ARM: ep93xx: move timer to its own file
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
blobb1c218df2c855bc56594ffdd86d75ef5e146731a
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 const struct tcp_sock *tp = tcp_sk(sk);
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16 tcp_advertise_mss(struct sock *sk)
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
136 return (__u16)mss;
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166 const struct dst_entry *dst = __sk_dst_get(sk);
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
172 tp->lsndtime = now;
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 icsk->icsk_ack.pingpong = 1;
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 u32 tcp_default_init_rwnd(u32 mss)
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
197 u32 init_rwnd = TCP_INIT_CWND * 2;
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
216 unsigned int space = (__space < 0 ? 0 : __space);
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (65535 << 14);
221 space = min(*window_clamp, space);
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = (space / mss) * mss;
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 while (space > 65535 && (*rcv_wscale) < 14) {
248 space >>= 1;
249 (*rcv_wscale)++;
253 if (mss > (1 << *rcv_wscale)) {
254 if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 init_rcv_wnd = tcp_default_init_rwnd(mss);
256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
262 EXPORT_SYMBOL(tcp_select_initial_window);
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
269 static u16 tcp_select_window(struct sock *sk)
271 struct tcp_sock *tp = tcp_sk(sk);
272 u32 old_win = tp->rcv_wnd;
273 u32 cur_win = tcp_receive_window(tp);
274 u32 new_win = __tcp_select_window(sk);
276 /* Never shrink the offered window */
277 if (new_win < cur_win) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
283 * Relax Will Robinson.
285 if (new_win == 0)
286 NET_INC_STATS(sock_net(sk),
287 LINUX_MIB_TCPWANTZEROWINDOWADV);
288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
290 tp->rcv_wnd = new_win;
291 tp->rcv_wup = tp->rcv_nxt;
293 /* Make sure we do not exceed the maximum possible
294 * scaled window.
296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 new_win = min(new_win, MAX_TCP_WINDOW);
298 else
299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
301 /* RFC1323 scaling applied */
302 new_win >>= tp->rx_opt.rcv_wscale;
304 /* If we advertise zero window, disable fast path. */
305 if (new_win == 0) {
306 tp->pred_flags = 0;
307 if (old_win)
308 NET_INC_STATS(sock_net(sk),
309 LINUX_MIB_TCPTOZEROWINDOWADV);
310 } else if (old_win == 0) {
311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
314 return new_win;
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
320 const struct tcp_sock *tp = tcp_sk(sk);
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 if (!(tp->ecn_flags & TCP_ECN_OK))
324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 else if (tcp_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 tcp_ca_needs_ecn(sk);
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
343 tp->ecn_flags = 0;
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk))
349 INET_ECN_xmit(sk);
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
355 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
356 /* tp->ecn_flags are cleared at a later point in time when
357 * SYN ACK is ultimatively being received.
359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
364 struct sock *sk)
366 if (inet_rsk(req)->ecn_ok) {
367 th->ece = 1;
368 if (tcp_ca_needs_ecn(sk))
369 INET_ECN_xmit(sk);
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
374 * be sent.
376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
377 int tcp_header_len)
379 struct tcp_sock *tp = tcp_sk(sk);
381 if (tp->ecn_flags & TCP_ECN_OK) {
382 /* Not-retransmitted data segment: set ECT and inject CWR. */
383 if (skb->len != tcp_header_len &&
384 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
385 INET_ECN_xmit(sk);
386 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
387 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
388 tcp_hdr(skb)->cwr = 1;
389 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
391 } else if (!tcp_ca_needs_ecn(sk)) {
392 /* ACK or retransmitted segment: clear ECT|CE */
393 INET_ECN_dontxmit(sk);
395 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
396 tcp_hdr(skb)->ece = 1;
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401 * auto increment end seqno.
403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
405 skb->ip_summed = CHECKSUM_PARTIAL;
406 skb->csum = 0;
408 TCP_SKB_CB(skb)->tcp_flags = flags;
409 TCP_SKB_CB(skb)->sacked = 0;
411 tcp_skb_pcount_set(skb, 1);
413 TCP_SKB_CB(skb)->seq = seq;
414 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
415 seq++;
416 TCP_SKB_CB(skb)->end_seq = seq;
419 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 return tp->snd_una != tp->snd_up;
424 #define OPTION_SACK_ADVERTISE (1 << 0)
425 #define OPTION_TS (1 << 1)
426 #define OPTION_MD5 (1 << 2)
427 #define OPTION_WSCALE (1 << 3)
428 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
430 struct tcp_out_options {
431 u16 options; /* bit field of OPTION_* */
432 u16 mss; /* 0 to disable */
433 u8 ws; /* window scale, 0 to disable */
434 u8 num_sack_blocks; /* number of SACK blocks to include */
435 u8 hash_size; /* bytes in hash_location */
436 __u8 *hash_location; /* temporary pointer, overloaded */
437 __u32 tsval, tsecr; /* need to include OPTION_TS */
438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
441 /* Write previously computed TCP options to the packet.
443 * Beware: Something in the Internet is very sensitive to the ordering of
444 * TCP options, we learned this through the hard way, so be careful here.
445 * Luckily we can at least blame others for their non-compliance but from
446 * inter-operability perspective it seems that we're somewhat stuck with
447 * the ordering which we have been using if we want to keep working with
448 * those broken things (not that it currently hurts anybody as there isn't
449 * particular reason why the ordering would need to be changed).
451 * At least SACK_PERM as the first option is known to lead to a disaster
452 * (but it may well be that other scenarios fail similarly).
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 struct tcp_out_options *opts)
457 u16 options = opts->options; /* mungable copy */
459 if (unlikely(OPTION_MD5 & options)) {
460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 /* overload cookie hash location */
463 opts->hash_location = (__u8 *)ptr;
464 ptr += 4;
467 if (unlikely(opts->mss)) {
468 *ptr++ = htonl((TCPOPT_MSS << 24) |
469 (TCPOLEN_MSS << 16) |
470 opts->mss);
473 if (likely(OPTION_TS & options)) {
474 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 (TCPOLEN_SACK_PERM << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
478 TCPOLEN_TIMESTAMP);
479 options &= ~OPTION_SACK_ADVERTISE;
480 } else {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_TIMESTAMP << 8) |
484 TCPOLEN_TIMESTAMP);
486 *ptr++ = htonl(opts->tsval);
487 *ptr++ = htonl(opts->tsecr);
490 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 *ptr++ = htonl((TCPOPT_NOP << 24) |
492 (TCPOPT_NOP << 16) |
493 (TCPOPT_SACK_PERM << 8) |
494 TCPOLEN_SACK_PERM);
497 if (unlikely(OPTION_WSCALE & options)) {
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_WINDOW << 16) |
500 (TCPOLEN_WINDOW << 8) |
501 opts->ws);
504 if (unlikely(opts->num_sack_blocks)) {
505 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 tp->duplicate_sack : tp->selective_acks;
507 int this_sack;
509 *ptr++ = htonl((TCPOPT_NOP << 24) |
510 (TCPOPT_NOP << 16) |
511 (TCPOPT_SACK << 8) |
512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 TCPOLEN_SACK_PERBLOCK)));
515 for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 ++this_sack) {
517 *ptr++ = htonl(sp[this_sack].start_seq);
518 *ptr++ = htonl(sp[this_sack].end_seq);
521 tp->rx_opt.dsack = 0;
524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 u8 *p = (u8 *)ptr;
527 u32 len; /* Fast Open option length */
529 if (foc->exp) {
530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 TCPOPT_FASTOPEN_MAGIC);
533 p += TCPOLEN_EXP_FASTOPEN_BASE;
534 } else {
535 len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 *p++ = TCPOPT_FASTOPEN;
537 *p++ = len;
540 memcpy(p, foc->val, foc->len);
541 if ((len & 3) == 2) {
542 p[foc->len] = TCPOPT_NOP;
543 p[foc->len + 1] = TCPOPT_NOP;
545 ptr += (len + 3) >> 2;
549 /* Compute TCP options for SYN packets. This is not the final
550 * network wire format yet.
552 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
553 struct tcp_out_options *opts,
554 struct tcp_md5sig_key **md5)
556 struct tcp_sock *tp = tcp_sk(sk);
557 unsigned int remaining = MAX_TCP_OPTION_SPACE;
558 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
560 #ifdef CONFIG_TCP_MD5SIG
561 *md5 = tp->af_specific->md5_lookup(sk, sk);
562 if (*md5) {
563 opts->options |= OPTION_MD5;
564 remaining -= TCPOLEN_MD5SIG_ALIGNED;
566 #else
567 *md5 = NULL;
568 #endif
570 /* We always get an MSS option. The option bytes which will be seen in
571 * normal data packets should timestamps be used, must be in the MSS
572 * advertised. But we subtract them from tp->mss_cache so that
573 * calculations in tcp_sendmsg are simpler etc. So account for this
574 * fact here if necessary. If we don't do this correctly, as a
575 * receiver we won't recognize data packets as being full sized when we
576 * should, and thus we won't abide by the delayed ACK rules correctly.
577 * SACKs don't matter, we never delay an ACK when we have any of those
578 * going out. */
579 opts->mss = tcp_advertise_mss(sk);
580 remaining -= TCPOLEN_MSS_ALIGNED;
582 if (likely(sysctl_tcp_timestamps && !*md5)) {
583 opts->options |= OPTION_TS;
584 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
585 opts->tsecr = tp->rx_opt.ts_recent;
586 remaining -= TCPOLEN_TSTAMP_ALIGNED;
588 if (likely(sysctl_tcp_window_scaling)) {
589 opts->ws = tp->rx_opt.rcv_wscale;
590 opts->options |= OPTION_WSCALE;
591 remaining -= TCPOLEN_WSCALE_ALIGNED;
593 if (likely(sysctl_tcp_sack)) {
594 opts->options |= OPTION_SACK_ADVERTISE;
595 if (unlikely(!(OPTION_TS & opts->options)))
596 remaining -= TCPOLEN_SACKPERM_ALIGNED;
599 if (fastopen && fastopen->cookie.len >= 0) {
600 u32 need = fastopen->cookie.len;
602 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
603 TCPOLEN_FASTOPEN_BASE;
604 need = (need + 3) & ~3U; /* Align to 32 bits */
605 if (remaining >= need) {
606 opts->options |= OPTION_FAST_OPEN_COOKIE;
607 opts->fastopen_cookie = &fastopen->cookie;
608 remaining -= need;
609 tp->syn_fastopen = 1;
610 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
614 return MAX_TCP_OPTION_SPACE - remaining;
617 /* Set up TCP options for SYN-ACKs. */
618 static unsigned int tcp_synack_options(struct sock *sk,
619 struct request_sock *req,
620 unsigned int mss, struct sk_buff *skb,
621 struct tcp_out_options *opts,
622 const struct tcp_md5sig_key *md5,
623 struct tcp_fastopen_cookie *foc)
625 struct inet_request_sock *ireq = inet_rsk(req);
626 unsigned int remaining = MAX_TCP_OPTION_SPACE;
628 #ifdef CONFIG_TCP_MD5SIG
629 if (md5) {
630 opts->options |= OPTION_MD5;
631 remaining -= TCPOLEN_MD5SIG_ALIGNED;
633 /* We can't fit any SACK blocks in a packet with MD5 + TS
634 * options. There was discussion about disabling SACK
635 * rather than TS in order to fit in better with old,
636 * buggy kernels, but that was deemed to be unnecessary.
