2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly
= UINT_MAX
;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat
);
68 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
69 int push_one
, gfp_t gfp
);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
74 struct inet_connection_sock
*icsk
= inet_csk(sk
);
75 struct tcp_sock
*tp
= tcp_sk(sk
);
76 unsigned int prior_packets
= tp
->packets_out
;
78 tcp_advance_send_head(sk
, skb
);
79 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
81 tp
->packets_out
+= tcp_skb_pcount(skb
);
82 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
83 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
87 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
99 const struct tcp_sock
*tp
= tcp_sk(sk
);
101 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
104 return tcp_wnd_end(tp
);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16
tcp_advertise_mss(struct sock
*sk
)
123 struct tcp_sock
*tp
= tcp_sk(sk
);
124 const struct dst_entry
*dst
= __sk_dst_get(sk
);
125 int mss
= tp
->advmss
;
128 unsigned int metric
= dst_metric_advmss(dst
);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock
*sk
, const struct dst_entry
*dst
)
143 struct tcp_sock
*tp
= tcp_sk(sk
);
144 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
145 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
146 u32 cwnd
= tp
->snd_cwnd
;
148 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
150 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
151 restart_cwnd
= min(restart_cwnd
, cwnd
);
153 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
155 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
156 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
157 tp
->snd_cwnd_used
= 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock
*tp
,
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 const u32 now
= tcp_time_stamp
;
166 const struct dst_entry
*dst
= __sk_dst_get(sk
);
168 if (sysctl_tcp_slow_start_after_idle
&&
169 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
170 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
177 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
&&
178 (!dst
|| !dst_metric(dst
, RTAX_QUICKACK
)))
179 icsk
->icsk_ack
.pingpong
= 1;
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
185 tcp_dec_quickack_mode(sk
, pkts
);
186 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
190 u32
tcp_default_init_rwnd(u32 mss
)
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
197 u32 init_rwnd
= TCP_INIT_CWND
* 2;
200 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
211 void tcp_select_initial_window(int __space
, __u32 mss
,
212 __u32
*rcv_wnd
, __u32
*window_clamp
,
213 int wscale_ok
, __u8
*rcv_wscale
,
216 unsigned int space
= (__space
< 0 ? 0 : __space
);
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp
== 0)
220 (*window_clamp
) = (65535 << 14);
221 space
= min(*window_clamp
, space
);
223 /* Quantize space offering to a multiple of mss if possible. */
225 space
= (space
/ mss
) * mss
;
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
235 if (sysctl_tcp_workaround_signed_windows
)
236 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
245 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
246 space
= min_t(u32
, space
, *window_clamp
);
247 while (space
> 65535 && (*rcv_wscale
) < 14) {
253 if (mss
> (1 << *rcv_wscale
)) {
254 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
255 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
256 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
262 EXPORT_SYMBOL(tcp_select_initial_window
);
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
269 static u16
tcp_select_window(struct sock
*sk
)
271 struct tcp_sock
*tp
= tcp_sk(sk
);
272 u32 old_win
= tp
->rcv_wnd
;
273 u32 cur_win
= tcp_receive_window(tp
);
274 u32 new_win
= __tcp_select_window(sk
);
276 /* Never shrink the offered window */
277 if (new_win
< cur_win
) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
283 * Relax Will Robinson.
286 NET_INC_STATS(sock_net(sk
),
287 LINUX_MIB_TCPWANTZEROWINDOWADV
);
288 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
290 tp
->rcv_wnd
= new_win
;
291 tp
->rcv_wup
= tp
->rcv_nxt
;
293 /* Make sure we do not exceed the maximum possible
296 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
297 new_win
= min(new_win
, MAX_TCP_WINDOW
);
299 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
301 /* RFC1323 scaling applied */
302 new_win
>>= tp
->rx_opt
.rcv_wscale
;
304 /* If we advertise zero window, disable fast path. */
308 NET_INC_STATS(sock_net(sk
),
309 LINUX_MIB_TCPTOZEROWINDOWADV
);
310 } else if (old_win
== 0) {
311 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
320 const struct tcp_sock
*tp
= tcp_sk(sk
);
322 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
323 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
324 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
325 else if (tcp_ca_needs_ecn(sk
))
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
332 struct tcp_sock
*tp
= tcp_sk(sk
);
333 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
334 tcp_ca_needs_ecn(sk
);
337 const struct dst_entry
*dst
= __sk_dst_get(sk
);
339 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
346 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
347 tp
->ecn_flags
= TCP_ECN_OK
;
348 if (tcp_ca_needs_ecn(sk
))
353 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
355 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
356 /* tp->ecn_flags are cleared at a later point in time when
357 * SYN ACK is ultimatively being received.
359 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
363 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
,
366 if (inet_rsk(req
)->ecn_ok
) {
368 if (tcp_ca_needs_ecn(sk
))
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
376 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
379 struct tcp_sock
*tp
= tcp_sk(sk
);
381 if (tp
->ecn_flags
& TCP_ECN_OK
) {
382 /* Not-retransmitted data segment: set ECT and inject CWR. */
383 if (skb
->len
!= tcp_header_len
&&
384 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
386 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
387 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
388 tcp_hdr(skb
)->cwr
= 1;
389 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
391 } else if (!tcp_ca_needs_ecn(sk
)) {
392 /* ACK or retransmitted segment: clear ECT|CE */
393 INET_ECN_dontxmit(sk
);
395 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
396 tcp_hdr(skb
)->ece
= 1;
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401 * auto increment end seqno.
403 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
405 skb
->ip_summed
= CHECKSUM_PARTIAL
;
408 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
409 TCP_SKB_CB(skb
)->sacked
= 0;
411 tcp_skb_pcount_set(skb
, 1);
413 TCP_SKB_CB(skb
)->seq
= seq
;
414 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
416 TCP_SKB_CB(skb
)->end_seq
= seq
;
419 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
421 return tp
->snd_una
!= tp
->snd_up
;
424 #define OPTION_SACK_ADVERTISE (1 << 0)
425 #define OPTION_TS (1 << 1)
426 #define OPTION_MD5 (1 << 2)
427 #define OPTION_WSCALE (1 << 3)
428 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
430 struct tcp_out_options
{
431 u16 options
; /* bit field of OPTION_* */
432 u16 mss
; /* 0 to disable */
433 u8 ws
; /* window scale, 0 to disable */
434 u8 num_sack_blocks
; /* number of SACK blocks to include */
435 u8 hash_size
; /* bytes in hash_location */
436 __u8
*hash_location
; /* temporary pointer, overloaded */
437 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
438 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
441 /* Write previously computed TCP options to the packet.
443 * Beware: Something in the Internet is very sensitive to the ordering of
444 * TCP options, we learned this through the hard way, so be careful here.
445 * Luckily we can at least blame others for their non-compliance but from
446 * inter-operability perspective it seems that we're somewhat stuck with
447 * the ordering which we have been using if we want to keep working with
448 * those broken things (not that it currently hurts anybody as there isn't
449 * particular reason why the ordering would need to be changed).
451 * At least SACK_PERM as the first option is known to lead to a disaster
452 * (but it may well be that other scenarios fail similarly).
454 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
455 struct tcp_out_options
*opts
)
457 u16 options
= opts
->options
; /* mungable copy */
459 if (unlikely(OPTION_MD5
& options
)) {
460 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
461 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
462 /* overload cookie hash location */
463 opts
->hash_location
= (__u8
*)ptr
;
467 if (unlikely(opts
->mss
)) {
468 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
469 (TCPOLEN_MSS
<< 16) |
473 if (likely(OPTION_TS
& options
)) {
474 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
475 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
476 (TCPOLEN_SACK_PERM
<< 16) |
477 (TCPOPT_TIMESTAMP
<< 8) |
479 options
&= ~OPTION_SACK_ADVERTISE
;
481 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
483 (TCPOPT_TIMESTAMP
<< 8) |
486 *ptr
++ = htonl(opts
->tsval
);
487 *ptr
++ = htonl(opts
->tsecr
);
490 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
491 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
493 (TCPOPT_SACK_PERM
<< 8) |
497 if (unlikely(OPTION_WSCALE
& options
)) {
498 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
499 (TCPOPT_WINDOW
<< 16) |
500 (TCPOLEN_WINDOW
<< 8) |
504 if (unlikely(opts
->num_sack_blocks
)) {
505 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
506 tp
->duplicate_sack
: tp
->selective_acks
;
509 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
512 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
513 TCPOLEN_SACK_PERBLOCK
)));
515 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
517 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
518 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
521 tp
->rx_opt
.dsack
= 0;
524 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
525 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
527 u32 len
; /* Fast Open option length */
530 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
531 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
532 TCPOPT_FASTOPEN_MAGIC
);
533 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
535 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
536 *p
++ = TCPOPT_FASTOPEN
;
540 memcpy(p
, foc
->val
, foc
->len
);
541 if ((len
& 3) == 2) {
542 p
[foc
->len
] = TCPOPT_NOP
;
543 p
[foc
->len
+ 1] = TCPOPT_NOP
;
545 ptr
+= (len
+ 3) >> 2;
549 /* Compute TCP options for SYN packets. This is not the final
550 * network wire format yet.
