2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include "fib_lookup.h"
86 #define MAX_STAT_DEPTH 32
88 #define KEYLENGTH (8*sizeof(t_key))
89 #define KEY_MAX ((t_key)~0)
91 typedef unsigned int t_key
;
93 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
94 #define IS_TNODE(n) ((n)->bits)
95 #define IS_LEAF(n) (!(n)->bits)
99 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
100 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
103 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
104 struct hlist_head leaf
;
105 /* This array is valid if (pos | bits) > 0 (TNODE) */
106 struct key_vector __rcu
*tnode
[0];
112 t_key empty_children
; /* KEYLENGTH bits needed */
113 t_key full_children
; /* KEYLENGTH bits needed */
114 struct key_vector __rcu
*parent
;
115 struct key_vector kv
[1];
116 #define tn_bits kv[0].bits
119 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
120 #define LEAF_SIZE TNODE_SIZE(1)
122 #ifdef CONFIG_IP_FIB_TRIE_STATS
123 struct trie_use_stats
{
125 unsigned int backtrack
;
126 unsigned int semantic_match_passed
;
127 unsigned int semantic_match_miss
;
128 unsigned int null_node_hit
;
129 unsigned int resize_node_skipped
;
134 unsigned int totdepth
;
135 unsigned int maxdepth
;
138 unsigned int nullpointers
;
139 unsigned int prefixes
;
140 unsigned int nodesizes
[MAX_STAT_DEPTH
];
144 struct key_vector kv
[1];
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats __percpu
*stats
;
150 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
151 static size_t tnode_free_size
;
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
158 static const int sync_pages
= 128;
160 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
161 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
163 static inline struct tnode
*tn_info(struct key_vector
*kv
)
165 return container_of(kv
, struct tnode
, kv
[0]);
168 /* caller must hold RTNL */
169 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
172 /* caller must hold RCU read lock or RTNL */
173 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
176 /* wrapper for rcu_assign_pointer */
177 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
180 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
183 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 /* This provides us with the number of children in this node, in the case of a
186 * leaf this will return 0 meaning none of the children are accessible.
188 static inline unsigned long child_length(const struct key_vector
*tn
)
190 return (1ul << tn
->bits
) & ~(1ul);
193 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
197 unsigned long index
= key
^ kv
->key
;
199 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
202 return index
>> kv
->pos
;
205 /* To understand this stuff, an understanding of keys and all their bits is
206 * necessary. Every node in the trie has a key associated with it, but not
207 * all of the bits in that key are significant.
209 * Consider a node 'n' and its parent 'tp'.
211 * If n is a leaf, every bit in its key is significant. Its presence is
212 * necessitated by path compression, since during a tree traversal (when
213 * searching for a leaf - unless we are doing an insertion) we will completely
214 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215 * a potentially successful search, that we have indeed been walking the
218 * Note that we can never "miss" the correct key in the tree if present by
219 * following the wrong path. Path compression ensures that segments of the key
220 * that are the same for all keys with a given prefix are skipped, but the
221 * skipped part *is* identical for each node in the subtrie below the skipped
222 * bit! trie_insert() in this implementation takes care of that.
224 * if n is an internal node - a 'tnode' here, the various parts of its key
225 * have many different meanings.
228 * _________________________________________________________________
229 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230 * -----------------------------------------------------------------
231 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
233 * _________________________________________________________________
234 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235 * -----------------------------------------------------------------
236 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
243 * First, let's just ignore the bits that come before the parent tp, that is
244 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245 * point we do not use them for anything.
247 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248 * index into the parent's child array. That is, they will be used to find
249 * 'n' among tp's children.
251 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
254 * All the bits we have seen so far are significant to the node n. The rest
255 * of the bits are really not needed or indeed known in n->key.
257 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258 * n's child array, and will of course be different for each child.
260 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
264 static const int halve_threshold
= 25;
265 static const int inflate_threshold
= 50;
266 static const int halve_threshold_root
= 15;
267 static const int inflate_threshold_root
= 30;
269 static void __alias_free_mem(struct rcu_head
*head
)
271 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
272 kmem_cache_free(fn_alias_kmem
, fa
);
275 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
277 call_rcu(&fa
->rcu
, __alias_free_mem
);
280 #define TNODE_KMALLOC_MAX \
281 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282 #define TNODE_VMALLOC_MAX \
283 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
285 static void __node_free_rcu(struct rcu_head
*head
)
287 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
290 kmem_cache_free(trie_leaf_kmem
, n
);
291 else if (n
->tn_bits
<= TNODE_KMALLOC_MAX
)
297 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
299 static struct tnode
*tnode_alloc(int bits
)
303 /* verify bits is within bounds */
304 if (bits
> TNODE_VMALLOC_MAX
)
307 /* determine size and verify it is non-zero and didn't overflow */
308 size
= TNODE_SIZE(1ul << bits
);
310 if (size
<= PAGE_SIZE
)
311 return kzalloc(size
, GFP_KERNEL
);
313 return vzalloc(size
);
316 static inline void empty_child_inc(struct key_vector
*n
)
318 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
321 static inline void empty_child_dec(struct key_vector
*n
)
323 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
326 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
328 struct key_vector
*l
;
331 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
335 /* initialize key vector */
340 l
->slen
= fa
->fa_slen
;
342 /* link leaf to fib alias */
343 INIT_HLIST_HEAD(&l
->leaf
);
344 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
349 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
351 unsigned int shift
= pos
+ bits
;
352 struct key_vector
*tn
;
355 /* verify bits and pos their msb bits clear and values are valid */
356 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
358 tnode
= tnode_alloc(bits
);
362 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
363 sizeof(struct key_vector
*) << bits
);
365 if (bits
== KEYLENGTH
)
366 tnode
->full_children
= 1;
368 tnode
->empty_children
= 1ul << bits
;
371 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
379 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
380 * and no bits are skipped. See discussion in dyntree paper p. 6
382 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
384 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
387 /* Add a child at position i overwriting the old value.
388 * Update the value of full_children and empty_children.
390 static void put_child(struct key_vector
*tn
, unsigned long i
,
391 struct key_vector
*n
)
393 struct key_vector
*chi
= get_child(tn
, i
);
396 BUG_ON(i
>= child_length(tn
));
398 /* update emptyChildren, overflow into fullChildren */
404 /* update fullChildren */
405 wasfull
= tnode_full(tn
, chi
);
406 isfull
= tnode_full(tn
, n
);
408 if (wasfull
&& !isfull
)
409 tn_info(tn
)->full_children
--;
410 else if (!wasfull
&& isfull
)
411 tn_info(tn
)->full_children
++;
413 if (n
&& (tn
->slen
< n
->slen
))
416 rcu_assign_pointer(tn
->tnode
[i
], n
);
419 static void update_children(struct key_vector
*tn
)
423 /* update all of the child parent pointers */
424 for (i
= child_length(tn
); i
;) {
425 struct key_vector
*inode
= get_child(tn
, --i
);
430 /* Either update the children of a tnode that
431 * already belongs to us or update the child
432 * to point to ourselves.