638 ireq->tstamp_ok &= !ireq->sack_ok;
640 #endif
642 /* We always send an MSS option. */
643 opts->mss = mss;
644 remaining -= TCPOLEN_MSS_ALIGNED;
646 if (likely(ireq->wscale_ok)) {
647 opts->ws = ireq->rcv_wscale;
648 opts->options |= OPTION_WSCALE;
649 remaining -= TCPOLEN_WSCALE_ALIGNED;
651 if (likely(ireq->tstamp_ok)) {
652 opts->options |= OPTION_TS;
653 opts->tsval = tcp_skb_timestamp(skb);
654 opts->tsecr = req->ts_recent;
655 remaining -= TCPOLEN_TSTAMP_ALIGNED;
657 if (likely(ireq->sack_ok)) {
658 opts->options |= OPTION_SACK_ADVERTISE;
659 if (unlikely(!ireq->tstamp_ok))
660 remaining -= TCPOLEN_SACKPERM_ALIGNED;
662 if (foc != NULL && foc->len >= 0) {
663 u32 need = foc->len;
665 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
666 TCPOLEN_FASTOPEN_BASE;
667 need = (need + 3) & ~3U; /* Align to 32 bits */
668 if (remaining >= need) {
669 opts->options |= OPTION_FAST_OPEN_COOKIE;
670 opts->fastopen_cookie = foc;
671 remaining -= need;
675 return MAX_TCP_OPTION_SPACE - remaining;
678 /* Compute TCP options for ESTABLISHED sockets. This is not the
679 * final wire format yet.
681 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
682 struct tcp_out_options *opts,
683 struct tcp_md5sig_key **md5)
685 struct tcp_sock *tp = tcp_sk(sk);
686 unsigned int size = 0;
687 unsigned int eff_sacks;
689 opts->options = 0;
691 #ifdef CONFIG_TCP_MD5SIG
692 *md5 = tp->af_specific->md5_lookup(sk, sk);
693 if (unlikely(*md5)) {
694 opts->options |= OPTION_MD5;
695 size += TCPOLEN_MD5SIG_ALIGNED;
697 #else
698 *md5 = NULL;
699 #endif
701 if (likely(tp->rx_opt.tstamp_ok)) {
702 opts->options |= OPTION_TS;
703 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
704 opts->tsecr = tp->rx_opt.ts_recent;
705 size += TCPOLEN_TSTAMP_ALIGNED;
708 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
709 if (unlikely(eff_sacks)) {
710 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
711 opts->num_sack_blocks =
712 min_t(unsigned int, eff_sacks,
713 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
714 TCPOLEN_SACK_PERBLOCK);
715 size += TCPOLEN_SACK_BASE_ALIGNED +
716 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
719 return size;
723 /* TCP SMALL QUEUES (TSQ)
725 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
726 * to reduce RTT and bufferbloat.
727 * We do this using a special skb destructor (tcp_wfree).
729 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
730 * needs to be reallocated in a driver.
731 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
733 * Since transmit from skb destructor is forbidden, we use a tasklet
734 * to process all sockets that eventually need to send more skbs.
735 * We use one tasklet per cpu, with its own queue of sockets.
737 struct tsq_tasklet {
738 struct tasklet_struct tasklet;
739 struct list_head head; /* queue of tcp sockets */
741 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
743 static void tcp_tsq_handler(struct sock *sk)
745 if ((1 << sk->sk_state) &
746 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
747 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
748 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
749 0, GFP_ATOMIC);
752 * One tasklet per cpu tries to send more skbs.
753 * We run in tasklet context but need to disable irqs when
754 * transferring tsq->head because tcp_wfree() might
755 * interrupt us (non NAPI drivers)
757 static void tcp_tasklet_func(unsigned long data)
759 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
760 LIST_HEAD(list);
761 unsigned long flags;
762 struct list_head *q, *n;
763 struct tcp_sock *tp;
764 struct sock *sk;
766 local_irq_save(flags);
767 list_splice_init(&tsq->head, &list);
768 local_irq_restore(flags);
770 list_for_each_safe(q, n, &list) {
771 tp = list_entry(q, struct tcp_sock, tsq_node);
772 list_del(&tp->tsq_node);
774 sk = (struct sock *)tp;
775 bh_lock_sock(sk);
777 if (!sock_owned_by_user(sk)) {
778 tcp_tsq_handler(sk);
779 } else {
780 /* defer the work to tcp_release_cb() */
781 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
783 bh_unlock_sock(sk);
785 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
786 sk_free(sk);
790 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
791 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
792 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
793 (1UL << TCP_MTU_REDUCED_DEFERRED))
795 * tcp_release_cb - tcp release_sock() callback
796 * @sk: socket
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
801 void tcp_release_cb(struct sock *sk)
803 struct tcp_sock *tp = tcp_sk(sk);
804 unsigned long flags, nflags;
806 /* perform an atomic operation only if at least one flag is set */
807 do {
808 flags = tp->tsq_flags;
809 if (!(flags & TCP_DEFERRED_ALL))
810 return;
811 nflags = flags & ~TCP_DEFERRED_ALL;
812 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
814 if (flags & (1UL << TCP_TSQ_DEFERRED))
815 tcp_tsq_handler(sk);
817 /* Here begins the tricky part :
818 * We are called from release_sock() with :
819 * 1) BH disabled
820 * 2) sk_lock.slock spinlock held
821 * 3) socket owned by us (sk->sk_lock.owned == 1)
823 * But following code is meant to be called from BH handlers,
824 * so we should keep BH disabled, but early release socket ownership
826 sock_release_ownership(sk);
828 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
829 tcp_write_timer_handler(sk);
830 __sock_put(sk);
832 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
833 tcp_delack_timer_handler(sk);
834 __sock_put(sk);
836 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
837 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
838 __sock_put(sk);
841 EXPORT_SYMBOL(tcp_release_cb);
843 void __init tcp_tasklet_init(void)
845 int i;
847 for_each_possible_cpu(i) {
848 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
850 INIT_LIST_HEAD(&tsq->head);
851 tasklet_init(&tsq->tasklet,
852 tcp_tasklet_func,
853 (unsigned long)tsq);
858 * Write buffer destructor automatically called from kfree_skb.
859 * We can't xmit new skbs from this context, as we might already
860 * hold qdisc lock.
862 void tcp_wfree(struct sk_buff *skb)
864 struct sock *sk = skb->sk;
865 struct tcp_sock *tp = tcp_sk(sk);
866 int wmem;
868 /* Keep one reference on sk_wmem_alloc.
869 * Will be released by sk_free() from here or tcp_tasklet_func()
871 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
873 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
874 * Wait until our queues (qdisc + devices) are drained.
875 * This gives :
876 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
877 * - chance for incoming ACK (processed by another cpu maybe)
878 * to migrate this flow (skb->ooo_okay will be eventually set)
880 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
881 goto out;
883 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
884 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
885 unsigned long flags;
886 struct tsq_tasklet *tsq;
888 /* queue this socket to tasklet queue */
889 local_irq_save(flags);
890 tsq = this_cpu_ptr(&tsq_tasklet);
891 list_add(&tp->tsq_node, &tsq->head);
892 tasklet_schedule(&tsq->tasklet);
893 local_irq_restore(flags);
894 return;
896 out:
897 sk_free(sk);
900 /* This routine actually transmits TCP packets queued in by
901 * tcp_do_sendmsg(). This is used by both the initial
902 * transmission and possible later retransmissions.
903 * All SKB's seen here are completely headerless. It is our
904 * job to build the TCP header, and pass the packet down to
905 * IP so it can do the same plus pass the packet off to the
906 * device.
908 * We are working here with either a clone of the original
909 * SKB, or a fresh unique copy made by the retransmit engine.
911 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
912 gfp_t gfp_mask)
914 const struct inet_connection_sock *icsk = inet_csk(sk);
915 struct inet_sock *inet;
916 struct tcp_sock *tp;
917 struct tcp_skb_cb *tcb;
918 struct tcp_out_options opts;
919 unsigned int tcp_options_size, tcp_header_size;
920 struct tcp_md5sig_key *md5;
921 struct tcphdr *th;
922 int err;
924 BUG_ON(!skb || !tcp_skb_pcount(skb));
926 if (clone_it) {
927 skb_mstamp_get(&skb->skb_mstamp);
929 if (unlikely(skb_cloned(skb)))
930 skb = pskb_copy(skb, gfp_mask);
931 else
932 skb = skb_clone(skb, gfp_mask);
933 if (unlikely(!skb))
934 return -ENOBUFS;
937 inet = inet_sk(sk);
938 tp = tcp_sk(sk);
939 tcb = TCP_SKB_CB(skb);
940 memset(&opts, 0, sizeof(opts));
942 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
943 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
944 else
945 tcp_options_size = tcp_established_options(sk, skb, &opts,
946 &md5);
947 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
949 if (tcp_packets_in_flight(tp) == 0)
950 tcp_ca_event(sk, CA_EVENT_TX_START);
952 /* if no packet is in qdisc/device queue, then allow XPS to select
953 * another queue. We can be called from tcp_tsq_handler()
954 * which holds one reference to sk_wmem_alloc.
956 * TODO: Ideally, in-flight pure ACK packets should not matter here.
957 * One way to get this would be to set skb->truesize = 2 on them.
959 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
961 skb_push(skb, tcp_header_size);
962 skb_reset_transport_header(skb);
964 skb_orphan(skb);
965 skb->sk = sk;
966 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
967 skb_set_hash_from_sk(skb, sk);
968 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
970 /* Build TCP header and checksum it. */
971 th = tcp_hdr(skb);
972 th->source = inet->inet_sport;
973 th->dest = inet->inet_dport;
974 th->seq = htonl(tcb->seq);
975 th->ack_seq = htonl(tp->rcv_nxt);
976 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
977 tcb->tcp_flags);
979 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
980 /* RFC1323: The window in SYN & SYN/ACK segments
981 * is never scaled.
983 th->window = htons(min(tp->rcv_wnd, 65535U));
984 } else {
985 th->window = htons(tcp_select_window(sk));
987 th->check = 0;
988 th->urg_ptr = 0;
990 /* The urg_mode check is necessary during a below snd_una win probe */
991 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
992 if (before(tp->snd_up, tcb->seq + 0x10000)) {
993 th->urg_ptr = htons(tp->snd_up - tcb->seq);
994 th->urg = 1;
995 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
996 th->urg_ptr = htons(0xFFFF);
997 th->urg = 1;
1001 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1002 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1003 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1004 tcp_ecn_send(sk, skb, tcp_header_size);
1006 #ifdef CONFIG_TCP_MD5SIG
1007 /* Calculate the MD5 hash, as we have all we need now */
1008 if (md5) {
1009 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1010 tp->af_specific->calc_md5_hash(opts.hash_location,
1011 md5, sk, skb);
1013 #endif
1015 icsk->icsk_af_ops->send_check(sk, skb);
1017 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1018 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1020 if (skb->len != tcp_header_size)
1021 tcp_event_data_sent(tp, sk);
1023 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1024 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1025 tcp_skb_pcount(skb));
1027 tp->segs_out += tcp_skb_pcount(skb);
1028 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1029 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1030 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1032 /* Our usage of tstamp should remain private */
1033 skb->tstamp.tv64 = 0;
1035 /* Cleanup our debris for IP stacks */
1036 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1037 sizeof(struct inet6_skb_parm)));
1039 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1041 if (likely(err <= 0))
1042 return err;
1044 tcp_enter_cwr(sk);
1046 return net_xmit_eval(err);
1049 /* This routine just queues the buffer for sending.
1051 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1052 * otherwise socket can stall.
