2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
5 * Copyright (C) 2017 Facebook
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License v2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/kyber.h>
37 * Scheduling domains: the device is divided into multiple domains based on the
48 static const char *kyber_domain_names
[] = {
49 [KYBER_READ
] = "READ",
50 [KYBER_WRITE
] = "WRITE",
51 [KYBER_DISCARD
] = "DISCARD",
52 [KYBER_OTHER
] = "OTHER",
57 * In order to prevent starvation of synchronous requests by a flood of
58 * asynchronous requests, we reserve 25% of requests for synchronous
61 KYBER_ASYNC_PERCENT
= 75,
65 * Maximum device-wide depth for each scheduling domain.
67 * Even for fast devices with lots of tags like NVMe, you can saturate the
68 * device with only a fraction of the maximum possible queue depth. So, we cap
69 * these to a reasonable value.
71 static const unsigned int kyber_depth
[] = {
79 * Default latency targets for each scheduling domain.
81 static const u64 kyber_latency_targets
[] = {
82 [KYBER_READ
] = 2ULL * NSEC_PER_MSEC
,
83 [KYBER_WRITE
] = 10ULL * NSEC_PER_MSEC
,
84 [KYBER_DISCARD
] = 5ULL * NSEC_PER_SEC
,
88 * Batch size (number of requests we'll dispatch in a row) for each scheduling
91 static const unsigned int kyber_batch_size
[] = {
99 * Requests latencies are recorded in a histogram with buckets defined relative
100 * to the target latency:
102 * <= 1/4 * target latency
103 * <= 1/2 * target latency
104 * <= 3/4 * target latency
106 * <= 1 1/4 * target latency
107 * <= 1 1/2 * target latency
108 * <= 1 3/4 * target latency
109 * > 1 3/4 * target latency
113 * The width of the latency histogram buckets is
114 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
116 KYBER_LATENCY_SHIFT
= 2,
118 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
121 KYBER_GOOD_BUCKETS
= 1 << KYBER_LATENCY_SHIFT
,
122 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
123 KYBER_LATENCY_BUCKETS
= 2 << KYBER_LATENCY_SHIFT
,
127 * We measure both the total latency and the I/O latency (i.e., latency after
128 * submitting to the device).
135 static const char *kyber_latency_type_names
[] = {
136 [KYBER_TOTAL_LATENCY
] = "total",
137 [KYBER_IO_LATENCY
] = "I/O",
141 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
142 * domain except for KYBER_OTHER.
144 struct kyber_cpu_latency
{
145 atomic_t buckets
[KYBER_OTHER
][2][KYBER_LATENCY_BUCKETS
];
149 * There is a same mapping between ctx & hctx and kcq & khd,
150 * we use request->mq_ctx->index_hw to index the kcq in khd.
152 struct kyber_ctx_queue
{
154 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
155 * Also protect the rqs on rq_list when merge.
158 struct list_head rq_list
[KYBER_NUM_DOMAINS
];
159 } ____cacheline_aligned_in_smp
;
161 struct kyber_queue_data
{
162 struct request_queue
*q
;
165 * Each scheduling domain has a limited number of in-flight requests
166 * device-wide, limited by these tokens.
168 struct sbitmap_queue domain_tokens
[KYBER_NUM_DOMAINS
];
171 * Async request percentage, converted to per-word depth for
172 * sbitmap_get_shallow().