552 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
553 struct tcp_out_options
*opts
,
554 struct tcp_md5sig_key
**md5
)
556 struct tcp_sock
*tp
= tcp_sk(sk
);
557 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
558 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
560 #ifdef CONFIG_TCP_MD5SIG
561 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
563 opts
->options
|= OPTION_MD5
;
564 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
570 /* We always get an MSS option. The option bytes which will be seen in
571 * normal data packets should timestamps be used, must be in the MSS
572 * advertised. But we subtract them from tp->mss_cache so that
573 * calculations in tcp_sendmsg are simpler etc. So account for this
574 * fact here if necessary. If we don't do this correctly, as a
575 * receiver we won't recognize data packets as being full sized when we
576 * should, and thus we won't abide by the delayed ACK rules correctly.
577 * SACKs don't matter, we never delay an ACK when we have any of those
579 opts
->mss
= tcp_advertise_mss(sk
);
580 remaining
-= TCPOLEN_MSS_ALIGNED
;
582 if (likely(sysctl_tcp_timestamps
&& !*md5
)) {
583 opts
->options
|= OPTION_TS
;
584 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
585 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
586 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
588 if (likely(sysctl_tcp_window_scaling
)) {
589 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
590 opts
->options
|= OPTION_WSCALE
;
591 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
593 if (likely(sysctl_tcp_sack
)) {
594 opts
->options
|= OPTION_SACK_ADVERTISE
;
595 if (unlikely(!(OPTION_TS
& opts
->options
)))
596 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
599 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
600 u32 need
= fastopen
->cookie
.len
;
602 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
603 TCPOLEN_FASTOPEN_BASE
;
604 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
605 if (remaining
>= need
) {
606 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
607 opts
->fastopen_cookie
= &fastopen
->cookie
;
609 tp
->syn_fastopen
= 1;
610 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
614 return MAX_TCP_OPTION_SPACE
- remaining
;
617 /* Set up TCP options for SYN-ACKs. */
618 static unsigned int tcp_synack_options(struct sock
*sk
,
619 struct request_sock
*req
,
620 unsigned int mss
, struct sk_buff
*skb
,
621 struct tcp_out_options
*opts
,
622 const struct tcp_md5sig_key
*md5
,
623 struct tcp_fastopen_cookie
*foc
)
625 struct inet_request_sock
*ireq
= inet_rsk(req
);
626 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
628 #ifdef CONFIG_TCP_MD5SIG
630 opts
->options
|= OPTION_MD5
;
631 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
633 /* We can't fit any SACK blocks in a packet with MD5 + TS
634 * options. There was discussion about disabling SACK
635 * rather than TS in order to fit in better with old,
636 * buggy kernels, but that was deemed to be unnecessary.
638 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
642 /* We always send an MSS option. */
644 remaining
-= TCPOLEN_MSS_ALIGNED
;
646 if (likely(ireq
->wscale_ok
)) {
647 opts
->ws
= ireq
->rcv_wscale
;
648 opts
->options
|= OPTION_WSCALE
;
649 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
651 if (likely(ireq
->tstamp_ok
)) {
652 opts
->options
|= OPTION_TS
;
653 opts
->tsval
= tcp_skb_timestamp(skb
);
654 opts
->tsecr
= req
->ts_recent
;
655 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
657 if (likely(ireq
->sack_ok
)) {
658 opts
->options
|= OPTION_SACK_ADVERTISE
;
659 if (unlikely(!ireq
->tstamp_ok
))
660 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
662 if (foc
!= NULL
&& foc
->len
>= 0) {
665 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
666 TCPOLEN_FASTOPEN_BASE
;
667 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
668 if (remaining
>= need
) {
669 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
670 opts
->fastopen_cookie
= foc
;
675 return MAX_TCP_OPTION_SPACE
- remaining
;
678 /* Compute TCP options for ESTABLISHED sockets. This is not the
679 * final wire format yet.
681 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
682 struct tcp_out_options
*opts
,
683 struct tcp_md5sig_key
**md5
)
685 struct tcp_sock
*tp
= tcp_sk(sk
);
686 unsigned int size
= 0;
687 unsigned int eff_sacks
;
691 #ifdef CONFIG_TCP_MD5SIG
692 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
693 if (unlikely(*md5
)) {
694 opts
->options
|= OPTION_MD5
;
695 size
+= TCPOLEN_MD5SIG_ALIGNED
;
701 if (likely(tp
->rx_opt
.tstamp_ok
)) {
702 opts
->options
|= OPTION_TS
;
703 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
704 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
705 size
+= TCPOLEN_TSTAMP_ALIGNED
;
708 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
709 if (unlikely(eff_sacks
)) {
710 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
711 opts
->num_sack_blocks
=
712 min_t(unsigned int, eff_sacks
,
713 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
714 TCPOLEN_SACK_PERBLOCK
);
715 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
716 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
723 /* TCP SMALL QUEUES (TSQ)
725 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
726 * to reduce RTT and bufferbloat.
727 * We do this using a special skb destructor (tcp_wfree).
729 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
730 * needs to be reallocated in a driver.
731 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
733 * Since transmit from skb destructor is forbidden, we use a tasklet
734 * to process all sockets that eventually need to send more skbs.
735 * We use one tasklet per cpu, with its own queue of sockets.
738 struct tasklet_struct tasklet
;
739 struct list_head head
; /* queue of tcp sockets */
741 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
743 static void tcp_tsq_handler(struct sock
*sk
)
745 if ((1 << sk
->sk_state
) &
746 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
747 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
748 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
752 * One tasklet per cpu tries to send more skbs.
753 * We run in tasklet context but need to disable irqs when
754 * transferring tsq->head because tcp_wfree() might
755 * interrupt us (non NAPI drivers)
757 static void tcp_tasklet_func(unsigned long data
)
759 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
762 struct list_head
*q
, *n
;
766 local_irq_save(flags
);
767 list_splice_init(&tsq
->head
, &list
);
768 local_irq_restore(flags
);
770 list_for_each_safe(q
, n
, &list
) {
771 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
772 list_del(&tp
->tsq_node
);
774 sk
= (struct sock
*)tp
;
777 if (!sock_owned_by_user(sk
)) {
780 /* defer the work to tcp_release_cb() */
781 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
785 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
790 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
791 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
792 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
793 (1UL << TCP_MTU_REDUCED_DEFERRED))
795 * tcp_release_cb - tcp release_sock() callback
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
801 void tcp_release_cb(struct sock
*sk
)
803 struct tcp_sock
*tp
= tcp_sk(sk
);
804 unsigned long flags
, nflags
;
806 /* perform an atomic operation only if at least one flag is set */
808 flags
= tp
->tsq_flags
;
809 if (!(flags
& TCP_DEFERRED_ALL
))
811 nflags
= flags
& ~TCP_DEFERRED_ALL
;
812 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
814 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
817 /* Here begins the tricky part :
818 * We are called from release_sock() with :
820 * 2) sk_lock.slock spinlock held
821 * 3) socket owned by us (sk->sk_lock.owned == 1)
823 * But following code is meant to be called from BH handlers,
824 * so we should keep BH disabled, but early release socket ownership
826 sock_release_ownership(sk
);
828 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
829 tcp_write_timer_handler(sk
);
832 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
833 tcp_delack_timer_handler(sk
);
836 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
837 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
841 EXPORT_SYMBOL(tcp_release_cb
);
843 void __init
tcp_tasklet_init(void)
847 for_each_possible_cpu(i
) {
848 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
850 INIT_LIST_HEAD(&tsq
->head
);
851 tasklet_init(&tsq
->tasklet
,
858 * Write buffer destructor automatically called from kfree_skb.
859 * We can't xmit new skbs from this context, as we might already
862 void tcp_wfree(struct sk_buff
*skb
)
864 struct sock
*sk
= skb
->sk
;
865 struct tcp_sock
*tp
= tcp_sk(sk
);
868 /* Keep one reference on sk_wmem_alloc.
869 * Will be released by sk_free() from here or tcp_tasklet_func()
871 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
873 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
874 * Wait until our queues (qdisc + devices) are drained.
876 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
877 * - chance for incoming ACK (processed by another cpu maybe)
878 * to migrate this flow (skb->ooo_okay will be eventually set)
880 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
883 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
884 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
886 struct tsq_tasklet
*tsq
;
888 /* queue this socket to tasklet queue */
889 local_irq_save(flags
);
890 tsq
= this_cpu_ptr(&tsq_tasklet
);
891 list_add(&tp
->tsq_node
, &tsq
->head
);
892 tasklet_schedule(&tsq
->tasklet
);
893 local_irq_restore(flags
);
900 /* This routine actually transmits TCP packets queued in by
901 * tcp_do_sendmsg(). This is used by both the initial
902 * transmission and possible later retransmissions.
903 * All SKB's seen here are completely headerless. It is our
904 * job to build the TCP header, and pass the packet down to
905 * IP so it can do the same plus pass the packet off to the
908 * We are working here with either a clone of the original
909 * SKB, or a fresh unique copy made by the retransmit engine.
911 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
914 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
915 struct inet_sock
*inet
;
917 struct tcp_skb_cb
*tcb
;
918 struct tcp_out_options opts
;
919 unsigned int tcp_options_size
, tcp_header_size
;
920 struct tcp_md5sig_key
*md5
;
924 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
927 skb_mstamp_get(&skb
->skb_mstamp
);
929 if (unlikely(skb_cloned(skb
)))
930 skb
= pskb_copy(skb
, gfp_mask
);
932 skb
= skb_clone(skb
, gfp_mask
);
939 tcb
= TCP_SKB_CB(skb
);
940 memset(&opts
, 0, sizeof(opts
));
942 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
943 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
945 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
947 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
949 if (tcp_packets_in_flight(tp
) == 0)
950 tcp_ca_event(sk
, CA_EVENT_TX_START
);
952 /* if no packet is in qdisc/device queue, then allow XPS to select
953 * another queue. We can be called from tcp_tsq_handler()
954 * which holds one reference to sk_wmem_alloc.