1054 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1056 struct tcp_sock *tp = tcp_sk(sk);
1058 /* Advance write_seq and place onto the write_queue. */
1059 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1060 __skb_header_release(skb);
1061 tcp_add_write_queue_tail(sk, skb);
1062 sk->sk_wmem_queued += skb->truesize;
1063 sk_mem_charge(sk, skb->truesize);
1066 /* Initialize TSO segments for a packet. */
1067 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1069 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1070 /* Avoid the costly divide in the normal
1071 * non-TSO case.
1073 tcp_skb_pcount_set(skb, 1);
1074 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1075 } else {
1076 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1077 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1081 /* When a modification to fackets out becomes necessary, we need to check
1082 * skb is counted to fackets_out or not.
1084 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1085 int decr)
1087 struct tcp_sock *tp = tcp_sk(sk);
1089 if (!tp->sacked_out || tcp_is_reno(tp))
1090 return;
1092 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1093 tp->fackets_out -= decr;
1096 /* Pcount in the middle of the write queue got changed, we need to do various
1097 * tweaks to fix counters
1099 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1101 struct tcp_sock *tp = tcp_sk(sk);
1103 tp->packets_out -= decr;
1105 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1106 tp->sacked_out -= decr;
1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1108 tp->retrans_out -= decr;
1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1110 tp->lost_out -= decr;
1112 /* Reno case is special. Sigh... */
1113 if (tcp_is_reno(tp) && decr > 0)
1114 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1116 tcp_adjust_fackets_out(sk, skb, decr);
1118 if (tp->lost_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1120 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1121 tp->lost_cnt_hint -= decr;
1123 tcp_verify_left_out(tp);
1126 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1128 struct skb_shared_info *shinfo = skb_shinfo(skb);
1130 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1131 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1132 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1133 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1135 shinfo->tx_flags &= ~tsflags;
1136 shinfo2->tx_flags |= tsflags;
1137 swap(shinfo->tskey, shinfo2->tskey);
1141 /* Function to create two new TCP segments. Shrinks the given segment
1142 * to the specified size and appends a new segment with the rest of the
1143 * packet to the list. This won't be called frequently, I hope.
1144 * Remember, these are still headerless SKBs at this point.
1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1147 unsigned int mss_now, gfp_t gfp)
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 struct sk_buff *buff;
1151 int nsize, old_factor;
1152 int nlen;
1153 u8 flags;
1155 if (WARN_ON(len > skb->len))
1156 return -EINVAL;
1158 nsize = skb_headlen(skb) - len;
1159 if (nsize < 0)
1160 nsize = 0;
1162 if (skb_unclone(skb, gfp))
1163 return -ENOMEM;
1165 /* Get a new skb... force flag on. */
1166 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1167 if (!buff)
1168 return -ENOMEM; /* We'll just try again later. */
1170 sk->sk_wmem_queued += buff->truesize;
1171 sk_mem_charge(sk, buff->truesize);
1172 nlen = skb->len - len - nsize;
1173 buff->truesize += nlen;
1174 skb->truesize -= nlen;
1176 /* Correct the sequence numbers. */
1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1181 /* PSH and FIN should only be set in the second packet. */
1182 flags = TCP_SKB_CB(skb)->tcp_flags;
1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1184 TCP_SKB_CB(buff)->tcp_flags = flags;
1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1187 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1188 /* Copy and checksum data tail into the new buffer. */
1189 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1190 skb_put(buff, nsize),
1191 nsize, 0);
1193 skb_trim(skb, len);
1195 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1196 } else {
1197 skb->ip_summed = CHECKSUM_PARTIAL;
1198 skb_split(skb, buff, len);
1201 buff->ip_summed = skb->ip_summed;
1203 buff->tstamp = skb->tstamp;
1204 tcp_fragment_tstamp(skb, buff);
1206 old_factor = tcp_skb_pcount(skb);
1208 /* Fix up tso_factor for both original and new SKB. */
1209 tcp_set_skb_tso_segs(skb, mss_now);
1210 tcp_set_skb_tso_segs(buff, mss_now);
1212 /* If this packet has been sent out already, we must
1213 * adjust the various packet counters.
1215 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1216 int diff = old_factor - tcp_skb_pcount(skb) -
1217 tcp_skb_pcount(buff);
1219 if (diff)
1220 tcp_adjust_pcount(sk, skb, diff);
1223 /* Link BUFF into the send queue. */
1224 __skb_header_release(buff);
1225 tcp_insert_write_queue_after(skb, buff, sk);
1227 return 0;
1230 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1231 * eventually). The difference is that pulled data not copied, but
1232 * immediately discarded.
1234 static void __pskb_trim_head(struct sk_buff *skb, int len)
1236 struct skb_shared_info *shinfo;
1237 int i, k, eat;
1239 eat = min_t(int, len, skb_headlen(skb));
1240 if (eat) {
1241 __skb_pull(skb, eat);
1242 len -= eat;
1243 if (!len)
1244 return;
1246 eat = len;
1247 k = 0;
1248 shinfo = skb_shinfo(skb);
1249 for (i = 0; i < shinfo->nr_frags; i++) {
1250 int size = skb_frag_size(&shinfo->frags[i]);
1252 if (size <= eat) {
1253 skb_frag_unref(skb, i);
1254 eat -= size;
1255 } else {
1256 shinfo->frags[k] = shinfo->frags[i];
1257 if (eat) {
1258 shinfo->frags[k].page_offset += eat;
1259 skb_frag_size_sub(&shinfo->frags[k], eat);
1260 eat = 0;
1262 k++;
1265 shinfo->nr_frags = k;
1267 skb_reset_tail_pointer(skb);
1268 skb->data_len -= len;
1269 skb->len = skb->data_len;
1272 /* Remove acked data from a packet in the transmit queue. */
1273 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1275 if (skb_unclone(skb, GFP_ATOMIC))
1276 return -ENOMEM;
1278 __pskb_trim_head(skb, len);
1280 TCP_SKB_CB(skb)->seq += len;
1281 skb->ip_summed = CHECKSUM_PARTIAL;
1283 skb->truesize -= len;
1284 sk->sk_wmem_queued -= len;
1285 sk_mem_uncharge(sk, len);
1286 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1288 /* Any change of skb->len requires recalculation of tso factor. */
1289 if (tcp_skb_pcount(skb) > 1)
1290 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1292 return 0;
1295 /* Calculate MSS not accounting any TCP options. */
1296 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1298 const struct tcp_sock *tp = tcp_sk(sk);
1299 const struct inet_connection_sock *icsk = inet_csk(sk);
1300 int mss_now;
1302 /* Calculate base mss without TCP options:
1303 It is MMS_S - sizeof(tcphdr) of rfc1122
1305 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1307 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1308 if (icsk->icsk_af_ops->net_frag_header_len) {
1309 const struct dst_entry *dst = __sk_dst_get(sk);
1311 if (dst && dst_allfrag(dst))
1312 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1315 /* Clamp it (mss_clamp does not include tcp options) */
1316 if (mss_now > tp->rx_opt.mss_clamp)
1317 mss_now = tp->rx_opt.mss_clamp;
1319 /* Now subtract optional transport overhead */
1320 mss_now -= icsk->icsk_ext_hdr_len;
1322 /* Then reserve room for full set of TCP options and 8 bytes of data */
1323 if (mss_now < 48)
1324 mss_now = 48;
1325 return mss_now;
1328 /* Calculate MSS. Not accounting for SACKs here. */
1329 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1331 /* Subtract TCP options size, not including SACKs */
1332 return __tcp_mtu_to_mss(sk, pmtu) -
1333 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1336 /* Inverse of above */
1337 int tcp_mss_to_mtu(struct sock *sk, int mss)
1339 const struct tcp_sock *tp = tcp_sk(sk);
1340 const struct inet_connection_sock *icsk = inet_csk(sk);
1341 int mtu;
1343 mtu = mss +
1344 tp->tcp_header_len +
1345 icsk->icsk_ext_hdr_len +
1346 icsk->icsk_af_ops->net_header_len;
1348 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1349 if (icsk->icsk_af_ops->net_frag_header_len) {
1350 const struct dst_entry *dst = __sk_dst_get(sk);
1352 if (dst && dst_allfrag(dst))
1353 mtu += icsk->icsk_af_ops->net_frag_header_len;
1355 return mtu;
1358 /* MTU probing init per socket */
1359 void tcp_mtup_init(struct sock *sk)
1361 struct tcp_sock *tp = tcp_sk(sk);
1362 struct inet_connection_sock *icsk = inet_csk(sk);
1363 struct net *net = sock_net(sk);
1365 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1366 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1367 icsk->icsk_af_ops->net_header_len;
1368 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1369 icsk->icsk_mtup.probe_size = 0;
1370 if (icsk->icsk_mtup.enabled)
1371 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1373 EXPORT_SYMBOL(tcp_mtup_init);
1375 /* This function synchronize snd mss to current pmtu/exthdr set.
1377 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1378 for TCP options, but includes only bare TCP header.
1380 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1381 It is minimum of user_mss and mss received with SYN.
1382 It also does not include TCP options.
1384 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1386 tp->mss_cache is current effective sending mss, including
1387 all tcp options except for SACKs. It is evaluated,
1388 taking into account current pmtu, but never exceeds
1389 tp->rx_opt.mss_clamp.
1391 NOTE1. rfc1122 clearly states that advertised MSS
1392 DOES NOT include either tcp or ip options.
1394 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1395 are READ ONLY outside this function. --ANK (980731)
1397 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1399 struct tcp_sock *tp = tcp_sk(sk);
1400 struct inet_connection_sock *icsk = inet_csk(sk);
1401 int mss_now;
1403 if (icsk->icsk_mtup.search_high > pmtu)
1404 icsk->icsk_mtup.search_high = pmtu;
1406 mss_now = tcp_mtu_to_mss(sk, pmtu);
1407 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1409 /* And store cached results */
1410 icsk->icsk_pmtu_cookie = pmtu;
1411 if (icsk->icsk_mtup.enabled)
1412 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1413 tp->mss_cache = mss_now;
1415 return mss_now;
1417 EXPORT_SYMBOL(tcp_sync_mss);
1419 /* Compute the current effective MSS, taking SACKs and IP options,
1420 * and even PMTU discovery events into account.
1422 unsigned int tcp_current_mss(struct sock *sk)
1424 const struct tcp_sock *tp = tcp_sk(sk);
1425 const struct dst_entry *dst = __sk_dst_get(sk);
1426 u32 mss_now;
1427 unsigned int header_len;
1428 struct tcp_out_options opts;
1429 struct tcp_md5sig_key *md5;
1431 mss_now = tp->mss_cache;
1433 if (dst) {
1434 u32 mtu = dst_mtu(dst);
1435 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1436 mss_now = tcp_sync_mss(sk, mtu);
1439 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1440 sizeof(struct tcphdr);
1441 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1442 * some common options. If this is an odd packet (because we have SACK
1443 * blocks etc) then our calculated header_len will be different, and
1444 * we have to adjust mss_now correspondingly */
1445 if (header_len != tp->tcp_header_len) {
1446 int delta = (int) header_len - tp->tcp_header_len;
1447 mss_now -= delta;
1450 return mss_now;
1453 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1454 * As additional protections, we do not touch cwnd in retransmission phases,
1455 * and if application hit its sndbuf limit recently.
1457 static void tcp_cwnd_application_limited(struct sock *sk)
1459 struct tcp_sock *tp = tcp_sk(sk);
1461 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1462 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1463 /* Limited by application or receiver window. */
1464 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1465 u32 win_used = max(tp->snd_cwnd_used, init_win);
1466 if (win_used < tp->snd_cwnd) {
1467 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1468 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1470 tp->snd_cwnd_used = 0;
1472 tp->snd_cwnd_stamp = tcp_time_stamp;
1475 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1477 struct tcp_sock *tp = tcp_sk(sk);
1479 /* Track the maximum number of outstanding packets in each
1480 * window, and remember whether we were cwnd-limited then.