174 unsigned int async_depth
;
176 struct kyber_cpu_latency __percpu
*cpu_latency
;
178 /* Timer for stats aggregation and adjusting domain tokens. */
179 struct timer_list timer
;
181 unsigned int latency_buckets
[KYBER_OTHER
][2][KYBER_LATENCY_BUCKETS
];
183 unsigned long latency_timeout
[KYBER_OTHER
];
185 int domain_p99
[KYBER_OTHER
];
187 /* Target latencies in nanoseconds. */
188 u64 latency_targets
[KYBER_OTHER
];
191 struct kyber_hctx_data
{
193 struct list_head rqs
[KYBER_NUM_DOMAINS
];
194 unsigned int cur_domain
;
195 unsigned int batching
;
196 struct kyber_ctx_queue
*kcqs
;
197 struct sbitmap kcq_map
[KYBER_NUM_DOMAINS
];
198 wait_queue_entry_t domain_wait
[KYBER_NUM_DOMAINS
];
199 struct sbq_wait_state
*domain_ws
[KYBER_NUM_DOMAINS
];
200 atomic_t wait_index
[KYBER_NUM_DOMAINS
];
203 static int kyber_domain_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
206 static unsigned int kyber_sched_domain(unsigned int op
)
208 switch (op
& REQ_OP_MASK
) {
214 return KYBER_DISCARD
;
220 static void flush_latency_buckets(struct kyber_queue_data
*kqd
,
221 struct kyber_cpu_latency
*cpu_latency
,
222 unsigned int sched_domain
, unsigned int type
)
224 unsigned int *buckets
= kqd
->latency_buckets
[sched_domain
][type
];
225 atomic_t
*cpu_buckets
= cpu_latency
->buckets
[sched_domain
][type
];
228 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
; bucket
++)
229 buckets
[bucket
] += atomic_xchg(&cpu_buckets
[bucket
], 0);
233 * Calculate the histogram bucket with the given percentile rank, or -1 if there
234 * aren't enough samples yet.
236 static int calculate_percentile(struct kyber_queue_data
*kqd
,
237 unsigned int sched_domain
, unsigned int type
,
238 unsigned int percentile
)
240 unsigned int *buckets
= kqd
->latency_buckets
[sched_domain
][type
];
241 unsigned int bucket
, samples
= 0, percentile_samples
;
243 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
; bucket
++)
244 samples
+= buckets
[bucket
];
250 * We do the calculation once we have 500 samples or one second passes
251 * since the first sample was recorded, whichever comes first.
253 if (!kqd
->latency_timeout
[sched_domain
])
254 kqd
->latency_timeout
[sched_domain
] = max(jiffies
+ HZ
, 1UL);
256 time_is_after_jiffies(kqd
->latency_timeout
[sched_domain
])) {
259 kqd
->latency_timeout
[sched_domain
] = 0;
261 percentile_samples
= DIV_ROUND_UP(samples
* percentile
, 100);
262 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
- 1; bucket
++) {
263 if (buckets
[bucket
] >= percentile_samples
)
265 percentile_samples
-= buckets
[bucket
];
267 memset(buckets
, 0, sizeof(kqd
->latency_buckets
[sched_domain
][type
]));
269 trace_kyber_latency(kqd
->q
, kyber_domain_names
[sched_domain
],
270 kyber_latency_type_names
[type
], percentile
,
271 bucket
+ 1, 1 << KYBER_LATENCY_SHIFT
, samples
);
276 static void kyber_resize_domain(struct kyber_queue_data
*kqd
,
277 unsigned int sched_domain
, unsigned int depth
)
279 depth
= clamp(depth
, 1U, kyber_depth
[sched_domain
]);
280 if (depth
!= kqd
->domain_tokens
[sched_domain
].sb
.depth
) {
281 sbitmap_queue_resize(&kqd
->domain_tokens
[sched_domain
], depth
);
282 trace_kyber_adjust(kqd
->q
, kyber_domain_names
[sched_domain
],
287 static void kyber_timer_fn(struct timer_list
*t
)
289 struct kyber_queue_data
*kqd
= from_timer(kqd
, t
, timer
);
290 unsigned int sched_domain
;
294 /* Sum all of the per-cpu latency histograms. */
295 for_each_online_cpu(cpu
) {
296 struct kyber_cpu_latency
*cpu_latency
;
298 cpu_latency
= per_cpu_ptr(kqd
->cpu_latency
, cpu
);
299 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
300 flush_latency_buckets(kqd
, cpu_latency
, sched_domain
,
301 KYBER_TOTAL_LATENCY
);
302 flush_latency_buckets(kqd
, cpu_latency
, sched_domain
,
308 * Check if any domains have a high I/O latency, which might indicate
309 * congestion in the device. Note that we use the p90; we don't want to
310 * be too sensitive to outliers here.
312 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
315 p90
= calculate_percentile(kqd
, sched_domain
, KYBER_IO_LATENCY
,
317 if (p90
>= KYBER_GOOD_BUCKETS
)
322 * Adjust the scheduling domain depths. If we determined that there was
323 * congestion, we throttle all domains with good latencies. Either way,
324 * we ease up on throttling domains with bad latencies.