956 * TODO: Ideally, in-flight pure ACK packets should not matter here.
957 * One way to get this would be to set skb->truesize = 2 on them.
959 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
961 skb_push(skb
, tcp_header_size
);
962 skb_reset_transport_header(skb
);
966 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? sock_wfree
: tcp_wfree
;
967 skb_set_hash_from_sk(skb
, sk
);
968 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
970 /* Build TCP header and checksum it. */
972 th
->source
= inet
->inet_sport
;
973 th
->dest
= inet
->inet_dport
;
974 th
->seq
= htonl(tcb
->seq
);
975 th
->ack_seq
= htonl(tp
->rcv_nxt
);
976 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
979 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
980 /* RFC1323: The window in SYN & SYN/ACK segments
983 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
985 th
->window
= htons(tcp_select_window(sk
));
990 /* The urg_mode check is necessary during a below snd_una win probe */
991 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
992 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
993 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
995 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
996 th
->urg_ptr
= htons(0xFFFF);
1001 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1002 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1003 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
1004 tcp_ecn_send(sk
, skb
, tcp_header_size
);
1006 #ifdef CONFIG_TCP_MD5SIG
1007 /* Calculate the MD5 hash, as we have all we need now */
1009 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1010 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1015 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1017 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1018 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1020 if (skb
->len
!= tcp_header_size
)
1021 tcp_event_data_sent(tp
, sk
);
1023 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1024 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1025 tcp_skb_pcount(skb
));
1027 tp
->segs_out
+= tcp_skb_pcount(skb
);
1028 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1029 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1030 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1032 /* Our usage of tstamp should remain private */
1033 skb
->tstamp
.tv64
= 0;
1035 /* Cleanup our debris for IP stacks */
1036 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1037 sizeof(struct inet6_skb_parm
)));
1039 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1041 if (likely(err
<= 0))
1046 return net_xmit_eval(err
);
1049 /* This routine just queues the buffer for sending.
1051 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1052 * otherwise socket can stall.
1054 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1056 struct tcp_sock
*tp
= tcp_sk(sk
);
1058 /* Advance write_seq and place onto the write_queue. */
1059 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1060 __skb_header_release(skb
);
1061 tcp_add_write_queue_tail(sk
, skb
);
1062 sk
->sk_wmem_queued
+= skb
->truesize
;
1063 sk_mem_charge(sk
, skb
->truesize
);
1066 /* Initialize TSO segments for a packet. */
1067 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1069 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1070 /* Avoid the costly divide in the normal
1073 tcp_skb_pcount_set(skb
, 1);
1074 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1076 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1077 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1081 /* When a modification to fackets out becomes necessary, we need to check
1082 * skb is counted to fackets_out or not.
1084 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1087 struct tcp_sock
*tp
= tcp_sk(sk
);
1089 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1092 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1093 tp
->fackets_out
-= decr
;
1096 /* Pcount in the middle of the write queue got changed, we need to do various
1097 * tweaks to fix counters
1099 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1101 struct tcp_sock
*tp
= tcp_sk(sk
);
1103 tp
->packets_out
-= decr
;
1105 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1106 tp
->sacked_out
-= decr
;
1107 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1108 tp
->retrans_out
-= decr
;
1109 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1110 tp
->lost_out
-= decr
;
1112 /* Reno case is special. Sigh... */
1113 if (tcp_is_reno(tp
) && decr
> 0)
1114 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1116 tcp_adjust_fackets_out(sk
, skb
, decr
);
1118 if (tp
->lost_skb_hint
&&
1119 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1120 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1121 tp
->lost_cnt_hint
-= decr
;
1123 tcp_verify_left_out(tp
);
1126 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1128 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1130 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1131 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1132 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1133 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1135 shinfo
->tx_flags
&= ~tsflags
;
1136 shinfo2
->tx_flags
|= tsflags
;
1137 swap(shinfo
->tskey
, shinfo2
->tskey
);
1141 /* Function to create two new TCP segments. Shrinks the given segment
1142 * to the specified size and appends a new segment with the rest of the
1143 * packet to the list. This won't be called frequently, I hope.
1144 * Remember, these are still headerless SKBs at this point.
1146 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1147 unsigned int mss_now
, gfp_t gfp
)
1149 struct tcp_sock
*tp
= tcp_sk(sk
);
1150 struct sk_buff
*buff
;
1151 int nsize
, old_factor
;
1155 if (WARN_ON(len
> skb
->len
))
1158 nsize
= skb_headlen(skb
) - len
;
1162 if (skb_unclone(skb
, gfp
))
1165 /* Get a new skb... force flag on. */
1166 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1168 return -ENOMEM
; /* We'll just try again later. */
1170 sk
->sk_wmem_queued
+= buff
->truesize
;
1171 sk_mem_charge(sk
, buff
->truesize
);
1172 nlen
= skb
->len
- len
- nsize
;
1173 buff
->truesize
+= nlen
;
1174 skb
->truesize
-= nlen
;
1176 /* Correct the sequence numbers. */
1177 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1178 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1179 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1181 /* PSH and FIN should only be set in the second packet. */
1182 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1183 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1184 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1185 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1187 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1188 /* Copy and checksum data tail into the new buffer. */
1189 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1190 skb_put(buff
, nsize
),
1195 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1197 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1198 skb_split(skb
, buff
, len
);
1201 buff
->ip_summed
= skb
->ip_summed
;
1203 buff
->tstamp
= skb
->tstamp
;
1204 tcp_fragment_tstamp(skb
, buff
);
1206 old_factor
= tcp_skb_pcount(skb
);
1208 /* Fix up tso_factor for both original and new SKB. */
1209 tcp_set_skb_tso_segs(skb
, mss_now
);
1210 tcp_set_skb_tso_segs(buff
, mss_now
);
1212 /* If this packet has been sent out already, we must
1213 * adjust the various packet counters.
1215 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1216 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1217 tcp_skb_pcount(buff
);
1220 tcp_adjust_pcount(sk
, skb
, diff
);
1223 /* Link BUFF into the send queue. */
1224 __skb_header_release(buff
);
1225 tcp_insert_write_queue_after(skb
, buff
, sk
);
1230 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1231 * eventually). The difference is that pulled data not copied, but
1232 * immediately discarded.
1234 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1236 struct skb_shared_info
*shinfo
;
1239 eat
= min_t(int, len
, skb_headlen(skb
));
1241 __skb_pull(skb
, eat
);
1248 shinfo
= skb_shinfo(skb
);
1249 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1250 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1253 skb_frag_unref(skb
, i
);
1256 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1258 shinfo
->frags
[k
].page_offset
+= eat
;
1259 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1265 shinfo
->nr_frags
= k
;
1267 skb_reset_tail_pointer(skb
);
1268 skb
->data_len
-= len
;
1269 skb
->len
= skb
->data_len
;
1272 /* Remove acked data from a packet in the transmit queue. */
1273 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1275 if (skb_unclone(skb
, GFP_ATOMIC
))
1278 __pskb_trim_head(skb
, len
);
1280 TCP_SKB_CB(skb
)->seq
+= len
;
1281 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1283 skb
->truesize
-= len
;
1284 sk
->sk_wmem_queued
-= len
;
1285 sk_mem_uncharge(sk
, len
);
1286 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1288 /* Any change of skb->len requires recalculation of tso factor. */
1289 if (tcp_skb_pcount(skb
) > 1)
1290 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1295 /* Calculate MSS not accounting any TCP options. */
1296 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1298 const struct tcp_sock
*tp
= tcp_sk(sk
);
1299 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1302 /* Calculate base mss without TCP options:
1303 It is MMS_S - sizeof(tcphdr) of rfc1122
1305 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1307 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1308 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1309 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1311 if (dst
&& dst_allfrag(dst
))
1312 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1315 /* Clamp it (mss_clamp does not include tcp options) */
1316 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1317 mss_now
= tp
->rx_opt
.mss_clamp
;
1319 /* Now subtract optional transport overhead */
1320 mss_now
-= icsk
->icsk_ext_hdr_len
;
1322 /* Then reserve room for full set of TCP options and 8 bytes of data */
1328 /* Calculate MSS. Not accounting for SACKs here. */
1329 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1331 /* Subtract TCP options size, not including SACKs */
1332 return __tcp_mtu_to_mss(sk
, pmtu
) -
1333 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1336 /* Inverse of above */
1337 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1339 const struct tcp_sock
*tp
= tcp_sk(sk
);
1340 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1344 tp
->tcp_header_len
+
1345 icsk
->icsk_ext_hdr_len
+
1346 icsk
->icsk_af_ops
->net_header_len
;
1348 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1349 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1350 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1352 if (dst
&& dst_allfrag(dst
))
1353 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1358 /* MTU probing init per socket */
1359 void tcp_mtup_init(struct sock
*sk
)
1361 struct tcp_sock
*tp
= tcp_sk(sk
);
1362 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1363 struct net
*net
= sock_net(sk
);
1365 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1366 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1367 icsk
->icsk_af_ops
->net_header_len
;
1368 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1369 icsk
->icsk_mtup
.probe_size
= 0;
1370 if (icsk
->icsk_mtup
.enabled
)
1371 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1373 EXPORT_SYMBOL(tcp_mtup_init
);
1375 /* This function synchronize snd mss to current pmtu/exthdr set.