1482 if (!before(tp->snd_una, tp->max_packets_seq) ||
1483 tp->packets_out > tp->max_packets_out) {
1484 tp->max_packets_out = tp->packets_out;
1485 tp->max_packets_seq = tp->snd_nxt;
1486 tp->is_cwnd_limited = is_cwnd_limited;
1489 if (tcp_is_cwnd_limited(sk)) {
1490 /* Network is feed fully. */
1491 tp->snd_cwnd_used = 0;
1492 tp->snd_cwnd_stamp = tcp_time_stamp;
1493 } else {
1494 /* Network starves. */
1495 if (tp->packets_out > tp->snd_cwnd_used)
1496 tp->snd_cwnd_used = tp->packets_out;
1498 if (sysctl_tcp_slow_start_after_idle &&
1499 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1500 tcp_cwnd_application_limited(sk);
1504 /* Minshall's variant of the Nagle send check. */
1505 static bool tcp_minshall_check(const struct tcp_sock *tp)
1507 return after(tp->snd_sml, tp->snd_una) &&
1508 !after(tp->snd_sml, tp->snd_nxt);
1511 /* Update snd_sml if this skb is under mss
1512 * Note that a TSO packet might end with a sub-mss segment
1513 * The test is really :
1514 * if ((skb->len % mss) != 0)
1515 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1516 * But we can avoid doing the divide again given we already have
1517 * skb_pcount = skb->len / mss_now
1519 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1520 const struct sk_buff *skb)
1522 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1523 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1526 /* Return false, if packet can be sent now without violation Nagle's rules:
1527 * 1. It is full sized. (provided by caller in %partial bool)
1528 * 2. Or it contains FIN. (already checked by caller)
1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1531 * With Minshall's modification: all sent small packets are ACKed.
1533 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1534 int nonagle)
1536 return partial &&
1537 ((nonagle & TCP_NAGLE_CORK) ||
1538 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1541 /* Return how many segs we'd like on a TSO packet,
1542 * to send one TSO packet per ms
1544 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1546 u32 bytes, segs;
1548 bytes = min(sk->sk_pacing_rate >> 10,
1549 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1551 /* Goal is to send at least one packet per ms,
1552 * not one big TSO packet every 100 ms.
1553 * This preserves ACK clocking and is consistent
1554 * with tcp_tso_should_defer() heuristic.
1556 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1558 return min_t(u32, segs, sk->sk_gso_max_segs);
1561 /* Returns the portion of skb which can be sent right away */
1562 static unsigned int tcp_mss_split_point(const struct sock *sk,
1563 const struct sk_buff *skb,
1564 unsigned int mss_now,
1565 unsigned int max_segs,
1566 int nonagle)
1568 const struct tcp_sock *tp = tcp_sk(sk);
1569 u32 partial, needed, window, max_len;
1571 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1572 max_len = mss_now * max_segs;
1574 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1575 return max_len;
1577 needed = min(skb->len, window);
1579 if (max_len <= needed)
1580 return max_len;
1582 partial = needed % mss_now;
1583 /* If last segment is not a full MSS, check if Nagle rules allow us
1584 * to include this last segment in this skb.
1585 * Otherwise, we'll split the skb at last MSS boundary
1587 if (tcp_nagle_check(partial != 0, tp, nonagle))
1588 return needed - partial;
1590 return needed;
1593 /* Can at least one segment of SKB be sent right now, according to the
1594 * congestion window rules? If so, return how many segments are allowed.
1596 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1597 const struct sk_buff *skb)
1599 u32 in_flight, cwnd, halfcwnd;
1601 /* Don't be strict about the congestion window for the final FIN. */
1602 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1603 tcp_skb_pcount(skb) == 1)
1604 return 1;
1606 in_flight = tcp_packets_in_flight(tp);
1607 cwnd = tp->snd_cwnd;
1608 if (in_flight >= cwnd)
1609 return 0;
1611 /* For better scheduling, ensure we have at least
1612 * 2 GSO packets in flight.
1614 halfcwnd = max(cwnd >> 1, 1U);
1615 return min(halfcwnd, cwnd - in_flight);
1618 /* Initialize TSO state of a skb.
1619 * This must be invoked the first time we consider transmitting
1620 * SKB onto the wire.
1622 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1624 int tso_segs = tcp_skb_pcount(skb);
1626 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1627 tcp_set_skb_tso_segs(skb, mss_now);
1628 tso_segs = tcp_skb_pcount(skb);
1630 return tso_segs;
1634 /* Return true if the Nagle test allows this packet to be
1635 * sent now.
1637 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1638 unsigned int cur_mss, int nonagle)
1640 /* Nagle rule does not apply to frames, which sit in the middle of the
1641 * write_queue (they have no chances to get new data).
1643 * This is implemented in the callers, where they modify the 'nonagle'
1644 * argument based upon the location of SKB in the send queue.
1646 if (nonagle & TCP_NAGLE_PUSH)
1647 return true;
1649 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1650 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1651 return true;
1653 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1654 return true;
1656 return false;
1659 /* Does at least the first segment of SKB fit into the send window? */
1660 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1661 const struct sk_buff *skb,
1662 unsigned int cur_mss)
1664 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1666 if (skb->len > cur_mss)
1667 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1669 return !after(end_seq, tcp_wnd_end(tp));
1672 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1673 * should be put on the wire right now. If so, it returns the number of
1674 * packets allowed by the congestion window.
1676 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1677 unsigned int cur_mss, int nonagle)
1679 const struct tcp_sock *tp = tcp_sk(sk);
1680 unsigned int cwnd_quota;
1682 tcp_init_tso_segs(skb, cur_mss);
1684 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1685 return 0;
1687 cwnd_quota = tcp_cwnd_test(tp, skb);
1688 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1689 cwnd_quota = 0;
1691 return cwnd_quota;
1694 /* Test if sending is allowed right now. */
1695 bool tcp_may_send_now(struct sock *sk)
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 struct sk_buff *skb = tcp_send_head(sk);
1700 return skb &&
1701 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1702 (tcp_skb_is_last(sk, skb) ?
1703 tp->nonagle : TCP_NAGLE_PUSH));
1706 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1707 * which is put after SKB on the list. It is very much like
1708 * tcp_fragment() except that it may make several kinds of assumptions
1709 * in order to speed up the splitting operation. In particular, we
1710 * know that all the data is in scatter-gather pages, and that the
1711 * packet has never been sent out before (and thus is not cloned).
1713 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1714 unsigned int mss_now, gfp_t gfp)
1716 struct sk_buff *buff;
1717 int nlen = skb->len - len;
1718 u8 flags;
1720 /* All of a TSO frame must be composed of paged data. */
1721 if (skb->len != skb->data_len)
1722 return tcp_fragment(sk, skb, len, mss_now, gfp);
1724 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1725 if (unlikely(!buff))
1726 return -ENOMEM;
1728 sk->sk_wmem_queued += buff->truesize;
1729 sk_mem_charge(sk, buff->truesize);
1730 buff->truesize += nlen;
1731 skb->truesize -= nlen;
1733 /* Correct the sequence numbers. */
1734 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1735 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1736 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1738 /* PSH and FIN should only be set in the second packet. */
1739 flags = TCP_SKB_CB(skb)->tcp_flags;
1740 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1741 TCP_SKB_CB(buff)->tcp_flags = flags;
1743 /* This packet was never sent out yet, so no SACK bits. */
1744 TCP_SKB_CB(buff)->sacked = 0;
1746 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1747 skb_split(skb, buff, len);
1748 tcp_fragment_tstamp(skb, buff);
1750 /* Fix up tso_factor for both original and new SKB. */
1751 tcp_set_skb_tso_segs(skb, mss_now);
1752 tcp_set_skb_tso_segs(buff, mss_now);
1754 /* Link BUFF into the send queue. */
1755 __skb_header_release(buff);
1756 tcp_insert_write_queue_after(skb, buff, sk);
1758 return 0;
1761 /* Try to defer sending, if possible, in order to minimize the amount
1762 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1764 * This algorithm is from John Heffner.
1766 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1767 bool *is_cwnd_limited, u32 max_segs)
1769 const struct inet_connection_sock *icsk = inet_csk(sk);
1770 u32 age, send_win, cong_win, limit, in_flight;
1771 struct tcp_sock *tp = tcp_sk(sk);
1772 struct skb_mstamp now;
1773 struct sk_buff *head;
1774 int win_divisor;
1776 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1777 goto send_now;
1779 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1780 goto send_now;
1782 /* Avoid bursty behavior by allowing defer
1783 * only if the last write was recent.
1785 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1786 goto send_now;
1788 in_flight = tcp_packets_in_flight(tp);
1790 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1792 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1794 /* From in_flight test above, we know that cwnd > in_flight. */
1795 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1797 limit = min(send_win, cong_win);
1799 /* If a full-sized TSO skb can be sent, do it. */
1800 if (limit >= max_segs * tp->mss_cache)
1801 goto send_now;
1803 /* Middle in queue won't get any more data, full sendable already? */
1804 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1805 goto send_now;
1807 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1808 if (win_divisor) {
1809 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1811 /* If at least some fraction of a window is available,
1812 * just use it.
1814 chunk /= win_divisor;
1815 if (limit >= chunk)
1816 goto send_now;
1817 } else {
1818 /* Different approach, try not to defer past a single
1819 * ACK. Receiver should ACK every other full sized
1820 * frame, so if we have space for more than 3 frames
1821 * then send now.
1823 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1824 goto send_now;
1827 head = tcp_write_queue_head(sk);
1828 skb_mstamp_get(&now);
1829 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1830 /* If next ACK is likely to come too late (half srtt), do not defer */
1831 if (age < (tp->srtt_us >> 4))
1832 goto send_now;
1834 /* Ok, it looks like it is advisable to defer. */
1836 if (cong_win < send_win && cong_win < skb->len)
1837 *is_cwnd_limited = true;
1839 return true;
1841 send_now:
1842 return false;
1845 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1847 struct inet_connection_sock *icsk = inet_csk(sk);
1848 struct tcp_sock *tp = tcp_sk(sk);
1849 struct net *net = sock_net(sk);
1850 u32 interval;
1851 s32 delta;
1853 interval = net->ipv4.sysctl_tcp_probe_interval;
1854 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1855 if (unlikely(delta >= interval * HZ)) {
1856 int mss = tcp_current_mss(sk);
1858 /* Update current search range */
1859 icsk->icsk_mtup.probe_size = 0;
1860 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1861 sizeof(struct tcphdr) +
1862 icsk->icsk_af_ops->net_header_len;
1863 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1865 /* Update probe time stamp */
1866 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1870 /* Create a new MTU probe if we are ready.
1871 * MTU probe is regularly attempting to increase the path MTU by
1872 * deliberately sending larger packets. This discovers routing
1873 * changes resulting in larger path MTUs.
1875 * Returns 0 if we should wait to probe (no cwnd available),
1876 * 1 if a probe was sent,
1877 * -1 otherwise
1879 static int tcp_mtu_probe(struct sock *sk)
1881 struct tcp_sock *tp = tcp_sk(sk);
1882 struct inet_connection_sock *icsk = inet_csk(sk);
1883 struct sk_buff *skb, *nskb, *next;
1884 struct net *net = sock_net(sk);
1885 int len;
1886 int probe_size;
1887 int size_needed;
1888 int copy;
1889 int mss_now;
1890 int interval;
1892 /* Not currently probing/verifying,
1893 * not in recovery,
1894 * have enough cwnd, and
1895 * not SACKing (the variable headers throw things off) */
1896 if (!icsk->icsk_mtup.enabled ||
1897 icsk->icsk_mtup.probe_size ||
1898 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1899 tp->snd_cwnd < 11 ||
1900 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1901 return -1;
1903 /* Use binary search for probe_size between tcp_mss_base,
1904 * and current mss_clamp. if (search_high - search_low)
1905 * smaller than a threshold, backoff from probing.