326 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
327 unsigned int orig_depth
, depth
;
330 p99
= calculate_percentile(kqd
, sched_domain
,
331 KYBER_TOTAL_LATENCY
, 99);
333 * This is kind of subtle: different domains will not
334 * necessarily have enough samples to calculate the latency
335 * percentiles during the same window, so we have to remember
336 * the p99 for the next time we observe congestion; once we do,
337 * we don't want to throttle again until we get more data, so we
342 p99
= kqd
->domain_p99
[sched_domain
];
343 kqd
->domain_p99
[sched_domain
] = -1;
344 } else if (p99
>= 0) {
345 kqd
->domain_p99
[sched_domain
] = p99
;
351 * If this domain has bad latency, throttle less. Otherwise,
352 * throttle more iff we determined that there is congestion.
354 * The new depth is scaled linearly with the p99 latency vs the
355 * latency target. E.g., if the p99 is 3/4 of the target, then
356 * we throttle down to 3/4 of the current depth, and if the p99
357 * is 2x the target, then we double the depth.
359 if (bad
|| p99
>= KYBER_GOOD_BUCKETS
) {
360 orig_depth
= kqd
->domain_tokens
[sched_domain
].sb
.depth
;
361 depth
= (orig_depth
* (p99
+ 1)) >> KYBER_LATENCY_SHIFT
;
362 kyber_resize_domain(kqd
, sched_domain
, depth
);
367 static unsigned int kyber_sched_tags_shift(struct request_queue
*q
)
370 * All of the hardware queues have the same depth, so we can just grab
371 * the shift of the first one.
373 return q
->queue_hw_ctx
[0]->sched_tags
->bitmap_tags
.sb
.shift
;
376 static struct kyber_queue_data
*kyber_queue_data_alloc(struct request_queue
*q
)
378 struct kyber_queue_data
*kqd
;
383 kqd
= kzalloc_node(sizeof(*kqd
), GFP_KERNEL
, q
->node
);
389 kqd
->cpu_latency
= alloc_percpu_gfp(struct kyber_cpu_latency
,
390 GFP_KERNEL
| __GFP_ZERO
);
391 if (!kqd
->cpu_latency
)
394 timer_setup(&kqd
->timer
, kyber_timer_fn
, 0);
396 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
397 WARN_ON(!kyber_depth
[i
]);
398 WARN_ON(!kyber_batch_size
[i
]);
399 ret
= sbitmap_queue_init_node(&kqd
->domain_tokens
[i
],
400 kyber_depth
[i
], -1, false,
401 GFP_KERNEL
, q
->node
);
404 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
409 for (i
= 0; i
< KYBER_OTHER
; i
++) {
410 kqd
->domain_p99
[i
] = -1;
411 kqd
->latency_targets
[i
] = kyber_latency_targets
[i
];
414 shift
= kyber_sched_tags_shift(q
);
415 kqd
->async_depth
= (1U << shift
) * KYBER_ASYNC_PERCENT
/ 100U;
420 free_percpu(kqd
->cpu_latency
);
427 static int kyber_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
429 struct kyber_queue_data
*kqd
;
430 struct elevator_queue
*eq
;
432 eq
= elevator_alloc(q
, e
);
436 kqd
= kyber_queue_data_alloc(q
);
438 kobject_put(&eq
->kobj
);
442 blk_stat_enable_accounting(q
);
444 eq
->elevator_data
= kqd
;
450 static void kyber_exit_sched(struct elevator_queue
*e
)
452 struct kyber_queue_data
*kqd
= e
->elevator_data
;
455 del_timer_sync(&kqd
->timer
);
457 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
458 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
459 free_percpu(kqd
->cpu_latency
);
463 static void kyber_ctx_queue_init(struct kyber_ctx_queue
*kcq
)
467 spin_lock_init(&kcq
->lock
);
468 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
469 INIT_LIST_HEAD(&kcq
->rq_list
[i
]);
472 static int kyber_init_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
474 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
475 struct kyber_hctx_data
*khd
;
478 khd