1377 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1378 for TCP options, but includes only bare TCP header.
1380 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1381 It is minimum of user_mss and mss received with SYN.
1382 It also does not include TCP options.
1384 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1386 tp->mss_cache is current effective sending mss, including
1387 all tcp options except for SACKs. It is evaluated,
1388 taking into account current pmtu, but never exceeds
1389 tp->rx_opt.mss_clamp.
1391 NOTE1. rfc1122 clearly states that advertised MSS
1392 DOES NOT include either tcp or ip options.
1394 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1395 are READ ONLY outside this function. --ANK (980731)
1397 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1399 struct tcp_sock
*tp
= tcp_sk(sk
);
1400 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1403 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1404 icsk
->icsk_mtup
.search_high
= pmtu
;
1406 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1407 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1409 /* And store cached results */
1410 icsk
->icsk_pmtu_cookie
= pmtu
;
1411 if (icsk
->icsk_mtup
.enabled
)
1412 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1413 tp
->mss_cache
= mss_now
;
1417 EXPORT_SYMBOL(tcp_sync_mss
);
1419 /* Compute the current effective MSS, taking SACKs and IP options,
1420 * and even PMTU discovery events into account.
1422 unsigned int tcp_current_mss(struct sock
*sk
)
1424 const struct tcp_sock
*tp
= tcp_sk(sk
);
1425 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1427 unsigned int header_len
;
1428 struct tcp_out_options opts
;
1429 struct tcp_md5sig_key
*md5
;
1431 mss_now
= tp
->mss_cache
;
1434 u32 mtu
= dst_mtu(dst
);
1435 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1436 mss_now
= tcp_sync_mss(sk
, mtu
);
1439 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1440 sizeof(struct tcphdr
);
1441 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1442 * some common options. If this is an odd packet (because we have SACK
1443 * blocks etc) then our calculated header_len will be different, and
1444 * we have to adjust mss_now correspondingly */
1445 if (header_len
!= tp
->tcp_header_len
) {
1446 int delta
= (int) header_len
- tp
->tcp_header_len
;
1453 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1454 * As additional protections, we do not touch cwnd in retransmission phases,
1455 * and if application hit its sndbuf limit recently.
1457 static void tcp_cwnd_application_limited(struct sock
*sk
)
1459 struct tcp_sock
*tp
= tcp_sk(sk
);
1461 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1462 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1463 /* Limited by application or receiver window. */
1464 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1465 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1466 if (win_used
< tp
->snd_cwnd
) {
1467 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1468 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1470 tp
->snd_cwnd_used
= 0;
1472 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1475 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1477 struct tcp_sock
*tp
= tcp_sk(sk
);
1479 /* Track the maximum number of outstanding packets in each
1480 * window, and remember whether we were cwnd-limited then.
1482 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1483 tp
->packets_out
> tp
->max_packets_out
) {
1484 tp
->max_packets_out
= tp
->packets_out
;
1485 tp
->max_packets_seq
= tp
->snd_nxt
;
1486 tp
->is_cwnd_limited
= is_cwnd_limited
;
1489 if (tcp_is_cwnd_limited(sk
)) {
1490 /* Network is feed fully. */
1491 tp
->snd_cwnd_used
= 0;
1492 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1494 /* Network starves. */
1495 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1496 tp
->snd_cwnd_used
= tp
->packets_out
;
1498 if (sysctl_tcp_slow_start_after_idle
&&
1499 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1500 tcp_cwnd_application_limited(sk
);
1504 /* Minshall's variant of the Nagle send check. */
1505 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1507 return after(tp
->snd_sml
, tp
->snd_una
) &&
1508 !after(tp
->snd_sml
, tp
->snd_nxt
);
1511 /* Update snd_sml if this skb is under mss
1512 * Note that a TSO packet might end with a sub-mss segment
1513 * The test is really :
1514 * if ((skb->len % mss) != 0)
1515 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1516 * But we can avoid doing the divide again given we already have
1517 * skb_pcount = skb->len / mss_now
1519 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1520 const struct sk_buff
*skb
)
1522 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1523 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1526 /* Return false, if packet can be sent now without violation Nagle's rules:
1527 * 1. It is full sized. (provided by caller in %partial bool)
1528 * 2. Or it contains FIN. (already checked by caller)
1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1531 * With Minshall's modification: all sent small packets are ACKed.
1533 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1537 ((nonagle
& TCP_NAGLE_CORK
) ||
1538 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1541 /* Return how many segs we'd like on a TSO packet,
1542 * to send one TSO packet per ms
1544 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1548 bytes
= min(sk
->sk_pacing_rate
>> 10,
1549 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1551 /* Goal is to send at least one packet per ms,
1552 * not one big TSO packet every 100 ms.
1553 * This preserves ACK clocking and is consistent
1554 * with tcp_tso_should_defer() heuristic.
1556 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1558 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1561 /* Returns the portion of skb which can be sent right away */
1562 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1563 const struct sk_buff
*skb
,
1564 unsigned int mss_now
,
1565 unsigned int max_segs
,
1568 const struct tcp_sock
*tp
= tcp_sk(sk
);
1569 u32 partial
, needed
, window
, max_len
;
1571 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1572 max_len
= mss_now
* max_segs
;
1574 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1577 needed
= min(skb
->len
, window
);
1579 if (max_len
<= needed
)
1582 partial
= needed
% mss_now
;
1583 /* If last segment is not a full MSS, check if Nagle rules allow us
1584 * to include this last segment in this skb.
1585 * Otherwise, we'll split the skb at last MSS boundary
1587 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1588 return needed
- partial
;
1593 /* Can at least one segment of SKB be sent right now, according to the
1594 * congestion window rules? If so, return how many segments are allowed.
1596 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1597 const struct sk_buff
*skb
)
1599 u32 in_flight
, cwnd
, halfcwnd
;
1601 /* Don't be strict about the congestion window for the final FIN. */
1602 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1603 tcp_skb_pcount(skb
) == 1)
1606 in_flight
= tcp_packets_in_flight(tp
);
1607 cwnd
= tp
->snd_cwnd
;
1608 if (in_flight
>= cwnd
)
1611 /* For better scheduling, ensure we have at least
1612 * 2 GSO packets in flight.
1614 halfcwnd
= max(cwnd
>> 1, 1U);
1615 return min(halfcwnd
, cwnd
- in_flight
);
1618 /* Initialize TSO state of a skb.
1619 * This must be invoked the first time we consider transmitting
1620 * SKB onto the wire.
1622 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1624 int tso_segs
= tcp_skb_pcount(skb
);
1626 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1627 tcp_set_skb_tso_segs(skb
, mss_now
);
1628 tso_segs
= tcp_skb_pcount(skb
);
1634 /* Return true if the Nagle test allows this packet to be
1637 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1638 unsigned int cur_mss
, int nonagle
)
1640 /* Nagle rule does not apply to frames, which sit in the middle of the
1641 * write_queue (they have no chances to get new data).
1643 * This is implemented in the callers, where they modify the 'nonagle'
1644 * argument based upon the location of SKB in the send queue.
1646 if (nonagle
& TCP_NAGLE_PUSH
)
1649 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1650 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1653 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1659 /* Does at least the first segment of SKB fit into the send window? */
1660 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1661 const struct sk_buff
*skb
,
1662 unsigned int cur_mss
)
1664 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1666 if (skb
->len
> cur_mss
)
1667 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1669 return !after(end_seq
, tcp_wnd_end(tp
));
1672 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1673 * should be put on the wire right now. If so, it returns the number of
1674 * packets allowed by the congestion window.
1676 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1677 unsigned int cur_mss
, int nonagle
)
1679 const struct tcp_sock
*tp
= tcp_sk(sk
);
1680 unsigned int cwnd_quota
;
1682 tcp_init_tso_segs(skb
, cur_mss
);
1684 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1687 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1688 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1694 /* Test if sending is allowed right now. */
1695 bool tcp_may_send_now(struct sock
*sk
)
1697 const struct tcp_sock
*tp
= tcp_sk(sk
);
1698 struct sk_buff
*skb
= tcp_send_head(sk
);
1701 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1702 (tcp_skb_is_last(sk
, skb
) ?
1703 tp
->nonagle
: TCP_NAGLE_PUSH
));
1706 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1707 * which is put after SKB on the list. It is very much like
1708 * tcp_fragment() except that it may make several kinds of assumptions
1709 * in order to speed up the splitting operation. In particular, we
1710 * know that all the data is in scatter-gather pages, and that the
1711 * packet has never been sent out before (and thus is not cloned).
1713 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1714 unsigned int mss_now
, gfp_t gfp
)
1716 struct sk_buff
*buff
;
1717 int nlen
= skb
->len
- len
;
1720 /* All of a TSO frame must be composed of paged data. */
1721 if (skb
->len
!= skb
->data_len
)
1722 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1724 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1725 if (unlikely(!buff
))
1728 sk
->sk_wmem_queued
+= buff
->truesize
;
1729 sk_mem_charge(sk
, buff
->truesize
);
1730 buff
->truesize
+= nlen
;
1731 skb
->truesize
-= nlen
;
1733 /* Correct the sequence numbers. */
1734 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1735 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1736 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1738 /* PSH and FIN should only be set in the second packet. */
1739 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1740 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1741 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1743 /* This packet was never sent out yet, so no SACK bits. */
1744 TCP_SKB_CB(buff
)->sacked
= 0;
1746 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1747 skb_split(skb
, buff
, len
);
1748 tcp_fragment_tstamp(skb
, buff
);
1750 /* Fix up tso_factor for both original and new SKB. */
1751 tcp_set_skb_tso_segs(skb
, mss_now
);
1752 tcp_set_skb_tso_segs(buff
, mss_now
);
1754 /* Link BUFF into the send queue. */
1755 __skb_header_release(buff
);
1756 tcp_insert_write_queue_after(skb
, buff
, sk
);
1761 /* Try to defer sending, if possible, in order to minimize the amount
1762 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1764 * This algorithm is from John Heffner.