1907 mss_now = tcp_current_mss(sk);
1908 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1909 icsk->icsk_mtup.search_low) >> 1);
1910 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1911 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1912 /* When misfortune happens, we are reprobing actively,
1913 * and then reprobe timer has expired. We stick with current
1914 * probing process by not resetting search range to its orignal.
1916 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1917 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1918 /* Check whether enough time has elaplased for
1919 * another round of probing.
1921 tcp_mtu_check_reprobe(sk);
1922 return -1;
1925 /* Have enough data in the send queue to probe? */
1926 if (tp->write_seq - tp->snd_nxt < size_needed)
1927 return -1;
1929 if (tp->snd_wnd < size_needed)
1930 return -1;
1931 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1932 return 0;
1934 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1935 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1936 if (!tcp_packets_in_flight(tp))
1937 return -1;
1938 else
1939 return 0;
1942 /* We're allowed to probe. Build it now. */
1943 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1944 if (!nskb)
1945 return -1;
1946 sk->sk_wmem_queued += nskb->truesize;
1947 sk_mem_charge(sk, nskb->truesize);
1949 skb = tcp_send_head(sk);
1951 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1952 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1953 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1954 TCP_SKB_CB(nskb)->sacked = 0;
1955 nskb->csum = 0;
1956 nskb->ip_summed = skb->ip_summed;
1958 tcp_insert_write_queue_before(nskb, skb, sk);
1960 len = 0;
1961 tcp_for_write_queue_from_safe(skb, next, sk) {
1962 copy = min_t(int, skb->len, probe_size - len);
1963 if (nskb->ip_summed)
1964 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1965 else
1966 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1967 skb_put(nskb, copy),
1968 copy, nskb->csum);
1970 if (skb->len <= copy) {
1971 /* We've eaten all the data from this skb.
1972 * Throw it away. */
1973 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1974 tcp_unlink_write_queue(skb, sk);
1975 sk_wmem_free_skb(sk, skb);
1976 } else {
1977 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1978 ~(TCPHDR_FIN|TCPHDR_PSH);
1979 if (!skb_shinfo(skb)->nr_frags) {
1980 skb_pull(skb, copy);
1981 if (skb->ip_summed != CHECKSUM_PARTIAL)
1982 skb->csum = csum_partial(skb->data,
1983 skb->len, 0);
1984 } else {
1985 __pskb_trim_head(skb, copy);
1986 tcp_set_skb_tso_segs(skb, mss_now);
1988 TCP_SKB_CB(skb)->seq += copy;
1991 len += copy;
1993 if (len >= probe_size)
1994 break;
1996 tcp_init_tso_segs(nskb, nskb->len);
1998 /* We're ready to send. If this fails, the probe will
1999 * be resegmented into mss-sized pieces by tcp_write_xmit().
2001 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2002 /* Decrement cwnd here because we are sending
2003 * effectively two packets. */
2004 tp->snd_cwnd--;
2005 tcp_event_new_data_sent(sk, nskb);
2007 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2008 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2009 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2011 return 1;
2014 return -1;
2017 /* This routine writes packets to the network. It advances the
2018 * send_head. This happens as incoming acks open up the remote
2019 * window for us.
2021 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2022 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2023 * account rare use of URG, this is not a big flaw.
2025 * Send at most one packet when push_one > 0. Temporarily ignore
2026 * cwnd limit to force at most one packet out when push_one == 2.
2028 * Returns true, if no segments are in flight and we have queued segments,
2029 * but cannot send anything now because of SWS or another problem.
2031 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2032 int push_one, gfp_t gfp)
2034 struct tcp_sock *tp = tcp_sk(sk);
2035 struct sk_buff *skb;
2036 unsigned int tso_segs, sent_pkts;
2037 int cwnd_quota;
2038 int result;
2039 bool is_cwnd_limited = false;
2040 u32 max_segs;
2042 sent_pkts = 0;
2044 if (!push_one) {
2045 /* Do MTU probing. */
2046 result = tcp_mtu_probe(sk);
2047 if (!result) {
2048 return false;
2049 } else if (result > 0) {
2050 sent_pkts = 1;
2054 max_segs = tcp_tso_autosize(sk, mss_now);
2055 while ((skb = tcp_send_head(sk))) {
2056 unsigned int limit;
2058 tso_segs = tcp_init_tso_segs(skb, mss_now);
2059 BUG_ON(!tso_segs);
2061 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2062 /* "skb_mstamp" is used as a start point for the retransmit timer */
2063 skb_mstamp_get(&skb->skb_mstamp);
2064 goto repair; /* Skip network transmission */
2067 cwnd_quota = tcp_cwnd_test(tp, skb);
2068 if (!cwnd_quota) {
2069 is_cwnd_limited = true;
2070 if (push_one == 2)
2071 /* Force out a loss probe pkt. */
2072 cwnd_quota = 1;
2073 else
2074 break;
2077 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2078 break;
2080 if (tso_segs == 1) {
2081 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2082 (tcp_skb_is_last(sk, skb) ?
2083 nonagle : TCP_NAGLE_PUSH))))
2084 break;
2085 } else {
2086 if (!push_one &&
2087 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2088 max_segs))
2089 break;
2092 limit = mss_now;
2093 if (tso_segs > 1 && !tcp_urg_mode(tp))
2094 limit = tcp_mss_split_point(sk, skb, mss_now,
2095 min_t(unsigned int,
2096 cwnd_quota,
2097 max_segs),
2098 nonagle);
2100 if (skb->len > limit &&
2101 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2102 break;
2104 /* TCP Small Queues :
2105 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2106 * This allows for :
2107 * - better RTT estimation and ACK scheduling
2108 * - faster recovery
2109 * - high rates
2110 * Alas, some drivers / subsystems require a fair amount
2111 * of queued bytes to ensure line rate.
2112 * One example is wifi aggregation (802.11 AMPDU)
2114 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2115 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2117 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2118 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2119 /* It is possible TX completion already happened
2120 * before we set TSQ_THROTTLED, so we must
2121 * test again the condition.
2123 smp_mb__after_atomic();
2124 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2125 break;
2128 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2129 break;
2131 repair:
2132 /* Advance the send_head. This one is sent out.
2133 * This call will increment packets_out.
2135 tcp_event_new_data_sent(sk, skb);
2137 tcp_minshall_update(tp, mss_now, skb);
2138 sent_pkts += tcp_skb_pcount(skb);
2140 if (push_one)
2141 break;
2144 if (likely(sent_pkts)) {
2145 if (tcp_in_cwnd_reduction(sk))
2146 tp->prr_out += sent_pkts;
2148 /* Send one loss probe per tail loss episode. */
2149 if (push_one != 2)
2150 tcp_schedule_loss_probe(sk);
2151 tcp_cwnd_validate(sk, is_cwnd_limited);
2152 return false;
2154 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2157 bool tcp_schedule_loss_probe(struct sock *sk)
2159 struct inet_connection_sock *icsk = inet_csk(sk);
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 u32 timeout, tlp_time_stamp, rto_time_stamp;
2162 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2164 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2165 return false;
2166 /* No consecutive loss probes. */
2167 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2168 tcp_rearm_rto(sk);
2169 return false;
2171 /* Don't do any loss probe on a Fast Open connection before 3WHS
2172 * finishes.
2174 if (sk->sk_state == TCP_SYN_RECV)
2175 return false;
2177 /* TLP is only scheduled when next timer event is RTO. */
2178 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2179 return false;
2181 /* Schedule a loss probe in 2*RTT for SACK capable connections
2182 * in Open state, that are either limited by cwnd or application.
2184 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2185 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2186 return false;
2188 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2189 tcp_send_head(sk))
2190 return false;
2192 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2193 * for delayed ack when there's one outstanding packet.
2195 timeout = rtt << 1;
2196 if (tp->packets_out == 1)
2197 timeout = max_t(u32, timeout,
2198 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2199 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2201 /* If RTO is shorter, just schedule TLP in its place. */
2202 tlp_time_stamp = tcp_time_stamp + timeout;
2203 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2204 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2205 s32 delta = rto_time_stamp - tcp_time_stamp;
2206 if (delta > 0)
2207 timeout = delta;
2210 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2211 TCP_RTO_MAX);
2212 return true;
2215 /* Thanks to skb fast clones, we can detect if a prior transmit of
2216 * a packet is still in a qdisc or driver queue.
2217 * In this case, there is very little point doing a retransmit !
2218 * Note: This is called from BH context only.
2220 static bool skb_still_in_host_queue(const struct sock *sk,
2221 const struct sk_buff *skb)
2223 if (unlikely(skb_fclone_busy(sk, skb))) {
2224 NET_INC_STATS_BH(sock_net(sk),
2225 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2226 return true;
2228 return false;
2231 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2232 * retransmit the last segment.
2234 void tcp_send_loss_probe(struct sock *sk)
2236 struct tcp_sock *tp = tcp_sk(sk);
2237 struct sk_buff *skb;
2238 int pcount;
2239 int mss = tcp_current_mss(sk);
2240 int err = -1;
2242 if (tcp_send_head(sk)) {
2243 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2244 goto rearm_timer;
2247 /* At most one outstanding TLP retransmission. */
2248 if (tp->tlp_high_seq)
2249 goto rearm_timer;
2251 /* Retransmit last segment. */
2252 skb = tcp_write_queue_tail(sk);
2253 if (WARN_ON(!skb))
2254 goto rearm_timer;
2256 if (skb_still_in_host_queue(sk, skb))
2257 goto rearm_timer;
2259 pcount = tcp_skb_pcount(skb);
2260 if (WARN_ON(!pcount))
2261 goto rearm_timer;
2263 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2264 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2265 GFP_ATOMIC)))
2266 goto rearm_timer;
2267 skb = tcp_write_queue_tail(sk);
2270 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2271 goto rearm_timer;
2273 err = __tcp_retransmit_skb(sk, skb);
2275 /* Record snd_nxt for loss detection. */
2276 if (likely(!err))
2277 tp->tlp_high_seq = tp->snd_nxt;
2279 rearm_timer:
2280 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2281 inet_csk(sk)->icsk_rto,
2282 TCP_RTO_MAX);
2284 if (likely(!err))
2285 NET_INC_STATS_BH(sock_net(sk),
2286 LINUX_MIB_TCPLOSSPROBES);
2289 /* Push out any pending frames which were held back due to
2290 * TCP_CORK or attempt at coalescing tiny packets.
2291 * The socket must be locked by the caller.
2293 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2294 int nonagle)
2296 /* If we are closed, the bytes will have to remain here.
2297 * In time closedown will finish, we empty the write queue and
2298 * all will be happy.
2300 if (unlikely(sk->sk_state == TCP_CLOSE))
2301 return;
2303 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2304 sk_gfp_atomic(sk, GFP_ATOMIC)))
2305 tcp_check_probe_timer(sk);
2308 /* Send _single_ skb sitting at the send head. This function requires
2309 * true push pending frames to setup probe timer etc.