= kmalloc_node(sizeof(*khd
), GFP_KERNEL
, hctx
->numa_node
);
482 khd
->kcqs
= kmalloc_array_node(hctx
->nr_ctx
,
483 sizeof(struct kyber_ctx_queue
),
484 GFP_KERNEL
, hctx
->numa_node
);
488 for (i
= 0; i
< hctx
->nr_ctx
; i
++)
489 kyber_ctx_queue_init(&khd
->kcqs
[i
]);
491 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
492 if (sbitmap_init_node(&khd
->kcq_map
[i
], hctx
->nr_ctx
,
493 ilog2(8), GFP_KERNEL
, hctx
->numa_node
)) {
495 sbitmap_free(&khd
->kcq_map
[i
]);
500 spin_lock_init(&khd
->lock
);
502 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
503 INIT_LIST_HEAD(&khd
->rqs
[i
]);
504 init_waitqueue_func_entry(&khd
->domain_wait
[i
],
506 khd
->domain_wait
[i
].private = hctx
;
507 INIT_LIST_HEAD(&khd
->domain_wait
[i
].entry
);
508 atomic_set(&khd
->wait_index
[i
], 0);
514 hctx
->sched_data
= khd
;
515 sbitmap_queue_min_shallow_depth(&hctx
->sched_tags
->bitmap_tags
,
527 static void kyber_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
529 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
532 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
533 sbitmap_free(&khd
->kcq_map
[i
]);
535 kfree(hctx
->sched_data
);
538 static int rq_get_domain_token(struct request
*rq
)
540 return (long)rq
->elv
.priv
[0];
543 static void rq_set_domain_token(struct request
*rq
, int token
)
545 rq
->elv
.priv
[0] = (void *)(long)token
;
548 static void rq_clear_domain_token(struct kyber_queue_data
*kqd
,
551 unsigned int sched_domain
;
554 nr
= rq_get_domain_token(rq
);
556 sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
557 sbitmap_queue_clear(&kqd
->domain_tokens
[sched_domain
], nr
,
562 static void kyber_limit_depth(unsigned int op
, struct blk_mq_alloc_data
*data
)
565 * We use the scheduler tags as per-hardware queue queueing tokens.
566 * Async requests can be limited at this stage.
568 if (!op_is_sync(op
)) {
569 struct kyber_queue_data
*kqd
= data
->q
->elevator
->elevator_data
;
571 data
->shallow_depth
= kqd
->async_depth
;
575 static bool kyber_bio_merge(struct blk_mq_hw_ctx
*hctx
, struct bio
*bio
)
577 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
578 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(hctx
->queue
);
579 struct kyber_ctx_queue
*kcq
= &khd
->kcqs
[ctx
->index_hw
];
580 unsigned int sched_domain
= kyber_sched_domain(bio
->bi_opf
);
581 struct list_head
*rq_list
= &kcq
->rq_list
[sched_domain
];
584 spin_lock(&kcq
->lock
);
585 merged
= blk_mq_bio_list_merge(hctx
->queue
, rq_list
, bio
);
586 spin_unlock(&kcq
->lock
);
592 static void kyber_prepare_request(struct request
*rq
, struct bio
*bio
)
594 rq_set_domain_token(rq
, -1);
597 static void kyber_insert_requests(struct blk_mq_hw_ctx
*hctx
,
598 struct list_head
*rq_list
, bool at_head
)
600 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
601 struct request
*rq
, *next
;
603 list_for_each_entry_safe(rq
, next
, rq_list
, queuelist
) {
604 unsigned int sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
605 struct kyber_ctx_queue
*kcq
= &khd
->kcqs
[rq
->mq_ctx
->index_hw
];
606 struct list_head
*head
= &kcq
->rq_list
[sched_domain
];
608 spin_lock(&kcq
->lock
);
610 list_move(&rq
->queuelist
, head
);
612 list_move_tail(&rq
->queuelist
, head
);
613 sbitmap_set_bit(&khd
->kcq_map
[sched_domain
],
614 rq
->mq_ctx
->index_hw
);
615 blk_mq_sched_request_inserted(rq
);
616 spin_unlock(&kcq
->lock
);
620 static void kyber_finish_request(struct request
*rq
)
622 struct kyber_queue_data
*kqd
= rq
->q