1766 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1767 bool *is_cwnd_limited
, u32 max_segs
)
1769 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1770 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1771 struct tcp_sock
*tp
= tcp_sk(sk
);
1772 struct skb_mstamp now
;
1773 struct sk_buff
*head
;
1776 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1779 if (!((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Open
| TCPF_CA_CWR
)))
1782 /* Avoid bursty behavior by allowing defer
1783 * only if the last write was recent.
1785 if ((s32
)(tcp_time_stamp
- tp
->lsndtime
) > 0)
1788 in_flight
= tcp_packets_in_flight(tp
);
1790 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1792 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1794 /* From in_flight test above, we know that cwnd > in_flight. */
1795 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1797 limit
= min(send_win
, cong_win
);
1799 /* If a full-sized TSO skb can be sent, do it. */
1800 if (limit
>= max_segs
* tp
->mss_cache
)
1803 /* Middle in queue won't get any more data, full sendable already? */
1804 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1807 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1809 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1811 /* If at least some fraction of a window is available,
1814 chunk
/= win_divisor
;
1818 /* Different approach, try not to defer past a single
1819 * ACK. Receiver should ACK every other full sized
1820 * frame, so if we have space for more than 3 frames
1823 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1827 head
= tcp_write_queue_head(sk
);
1828 skb_mstamp_get(&now
);
1829 age
= skb_mstamp_us_delta(&now
, &head
->skb_mstamp
);
1830 /* If next ACK is likely to come too late (half srtt), do not defer */
1831 if (age
< (tp
->srtt_us
>> 4))
1834 /* Ok, it looks like it is advisable to defer. */
1836 if (cong_win
< send_win
&& cong_win
< skb
->len
)
1837 *is_cwnd_limited
= true;
1845 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1847 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1848 struct tcp_sock
*tp
= tcp_sk(sk
);
1849 struct net
*net
= sock_net(sk
);
1853 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1854 delta
= tcp_time_stamp
- icsk
->icsk_mtup
.probe_timestamp
;
1855 if (unlikely(delta
>= interval
* HZ
)) {
1856 int mss
= tcp_current_mss(sk
);
1858 /* Update current search range */
1859 icsk
->icsk_mtup
.probe_size
= 0;
1860 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1861 sizeof(struct tcphdr
) +
1862 icsk
->icsk_af_ops
->net_header_len
;
1863 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
1865 /* Update probe time stamp */
1866 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1870 /* Create a new MTU probe if we are ready.
1871 * MTU probe is regularly attempting to increase the path MTU by
1872 * deliberately sending larger packets. This discovers routing
1873 * changes resulting in larger path MTUs.
1875 * Returns 0 if we should wait to probe (no cwnd available),
1876 * 1 if a probe was sent,
1879 static int tcp_mtu_probe(struct sock
*sk
)
1881 struct tcp_sock
*tp
= tcp_sk(sk
);
1882 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1883 struct sk_buff
*skb
, *nskb
, *next
;
1884 struct net
*net
= sock_net(sk
);
1892 /* Not currently probing/verifying,
1894 * have enough cwnd, and
1895 * not SACKing (the variable headers throw things off) */
1896 if (!icsk
->icsk_mtup
.enabled
||
1897 icsk
->icsk_mtup
.probe_size
||
1898 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1899 tp
->snd_cwnd
< 11 ||
1900 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1903 /* Use binary search for probe_size between tcp_mss_base,
1904 * and current mss_clamp. if (search_high - search_low)
1905 * smaller than a threshold, backoff from probing.
1907 mss_now
= tcp_current_mss(sk
);
1908 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
1909 icsk
->icsk_mtup
.search_low
) >> 1);
1910 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1911 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
1912 /* When misfortune happens, we are reprobing actively,
1913 * and then reprobe timer has expired. We stick with current
1914 * probing process by not resetting search range to its orignal.
1916 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
1917 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
1918 /* Check whether enough time has elaplased for
1919 * another round of probing.
1921 tcp_mtu_check_reprobe(sk
);
1925 /* Have enough data in the send queue to probe? */
1926 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1929 if (tp
->snd_wnd
< size_needed
)
1931 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1934 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1935 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1936 if (!tcp_packets_in_flight(tp
))
1942 /* We're allowed to probe. Build it now. */
1943 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
1946 sk
->sk_wmem_queued
+= nskb
->truesize
;
1947 sk_mem_charge(sk
, nskb
->truesize
);
1949 skb
= tcp_send_head(sk
);
1951 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1952 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1953 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1954 TCP_SKB_CB(nskb
)->sacked
= 0;
1956 nskb
->ip_summed
= skb
->ip_summed
;
1958 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1961 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1962 copy
= min_t(int, skb
->len
, probe_size
- len
);
1963 if (nskb
->ip_summed
)
1964 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1966 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1967 skb_put(nskb
, copy
),
1970 if (skb
->len
<= copy
) {
1971 /* We've eaten all the data from this skb.
1973 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1974 tcp_unlink_write_queue(skb
, sk
);
1975 sk_wmem_free_skb(sk
, skb
);
1977 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1978 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1979 if (!skb_shinfo(skb
)->nr_frags
) {
1980 skb_pull(skb
, copy
);
1981 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1982 skb
->csum
= csum_partial(skb
->data
,
1985 __pskb_trim_head(skb
, copy
);
1986 tcp_set_skb_tso_segs(skb
, mss_now
);
1988 TCP_SKB_CB(skb
)->seq
+= copy
;
1993 if (len
>= probe_size
)
1996 tcp_init_tso_segs(nskb
, nskb
->len
);
1998 /* We're ready to send. If this fails, the probe will
1999 * be resegmented into mss-sized pieces by tcp_write_xmit().
2001 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2002 /* Decrement cwnd here because we are sending
2003 * effectively two packets. */
2005 tcp_event_new_data_sent(sk
, nskb
);
2007 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2008 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2009 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2017 /* This routine writes packets to the network. It advances the
2018 * send_head. This happens as incoming acks open up the remote
2021 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2022 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2023 * account rare use of URG, this is not a big flaw.
2025 * Send at most one packet when push_one > 0. Temporarily ignore
2026 * cwnd limit to force at most one packet out when push_one == 2.
2028 * Returns true, if no segments are in flight and we have queued segments,
2029 * but cannot send anything now because of SWS or another problem.
2031 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2032 int push_one
, gfp_t gfp
)
2034 struct tcp_sock
*tp
= tcp_sk(sk
);
2035 struct sk_buff
*skb
;
2036 unsigned int tso_segs
, sent_pkts
;
2039 bool is_cwnd_limited
= false;
2045 /* Do MTU probing. */
2046 result
= tcp_mtu_probe(sk
);
2049 } else if (result
> 0) {
2054 max_segs
= tcp_tso_autosize(sk
, mss_now
);
2055 while ((skb
= tcp_send_head(sk
))) {
2058 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2061 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2062 /* "skb_mstamp" is used as a start point for the retransmit timer */
2063 skb_mstamp_get(&skb
->skb_mstamp
);
2064 goto repair
; /* Skip network transmission */
2067 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2069 is_cwnd_limited
= true;
2071 /* Force out a loss probe pkt. */
2077 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2080 if (tso_segs
== 1) {
2081 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2082 (tcp_skb_is_last(sk
, skb
) ?
2083 nonagle
: TCP_NAGLE_PUSH
))))
2087 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2093 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2094 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2100 if (skb
->len
> limit
&&
2101 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2104 /* TCP Small Queues :
2105 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2107 * - better RTT estimation and ACK scheduling
2110 * Alas, some drivers / subsystems require a fair amount
2111 * of queued bytes to ensure line rate.
2112 * One example is wifi aggregation (802.11 AMPDU)
2114 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2115 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2117 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2118 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2119 /* It is possible TX completion already happened
2120 * before we set TSQ_THROTTLED, so we must
2121 * test again the condition.
2123 smp_mb__after_atomic();
2124 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2128 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2132 /* Advance the send_head. This one is sent out.
2133 * This call will increment packets_out.
2135 tcp_event_new_data_sent(sk
, skb
);
2137 tcp_minshall_update(tp
, mss_now
, skb
);
2138 sent_pkts
+= tcp_skb_pcount(skb
);
2144 if (likely(sent_pkts
)) {
2145 if (tcp_in_cwnd_reduction(sk
))
2146 tp
->prr_out
+= sent_pkts
;
2148 /* Send one loss probe per tail loss episode. */
2150 tcp_schedule_loss_probe(sk
);
2151 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2154 return (push_one
== 2) || (!tp
->packets_out
&& tcp_send_head(sk
));
2157 bool tcp_schedule_loss_probe(struct sock
*sk
)
2159 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2160 struct tcp_sock
*tp
= tcp_sk(sk
);
2161 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2162 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2164 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2166 /* No consecutive loss probes. */
2167 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2171 /* Don't do any loss probe on a Fast Open connection before 3WHS
2174 if (sk
->sk_state
== TCP_SYN_RECV
)
2177 /* TLP is only scheduled when next timer event is RTO. */
2178 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2181 /* Schedule a loss probe in 2*RTT for SACK capable connections
2182 * in Open state, that are either limited by cwnd or application.