2311 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2313 struct sk_buff *skb = tcp_send_head(sk);
2315 BUG_ON(!skb || skb->len < mss_now);
2317 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2320 /* This function returns the amount that we can raise the
2321 * usable window based on the following constraints
2323 * 1. The window can never be shrunk once it is offered (RFC 793)
2324 * 2. We limit memory per socket
2326 * RFC 1122:
2327 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2328 * RECV.NEXT + RCV.WIN fixed until:
2329 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2331 * i.e. don't raise the right edge of the window until you can raise
2332 * it at least MSS bytes.
2334 * Unfortunately, the recommended algorithm breaks header prediction,
2335 * since header prediction assumes th->window stays fixed.
2337 * Strictly speaking, keeping th->window fixed violates the receiver
2338 * side SWS prevention criteria. The problem is that under this rule
2339 * a stream of single byte packets will cause the right side of the
2340 * window to always advance by a single byte.
2342 * Of course, if the sender implements sender side SWS prevention
2343 * then this will not be a problem.
2345 * BSD seems to make the following compromise:
2347 * If the free space is less than the 1/4 of the maximum
2348 * space available and the free space is less than 1/2 mss,
2349 * then set the window to 0.
2350 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2351 * Otherwise, just prevent the window from shrinking
2352 * and from being larger than the largest representable value.
2354 * This prevents incremental opening of the window in the regime
2355 * where TCP is limited by the speed of the reader side taking
2356 * data out of the TCP receive queue. It does nothing about
2357 * those cases where the window is constrained on the sender side
2358 * because the pipeline is full.
2360 * BSD also seems to "accidentally" limit itself to windows that are a
2361 * multiple of MSS, at least until the free space gets quite small.
2362 * This would appear to be a side effect of the mbuf implementation.
2363 * Combining these two algorithms results in the observed behavior
2364 * of having a fixed window size at almost all times.
2366 * Below we obtain similar behavior by forcing the offered window to
2367 * a multiple of the mss when it is feasible to do so.
2369 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2370 * Regular options like TIMESTAMP are taken into account.
2372 u32 __tcp_select_window(struct sock *sk)
2374 struct inet_connection_sock *icsk = inet_csk(sk);
2375 struct tcp_sock *tp = tcp_sk(sk);
2376 /* MSS for the peer's data. Previous versions used mss_clamp
2377 * here. I don't know if the value based on our guesses
2378 * of peer's MSS is better for the performance. It's more correct
2379 * but may be worse for the performance because of rcv_mss
2380 * fluctuations. --SAW 1998/11/1
2382 int mss = icsk->icsk_ack.rcv_mss;
2383 int free_space = tcp_space(sk);
2384 int allowed_space = tcp_full_space(sk);
2385 int full_space = min_t(int, tp->window_clamp, allowed_space);
2386 int window;
2388 if (mss > full_space)
2389 mss = full_space;
2391 if (free_space < (full_space >> 1)) {
2392 icsk->icsk_ack.quick = 0;
2394 if (tcp_under_memory_pressure(sk))
2395 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2396 4U * tp->advmss);
2398 /* free_space might become our new window, make sure we don't
2399 * increase it due to wscale.
2401 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2403 /* if free space is less than mss estimate, or is below 1/16th
2404 * of the maximum allowed, try to move to zero-window, else
2405 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2406 * new incoming data is dropped due to memory limits.
2407 * With large window, mss test triggers way too late in order
2408 * to announce zero window in time before rmem limit kicks in.
2410 if (free_space < (allowed_space >> 4) || free_space < mss)
2411 return 0;
2414 if (free_space > tp->rcv_ssthresh)
2415 free_space = tp->rcv_ssthresh;
2417 /* Don't do rounding if we are using window scaling, since the
2418 * scaled window will not line up with the MSS boundary anyway.
2420 window = tp->rcv_wnd;
2421 if (tp->rx_opt.rcv_wscale) {
2422 window = free_space;
2424 /* Advertise enough space so that it won't get scaled away.
2425 * Import case: prevent zero window announcement if
2426 * 1<<rcv_wscale > mss.
2428 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2429 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2430 << tp->rx_opt.rcv_wscale);
2431 } else {
2432 /* Get the largest window that is a nice multiple of mss.
2433 * Window clamp already applied above.
2434 * If our current window offering is within 1 mss of the
2435 * free space we just keep it. This prevents the divide
2436 * and multiply from happening most of the time.
2437 * We also don't do any window rounding when the free space
2438 * is too small.
2440 if (window <= free_space - mss || window > free_space)
2441 window = (free_space / mss) * mss;
2442 else if (mss == full_space &&
2443 free_space > window + (full_space >> 1))
2444 window = free_space;
2447 return window;
2450 /* Collapses two adjacent SKB's during retransmission. */
2451 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2453 struct tcp_sock *tp = tcp_sk(sk);
2454 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2455 int skb_size, next_skb_size;
2457 skb_size = skb->len;
2458 next_skb_size = next_skb->len;
2460 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2462 tcp_highest_sack_combine(sk, next_skb, skb);
2464 tcp_unlink_write_queue(next_skb, sk);
2466 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2467 next_skb_size);
2469 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2470 skb->ip_summed = CHECKSUM_PARTIAL;
2472 if (skb->ip_summed != CHECKSUM_PARTIAL)
2473 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2475 /* Update sequence range on original skb. */
2476 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2478 /* Merge over control information. This moves PSH/FIN etc. over */
2479 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2481 /* All done, get rid of second SKB and account for it so
2482 * packet counting does not break.
2484 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2486 /* changed transmit queue under us so clear hints */
2487 tcp_clear_retrans_hints_partial(tp);
2488 if (next_skb == tp->retransmit_skb_hint)
2489 tp->retransmit_skb_hint = skb;
2491 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2493 sk_wmem_free_skb(sk, next_skb);
2496 /* Check if coalescing SKBs is legal. */
2497 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2499 if (tcp_skb_pcount(skb) > 1)
2500 return false;
2501 /* TODO: SACK collapsing could be used to remove this condition */
2502 if (skb_shinfo(skb)->nr_frags != 0)
2503 return false;
2504 if (skb_cloned(skb))
2505 return false;
2506 if (skb == tcp_send_head(sk))
2507 return false;
2508 /* Some heurestics for collapsing over SACK'd could be invented */
2509 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2510 return false;
2512 return true;
2515 /* Collapse packets in the retransmit queue to make to create
2516 * less packets on the wire. This is only done on retransmission.
2518 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2519 int space)
2521 struct tcp_sock *tp = tcp_sk(sk);
2522 struct sk_buff *skb = to, *tmp;
2523 bool first = true;
2525 if (!sysctl_tcp_retrans_collapse)
2526 return;
2527 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2528 return;
2530 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2531 if (!tcp_can_collapse(sk, skb))
2532 break;
2534 space -= skb->len;
2536 if (first) {
2537 first = false;
2538 continue;
2541 if (space < 0)
2542 break;
2543 /* Punt if not enough space exists in the first SKB for
2544 * the data in the second
2546 if (skb->len > skb_availroom(to))
2547 break;
2549 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2550 break;
2552 tcp_collapse_retrans(sk, to);
2556 /* This retransmits one SKB. Policy decisions and retransmit queue
2557 * state updates are done by the caller. Returns non-zero if an
2558 * error occurred which prevented the send.
2560 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2562 struct tcp_sock *tp = tcp_sk(sk);
2563 struct inet_connection_sock *icsk = inet_csk(sk);
2564 unsigned int cur_mss;
2565 int err;
2567 /* Inconslusive MTU probe */
2568 if (icsk->icsk_mtup.probe_size) {
2569 icsk->icsk_mtup.probe_size = 0;
2572 /* Do not sent more than we queued. 1/4 is reserved for possible
2573 * copying overhead: fragmentation, tunneling, mangling etc.
2575 if (atomic_read(&sk->sk_wmem_alloc) >
2576 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2577 return -EAGAIN;
2579 if (skb_still_in_host_queue(sk, skb))
2580 return -EBUSY;
2582 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2583 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2584 BUG();
2585 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2586 return -ENOMEM;
2589 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2590 return -EHOSTUNREACH; /* Routing failure or similar. */
2592 cur_mss = tcp_current_mss(sk);
2594 /* If receiver has shrunk his window, and skb is out of
2595 * new window, do not retransmit it. The exception is the
2596 * case, when window is shrunk to zero. In this case
2597 * our retransmit serves as a zero window probe.
2599 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2600 TCP_SKB_CB(skb)->seq != tp->snd_una)
2601 return -EAGAIN;
2603 if (skb->len > cur_mss) {
2604 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2605 return -ENOMEM; /* We'll try again later. */
2606 } else {
2607 int oldpcount = tcp_skb_pcount(skb);
2609 if (unlikely(oldpcount > 1)) {
2610 if (skb_unclone(skb, GFP_ATOMIC))
2611 return -ENOMEM;
2612 tcp_init_tso_segs(skb, cur_mss);
2613 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2617 /* RFC3168, section 6.1.1.1. ECN fallback */
2618 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2619 tcp_ecn_clear_syn(sk, skb);
2621 tcp_retrans_try_collapse(sk, skb, cur_mss);
2623 /* Make a copy, if the first transmission SKB clone we made
2624 * is still in somebody's hands, else make a clone.
2627 /* make sure skb->data is aligned on arches that require it
2628 * and check if ack-trimming & collapsing extended the headroom
2629 * beyond what csum_start can cover.
2631 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2632 skb_headroom(skb) >= 0xFFFF)) {
2633 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2634 GFP_ATOMIC);
2635 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2636 -ENOBUFS;
2637 } else {
2638 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2641 if (likely(!err)) {
2642 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2643 /* Update global TCP statistics. */
2644 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2646 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2647 tp->total_retrans++;
2649 return err;
2652 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2654 struct tcp_sock *tp = tcp_sk(sk);
2655 int err = __tcp_retransmit_skb(sk, skb);
2657 if (err == 0) {
2658 #if FASTRETRANS_DEBUG > 0
2659 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2660 net_dbg_ratelimited("retrans_out leaked\n");
2662 #endif
2663 if (!tp->retrans_out)
2664 tp->lost_retrans_low = tp->snd_nxt;
2665 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2666 tp->retrans_out += tcp_skb_pcount(skb);
2668 /* Save stamp of the first retransmit. */
2669 if (!tp->retrans_stamp)
2670 tp->retrans_stamp = tcp_skb_timestamp(skb);
2672 /* snd_nxt is stored to detect loss of retransmitted segment,
2673 * see tcp_input.c tcp_sacktag_write_queue().
2675 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2676 } else if (err != -EBUSY) {
2677 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2680 if (tp->undo_retrans < 0)
2681 tp->undo_retrans = 0;
2682 tp->undo_retrans += tcp_skb_pcount(skb);
2683 return err;
2686 /* Check if we forward retransmits are possible in the current
2687 * window/congestion state.
2689 static bool tcp_can_forward_retransmit(struct sock *sk)
2691 const struct inet_connection_sock *icsk = inet_csk(sk);
2692 const struct tcp_sock *tp = tcp_sk(sk);
2694 /* Forward retransmissions are possible only during Recovery. */
2695 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2696 return false;
2698 /* No forward retransmissions in Reno are possible. */
2699 if (tcp_is_reno(tp))
2700 return false;
2702 /* Yeah, we have to make difficult choice between forward transmission
2703 * and retransmission... Both ways have their merits...
2705 * For now we do not retransmit anything, while we have some new
2706 * segments to send. In the other cases, follow rule 3 for
2707 * NextSeg() specified in RFC3517.
2710 if (tcp_may_send_now(sk))
2711 return false;
2713 return true;
2716 /* This gets called after a retransmit timeout, and the initially
2717 * retransmitted data is acknowledged. It tries to continue
2718 * resending the rest of the retransmit queue, until either
2719 * we've sent it all or the congestion window limit is reached.