434 if (node_parent(inode
) == tn
)
435 update_children(inode
);
437 node_set_parent(inode
, tn
);
441 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
442 struct key_vector
*n
)
445 rcu_assign_pointer(tp
->tnode
[0], n
);
447 put_child(tp
, get_index(key
, tp
), n
);
450 static inline void tnode_free_init(struct key_vector
*tn
)
452 tn_info(tn
)->rcu
.next
= NULL
;
455 static inline void tnode_free_append(struct key_vector
*tn
,
456 struct key_vector
*n
)
458 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
459 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
462 static void tnode_free(struct key_vector
*tn
)
464 struct callback_head
*head
= &tn_info(tn
)->rcu
;
468 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
471 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
474 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
480 static struct key_vector
*replace(struct trie
*t
,
481 struct key_vector
*oldtnode
,
482 struct key_vector
*tn
)
484 struct key_vector
*tp
= node_parent(oldtnode
);
487 /* setup the parent pointer out of and back into this node */
488 NODE_INIT_PARENT(tn
, tp
);
489 put_child_root(tp
, tn
->key
, tn
);
491 /* update all of the child parent pointers */
494 /* all pointers should be clean so we are done */
495 tnode_free(oldtnode
);
497 /* resize children now that oldtnode is freed */
498 for (i
= child_length(tn
); i
;) {
499 struct key_vector
*inode
= get_child(tn
, --i
);
501 /* resize child node */
502 if (tnode_full(tn
, inode
))
503 tn
= resize(t
, inode
);
509 static struct key_vector
*inflate(struct trie
*t
,
510 struct key_vector
*oldtnode
)
512 struct key_vector
*tn
;
516 pr_debug("In inflate\n");
518 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
522 /* prepare oldtnode to be freed */
523 tnode_free_init(oldtnode
);
525 /* Assemble all of the pointers in our cluster, in this case that
526 * represents all of the pointers out of our allocated nodes that
527 * point to existing tnodes and the links between our allocated
530 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
531 struct key_vector
*inode
= get_child(oldtnode
, --i
);
532 struct key_vector
*node0
, *node1
;
539 /* A leaf or an internal node with skipped bits */
540 if (!tnode_full(oldtnode
, inode
)) {
541 put_child(tn
, get_index(inode
->key
, tn
), inode
);
545 /* drop the node in the old tnode free list */
546 tnode_free_append(oldtnode
, inode
);
548 /* An internal node with two children */
549 if (inode
->bits
== 1) {
550 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
551 put_child(tn
, 2 * i
, get_child(inode
, 0));
555 /* We will replace this node 'inode' with two new
556 * ones, 'node0' and 'node1', each with half of the
557 * original children. The two new nodes will have
558 * a position one bit further down the key and this
559 * means that the "significant" part of their keys
560 * (see the discussion near the top of this file)
561 * will differ by one bit, which will be "0" in
562 * node0's key and "1" in node1's key. Since we are
563 * moving the key position by one step, the bit that
564 * we are moving away from - the bit at position
565 * (tn->pos) - is the one that will differ between
566 * node0 and node1. So... we synthesize that bit in the
569 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
572 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
574 tnode_free_append(tn
, node1
);
577 tnode_free_append(tn
, node0
);
579 /* populate child pointers in new nodes */
580 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
581 put_child(node1
, --j
, get_child(inode
, --k
));
582 put_child(node0
, j
, get_child(inode
, j
));
583 put_child(node1
, --j
, get_child(inode
, --k
));
584 put_child(node0
, j
, get_child(inode
, j
));
587 /* link new nodes to parent */
588 NODE_INIT_PARENT(node1
, tn
);
589 NODE_INIT_PARENT(node0
, tn
);
591 /* link parent to nodes */
592 put_child(tn
, 2 * i
+ 1, node1
);
593 put_child(tn
, 2 * i
, node0
);
596 /* setup the parent pointers into and out of this node */
597 return replace(t
, oldtnode
, tn
);
599 /* all pointers should be clean so we are done */
605 static struct key_vector
*halve(struct trie
*t
,
606 struct key_vector
*oldtnode
)
608 struct key_vector
*tn
;
611 pr_debug("In halve\n");
613 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
617 /* prepare oldtnode to be freed */
618 tnode_free_init(oldtnode
);
620 /* Assemble all of the pointers in our cluster, in this case that
621 * represents all of the pointers out of our allocated nodes that
622 * point to existing tnodes and the links between our allocated
625 for (i
= child_length(oldtnode
); i
;) {
626 struct key_vector
*node1
= get_child(oldtnode
, --i
);
627 struct key_vector
*node0
= get_child(oldtnode
, --i
);
628 struct key_vector
*inode
;
630 /* At least one of the children is empty */
631 if (!node1
|| !node0
) {
632 put_child(tn
, i
/ 2, node1
? : node0
);
636 /* Two nonempty children */
637 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
640 tnode_free_append(tn
, inode
);
642 /* initialize pointers out of node */
643 put_child(inode
, 1, node1
);
644 put_child(inode
, 0, node0
);
645 NODE_INIT_PARENT(inode
, tn
);
647 /* link parent to node */
648 put_child(tn
, i
/ 2, inode
);
651 /* setup the parent pointers into and out of this node */
652 return replace(t
, oldtnode
, tn
);
654 /* all pointers should be clean so we are done */
660 static struct key_vector
*collapse(struct trie
*t
,
661 struct key_vector
*oldtnode
)
663 struct key_vector
*n
, *tp
;
666 /* scan the tnode looking for that one child that might still exist */
667 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
668 n
= get_child(oldtnode
, --i
);
670 /* compress one level */
671 tp
= node_parent(oldtnode
);
672 put_child_root(tp
, oldtnode
->key
, n
);
673 node_set_parent(n
, tp
);
681 static unsigned char update_suffix(struct key_vector
*tn
)
683 unsigned char slen
= tn
->pos
;
684 unsigned long stride
, i
;
686 /* search though the list of children looking for nodes that might
687 * have a suffix greater than the one we currently have. This is
688 * why we start with a stride of 2 since a stride of 1 would
689 * represent the nodes with suffix length equal to tn->pos
691 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
692 struct key_vector
*n
= get_child(tn
, i
);
694 if (!n
|| (n
->slen
<= slen
))
697 /* update stride and slen based on new value */
698 stride
<<= (n
->slen
- slen
);
702 /* if slen covers all but the last bit we can stop here
703 * there will be nothing longer than that since only node
704 * 0 and 1 << (bits - 1) could have that as their suffix
707 if ((slen
+ 1) >= (tn
->pos
+ tn
->bits
))
716 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
717 * the Helsinki University of Technology and Matti Tikkanen of Nokia
718 * Telecommunications, page 6:
719 * "A node is doubled if the ratio of non-empty children to all
720 * children in the *doubled* node is at least 'high'."