2184 if (sysctl_tcp_early_retrans
< 3 || !tp
->srtt_us
|| !tp
->packets_out
||
2185 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2188 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2192 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2193 * for delayed ack when there's one outstanding packet.
2196 if (tp
->packets_out
== 1)
2197 timeout
= max_t(u32
, timeout
,
2198 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2199 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2201 /* If RTO is shorter, just schedule TLP in its place. */
2202 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2203 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2204 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2205 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2210 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2215 /* Thanks to skb fast clones, we can detect if a prior transmit of
2216 * a packet is still in a qdisc or driver queue.
2217 * In this case, there is very little point doing a retransmit !
2218 * Note: This is called from BH context only.
2220 static bool skb_still_in_host_queue(const struct sock
*sk
,
2221 const struct sk_buff
*skb
)
2223 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2224 NET_INC_STATS_BH(sock_net(sk
),
2225 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2231 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2232 * retransmit the last segment.
2234 void tcp_send_loss_probe(struct sock
*sk
)
2236 struct tcp_sock
*tp
= tcp_sk(sk
);
2237 struct sk_buff
*skb
;
2239 int mss
= tcp_current_mss(sk
);
2242 if (tcp_send_head(sk
)) {
2243 err
= tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2247 /* At most one outstanding TLP retransmission. */
2248 if (tp
->tlp_high_seq
)
2251 /* Retransmit last segment. */
2252 skb
= tcp_write_queue_tail(sk
);
2256 if (skb_still_in_host_queue(sk
, skb
))
2259 pcount
= tcp_skb_pcount(skb
);
2260 if (WARN_ON(!pcount
))
2263 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2264 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2267 skb
= tcp_write_queue_tail(sk
);
2270 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2273 err
= __tcp_retransmit_skb(sk
, skb
);
2275 /* Record snd_nxt for loss detection. */
2277 tp
->tlp_high_seq
= tp
->snd_nxt
;
2280 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2281 inet_csk(sk
)->icsk_rto
,
2285 NET_INC_STATS_BH(sock_net(sk
),
2286 LINUX_MIB_TCPLOSSPROBES
);
2289 /* Push out any pending frames which were held back due to
2290 * TCP_CORK or attempt at coalescing tiny packets.
2291 * The socket must be locked by the caller.
2293 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2296 /* If we are closed, the bytes will have to remain here.
2297 * In time closedown will finish, we empty the write queue and
2298 * all will be happy.
2300 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2303 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2304 sk_gfp_atomic(sk
, GFP_ATOMIC
)))
2305 tcp_check_probe_timer(sk
);
2308 /* Send _single_ skb sitting at the send head. This function requires
2309 * true push pending frames to setup probe timer etc.
2311 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2313 struct sk_buff
*skb
= tcp_send_head(sk
);
2315 BUG_ON(!skb
|| skb
->len
< mss_now
);
2317 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2320 /* This function returns the amount that we can raise the
2321 * usable window based on the following constraints
2323 * 1. The window can never be shrunk once it is offered (RFC 793)
2324 * 2. We limit memory per socket
2327 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2328 * RECV.NEXT + RCV.WIN fixed until:
2329 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2331 * i.e. don't raise the right edge of the window until you can raise
2332 * it at least MSS bytes.
2334 * Unfortunately, the recommended algorithm breaks header prediction,
2335 * since header prediction assumes th->window stays fixed.
2337 * Strictly speaking, keeping th->window fixed violates the receiver
2338 * side SWS prevention criteria. The problem is that under this rule
2339 * a stream of single byte packets will cause the right side of the
2340 * window to always advance by a single byte.
2342 * Of course, if the sender implements sender side SWS prevention
2343 * then this will not be a problem.
2345 * BSD seems to make the following compromise:
2347 * If the free space is less than the 1/4 of the maximum
2348 * space available and the free space is less than 1/2 mss,
2349 * then set the window to 0.
2350 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2351 * Otherwise, just prevent the window from shrinking
2352 * and from being larger than the largest representable value.
2354 * This prevents incremental opening of the window in the regime
2355 * where TCP is limited by the speed of the reader side taking
2356 * data out of the TCP receive queue. It does nothing about
2357 * those cases where the window is constrained on the sender side
2358 * because the pipeline is full.
2360 * BSD also seems to "accidentally" limit itself to windows that are a
2361 * multiple of MSS, at least until the free space gets quite small.
2362 * This would appear to be a side effect of the mbuf implementation.
2363 * Combining these two algorithms results in the observed behavior
2364 * of having a fixed window size at almost all times.
2366 * Below we obtain similar behavior by forcing the offered window to
2367 * a multiple of the mss when it is feasible to do so.
2369 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2370 * Regular options like TIMESTAMP are taken into account.
2372 u32
__tcp_select_window(struct sock
*sk
)
2374 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2375 struct tcp_sock
*tp
= tcp_sk(sk
);
2376 /* MSS for the peer's data. Previous versions used mss_clamp
2377 * here. I don't know if the value based on our guesses
2378 * of peer's MSS is better for the performance. It's more correct
2379 * but may be worse for the performance because of rcv_mss
2380 * fluctuations. --SAW 1998/11/1
2382 int mss
= icsk
->icsk_ack
.rcv_mss
;
2383 int free_space
= tcp_space(sk
);
2384 int allowed_space
= tcp_full_space(sk
);
2385 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2388 if (mss
> full_space
)
2391 if (free_space
< (full_space
>> 1)) {
2392 icsk
->icsk_ack
.quick
= 0;
2394 if (tcp_under_memory_pressure(sk
))
2395 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2398 /* free_space might become our new window, make sure we don't
2399 * increase it due to wscale.
2401 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2403 /* if free space is less than mss estimate, or is below 1/16th
2404 * of the maximum allowed, try to move to zero-window, else
2405 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2406 * new incoming data is dropped due to memory limits.
2407 * With large window, mss test triggers way too late in order
2408 * to announce zero window in time before rmem limit kicks in.
2410 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2414 if (free_space
> tp
->rcv_ssthresh
)
2415 free_space
= tp
->rcv_ssthresh
;
2417 /* Don't do rounding if we are using window scaling, since the
2418 * scaled window will not line up with the MSS boundary anyway.
2420 window
= tp
->rcv_wnd
;
2421 if (tp
->rx_opt
.rcv_wscale
) {
2422 window
= free_space
;
2424 /* Advertise enough space so that it won't get scaled away.
2425 * Import case: prevent zero window announcement if
2426 * 1<<rcv_wscale > mss.
2428 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2429 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2430 << tp
->rx_opt
.rcv_wscale
);
2432 /* Get the largest window that is a nice multiple of mss.
2433 * Window clamp already applied above.
2434 * If our current window offering is within 1 mss of the
2435 * free space we just keep it. This prevents the divide
2436 * and multiply from happening most of the time.
2437 * We also don't do any window rounding when the free space
2440 if (window
<= free_space
- mss
|| window
> free_space
)
2441 window
= (free_space
/ mss
) * mss
;
2442 else if (mss
== full_space
&&
2443 free_space
> window
+ (full_space
>> 1))
2444 window
= free_space
;
2450 /* Collapses two adjacent SKB's during retransmission. */
2451 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2453 struct tcp_sock
*tp
= tcp_sk(sk
);
2454 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2455 int skb_size
, next_skb_size
;
2457 skb_size
= skb
->len
;
2458 next_skb_size
= next_skb
->len
;
2460 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2462 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2464 tcp_unlink_write_queue(next_skb
, sk
);
2466 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2469 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2470 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2472 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2473 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2475 /* Update sequence range on original skb. */
2476 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2478 /* Merge over control information. This moves PSH/FIN etc. over */
2479 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2481 /* All done, get rid of second SKB and account for it so
2482 * packet counting does not break.
2484 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2486 /* changed transmit queue under us so clear hints */
2487 tcp_clear_retrans_hints_partial(tp
);
2488 if (next_skb
== tp
->retransmit_skb_hint
)
2489 tp
->retransmit_skb_hint
= skb
;
2491 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2493 sk_wmem_free_skb(sk
, next_skb
);
2496 /* Check if coalescing SKBs is legal. */
2497 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2499 if (tcp_skb_pcount(skb
) > 1)
2501 /* TODO: SACK collapsing could be used to remove this condition */
2502 if (skb_shinfo(skb
)->nr_frags
!= 0)
2504 if (skb_cloned(skb
))
2506 if (skb
== tcp_send_head(sk
))
2508 /* Some heurestics for collapsing over SACK'd could be invented */
2509 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2515 /* Collapse packets in the retransmit queue to make to create
2516 * less packets on the wire. This is only done on retransmission.
2518 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2521 struct tcp_sock
*tp
= tcp_sk(sk
);
2522 struct sk_buff
*skb
= to
, *tmp
;
2525 if (!sysctl_tcp_retrans_collapse
)
2527 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2530 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2531 if (!tcp_can_collapse(sk
, skb
))
2543 /* Punt if not enough space exists in the first SKB for
2544 * the data in the second
2546 if (skb
->len
> skb_availroom(to
))
2549 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2552 tcp_collapse_retrans(sk
, to
);
2556 /* This retransmits one SKB. Policy decisions and retransmit queue
2557 * state updates are done by the caller. Returns non-zero if an
2558 * error occurred which prevented the send.