->elevator
->elevator_data
;
624 rq_clear_domain_token(kqd
, rq
);
627 static void add_latency_sample(struct kyber_cpu_latency
*cpu_latency
,
628 unsigned int sched_domain
, unsigned int type
,
629 u64 target
, u64 latency
)
635 divisor
= max_t(u64
, target
>> KYBER_LATENCY_SHIFT
, 1);
636 bucket
= min_t(unsigned int, div64_u64(latency
- 1, divisor
),
637 KYBER_LATENCY_BUCKETS
- 1);
642 atomic_inc(&cpu_latency
->buckets
[sched_domain
][type
][bucket
]);
645 static void kyber_completed_request(struct request
*rq
, u64 now
)
647 struct kyber_queue_data
*kqd
= rq
->q
->elevator
->elevator_data
;
648 struct kyber_cpu_latency
*cpu_latency
;
649 unsigned int sched_domain
;
652 sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
653 if (sched_domain
== KYBER_OTHER
)
656 cpu_latency
= get_cpu_ptr(kqd
->cpu_latency
);
657 target
= kqd
->latency_targets
[sched_domain
];
658 add_latency_sample(cpu_latency
, sched_domain
, KYBER_TOTAL_LATENCY
,
659 target
, now
- rq
->start_time_ns
);
660 add_latency_sample(cpu_latency
, sched_domain
, KYBER_IO_LATENCY
, target
,
661 now
- rq
->io_start_time_ns
);
662 put_cpu_ptr(kqd
->cpu_latency
);
664 timer_reduce(&kqd
->timer
, jiffies
+ HZ
/ 10);
667 struct flush_kcq_data
{
668 struct kyber_hctx_data
*khd
;
669 unsigned int sched_domain
;
670 struct list_head
*list
;
673 static bool flush_busy_kcq(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
675 struct flush_kcq_data
*flush_data
= data
;
676 struct kyber_ctx_queue
*kcq
= &flush_data
->khd
->kcqs
[bitnr
];
678 spin_lock(&kcq
->lock
);
679 list_splice_tail_init(&kcq
->rq_list
[flush_data
->sched_domain
],
681 sbitmap_clear_bit(sb
, bitnr
);
682 spin_unlock(&kcq
->lock
);
687 static void kyber_flush_busy_kcqs(struct kyber_hctx_data
*khd
,
688 unsigned int sched_domain
,
689 struct list_head
*list
)
691 struct flush_kcq_data data
= {
693 .sched_domain
= sched_domain
,
697 sbitmap_for_each_set(&khd
->kcq_map
[sched_domain
],
698 flush_busy_kcq
, &data
);
701 static int kyber_domain_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
704 struct blk_mq_hw_ctx
*hctx
= READ_ONCE(wait
->private);
706 list_del_init(&wait
->entry
);
707 blk_mq_run_hw_queue(hctx
, true);
711 static int kyber_get_domain_token(struct kyber_queue_data
*kqd
,
712 struct kyber_hctx_data
*khd
,
713 struct blk_mq_hw_ctx
*hctx
)
715 unsigned int sched_domain
= khd
->cur_domain
;
716 struct sbitmap_queue
*domain_tokens
= &kqd
->domain_tokens
[sched_domain
];
717 wait_queue_entry_t
*wait
= &khd
->domain_wait
[sched_domain
];
718 struct sbq_wait_state
*ws
;
721 nr
= __sbitmap_queue_get(domain_tokens
);
724 * If we failed to get a domain token, make sure the hardware queue is
725 * run when one becomes available. Note that this is serialized on
726 * khd->lock, but we still need to be careful about the waker.
728 if (nr
< 0 && list_empty_careful(&wait
->entry
)) {
729 ws
= sbq_wait_ptr(domain_tokens
,
730 &khd
->wait_index
[sched_domain
]);
731 khd
->domain_ws
[sched_domain
] = ws
;
732 add_wait_queue(&ws
->wait
, wait
);
735 * Try again in case a token was freed before we got on the wait
738 nr
= __sbitmap_queue_get(domain_tokens
);
742 * If we got a token while we were on the wait queue, remove ourselves
743 * from the wait queue to ensure that all wake ups make forward
744 * progress. It's possible that the waker already deleted the entry
745 * between the !list_empty_careful() check and us grabbing the lock, but
746 * list_del_init() is okay with that.
