3681 rq
= list_entry_rq(list
.next
);
3682 list_del_init(&rq
->queuelist
);
3686 * This drops the queue lock
3689 queue_unplugged(q
, depth
, from_schedule
);
3692 spin_lock_irq(q
->queue_lock
);
3696 * Short-circuit if @q is dead
3698 if (unlikely(blk_queue_dying(q
))) {
3699 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3704 * rq is already accounted, so use raw insert
3706 if (op_is_flush(rq
->cmd_flags
))
3707 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3709 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3715 * This drops the queue lock
3718 queue_unplugged(q
, depth
, from_schedule
);
3721 void blk_finish_plug(struct blk_plug
*plug
)
3723 if (plug
!= current
->plug
)
3725 blk_flush_plug_list(plug
, false);
3727 current
->plug
= NULL
;
3729 EXPORT_SYMBOL(blk_finish_plug
);
3731 int __init
blk_dev_init(void)
3733 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3734 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3735 FIELD_SIZEOF(struct request
, cmd_flags
));
3736 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3737 FIELD_SIZEOF(struct bio
, bi_opf
));
3739 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3740 kblockd_workqueue
= alloc_workqueue("kblockd",
3741 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3742 if (!kblockd_workqueue
)
3743 panic("Failed to create kblockd\n");
3745 request_cachep
= kmem_cache_create("blkdev_requests",
3746 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3748 blk_requestq_cachep
= kmem_cache_create("request_queue",
3749 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3751 #ifdef CONFIG_DEBUG_FS
3752 blk_debugfs_root
= debugfs_create_dir("block", NULL
);