722 * 'high' in this instance is the variable 'inflate_threshold'. It
723 * is expressed as a percentage, so we multiply it with
724 * child_length() and instead of multiplying by 2 (since the
725 * child array will be doubled by inflate()) and multiplying
726 * the left-hand side by 100 (to handle the percentage thing) we
727 * multiply the left-hand side by 50.
729 * The left-hand side may look a bit weird: child_length(tn)
730 * - tn->empty_children is of course the number of non-null children
731 * in the current node. tn->full_children is the number of "full"
732 * children, that is non-null tnodes with a skip value of 0.
733 * All of those will be doubled in the resulting inflated tnode, so
734 * we just count them one extra time here.
736 * A clearer way to write this would be:
738 * to_be_doubled = tn->full_children;
739 * not_to_be_doubled = child_length(tn) - tn->empty_children -
742 * new_child_length = child_length(tn) * 2;
744 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
746 * if (new_fill_factor >= inflate_threshold)
748 * ...and so on, tho it would mess up the while () loop.
751 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
755 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
756 * inflate_threshold * new_child_length
758 * expand not_to_be_doubled and to_be_doubled, and shorten:
759 * 100 * (child_length(tn) - tn->empty_children +
760 * tn->full_children) >= inflate_threshold * new_child_length
762 * expand new_child_length:
763 * 100 * (child_length(tn) - tn->empty_children +
764 * tn->full_children) >=
765 * inflate_threshold * child_length(tn) * 2
768 * 50 * (tn->full_children + child_length(tn) -
769 * tn->empty_children) >= inflate_threshold *
773 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
775 unsigned long used
= child_length(tn
);
776 unsigned long threshold
= used
;
778 /* Keep root node larger */
779 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
780 used
-= tn_info(tn
)->empty_children
;
781 used
+= tn_info(tn
)->full_children
;
783 /* if bits == KEYLENGTH then pos = 0, and will fail below */
785 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
788 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
790 unsigned long used
= child_length(tn
);
791 unsigned long threshold
= used
;
793 /* Keep root node larger */
794 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
795 used
-= tn_info(tn
)->empty_children
;
797 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
799 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
802 static inline bool should_collapse(struct key_vector
*tn
)
804 unsigned long used
= child_length(tn
);
806 used
-= tn_info(tn
)->empty_children
;
808 /* account for bits == KEYLENGTH case */
809 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
812 /* One child or none, time to drop us from the trie */
817 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
819 #ifdef CONFIG_IP_FIB_TRIE_STATS
820 struct trie_use_stats __percpu
*stats
= t
->stats
;
822 struct key_vector
*tp
= node_parent(tn
);
823 unsigned long cindex
= get_index(tn
->key
, tp
);
824 int max_work
= MAX_WORK
;
826 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
827 tn
, inflate_threshold
, halve_threshold
);
829 /* track the tnode via the pointer from the parent instead of
830 * doing it ourselves. This way we can let RCU fully do its
831 * thing without us interfering
833 BUG_ON(tn
!= get_child(tp
, cindex
));
835 /* Double as long as the resulting node has a number of
836 * nonempty nodes that are above the threshold.
838 while (should_inflate(tp
, tn
) && max_work
) {
841 #ifdef CONFIG_IP_FIB_TRIE_STATS
842 this_cpu_inc(stats
->resize_node_skipped
);
848 tn
= get_child(tp
, cindex
);
851 /* update parent in case inflate failed */
852 tp
= node_parent(tn
);
854 /* Return if at least one inflate is run */
855 if (max_work
!= MAX_WORK
)
858 /* Halve as long as the number of empty children in this
859 * node is above threshold.
861 while (should_halve(tp
, tn
) && max_work
) {
864 #ifdef CONFIG_IP_FIB_TRIE_STATS
865 this_cpu_inc(stats
->resize_node_skipped
);
871 tn
= get_child(tp
, cindex
);
874 /* Only one child remains */
875 if (should_collapse(tn
))
876 return collapse(t
, tn
);
878 /* update parent in case halve failed */
879 tp
= node_parent(tn
);
881 /* Return if at least one deflate was run */
882 if (max_work
!= MAX_WORK
)
885 /* push the suffix length to the parent node */
886 if (tn
->slen
> tn
->pos
) {
887 unsigned char slen
= update_suffix(tn
);
896 static void leaf_pull_suffix(struct key_vector
*tp
, struct key_vector
*l
)
898 while ((tp
->slen
> tp
->pos
) && (tp
->slen
> l
->slen
)) {
899 if (update_suffix(tp
) > l
->slen
)
901 tp
= node_parent(tp
);
905 static void leaf_push_suffix(struct key_vector
*tn
, struct key_vector
*l
)
907 /* if this is a new leaf then tn will be NULL and we can sort
908 * out parent suffix lengths as a part of trie_rebalance
910 while (tn
->slen
< l
->slen
) {
912 tn
= node_parent(tn
);
916 /* rcu_read_lock needs to be hold by caller from readside */
917 static struct key_vector
*fib_find_node(struct trie
*t
,
918 struct key_vector
**tp
, u32 key
)
920 struct key_vector
*pn
, *n
= t
->kv
;
921 unsigned long index
= 0;
925 n
= get_child_rcu(n
, index
);
930 index
= get_cindex(key
, n
);
932 /* This bit of code is a bit tricky but it combines multiple
933 * checks into a single check. The prefix consists of the
934 * prefix plus zeros for the bits in the cindex. The index
935 * is the difference between the key and this value. From
936 * this we can actually derive several pieces of data.
937 * if (index >= (1ul << bits))
938 * we have a mismatch in skip bits and failed
940 * we know the value is cindex
942 * This check is safe even if bits == KEYLENGTH due to the
943 * fact that we can only allocate a node with 32 bits if a
944 * long is greater than 32 bits.
946 if (index
>= (1ul << n
->bits
)) {
951 /* keep searching until we find a perfect match leaf or NULL */
952 } while (IS_TNODE(n
));
959 /* Return the first fib alias matching TOS with
960 * priority less than or equal to PRIO.