2720 * If doing SACK, the first ACK which comes back for a timeout
2721 * based retransmit packet might feed us FACK information again.
2722 * If so, we use it to avoid unnecessarily retransmissions.
2724 void tcp_xmit_retransmit_queue(struct sock *sk)
2726 const struct inet_connection_sock *icsk = inet_csk(sk);
2727 struct tcp_sock *tp = tcp_sk(sk);
2728 struct sk_buff *skb;
2729 struct sk_buff *hole = NULL;
2730 u32 last_lost;
2731 int mib_idx;
2732 int fwd_rexmitting = 0;
2734 if (!tp->packets_out)
2735 return;
2737 if (!tp->lost_out)
2738 tp->retransmit_high = tp->snd_una;
2740 if (tp->retransmit_skb_hint) {
2741 skb = tp->retransmit_skb_hint;
2742 last_lost = TCP_SKB_CB(skb)->end_seq;
2743 if (after(last_lost, tp->retransmit_high))
2744 last_lost = tp->retransmit_high;
2745 } else {
2746 skb = tcp_write_queue_head(sk);
2747 last_lost = tp->snd_una;
2750 tcp_for_write_queue_from(skb, sk) {
2751 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2753 if (skb == tcp_send_head(sk))
2754 break;
2755 /* we could do better than to assign each time */
2756 if (!hole)
2757 tp->retransmit_skb_hint = skb;
2759 /* Assume this retransmit will generate
2760 * only one packet for congestion window
2761 * calculation purposes. This works because
2762 * tcp_retransmit_skb() will chop up the
2763 * packet to be MSS sized and all the
2764 * packet counting works out.
2766 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2767 return;
2769 if (fwd_rexmitting) {
2770 begin_fwd:
2771 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2772 break;
2773 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2775 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2776 tp->retransmit_high = last_lost;
2777 if (!tcp_can_forward_retransmit(sk))
2778 break;
2779 /* Backtrack if necessary to non-L'ed skb */
2780 if (hole) {
2781 skb = hole;
2782 hole = NULL;
2784 fwd_rexmitting = 1;
2785 goto begin_fwd;
2787 } else if (!(sacked & TCPCB_LOST)) {
2788 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2789 hole = skb;
2790 continue;
2792 } else {
2793 last_lost = TCP_SKB_CB(skb)->end_seq;
2794 if (icsk->icsk_ca_state != TCP_CA_Loss)
2795 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2796 else
2797 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2800 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2801 continue;
2803 if (tcp_retransmit_skb(sk, skb))
2804 return;
2806 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2808 if (tcp_in_cwnd_reduction(sk))
2809 tp->prr_out += tcp_skb_pcount(skb);
2811 if (skb == tcp_write_queue_head(sk))
2812 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2813 inet_csk(sk)->icsk_rto,
2814 TCP_RTO_MAX);
2818 /* We allow to exceed memory limits for FIN packets to expedite
2819 * connection tear down and (memory) recovery.
2820 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2821 * or even be forced to close flow without any FIN.
2822 * In general, we want to allow one skb per socket to avoid hangs
2823 * with edge trigger epoll()
2825 void sk_forced_mem_schedule(struct sock *sk, int size)
2827 int amt, status;
2829 if (size <= sk->sk_forward_alloc)
2830 return;
2831 amt = sk_mem_pages(size);
2832 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2833 sk_memory_allocated_add(sk, amt, &status);
2836 /* Send a FIN. The caller locks the socket for us.
2837 * We should try to send a FIN packet really hard, but eventually give up.
2839 void tcp_send_fin(struct sock *sk)
2841 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2844 /* Optimization, tack on the FIN if we have one skb in write queue and
2845 * this skb was not yet sent, or we are under memory pressure.
2846 * Note: in the latter case, FIN packet will be sent after a timeout,
2847 * as TCP stack thinks it has already been transmitted.
2849 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2850 coalesce:
2851 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2852 TCP_SKB_CB(tskb)->end_seq++;
2853 tp->write_seq++;
2854 if (!tcp_send_head(sk)) {
2855 /* This means tskb was already sent.
2856 * Pretend we included the FIN on previous transmit.
2857 * We need to set tp->snd_nxt to the value it would have
2858 * if FIN had been sent. This is because retransmit path
2859 * does not change tp->snd_nxt.
2861 tp->snd_nxt++;
2862 return;
2864 } else {
2865 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2866 if (unlikely(!skb)) {
2867 if (tskb)
2868 goto coalesce;
2869 return;
2871 skb_reserve(skb, MAX_TCP_HEADER);
2872 sk_forced_mem_schedule(sk, skb->truesize);
2873 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2874 tcp_init_nondata_skb(skb, tp->write_seq,
2875 TCPHDR_ACK | TCPHDR_FIN);
2876 tcp_queue_skb(sk, skb);
2878 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2881 /* We get here when a process closes a file descriptor (either due to
2882 * an explicit close() or as a byproduct of exit()'ing) and there
2883 * was unread data in the receive queue. This behavior is recommended
2884 * by RFC 2525, section 2.17. -DaveM
2886 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2888 struct sk_buff *skb;
2890 /* NOTE: No TCP options attached and we never retransmit this. */
2891 skb = alloc_skb(MAX_TCP_HEADER, priority);
2892 if (!skb) {
2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2894 return;
2897 /* Reserve space for headers and prepare control bits. */
2898 skb_reserve(skb, MAX_TCP_HEADER);
2899 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2900 TCPHDR_ACK | TCPHDR_RST);
2901 /* Send it off. */
2902 if (tcp_transmit_skb(sk, skb, 0, priority))
2903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2905 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2908 /* Send a crossed SYN-ACK during socket establishment.
2909 * WARNING: This routine must only be called when we have already sent
2910 * a SYN packet that crossed the incoming SYN that caused this routine
2911 * to get called. If this assumption fails then the initial rcv_wnd
2912 * and rcv_wscale values will not be correct.
2914 int tcp_send_synack(struct sock *sk)
2916 struct sk_buff *skb;
2918 skb = tcp_write_queue_head(sk);
2919 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2920 pr_debug("%s: wrong queue state\n", __func__);
2921 return -EFAULT;
2923 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2924 if (skb_cloned(skb)) {
2925 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2926 if (!nskb)
2927 return -ENOMEM;
2928 tcp_unlink_write_queue(skb, sk);
2929 __skb_header_release(nskb);
2930 __tcp_add_write_queue_head(sk, nskb);
2931 sk_wmem_free_skb(sk, skb);
2932 sk->sk_wmem_queued += nskb->truesize;
2933 sk_mem_charge(sk, nskb->truesize);
2934 skb = nskb;
2937 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2938 tcp_ecn_send_synack(sk, skb);
2940 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2944 * tcp_make_synack - Prepare a SYN-ACK.
2945 * sk: listener socket
2946 * dst: dst entry attached to the SYNACK
2947 * req: request_sock pointer
2949 * Allocate one skb and build a SYNACK packet.
2950 * @dst is consumed : Caller should not use it again.
2952 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2953 struct request_sock *req,
2954 struct tcp_fastopen_cookie *foc)
2956 struct tcp_out_options opts;
2957 struct inet_request_sock *ireq = inet_rsk(req);
2958 struct tcp_sock *tp = tcp_sk(sk);
2959 struct tcphdr *th;
2960 struct sk_buff *skb;
2961 struct tcp_md5sig_key *md5 = NULL;
2962 int tcp_header_size;
2963 int mss;
2965 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2966 if (unlikely(!skb)) {
2967 dst_release(dst);
2968 return NULL;
2970 /* Reserve space for headers. */
2971 skb_reserve(skb, MAX_TCP_HEADER);
2973 skb_dst_set(skb, dst);
2975 mss = dst_metric_advmss(dst);
2976 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2977 mss = tp->rx_opt.user_mss;
2979 memset(&opts, 0, sizeof(opts));
2980 #ifdef CONFIG_SYN_COOKIES
2981 if (unlikely(req->cookie_ts))
2982 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2983 else
2984 #endif
2985 skb_mstamp_get(&skb->skb_mstamp);
2987 #ifdef CONFIG_TCP_MD5SIG
2988 rcu_read_lock();
2989 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
2990 #endif
2991 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
2992 foc) + sizeof(*th);
2994 skb_push(skb, tcp_header_size);
2995 skb_reset_transport_header(skb);
2997 th = tcp_hdr(skb);
2998 memset(th, 0, sizeof(struct tcphdr));
2999 th->syn = 1;
3000 th->ack = 1;
3001 tcp_ecn_make_synack(req, th, sk);
3002 th->source = htons(ireq->ir_num);
3003 th->dest = ireq->ir_rmt_port;
3004 /* Setting of flags are superfluous here for callers (and ECE is
3005 * not even correctly set)
3007 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3008 TCPHDR_SYN | TCPHDR_ACK);
3010 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3011 /* XXX data is queued and acked as is. No buffer/window check */
3012 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3014 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3015 th->window = htons(min(req->rcv_wnd, 65535U));
3016 tcp_options_write((__be32 *)(th + 1), tp, &opts);
3017 th->doff = (tcp_header_size >> 2);
3018 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3020 #ifdef CONFIG_TCP_MD5SIG
3021 /* Okay, we have all we need - do the md5 hash if needed */
3022 if (md5)
3023 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3024 md5, req_to_sk(req), skb);
3025 rcu_read_unlock();
3026 #endif
3028 /* Do not fool tcpdump (if any), clean our debris */
3029 skb->tstamp.tv64 = 0;
3030 return skb;
3032 EXPORT_SYMBOL(tcp_make_synack);
3034 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3036 struct inet_connection_sock *icsk = inet_csk(sk);
3037 const struct tcp_congestion_ops *ca;
3038 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3040 if (ca_key == TCP_CA_UNSPEC)
3041 return;
3043 rcu_read_lock();
3044 ca = tcp_ca_find_key(ca_key);
3045 if (likely(ca && try_module_get(ca->owner))) {
3046 module_put(icsk->icsk_ca_ops->owner);
3047 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3048 icsk->icsk_ca_ops = ca;
3050 rcu_read_unlock();
3053 /* Do all connect socket setups that can be done AF independent. */
3054 static void tcp_connect_init(struct sock *sk)
3056 const struct dst_entry *dst = __sk_dst_get(sk);
3057 struct tcp_sock *tp = tcp_sk(sk);
3058 __u8 rcv_wscale;
3060 /* We'll fix this up when we get a response from the other end.