748 if (nr
>= 0 && !list_empty_careful(&wait
->entry
)) {
749 ws
= khd
->domain_ws
[sched_domain
];
750 spin_lock_irq(&ws
->wait
.lock
);
751 list_del_init(&wait
->entry
);
752 spin_unlock_irq(&ws
->wait
.lock
);
758 static struct request
*
759 kyber_dispatch_cur_domain(struct kyber_queue_data
*kqd
,
760 struct kyber_hctx_data
*khd
,
761 struct blk_mq_hw_ctx
*hctx
)
763 struct list_head
*rqs
;
767 rqs
= &khd
->rqs
[khd
->cur_domain
];
770 * If we already have a flushed request, then we just need to get a
771 * token for it. Otherwise, if there are pending requests in the kcqs,
772 * flush the kcqs, but only if we can get a token. If not, we should
773 * leave the requests in the kcqs so that they can be merged. Note that
774 * khd->lock serializes the flushes, so if we observed any bit set in
775 * the kcq_map, we will always get a request.
777 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
779 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
782 rq_set_domain_token(rq
, nr
);
783 list_del_init(&rq
->queuelist
);
786 trace_kyber_throttled(kqd
->q
,
787 kyber_domain_names
[khd
->cur_domain
]);
789 } else if (sbitmap_any_bit_set(&khd
->kcq_map
[khd
->cur_domain
])) {
790 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
792 kyber_flush_busy_kcqs(khd
, khd
->cur_domain
, rqs
);
793 rq
= list_first_entry(rqs
, struct request
, queuelist
);
795 rq_set_domain_token(rq
, nr
);
796 list_del_init(&rq
->queuelist
);
799 trace_kyber_throttled(kqd
->q
,
800 kyber_domain_names
[khd
->cur_domain
]);
804 /* There were either no pending requests or no tokens. */
808 static struct request
*kyber_dispatch_request(struct blk_mq_hw_ctx
*hctx
)
810 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
811 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
815 spin_lock(&khd
->lock
);
818 * First, if we are still entitled to batch, try to dispatch a request
821 if (khd
->batching
< kyber_batch_size
[khd
->cur_domain
]) {
822 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
);
829 * 1. We were no longer entitled to a batch.
830 * 2. The domain we were batching didn't have any requests.
831 * 3. The domain we were batching was out of tokens.
833 * Start another batch. Note that this wraps back around to the original
834 * domain if no other domains have requests or tokens.
837 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
838 if (khd
->cur_domain
== KYBER_NUM_DOMAINS
- 1)
843 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
);
850 spin_unlock(&khd
->lock
);
854 static bool kyber_has_work(struct blk_mq_hw_ctx
*hctx
)
856 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
859 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
860 if (!list_empty_careful(&khd
->rqs
[i
]) ||
861 sbitmap_any_bit_set(&khd
->kcq_map
[i
]))
868 #define KYBER_LAT_SHOW_STORE(domain, name) \
869 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
872 struct kyber_queue_data *kqd = e->elevator_data; \
874 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
877 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
878 const char *page, size_t count) \
880 struct kyber_queue_data *kqd = e->elevator_data; \
881 unsigned long long nsec; \
884 ret = kstrtoull(page, 10, &nsec); \
888 kqd->latency_targets[domain] = nsec; \
892 KYBER_LAT_SHOW_STORE(KYBER_READ
, read
);
893 KYBER_LAT_SHOW_STORE(KYBER_WRITE
, write
);
894 #undef KYBER_LAT_SHOW_STORE
896 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
897 static struct elv_fs_entry kyber_sched_attrs
[] = {
898 KYBER_LAT_ATTR(read
),
899 KYBER_LAT_ATTR(write
),
902 #undef KYBER_LAT_ATTR
904 #ifdef CONFIG_BLK_DEBUG_FS
905 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
906 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
908 struct request_queue *q = data; \
909 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
911 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
915 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
916 __acquires(&khd->lock) \
918 struct blk_mq_hw_ctx *hctx = m->private; \
919 struct kyber_hctx_data *khd = hctx->sched_data; \
921 spin_lock(&khd->lock); \