962 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
963 u8 tos
, u32 prio
, u32 tb_id
)
965 struct fib_alias
*fa
;
970 hlist_for_each_entry(fa
, fah
, fa_list
) {
971 if (fa
->fa_slen
< slen
)
973 if (fa
->fa_slen
!= slen
)
975 if (fa
->tb_id
> tb_id
)
977 if (fa
->tb_id
!= tb_id
)
979 if (fa
->fa_tos
> tos
)
981 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
988 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
994 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
995 struct fib_alias
*new, t_key key
)
997 struct key_vector
*n
, *l
;
999 l
= leaf_new(key
, new);
1003 /* retrieve child from parent node */
1004 n
= get_child(tp
, get_index(key
, tp
));
1006 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1008 * Add a new tnode here
1009 * first tnode need some special handling
1010 * leaves us in position for handling as case 3
1013 struct key_vector
*tn
;
1015 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1019 /* initialize routes out of node */
1020 NODE_INIT_PARENT(tn
, tp
);
1021 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1023 /* start adding routes into the node */
1024 put_child_root(tp
, key
, tn
);
1025 node_set_parent(n
, tn
);
1027 /* parent now has a NULL spot where the leaf can go */
1031 /* Case 3: n is NULL, and will just insert a new leaf */
1032 NODE_INIT_PARENT(l
, tp
);
1033 put_child_root(tp
, key
, l
);
1034 trie_rebalance(t
, tp
);
1043 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1044 struct key_vector
*l
, struct fib_alias
*new,
1045 struct fib_alias
*fa
, t_key key
)
1048 return fib_insert_node(t
, tp
, new, key
);
1051 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1053 struct fib_alias
*last
;
1055 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1056 if (new->fa_slen
< last
->fa_slen
)
1058 if ((new->fa_slen
== last
->fa_slen
) &&
1059 (new->tb_id
> last
->tb_id
))
1065 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1067 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1070 /* if we added to the tail node then we need to update slen */
1071 if (l
->slen
< new->fa_slen
) {
1072 l
->slen
= new->fa_slen
;
1073 leaf_push_suffix(tp
, l
);
1079 /* Caller must hold RTNL. */
1080 int fib_table_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1082 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1083 struct fib_alias
*fa
, *new_fa
;
1084 struct key_vector
*l
, *tp
;
1085 unsigned int nlflags
= 0;
1086 struct fib_info
*fi
;
1087 u8 plen
= cfg
->fc_dst_len
;
1088 u8 slen
= KEYLENGTH
- plen
;
1089 u8 tos
= cfg
->fc_tos
;
1093 if (plen
> KEYLENGTH
)
1096 key
= ntohl(cfg
->fc_dst
);
1098 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1100 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1103 fi
= fib_create_info(cfg
);
1109 l
= fib_find_node(t
, &tp
, key
);
1110 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1113 /* Now fa, if non-NULL, points to the first fib alias
1114 * with the same keys [prefix,tos,priority], if such key already
1115 * exists or to the node before which we will insert new one.
1117 * If fa is NULL, we will need to allocate a new one and
1118 * insert to the tail of the section matching the suffix length
1122 if (fa
&& fa
->fa_tos
== tos
&&
1123 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1124 struct fib_alias
*fa_first
, *fa_match
;
1127 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1131 * 1. Find exact match for type, scope, fib_info to avoid
1133 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1137 hlist_for_each_entry_from(fa
, fa_list
) {
1138 if ((fa
->fa_slen
!= slen
) ||
1139 (fa
->tb_id
!= tb
->tb_id
) ||
1140 (fa
->fa_tos
!= tos
))
1142 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1144 if (fa
->fa_type
== cfg
->fc_type
&&
1145 fa
->fa_info
== fi
) {
1151 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1152 struct fib_info
*fi_drop
;
1162 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1166 fi_drop
= fa
->fa_info
;
1167 new_fa
->fa_tos
= fa
->fa_tos
;
1168 new_fa
->fa_info
= fi
;
1169 new_fa
->fa_type
= cfg
->fc_type
;
1170 state
= fa
->fa_state
;
1171 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1172 new_fa
->fa_slen
= fa
->fa_slen
;
1173 new_fa
->tb_id
= tb
->tb_id
;
1175 err
= switchdev_fib_ipv4_add(key
, plen
, fi
,
1181 switchdev_fib_ipv4_abort(fi
);
1182 kmem_cache_free(fn_alias_kmem
, new_fa
);
1186 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1188 alias_free_mem_rcu(fa
);
1190 fib_release_info(fi_drop
);
1191 if (state
& FA_S_ACCESSED
)
1192 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1193 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1194 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1205 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1206 nlflags
= NLM_F_APPEND
;
1211 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1215 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1219 new_fa
->fa_info
= fi
;
1220 new_fa
->fa_tos
= tos
;
1221 new_fa
->fa_type
= cfg
->fc_type
;
1222 new_fa
->fa_state
= 0;
1223 new_fa
->fa_slen
= slen
;
1224 new_fa
->tb_id
= tb
->tb_id
;
1226 /* (Optionally) offload fib entry to switch hardware. */
1227 err
= switchdev_fib_ipv4_add(key
, plen
, fi
, tos
, cfg
->fc_type
,
1228 cfg
->fc_nlflags
, tb
->tb_id
);
1230 switchdev_fib_ipv4_abort(fi
);
1231 goto out_free_new_fa
;
1234 /* Insert new entry to the list. */
1235 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1237 goto out_sw_fib_del
;
1240 tb
->tb_num_default
++;
1242 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1243 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1244 &cfg
->fc_nlinfo
, nlflags
);
1249 switchdev_fib_ipv4_del(key
, plen
, fi
, tos
, cfg
->fc_type
, tb
->tb_id
);
1251 kmem_cache_free(fn_alias_kmem
, new_fa
);
1253 fib_release_info(fi
);
1258 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1260 t_key prefix
= n
->key
;
1262 return (key
^ prefix
) & (prefix
| -prefix
);
1265 /* should be called with rcu_read_lock */
1266 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1267 struct fib_result
*res
, int fib_flags
)
1269 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1270 #ifdef CONFIG_IP_FIB_TRIE_STATS
1271 struct trie_use_stats __percpu
*stats
= t
->stats
;
1273 const t_key key
= ntohl(flp
->daddr
);
1274 struct key_vector
*n
, *pn
;
1275 struct fib_alias
*fa
;
1276 unsigned long index
;
1282 n
= get_child_rcu(pn
, cindex
);
1286 #ifdef CONFIG_IP_FIB_TRIE_STATS
1287 this_cpu_inc(stats
->gets
);
1290 /* Step 1: Travel to the longest prefix match in the trie */
1292 index
= get_cindex(key
, n
);
1294 /* This bit of code is a bit tricky but it combines multiple
1295 * checks into a single check. The prefix consists of the
1296 * prefix plus zeros for the "bits" in the prefix. The index
1297 * is the difference between the key and this value. From
1298 * this we can actually derive several pieces of data.