3061 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3063 tp->tcp_header_len = sizeof(struct tcphdr) +
3064 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3066 #ifdef CONFIG_TCP_MD5SIG
3067 if (tp->af_specific->md5_lookup(sk, sk))
3068 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3069 #endif
3071 /* If user gave his TCP_MAXSEG, record it to clamp */
3072 if (tp->rx_opt.user_mss)
3073 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3074 tp->max_window = 0;
3075 tcp_mtup_init(sk);
3076 tcp_sync_mss(sk, dst_mtu(dst));
3078 tcp_ca_dst_init(sk, dst);
3080 if (!tp->window_clamp)
3081 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3082 tp->advmss = dst_metric_advmss(dst);
3083 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3084 tp->advmss = tp->rx_opt.user_mss;
3086 tcp_initialize_rcv_mss(sk);
3088 /* limit the window selection if the user enforce a smaller rx buffer */
3089 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3090 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3091 tp->window_clamp = tcp_full_space(sk);
3093 tcp_select_initial_window(tcp_full_space(sk),
3094 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3095 &tp->rcv_wnd,
3096 &tp->window_clamp,
3097 sysctl_tcp_window_scaling,
3098 &rcv_wscale,
3099 dst_metric(dst, RTAX_INITRWND));
3101 tp->rx_opt.rcv_wscale = rcv_wscale;
3102 tp->rcv_ssthresh = tp->rcv_wnd;
3104 sk->sk_err = 0;
3105 sock_reset_flag(sk, SOCK_DONE);
3106 tp->snd_wnd = 0;
3107 tcp_init_wl(tp, 0);
3108 tp->snd_una = tp->write_seq;
3109 tp->snd_sml = tp->write_seq;
3110 tp->snd_up = tp->write_seq;
3111 tp->snd_nxt = tp->write_seq;
3113 if (likely(!tp->repair))
3114 tp->rcv_nxt = 0;
3115 else
3116 tp->rcv_tstamp = tcp_time_stamp;
3117 tp->rcv_wup = tp->rcv_nxt;
3118 tp->copied_seq = tp->rcv_nxt;
3120 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3121 inet_csk(sk)->icsk_retransmits = 0;
3122 tcp_clear_retrans(tp);
3125 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3127 struct tcp_sock *tp = tcp_sk(sk);
3128 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3130 tcb->end_seq += skb->len;
3131 __skb_header_release(skb);
3132 __tcp_add_write_queue_tail(sk, skb);
3133 sk->sk_wmem_queued += skb->truesize;
3134 sk_mem_charge(sk, skb->truesize);
3135 tp->write_seq = tcb->end_seq;
3136 tp->packets_out += tcp_skb_pcount(skb);
3139 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3140 * queue a data-only packet after the regular SYN, such that regular SYNs
3141 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3142 * only the SYN sequence, the data are retransmitted in the first ACK.
3143 * If cookie is not cached or other error occurs, falls back to send a
3144 * regular SYN with Fast Open cookie request option.
3146 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3148 struct tcp_sock *tp = tcp_sk(sk);
3149 struct tcp_fastopen_request *fo = tp->fastopen_req;
3150 int syn_loss = 0, space, err = 0, copied;
3151 unsigned long last_syn_loss = 0;
3152 struct sk_buff *syn_data;
3154 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3155 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3156 &syn_loss, &last_syn_loss);
3157 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3158 if (syn_loss > 1 &&
3159 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3160 fo->cookie.len = -1;
3161 goto fallback;
3164 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3165 fo->cookie.len = -1;
3166 else if (fo->cookie.len <= 0)
3167 goto fallback;
3169 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3170 * user-MSS. Reserve maximum option space for middleboxes that add
3171 * private TCP options. The cost is reduced data space in SYN :(
3173 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3174 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3175 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3176 MAX_TCP_OPTION_SPACE;
3178 space = min_t(size_t, space, fo->size);
3180 /* limit to order-0 allocations */
3181 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3183 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3184 if (!syn_data)
3185 goto fallback;
3186 syn_data->ip_summed = CHECKSUM_PARTIAL;
3187 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3188 copied = copy_from_iter(skb_put(syn_data, space), space,
3189 &fo->data->msg_iter);
3190 if (unlikely(!copied)) {
3191 kfree_skb(syn_data);
3192 goto fallback;
3194 if (copied != space) {
3195 skb_trim(syn_data, copied);
3196 space = copied;
3199 /* No more data pending in inet_wait_for_connect() */
3200 if (space == fo->size)
3201 fo->data = NULL;
3202 fo->copied = space;
3204 tcp_connect_queue_skb(sk, syn_data);
3206 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3208 syn->skb_mstamp = syn_data->skb_mstamp;
3210 /* Now full SYN+DATA was cloned and sent (or not),
3211 * remove the SYN from the original skb (syn_data)
3212 * we keep in write queue in case of a retransmit, as we
3213 * also have the SYN packet (with no data) in the same queue.
3215 TCP_SKB_CB(syn_data)->seq++;
3216 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3217 if (!err) {
3218 tp->syn_data = (fo->copied > 0);
3219 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3220 goto done;
3223 fallback:
3224 /* Send a regular SYN with Fast Open cookie request option */
3225 if (fo->cookie.len > 0)
3226 fo->cookie.len = 0;
3227 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3228 if (err)
3229 tp->syn_fastopen = 0;
3230 done:
3231 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3232 return err;
3235 /* Build a SYN and send it off. */
3236 int tcp_connect(struct sock *sk)
3238 struct tcp_sock *tp = tcp_sk(sk);
3239 struct sk_buff *buff;
3240 int err;
3242 tcp_connect_init(sk);
3244 if (unlikely(tp->repair)) {
3245 tcp_finish_connect(sk, NULL);
3246 return 0;
3249 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3250 if (unlikely(!buff))
3251 return -ENOBUFS;
3253 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3254 tp->retrans_stamp = tcp_time_stamp;
3255 tcp_connect_queue_skb(sk, buff);
3256 tcp_ecn_send_syn(sk, buff);
3258 /* Send off SYN; include data in Fast Open. */
3259 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3260 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3261 if (err == -ECONNREFUSED)
3262 return err;
3264 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3265 * in order to make this packet get counted in tcpOutSegs.
3267 tp->snd_nxt = tp->write_seq;
3268 tp->pushed_seq = tp->write_seq;
3269 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3271 /* Timer for repeating the SYN until an answer. */
3272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3273 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3274 return 0;
3276 EXPORT_SYMBOL(tcp_connect);
3278 /* Send out a delayed ack, the caller does the policy checking
3279 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3280 * for details.
3282 void tcp_send_delayed_ack(struct sock *sk)
3284 struct inet_connection_sock *icsk = inet_csk(sk);
3285 int ato = icsk->icsk_ack.ato;
3286 unsigned long timeout;
3288 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3290 if (ato > TCP_DELACK_MIN) {
3291 const struct tcp_sock *tp = tcp_sk(sk);
3292 int max_ato = HZ / 2;
3294 if (icsk->icsk_ack.pingpong ||
3295 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3296 max_ato = TCP_DELACK_MAX;
3298 /* Slow path, intersegment interval is "high". */
3300 /* If some rtt estimate is known, use it to bound delayed ack.
3301 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3302 * directly.
3304 if (tp->srtt_us) {
3305 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3306 TCP_DELACK_MIN);
3308 if (rtt < max_ato)
3309 max_ato = rtt;
3312 ato = min(ato, max_ato);
3315 /* Stay within the limit we were given */
3316 timeout = jiffies + ato;
3318 /* Use new timeout only if there wasn't a older one earlier. */
3319 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3320 /* If delack timer was blocked or is about to expire,
3321 * send ACK now.
3323 if (icsk->icsk_ack.blocked ||
3324 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3325 tcp_send_ack(sk);
3326 return;
3329 if (!time_before(timeout, icsk->icsk_ack.timeout))
3330 timeout = icsk->icsk_ack.timeout;
3332 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3333 icsk->icsk_ack.timeout = timeout;
3334 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3337 /* This routine sends an ack and also updates the window. */
3338 void tcp_send_ack(struct sock *sk)
3340 struct sk_buff *buff;
3342 /* If we have been reset, we may not send again. */
3343 if (sk->sk_state == TCP_CLOSE)
3344 return;
3346 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3348 /* We are not putting this on the write queue, so
3349 * tcp_transmit_skb() will set the ownership to this
3350 * sock.
3352 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3353 if (!buff) {
3354 inet_csk_schedule_ack(sk);
3355 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3356 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3357 TCP_DELACK_MAX, TCP_RTO_MAX);
3358 return;
3361 /* Reserve space for headers and prepare control bits. */
3362 skb_reserve(buff, MAX_TCP_HEADER);
3363 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3365 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3366 * too much.
3367 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3368 * We also avoid tcp_wfree() overhead (cache line miss accessing
3369 * tp->tsq_flags) by using regular sock_wfree()
3371 skb_set_tcp_pure_ack(buff);
3373 /* Send it off, this clears delayed acks for us. */
3374 skb_mstamp_get(&buff->skb_mstamp);
3375 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3377 EXPORT_SYMBOL_GPL(tcp_send_ack);
3379 /* This routine sends a packet with an out of date sequence
3380 * number. It assumes the other end will try to ack it.
3382 * Question: what should we make while urgent mode?
3383 * 4.4BSD forces sending single byte of data. We cannot send
3384 * out of window data, because we have SND.NXT==SND.MAX...
3386 * Current solution: to send TWO zero-length segments in urgent mode:
3387 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3388 * out-of-date with SND.UNA-1 to probe window.
3390 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3392 struct tcp_sock *tp = tcp_sk(sk);
3393 struct sk_buff *skb;
3395 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3396 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3397 if (!skb)
3398 return -1;
3400 /* Reserve space for headers and set control bits. */
3401 skb_reserve(skb, MAX_TCP_HEADER);
3402 /* Use a previous sequence. This should cause the other
3403 * end to send an ack. Don't queue or clone SKB, just
3404 * send it.
3406 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3407 skb_mstamp_get(&skb->skb_mstamp);
3408 NET_INC_STATS_BH(sock_net(sk), mib);
3409 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3412 void tcp_send_window_probe(struct sock *sk)
3414 if (sk->sk_state == TCP_ESTABLISHED) {
3415 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3416 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3420 /* Initiate keepalive or window probe from timer. */
3421 int tcp_write_wakeup(struct sock *sk, int mib)
3423 struct tcp_sock *tp = tcp_sk(sk);
3424 struct sk_buff *skb;
3426 if (sk->sk_state == TCP_CLOSE)
3427 return -1;
3429 skb = tcp_send_head(sk);
3430 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3431 int err;
3432 unsigned int mss = tcp_current_mss(sk);
3433 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3435 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3436 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3438 /* We are probing the opening of a window
3439 * but the window size is != 0
3440 * must have been a result SWS avoidance ( sender )
3442 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3443 skb->len > mss) {
3444 seg_size = min(seg_size, mss);
3445 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3446 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3447 return -1;
3448 } else if (!tcp_skb_pcount(skb))
3449 tcp_set_skb_tso_segs(skb, mss);
3451 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3452 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3453 if (!err)
3454 tcp_event_new_data_sent(sk, skb);
3455 return err;
3456 } else {
3457 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3458 tcp_xmit_probe_skb(sk, 1, mib);
3459 return tcp_xmit_probe_skb(sk, 0, mib);
3463 /* A window probe timeout has occurred. If window is not closed send
3464 * a partial packet else a zero probe.
3466 void tcp_send_probe0(struct sock *sk)
3468 struct inet_connection_sock *icsk = inet_csk(sk);
3469 struct tcp_sock *tp = tcp_sk(sk);
3470 unsigned long probe_max;
3471 int err;
3473 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3475 if (tp->packets_out || !tcp_send_head(sk)) {
3476 /* Cancel probe timer, if it is not required. */
3477 icsk->icsk_probes_out = 0;
3478 icsk->icsk_backoff = 0;
3479 return;
3482 if (err <= 0) {
3483 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3484 icsk->icsk_backoff++;
3485 icsk->icsk_probes_out++;
3486 probe_max = TCP_RTO_MAX;
3487 } else {
3488 /* If packet was not sent due to local congestion,
3489 * do not backoff and do not remember icsk_probes_out.
3490 * Let local senders to fight for local resources.
3492 * Use accumulated backoff yet.
3494 if (!icsk->icsk_probes_out)
3495 icsk->icsk_probes_out = 1;
3496 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3498 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3499 tcp_probe0_when(sk, probe_max),
3500 TCP_RTO_MAX);
3503 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3505 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3506 struct flowi fl;
3507 int res;
3509 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3510 if (!res) {
3511 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3514 return res;
3516 EXPORT_SYMBOL(tcp_rtx_synack);