2560 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2562 struct tcp_sock
*tp
= tcp_sk(sk
);
2563 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2564 unsigned int cur_mss
;
2567 /* Inconslusive MTU probe */
2568 if (icsk
->icsk_mtup
.probe_size
) {
2569 icsk
->icsk_mtup
.probe_size
= 0;
2572 /* Do not sent more than we queued. 1/4 is reserved for possible
2573 * copying overhead: fragmentation, tunneling, mangling etc.
2575 if (atomic_read(&sk
->sk_wmem_alloc
) >
2576 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
2579 if (skb_still_in_host_queue(sk
, skb
))
2582 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2583 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2585 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2589 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2590 return -EHOSTUNREACH
; /* Routing failure or similar. */
2592 cur_mss
= tcp_current_mss(sk
);
2594 /* If receiver has shrunk his window, and skb is out of
2595 * new window, do not retransmit it. The exception is the
2596 * case, when window is shrunk to zero. In this case
2597 * our retransmit serves as a zero window probe.
2599 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2600 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2603 if (skb
->len
> cur_mss
) {
2604 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2605 return -ENOMEM
; /* We'll try again later. */
2607 int oldpcount
= tcp_skb_pcount(skb
);
2609 if (unlikely(oldpcount
> 1)) {
2610 if (skb_unclone(skb
, GFP_ATOMIC
))
2612 tcp_init_tso_segs(skb
, cur_mss
);
2613 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2617 /* RFC3168, section 6.1.1.1. ECN fallback */
2618 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2619 tcp_ecn_clear_syn(sk
, skb
);
2621 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2623 /* Make a copy, if the first transmission SKB clone we made
2624 * is still in somebody's hands, else make a clone.
2627 /* make sure skb->data is aligned on arches that require it
2628 * and check if ack-trimming & collapsing extended the headroom
2629 * beyond what csum_start can cover.
2631 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2632 skb_headroom(skb
) >= 0xFFFF)) {
2633 struct sk_buff
*nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
,
2635 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2638 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2642 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2643 /* Update global TCP statistics. */
2644 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2645 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2646 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2647 tp
->total_retrans
++;
2652 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2654 struct tcp_sock
*tp
= tcp_sk(sk
);
2655 int err
= __tcp_retransmit_skb(sk
, skb
);
2658 #if FASTRETRANS_DEBUG > 0
2659 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2660 net_dbg_ratelimited("retrans_out leaked\n");
2663 if (!tp
->retrans_out
)
2664 tp
->lost_retrans_low
= tp
->snd_nxt
;
2665 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2666 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2668 /* Save stamp of the first retransmit. */
2669 if (!tp
->retrans_stamp
)
2670 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2672 /* snd_nxt is stored to detect loss of retransmitted segment,
2673 * see tcp_input.c tcp_sacktag_write_queue().
2675 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
2676 } else if (err
!= -EBUSY
) {
2677 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2680 if (tp
->undo_retrans
< 0)
2681 tp
->undo_retrans
= 0;
2682 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2686 /* Check if we forward retransmits are possible in the current
2687 * window/congestion state.
2689 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2691 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2692 const struct tcp_sock
*tp
= tcp_sk(sk
);
2694 /* Forward retransmissions are possible only during Recovery. */
2695 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2698 /* No forward retransmissions in Reno are possible. */
2699 if (tcp_is_reno(tp
))
2702 /* Yeah, we have to make difficult choice between forward transmission
2703 * and retransmission... Both ways have their merits...
2705 * For now we do not retransmit anything, while we have some new
2706 * segments to send. In the other cases, follow rule 3 for
2707 * NextSeg() specified in RFC3517.
2710 if (tcp_may_send_now(sk
))
2716 /* This gets called after a retransmit timeout, and the initially
2717 * retransmitted data is acknowledged. It tries to continue
2718 * resending the rest of the retransmit queue, until either
2719 * we've sent it all or the congestion window limit is reached.
2720 * If doing SACK, the first ACK which comes back for a timeout
2721 * based retransmit packet might feed us FACK information again.
2722 * If so, we use it to avoid unnecessarily retransmissions.
2724 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2726 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2727 struct tcp_sock
*tp
= tcp_sk(sk
);
2728 struct sk_buff
*skb
;
2729 struct sk_buff
*hole
= NULL
;
2732 int fwd_rexmitting
= 0;
2734 if (!tp
->packets_out
)
2738 tp
->retransmit_high
= tp
->snd_una
;
2740 if (tp
->retransmit_skb_hint
) {
2741 skb
= tp
->retransmit_skb_hint
;
2742 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2743 if (after(last_lost
, tp
->retransmit_high
))
2744 last_lost
= tp
->retransmit_high
;
2746 skb
= tcp_write_queue_head(sk
);
2747 last_lost
= tp
->snd_una
;
2750 tcp_for_write_queue_from(skb
, sk
) {
2751 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2753 if (skb
== tcp_send_head(sk
))
2755 /* we could do better than to assign each time */
2757 tp
->retransmit_skb_hint
= skb
;
2759 /* Assume this retransmit will generate
2760 * only one packet for congestion window
2761 * calculation purposes. This works because
2762 * tcp_retransmit_skb() will chop up the
2763 * packet to be MSS sized and all the
2764 * packet counting works out.
2766 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2769 if (fwd_rexmitting
) {
2771 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2773 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2775 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2776 tp
->retransmit_high
= last_lost
;
2777 if (!tcp_can_forward_retransmit(sk
))
2779 /* Backtrack if necessary to non-L'ed skb */
2787 } else if (!(sacked
& TCPCB_LOST
)) {
2788 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2793 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2794 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2795 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2797 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2800 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2803 if (tcp_retransmit_skb(sk
, skb
))
2806 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2808 if (tcp_in_cwnd_reduction(sk
))
2809 tp
->prr_out
+= tcp_skb_pcount(skb
);
2811 if (skb
== tcp_write_queue_head(sk
))
2812 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2813 inet_csk(sk
)->icsk_rto
,
2818 /* We allow to exceed memory limits for FIN packets to expedite
2819 * connection tear down and (memory) recovery.
2820 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2821 * or even be forced to close flow without any FIN.
2822 * In general, we want to allow one skb per socket to avoid hangs
2823 * with edge trigger epoll()
2825 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
2829 if (size
<= sk
->sk_forward_alloc
)
2831 amt
= sk_mem_pages(size
);
2832 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2833 sk_memory_allocated_add(sk
, amt
, &status
);
2836 /* Send a FIN. The caller locks the socket for us.
2837 * We should try to send a FIN packet really hard, but eventually give up.
2839 void tcp_send_fin(struct sock
*sk
)
2841 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
2842 struct tcp_sock
*tp
= tcp_sk(sk
);
2844 /* Optimization, tack on the FIN if we have one skb in write queue and
2845 * this skb was not yet sent, or we are under memory pressure.
2846 * Note: in the latter case, FIN packet will be sent after a timeout,
2847 * as TCP stack thinks it has already been transmitted.
2849 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
2851 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
2852 TCP_SKB_CB(tskb
)->end_seq
++;
2854 if (!tcp_send_head(sk
)) {
2855 /* This means tskb was already sent.
2856 * Pretend we included the FIN on previous transmit.
2857 * We need to set tp->snd_nxt to the value it would have
2858 * if FIN had been sent. This is because retransmit path
2859 * does not change tp->snd_nxt.
2865 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
2866 if (unlikely(!skb
)) {
2871 skb_reserve(skb
, MAX_TCP_HEADER
);
2872 sk_forced_mem_schedule(sk
, skb
->truesize
);
2873 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2874 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2875 TCPHDR_ACK
| TCPHDR_FIN
);
2876 tcp_queue_skb(sk
, skb
);
2878 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
2881 /* We get here when a process closes a file descriptor (either due to
2882 * an explicit close() or as a byproduct of exit()'ing) and there
2883 * was unread data in the receive queue. This behavior is recommended
2884 * by RFC 2525, section 2.17. -DaveM
2886 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2888 struct sk_buff
*skb
;
2890 /* NOTE: No TCP options attached and we never retransmit this. */
2891 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2893 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2897 /* Reserve space for headers and prepare control bits. */
2898 skb_reserve(skb
, MAX_TCP_HEADER
);
2899 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2900 TCPHDR_ACK
| TCPHDR_RST
);
2902 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2903 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2905 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2908 /* Send a crossed SYN-ACK during socket establishment.
2909 * WARNING: This routine must only be called when we have already sent
2910 * a SYN packet that crossed the incoming SYN that caused this routine
2911 * to get called. If this assumption fails then the initial rcv_wnd
2912 * and rcv_wscale values will not be correct.
2914 int tcp_send_synack(struct sock
*sk
)
2916 struct sk_buff
*skb
;
2918 skb
= tcp_write_queue_head(sk
);
2919 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2920 pr_debug("%s: wrong queue state\n", __func__
);
2923 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2924 if (skb_cloned(skb
)) {
2925 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2928 tcp_unlink_write_queue(skb
, sk
);
2929 __skb_header_release(nskb
);
2930 __tcp_add_write_queue_head(sk
, nskb
);
2931 sk_wmem_free_skb(sk
, skb
);
2932 sk
->sk_wmem_queued
+= nskb
->truesize
;
2933 sk_mem_charge(sk
, nskb
->truesize
);
2937 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2938 tcp_ecn_send_synack(sk
, skb
);
2940 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2944 * tcp_make_synack - Prepare a SYN-ACK.