1299 * if (index >= (1ul << bits))
1300 * we have a mismatch in skip bits and failed
1302 * we know the value is cindex
1304 * This check is safe even if bits == KEYLENGTH due to the
1305 * fact that we can only allocate a node with 32 bits if a
1306 * long is greater than 32 bits.
1308 if (index
>= (1ul << n
->bits
))
1311 /* we have found a leaf. Prefixes have already been compared */
1315 /* only record pn and cindex if we are going to be chopping
1316 * bits later. Otherwise we are just wasting cycles.
1318 if (n
->slen
> n
->pos
) {
1323 n
= get_child_rcu(n
, index
);
1328 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1330 /* record the pointer where our next node pointer is stored */
1331 struct key_vector __rcu
**cptr
= n
->tnode
;
1333 /* This test verifies that none of the bits that differ
1334 * between the key and the prefix exist in the region of
1335 * the lsb and higher in the prefix.
1337 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1340 /* exit out and process leaf */
1341 if (unlikely(IS_LEAF(n
)))
1344 /* Don't bother recording parent info. Since we are in
1345 * prefix match mode we will have to come back to wherever
1346 * we started this traversal anyway
1349 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1351 #ifdef CONFIG_IP_FIB_TRIE_STATS
1353 this_cpu_inc(stats
->null_node_hit
);
1355 /* If we are at cindex 0 there are no more bits for
1356 * us to strip at this level so we must ascend back
1357 * up one level to see if there are any more bits to
1358 * be stripped there.
1361 t_key pkey
= pn
->key
;
1363 /* If we don't have a parent then there is
1364 * nothing for us to do as we do not have any
1365 * further nodes to parse.
1369 #ifdef CONFIG_IP_FIB_TRIE_STATS
1370 this_cpu_inc(stats
->backtrack
);
1372 /* Get Child's index */
1373 pn
= node_parent_rcu(pn
);
1374 cindex
= get_index(pkey
, pn
);
1377 /* strip the least significant bit from the cindex */
1378 cindex
&= cindex
- 1;
1380 /* grab pointer for next child node */
1381 cptr
= &pn
->tnode
[cindex
];
1386 /* this line carries forward the xor from earlier in the function */
1387 index
= key
^ n
->key
;
1389 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1390 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1391 struct fib_info
*fi
= fa
->fa_info
;
1394 if ((index
>= (1ul << fa
->fa_slen
)) &&
1395 ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
!= KEYLENGTH
)))
1397 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1401 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1403 fib_alias_accessed(fa
);
1404 err
= fib_props
[fa
->fa_type
].error
;
1405 if (unlikely(err
< 0)) {
1406 #ifdef CONFIG_IP_FIB_TRIE_STATS
1407 this_cpu_inc(stats
->semantic_match_passed
);
1411 if (fi
->fib_flags
& RTNH_F_DEAD
)
1413 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1414 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1415 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1417 if (nh
->nh_flags
& RTNH_F_DEAD
)
1420 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1421 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1422 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1424 if (flp
->flowi4_oif
&& flp
->flowi4_oif
!= nh
->nh_oif
)
1427 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1428 atomic_inc(&fi
->fib_clntref
);
1430 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1431 res
->nh_sel
= nhsel
;
1432 res
->type
= fa
->fa_type
;
1433 res
->scope
= fi
->fib_scope
;
1436 res
->fa_head
= &n
->leaf
;
1437 #ifdef CONFIG_IP_FIB_TRIE_STATS
1438 this_cpu_inc(stats
->semantic_match_passed
);
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 this_cpu_inc(stats
->semantic_match_miss
);
1448 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1450 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1451 struct key_vector
*l
, struct fib_alias
*old
)
1453 /* record the location of the previous list_info entry */
1454 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1455 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1457 /* remove the fib_alias from the list */
1458 hlist_del_rcu(&old
->fa_list
);
1460 /* if we emptied the list this leaf will be freed and we can sort
1461 * out parent suffix lengths as a part of trie_rebalance
1463 if (hlist_empty(&l
->leaf
)) {
1464 put_child_root(tp
, l
->key
, NULL
);
1466 trie_rebalance(t
, tp
);
1470 /* only access fa if it is pointing at the last valid hlist_node */
1474 /* update the trie with the latest suffix length */
1475 l
->slen
= fa
->fa_slen
;
1476 leaf_pull_suffix(tp
, l
);
1479 /* Caller must hold RTNL. */
1480 int fib_table_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1482 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1483 struct fib_alias
*fa
, *fa_to_delete
;
1484 struct key_vector
*l
, *tp
;
1485 u8 plen
= cfg
->fc_dst_len
;
1486 u8 slen
= KEYLENGTH
- plen
;
1487 u8 tos
= cfg
->fc_tos
;
1490 if (plen
> KEYLENGTH
)
1493 key
= ntohl(cfg
->fc_dst
);
1495 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1498 l
= fib_find_node(t
, &tp
, key
);
1502 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1506 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1508 fa_to_delete
= NULL
;
1509 hlist_for_each_entry_from(fa
, fa_list
) {
1510 struct fib_info
*fi
= fa
->fa_info
;
1512 if ((fa
->fa_slen
!= slen
) ||
1513 (fa
->tb_id
!= tb
->tb_id
) ||
1514 (fa
->fa_tos
!= tos
))
1517 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1518 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1519 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1520 (!cfg
->fc_prefsrc
||
1521 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1522 (!cfg
->fc_protocol
||
1523 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1524 fib_nh_match(cfg
, fi
) == 0) {
1533 switchdev_fib_ipv4_del(key
, plen
, fa_to_delete
->fa_info
, tos
,
1534 cfg
->fc_type
, tb
->tb_id
);
1536 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1537 &cfg
->fc_nlinfo
, 0);
1540 tb
->tb_num_default
--;
1542 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1544 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1545 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1547 fib_release_info(fa_to_delete
->fa_info
);
1548 alias_free_mem_rcu(fa_to_delete
);
1552 /* Scan for the next leaf starting at the provided key value */
1553 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1555 struct key_vector
*pn
, *n
= *tn
;
1556 unsigned long cindex
;
1558 /* this loop is meant to try and find the key in the trie */