922 return seq_list_start(&khd->rqs[domain], *pos); \
925 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
928 struct blk_mq_hw_ctx *hctx = m->private; \
929 struct kyber_hctx_data *khd = hctx->sched_data; \
931 return seq_list_next(v, &khd->rqs[domain], pos); \
934 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
935 __releases(&khd->lock) \
937 struct blk_mq_hw_ctx *hctx = m->private; \
938 struct kyber_hctx_data *khd = hctx->sched_data; \
940 spin_unlock(&khd->lock); \
943 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
944 .start = kyber_##name##_rqs_start, \
945 .next = kyber_##name##_rqs_next, \
946 .stop = kyber_##name##_rqs_stop, \
947 .show = blk_mq_debugfs_rq_show, \
950 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
952 struct blk_mq_hw_ctx *hctx = data; \
953 struct kyber_hctx_data *khd = hctx->sched_data; \
954 wait_queue_entry_t *wait = &khd->domain_wait[domain]; \
956 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
959 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ
, read
)
960 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE
, write
)
961 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD
, discard
)
962 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER
, other
)
963 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
965 static int kyber_async_depth_show(void *data
, struct seq_file
*m
)
967 struct request_queue
*q
= data
;
968 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
970 seq_printf(m
, "%u\n", kqd
->async_depth
);
974 static int kyber_cur_domain_show(void *data
, struct seq_file
*m
)
976 struct blk_mq_hw_ctx
*hctx
= data
;
977 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
979 seq_printf(m
, "%s\n", kyber_domain_names
[khd
->cur_domain
]);
983 static int kyber_batching_show(void *data
, struct seq_file
*m
)
985 struct blk_mq_hw_ctx
*hctx
= data
;
986 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
988 seq_printf(m
, "%u\n", khd
->batching
);
992 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
993 {#name "_tokens", 0400, kyber_##name##_tokens_show}
994 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs
[] = {
995 KYBER_QUEUE_DOMAIN_ATTRS(read
),
996 KYBER_QUEUE_DOMAIN_ATTRS(write
),
997 KYBER_QUEUE_DOMAIN_ATTRS(discard
),
998 KYBER_QUEUE_DOMAIN_ATTRS(other
),
999 {"async_depth", 0400, kyber_async_depth_show
},
1002 #undef KYBER_QUEUE_DOMAIN_ATTRS
1004 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
1005 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1006 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1007 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs
[] = {
1008 KYBER_HCTX_DOMAIN_ATTRS(read
),
1009 KYBER_HCTX_DOMAIN_ATTRS(write
),
1010 KYBER_HCTX_DOMAIN_ATTRS(discard
),
1011 KYBER_HCTX_DOMAIN_ATTRS(other
),
1012 {"cur_domain", 0400, kyber_cur_domain_show
},
1013 {"batching", 0400, kyber_batching_show
},
1016 #undef KYBER_HCTX_DOMAIN_ATTRS
1019 static struct elevator_type kyber_sched
= {
1021 .init_sched
= kyber_init_sched
,
1022 .exit_sched
= kyber_exit_sched
,
1023 .init_hctx
= kyber_init_hctx
,
1024 .exit_hctx
= kyber_exit_hctx
,
1025 .limit_depth
= kyber_limit_depth
,
1026 .bio_merge
= kyber_bio_merge
,
1027 .prepare_request
= kyber_prepare_request
,
1028 .insert_requests
= kyber_insert_requests
,
1029 .finish_request
= kyber_finish_request
,
1030 .requeue_request
= kyber_finish_request
,
1031 .completed_request
= kyber_completed_request
,
1032 .dispatch_request
= kyber_dispatch_request
,
1033 .has_work
= kyber_has_work
,
1036 #ifdef CONFIG_BLK_DEBUG_FS
1037 .queue_debugfs_attrs
= kyber_queue_debugfs_attrs
,
1038 .hctx_debugfs_attrs
= kyber_hctx_debugfs_attrs
,
1040 .elevator_attrs
= kyber_sched_attrs
,
1041 .elevator_name
= "kyber",
1042 .elevator_owner
= THIS_MODULE
,
1045 static int __init
kyber_init(void)
1047 return elv_register(&kyber_sched
);
1050 static void __exit
kyber_exit(void)
1052 elv_unregister(&kyber_sched
);
1055 module_init(kyber_init
);
1056 module_exit(kyber_exit
);
1058 MODULE_AUTHOR("Omar Sandoval");
1059 MODULE_LICENSE("GPL");
1060 MODULE_DESCRIPTION("Kyber I/O scheduler");