1560 /* record parent and next child index */
1562 cindex
= key
? get_index(key
, pn
) : 0;
1564 if (cindex
>> pn
->bits
)
1567 /* descend into the next child */
1568 n
= get_child_rcu(pn
, cindex
++);
1572 /* guarantee forward progress on the keys */
1573 if (IS_LEAF(n
) && (n
->key
>= key
))
1575 } while (IS_TNODE(n
));
1577 /* this loop will search for the next leaf with a greater key */
1578 while (!IS_TRIE(pn
)) {
1579 /* if we exhausted the parent node we will need to climb */
1580 if (cindex
>= (1ul << pn
->bits
)) {
1581 t_key pkey
= pn
->key
;
1583 pn
= node_parent_rcu(pn
);
1584 cindex
= get_index(pkey
, pn
) + 1;
1588 /* grab the next available node */
1589 n
= get_child_rcu(pn
, cindex
++);
1593 /* no need to compare keys since we bumped the index */
1597 /* Rescan start scanning in new node */
1603 return NULL
; /* Root of trie */
1605 /* if we are at the limit for keys just return NULL for the tnode */
1610 static void fib_trie_free(struct fib_table
*tb
)
1612 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1613 struct key_vector
*pn
= t
->kv
;
1614 unsigned long cindex
= 1;
1615 struct hlist_node
*tmp
;
1616 struct fib_alias
*fa
;
1618 /* walk trie in reverse order and free everything */
1620 struct key_vector
*n
;
1623 t_key pkey
= pn
->key
;
1629 pn
= node_parent(pn
);
1631 /* drop emptied tnode */
1632 put_child_root(pn
, n
->key
, NULL
);
1635 cindex
= get_index(pkey
, pn
);
1640 /* grab the next available node */
1641 n
= get_child(pn
, cindex
);
1646 /* record pn and cindex for leaf walking */
1648 cindex
= 1ul << n
->bits
;
1653 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1654 hlist_del_rcu(&fa
->fa_list
);
1655 alias_free_mem_rcu(fa
);
1658 put_child_root(pn
, n
->key
, NULL
);
1662 #ifdef CONFIG_IP_FIB_TRIE_STATS
1663 free_percpu(t
->stats
);
1668 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1670 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1671 struct key_vector
*l
, *tp
= ot
->kv
;
1672 struct fib_table
*local_tb
;
1673 struct fib_alias
*fa
;
1677 if (oldtb
->tb_data
== oldtb
->__data
)
1680 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1684 lt
= (struct trie
*)local_tb
->tb_data
;
1686 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1687 struct key_vector
*local_l
= NULL
, *local_tp
;
1689 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1690 struct fib_alias
*new_fa
;
1692 if (local_tb
->tb_id
!= fa
->tb_id
)
1695 /* clone fa for new local table */
1696 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1700 memcpy(new_fa
, fa
, sizeof(*fa
));
1702 /* insert clone into table */
1704 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1706 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1711 /* stop loop if key wrapped back to 0 */
1719 fib_trie_free(local_tb
);
1724 /* Caller must hold RTNL */
1725 void fib_table_flush_external(struct fib_table
*tb
)
1727 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1728 struct key_vector
*pn
= t
->kv
;
1729 unsigned long cindex
= 1;
1730 struct hlist_node
*tmp
;
1731 struct fib_alias
*fa
;
1733 /* walk trie in reverse order */
1735 unsigned char slen
= 0;
1736 struct key_vector
*n
;
1739 t_key pkey
= pn
->key
;
1741 /* cannot resize the trie vector */
1745 /* resize completed node */
1747 cindex
= get_index(pkey
, pn
);
1752 /* grab the next available node */
1753 n
= get_child(pn
, cindex
);
1758 /* record pn and cindex for leaf walking */
1760 cindex
= 1ul << n
->bits
;
1765 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1766 struct fib_info
*fi
= fa
->fa_info
;
1768 /* if alias was cloned to local then we just
1769 * need to remove the local copy from main
1771 if (tb
->tb_id
!= fa
->tb_id
) {
1772 hlist_del_rcu(&fa
->fa_list
);
1773 alias_free_mem_rcu(fa
);
1777 /* record local slen */
1780 if (!fi
|| !(fi
->fib_flags
& RTNH_F_OFFLOAD
))
1783 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1784 fi
, fa
->fa_tos
, fa
->fa_type
,
1788 /* update leaf slen */
1791 if (hlist_empty(&n
->leaf
)) {
1792 put_child_root(pn
, n
->key
, NULL
);
1795 leaf_pull_suffix(pn
, n
);
1800 /* Caller must hold RTNL. */
1801 int fib_table_flush(struct fib_table
*tb
)
1803 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1804 struct key_vector
*pn
= t
->kv
;
1805 unsigned long cindex
= 1;
1806 struct hlist_node
*tmp
;
1807 struct fib_alias
*fa
;
1810 /* walk trie in reverse order */
1812 unsigned char slen
= 0;
1813 struct key_vector
*n
;
1816 t_key pkey
= pn
->key
;
1818 /* cannot resize the trie vector */
1822 /* resize completed node */
1824 cindex
= get_index(pkey
, pn
);
1829 /* grab the next available node */
1830 n
= get_child(pn
, cindex
);
1835 /* record pn and cindex for leaf walking */
1837 cindex
= 1ul << n
->bits
;
1842 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1843 struct fib_info
*fi
= fa
->fa_info
;
1845 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1850 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1851 fi
, fa
->fa_tos
, fa
->fa_type
,
1853 hlist_del_rcu(&fa
->fa_list
);
1854 fib_release_info(fa
->fa_info
);
1855 alias_free_mem_rcu(fa
);
1859 /* update leaf slen */
1862 if (hlist_empty(&n
->leaf
)) {
1863 put_child_root(pn
, n
->key
, NULL
);
1866 leaf_pull_suffix(pn
, n
);
1870 pr_debug("trie_flush found=%d\n", found
);
1874 static void __trie_free_rcu(struct rcu_head
*head
)
1876 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1877 #ifdef CONFIG_IP_FIB_TRIE_STATS
1878 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1880 if (tb
->tb_data
== tb
->__data
)
1881 free_percpu(t
->stats
);
1882 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1886 void fib_free_table(struct fib_table
*tb
)
1888 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1891 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1892 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1894 __be32 xkey
= htonl(l
->key
);
1895 struct fib_alias
*fa
;
1901 /* rcu_read_lock is hold by caller */
1902 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1908 if (tb
->tb_id
!= fa
->tb_id
) {
1913 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
1919 KEYLENGTH
- fa
->fa_slen
,
1921 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1932 /* rcu_read_lock needs to be hold by caller from readside */
1933 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1934 struct netlink_callback
*cb
)
1936 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1937 struct key_vector
*l
, *tp
= t
->kv
;
1938 /* Dump starting at last key.
1939 * Note: 0.0.0.0/0 (ie default) is first key.
1941 int count
= cb
->args
[2];
1942 t_key key
= cb
->args
[3];
1944 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1945 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1947 cb
->args
[2] = count
;
1954 memset(&cb
->args
[4], 0,
1955 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1957 /* stop loop if key wrapped back to 0 */
1963 cb
->args
[2] = count
;
1968 void __init
fib_trie_init(void)
1970 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1971 sizeof(struct fib_alias
),
1972 0, SLAB_PANIC
, NULL
);
1974 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1976 0, SLAB_PANIC
, NULL
);
1979 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
1981 struct fib_table
*tb
;
1983 size_t sz
= sizeof(*tb
);
1986 sz
+= sizeof(struct trie
);
1988 tb
= kzalloc(sz
, GFP_KERNEL
);
1993 tb
->tb_default
= -1;
1994 tb
->tb_num_default
= 0;
1995 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2000 t
= (struct trie
*) tb
->tb_data
;
2001 t
->kv
[0].pos
= KEYLENGTH
;
2002 t
->kv
[0].slen
= KEYLENGTH
;
2003 #ifdef CONFIG_IP_FIB_TRIE_STATS
2004 t
->stats
= alloc_percpu(struct trie_use_stats
);
2014 #ifdef CONFIG_PROC_FS
2015 /* Depth first Trie walk iterator */
2016 struct fib_trie_iter
{
2017 struct seq_net_private p
;
2018 struct fib_table
*tb
;
2019 struct key_vector
*tnode
;
2024 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2026 unsigned long cindex
= iter
->index
;
2027 struct key_vector
*pn
= iter
->tnode
;
2030 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2031 iter
->tnode
, iter
->index
, iter
->depth
);
2033 while (!IS_TRIE(pn
)) {
2034 while (cindex
< child_length(pn
)) {
2035 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2042 iter
->index
= cindex
;
2044 /* push down one level */
2053 /* Current node exhausted, pop back up */
2055 pn
= node_parent_rcu(pn
);
2056 cindex
= get_index(pkey
, pn
) + 1;
2060 /* record root node so further searches know we are done */
2067 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2070 struct key_vector
*n
, *pn
;
2076 n
= rcu_dereference(pn
->tnode
[0]);
2093 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2095 struct key_vector
*n
;
2096 struct fib_trie_iter iter
;
2098 memset(s
, 0, sizeof(*s
));
2101 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2103 struct fib_alias
*fa
;
2106 s
->totdepth
+= iter
.depth
;
2107 if (iter
.depth
> s
->maxdepth
)
2108 s
->maxdepth
= iter
.depth
;
2110 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2114 if (n
->bits
< MAX_STAT_DEPTH
)
2115 s
->nodesizes
[n
->bits
]++;
2116 s
->nullpointers
+= tn_info(n
)->empty_children
;
2123 * This outputs /proc/net/fib_triestats
2125 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2127 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2130 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2134 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2135 avdepth
/ 100, avdepth
% 100);
2136 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2138 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2139 bytes
= LEAF_SIZE
* stat
->leaves
;
2141 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2142 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2144 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2145 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2147 max
= MAX_STAT_DEPTH
;
2148 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2152 for (i
= 1; i
< max
; i
++)
2153 if (stat
->nodesizes
[i
] != 0) {
2154 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2155 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2157 seq_putc(seq
, '\n');
2158 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2160 bytes
+= sizeof(struct key_vector
*) * pointers
;
2161 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2162 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2165 #ifdef CONFIG_IP_FIB_TRIE_STATS
2166 static void trie_show_usage(struct seq_file
*seq
,
2167 const struct trie_use_stats __percpu
*stats
)
2169 struct trie_use_stats s
= { 0 };
2172 /* loop through all of the CPUs and gather up the stats */
2173 for_each_possible_cpu(cpu
) {
2174 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2176 s
.gets
+= pcpu
->gets
;
2177 s
.backtrack
+= pcpu
->backtrack
;
2178 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2179 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2180 s
.null_node_hit
+= pcpu
->null_node_hit
;
2181 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2184 seq_printf(seq
, "\nCounters:\n---------\n");
2185 seq_printf(seq
, "gets = %u\n", s
.gets
);
2186 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2187 seq_printf(seq
, "semantic match passed = %u\n",
2188 s
.semantic_match_passed
);
2189 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2190 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2191 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2193 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2195 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2197 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2198 seq_puts(seq
, "Local:\n");
2199 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2200 seq_puts(seq
, "Main:\n");
2202 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2206 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2208 struct net
*net
= (struct net
*)seq
->private;
2212 "Basic info: size of leaf:"
2213 " %Zd bytes, size of tnode: %Zd bytes.\n",
2214 LEAF_SIZE
, TNODE_SIZE(0));
2216 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2217 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2218 struct fib_table
*tb
;
2220 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2221 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2222 struct trie_stat stat
;
2227 fib_table_print(seq
, tb
);
2229 trie_collect_stats(t
, &stat
);
2230 trie_show_stats(seq
, &stat
);
2231 #ifdef CONFIG_IP_FIB_TRIE_STATS
2232 trie_show_usage(seq
, t
->stats
);
2240 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2242 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2245 static const struct file_operations fib_triestat_fops
= {
2246 .owner
= THIS_MODULE
,
2247 .open
= fib_triestat_seq_open
,
2249 .llseek
= seq_lseek
,
2250 .release
= single_release_net
,
2253 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2255 struct fib_trie_iter
*iter
= seq
->private;
2256 struct net
*net
= seq_file_net(seq
);
2260 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2261 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2262 struct fib_table
*tb
;
2264 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2265 struct key_vector
*n
;
2267 for (n
= fib_trie_get_first(iter
,
2268 (struct trie
*) tb
->tb_data
);
2269 n
; n
= fib_trie_get_next(iter
))
2280 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2284 return fib_trie_get_idx(seq
, *pos
);
2287 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2289 struct fib_trie_iter
*iter
= seq
->private;
2290 struct net
*net
= seq_file_net(seq
);
2291 struct fib_table
*tb
= iter
->tb
;
2292 struct hlist_node
*tb_node
;
2294 struct key_vector
*n
;
2297 /* next node in same table */
2298 n
= fib_trie_get_next(iter
);
2302 /* walk rest of this hash chain */
2303 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2304 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2305 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2306 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2311 /* new hash chain */
2312 while (++h
< FIB_TABLE_HASHSZ
) {
2313 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2314 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2315 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2327 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2333 static void seq_indent(struct seq_file
*seq
, int n
)
2339 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2342 case RT_SCOPE_UNIVERSE
: return "universe";
2343 case RT_SCOPE_SITE
: return "site";
2344 case RT_SCOPE_LINK
: return "link";
2345 case RT_SCOPE_HOST
: return "host";
2346 case RT_SCOPE_NOWHERE
: return "nowhere";
2348 snprintf(buf
, len
, "scope=%d", s
);
2353 static const char *const rtn_type_names
[__RTN_MAX
] = {
2354 [RTN_UNSPEC
] = "UNSPEC",
2355 [RTN_UNICAST
] = "UNICAST",
2356 [RTN_LOCAL
] = "LOCAL",
2357 [RTN_BROADCAST
] = "BROADCAST",
2358 [RTN_ANYCAST
] = "ANYCAST",
2359 [RTN_MULTICAST
] = "MULTICAST",
2360 [RTN_BLACKHOLE
] = "BLACKHOLE",
2361 [RTN_UNREACHABLE
] = "UNREACHABLE",
2362 [RTN_PROHIBIT
] = "PROHIBIT",
2363 [RTN_THROW
] = "THROW",
2365 [RTN_XRESOLVE
] = "XRESOLVE",
2368 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2370 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2371 return rtn_type_names
[t
];
2372 snprintf(buf
, len
, "type %u", t
);
2376 /* Pretty print the trie */
2377 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2379 const struct fib_trie_iter
*iter
= seq
->private;
2380 struct key_vector
*n
= v
;
2382 if (IS_TRIE(node_parent_rcu(n
)))
2383 fib_table_print(seq
, iter
->tb
);
2386 __be32 prf
= htonl(n
->key
);
2388 seq_indent(seq
, iter
->depth
-1);
2389 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2390 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2391 tn_info(n
)->full_children
,
2392 tn_info(n
)->empty_children
);
2394 __be32 val
= htonl(n
->key
);
2395 struct fib_alias
*fa
;
2397 seq_indent(seq
, iter
->depth
);
2398 seq_printf(seq
, " |-- %pI4\n", &val
);
2400 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2401 char buf1
[32], buf2
[32];
2403 seq_indent(seq
, iter
->depth
+ 1);
2404 seq_printf(seq
, " /%zu %s %s",
2405 KEYLENGTH
- fa
->fa_slen
,
2406 rtn_scope(buf1
, sizeof(buf1
),
2407 fa
->fa_info
->fib_scope
),
2408 rtn_type(buf2
, sizeof(buf2
),
2411 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2412 seq_putc(seq
, '\n');
2419 static const struct seq_operations fib_trie_seq_ops
= {
2420 .start
= fib_trie_seq_start
,
2421 .next
= fib_trie_seq_next
,
2422 .stop
= fib_trie_seq_stop
,
2423 .show
= fib_trie_seq_show
,
2426 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2428 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2429 sizeof(struct fib_trie_iter
));
2432 static const struct file_operations fib_trie_fops
= {
2433 .owner
= THIS_MODULE
,
2434 .open
= fib_trie_seq_open
,
2436 .llseek
= seq_lseek
,
2437 .release
= seq_release_net
,
2440 struct fib_route_iter
{
2441 struct seq_net_private p
;
2442 struct fib_table
*main_tb
;
2443 struct key_vector
*tnode
;
2448 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2451 struct fib_table
*tb
= iter
->main_tb
;
2452 struct key_vector
*l
, **tp
= &iter
->tnode
;
2456 /* use cache location of next-to-find key */
2457 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2461 t
= (struct trie
*)tb
->tb_data
;
2462 iter
->tnode
= t
->kv
;
2467 while ((l
= leaf_walk_rcu(tp
, key
)) != NULL
) {
2476 /* handle unlikely case of a key wrap */
2482 iter
->key
= key
; /* remember it */
2484 iter
->pos
= 0; /* forget it */
2489 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2492 struct fib_route_iter
*iter
= seq
->private;
2493 struct fib_table
*tb
;
2498 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2505 return fib_route_get_idx(iter
, *pos
);
2507 t
= (struct trie
*)tb
->tb_data
;
2508 iter
->tnode
= t
->kv
;
2512 return SEQ_START_TOKEN
;
2515 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2517 struct fib_route_iter
*iter
= seq
->private;
2518 struct key_vector
*l
= NULL
;
2519 t_key key
= iter
->key
;
2523 /* only allow key of 0 for start of sequence */
2524 if ((v
== SEQ_START_TOKEN
) || key
)
2525 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2528 iter
->key
= l
->key
+ 1;
2537 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2543 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2545 unsigned int flags
= 0;
2547 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2549 if (fi
&& fi
->fib_nh
->nh_gw
)
2550 flags
|= RTF_GATEWAY
;
2551 if (mask
== htonl(0xFFFFFFFF))
2558 * This outputs /proc/net/route.
2559 * The format of the file is not supposed to be changed
2560 * and needs to be same as fib_hash output to avoid breaking
2563 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2565 struct fib_route_iter
*iter
= seq
->private;
2566 struct fib_table
*tb
= iter
->main_tb
;
2567 struct fib_alias
*fa
;
2568 struct key_vector
*l
= v
;
2571 if (v
== SEQ_START_TOKEN
) {
2572 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2573 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2578 prefix
= htonl(l
->key
);
2580 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2581 const struct fib_info
*fi
= fa
->fa_info
;
2582 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2583 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2585 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2586 (fa
->fa_type
== RTN_MULTICAST
))
2589 if (fa
->tb_id
!= tb
->tb_id
)
2592 seq_setwidth(seq
, 127);
2596 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2597 "%d\t%08X\t%d\t%u\t%u",
2598 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2600 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2604 fi
->fib_advmss
+ 40 : 0),
2609 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2610 "%d\t%08X\t%d\t%u\t%u",
2611 prefix
, 0, flags
, 0, 0, 0,
2620 static const struct seq_operations fib_route_seq_ops
= {
2621 .start
= fib_route_seq_start
,
2622 .next
= fib_route_seq_next
,
2623 .stop
= fib_route_seq_stop
,
2624 .show
= fib_route_seq_show
,
2627 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2629 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2630 sizeof(struct fib_route_iter
));
2633 static const struct file_operations fib_route_fops
= {
2634 .owner
= THIS_MODULE
,
2635 .open
= fib_route_seq_open
,
2637 .llseek
= seq_lseek
,
2638 .release
= seq_release_net
,
2641 int __net_init
fib_proc_init(struct net
*net
)
2643 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2646 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2647 &fib_triestat_fops
))
2650 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2656 remove_proc_entry("fib_triestat", net
->proc_net
);
2658 remove_proc_entry("fib_trie", net
->proc_net
);
2663 void __net_exit
fib_proc_exit(struct net
*net
)
2665 remove_proc_entry("fib_trie", net
->proc_net
);
2666 remove_proc_entry("fib_triestat", net
->proc_net
);
2667 remove_proc_entry("route", net
->proc_net
);
2670 #endif /* CONFIG_PROC_FS */