2945 * sk: listener socket
2946 * dst: dst entry attached to the SYNACK
2947 * req: request_sock pointer
2949 * Allocate one skb and build a SYNACK packet.
2950 * @dst is consumed : Caller should not use it again.
2952 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2953 struct request_sock
*req
,
2954 struct tcp_fastopen_cookie
*foc
)
2956 struct tcp_out_options opts
;
2957 struct inet_request_sock
*ireq
= inet_rsk(req
);
2958 struct tcp_sock
*tp
= tcp_sk(sk
);
2960 struct sk_buff
*skb
;
2961 struct tcp_md5sig_key
*md5
= NULL
;
2962 int tcp_header_size
;
2965 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
, 1, GFP_ATOMIC
);
2966 if (unlikely(!skb
)) {
2970 /* Reserve space for headers. */
2971 skb_reserve(skb
, MAX_TCP_HEADER
);
2973 skb_dst_set(skb
, dst
);
2975 mss
= dst_metric_advmss(dst
);
2976 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2977 mss
= tp
->rx_opt
.user_mss
;
2979 memset(&opts
, 0, sizeof(opts
));
2980 #ifdef CONFIG_SYN_COOKIES
2981 if (unlikely(req
->cookie_ts
))
2982 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
2985 skb_mstamp_get(&skb
->skb_mstamp
);
2987 #ifdef CONFIG_TCP_MD5SIG
2989 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
2991 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, md5
,
2994 skb_push(skb
, tcp_header_size
);
2995 skb_reset_transport_header(skb
);
2998 memset(th
, 0, sizeof(struct tcphdr
));
3001 tcp_ecn_make_synack(req
, th
, sk
);
3002 th
->source
= htons(ireq
->ir_num
);
3003 th
->dest
= ireq
->ir_rmt_port
;
3004 /* Setting of flags are superfluous here for callers (and ECE is
3005 * not even correctly set)
3007 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
3008 TCPHDR_SYN
| TCPHDR_ACK
);
3010 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
3011 /* XXX data is queued and acked as is. No buffer/window check */
3012 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3014 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3015 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
3016 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
3017 th
->doff
= (tcp_header_size
>> 2);
3018 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
3020 #ifdef CONFIG_TCP_MD5SIG
3021 /* Okay, we have all we need - do the md5 hash if needed */
3023 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3024 md5
, req_to_sk(req
), skb
);
3028 /* Do not fool tcpdump (if any), clean our debris */
3029 skb
->tstamp
.tv64
= 0;
3032 EXPORT_SYMBOL(tcp_make_synack
);
3034 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3036 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3037 const struct tcp_congestion_ops
*ca
;
3038 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3040 if (ca_key
== TCP_CA_UNSPEC
)
3044 ca
= tcp_ca_find_key(ca_key
);
3045 if (likely(ca
&& try_module_get(ca
->owner
))) {
3046 module_put(icsk
->icsk_ca_ops
->owner
);
3047 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3048 icsk
->icsk_ca_ops
= ca
;
3053 /* Do all connect socket setups that can be done AF independent. */
3054 static void tcp_connect_init(struct sock
*sk
)
3056 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3057 struct tcp_sock
*tp
= tcp_sk(sk
);
3060 /* We'll fix this up when we get a response from the other end.
3061 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3063 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
3064 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
3066 #ifdef CONFIG_TCP_MD5SIG
3067 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3068 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3071 /* If user gave his TCP_MAXSEG, record it to clamp */
3072 if (tp
->rx_opt
.user_mss
)
3073 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3076 tcp_sync_mss(sk
, dst_mtu(dst
));
3078 tcp_ca_dst_init(sk
, dst
);
3080 if (!tp
->window_clamp
)
3081 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3082 tp
->advmss
= dst_metric_advmss(dst
);
3083 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
3084 tp
->advmss
= tp
->rx_opt
.user_mss
;
3086 tcp_initialize_rcv_mss(sk
);
3088 /* limit the window selection if the user enforce a smaller rx buffer */
3089 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3090 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3091 tp
->window_clamp
= tcp_full_space(sk
);
3093 tcp_select_initial_window(tcp_full_space(sk
),
3094 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3097 sysctl_tcp_window_scaling
,
3099 dst_metric(dst
, RTAX_INITRWND
));
3101 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3102 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3105 sock_reset_flag(sk
, SOCK_DONE
);
3108 tp
->snd_una
= tp
->write_seq
;
3109 tp
->snd_sml
= tp
->write_seq
;
3110 tp
->snd_up
= tp
->write_seq
;
3111 tp
->snd_nxt
= tp
->write_seq
;
3113 if (likely(!tp
->repair
))
3116 tp
->rcv_tstamp
= tcp_time_stamp
;
3117 tp
->rcv_wup
= tp
->rcv_nxt
;
3118 tp
->copied_seq
= tp
->rcv_nxt
;
3120 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3121 inet_csk(sk
)->icsk_retransmits
= 0;
3122 tcp_clear_retrans(tp
);
3125 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3127 struct tcp_sock
*tp
= tcp_sk(sk
);
3128 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3130 tcb
->end_seq
+= skb
->len
;
3131 __skb_header_release(skb
);
3132 __tcp_add_write_queue_tail(sk
, skb
);
3133 sk
->sk_wmem_queued
+= skb
->truesize
;
3134 sk_mem_charge(sk
, skb
->truesize
);
3135 tp
->write_seq
= tcb
->end_seq
;
3136 tp
->packets_out
+= tcp_skb_pcount(skb
);
3139 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3140 * queue a data-only packet after the regular SYN, such that regular SYNs
3141 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3142 * only the SYN sequence, the data are retransmitted in the first ACK.
3143 * If cookie is not cached or other error occurs, falls back to send a
3144 * regular SYN with Fast Open cookie request option.
3146 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3148 struct tcp_sock
*tp
= tcp_sk(sk
);
3149 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3150 int syn_loss
= 0, space
, err
= 0, copied
;
3151 unsigned long last_syn_loss
= 0;
3152 struct sk_buff
*syn_data
;
3154 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3155 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3156 &syn_loss
, &last_syn_loss
);
3157 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3159 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3160 fo
->cookie
.len
= -1;
3164 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3165 fo
->cookie
.len
= -1;
3166 else if (fo
->cookie
.len
<= 0)
3169 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3170 * user-MSS. Reserve maximum option space for middleboxes that add
3171 * private TCP options. The cost is reduced data space in SYN :(
3173 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3174 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3175 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3176 MAX_TCP_OPTION_SPACE
;
3178 space
= min_t(size_t, space
, fo
->size
);
3180 /* limit to order-0 allocations */
3181 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3183 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3186 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3187 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3188 copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3189 &fo
->data
->msg_iter
);
3190 if (unlikely(!copied
)) {
3191 kfree_skb(syn_data
);
3194 if (copied
!= space
) {
3195 skb_trim(syn_data
, copied
);
3199 /* No more data pending in inet_wait_for_connect() */
3200 if (space
== fo
->size
)
3204 tcp_connect_queue_skb(sk
, syn_data
);
3206 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3208 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3210 /* Now full SYN+DATA was cloned and sent (or not),
3211 * remove the SYN from the original skb (syn_data)
3212 * we keep in write queue in case of a retransmit, as we
3213 * also have the SYN packet (with no data) in the same queue.
3215 TCP_SKB_CB(syn_data
)->seq
++;
3216 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3218 tp
->syn_data
= (fo
->copied
> 0);
3219 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3224 /* Send a regular SYN with Fast Open cookie request option */
3225 if (fo
->cookie
.len
> 0)
3227 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3229 tp
->syn_fastopen
= 0;
3231 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3235 /* Build a SYN and send it off. */
3236 int tcp_connect(struct sock
*sk
)
3238 struct tcp_sock
*tp
= tcp_sk(sk
);
3239 struct sk_buff
*buff
;
3242 tcp_connect_init(sk
);
3244 if (unlikely(tp
->repair
)) {
3245 tcp_finish_connect(sk
, NULL
);
3249 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3250 if (unlikely(!buff
))
3253 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3254 tp
->retrans_stamp
= tcp_time_stamp
;
3255 tcp_connect_queue_skb(sk
, buff
);
3256 tcp_ecn_send_syn(sk
, buff
);
3258 /* Send off SYN; include data in Fast Open. */
3259 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3260 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3261 if (err
== -ECONNREFUSED
)
3264 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3265 * in order to make this packet get counted in tcpOutSegs.
3267 tp
->snd_nxt
= tp
->write_seq
;
3268 tp
->pushed_seq
= tp
->write_seq
;
3269 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3271 /* Timer for repeating the SYN until an answer. */
3272 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3273 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3276 EXPORT_SYMBOL(tcp_connect
);
3278 /* Send out a delayed ack, the caller does the policy checking
3279 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3282 void tcp_send_delayed_ack(struct sock
*sk
)
3284 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3285 int ato
= icsk
->icsk_ack
.ato
;
3286 unsigned long timeout
;
3288 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3290 if (ato
> TCP_DELACK_MIN
) {
3291 const struct tcp_sock
*tp
= tcp_sk(sk
);
3292 int max_ato
= HZ
/ 2;
3294 if (icsk
->icsk_ack
.pingpong
||
3295 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3296 max_ato
= TCP_DELACK_MAX
;
3298 /* Slow path, intersegment interval is "high". */
3300 /* If some rtt estimate is known, use it to bound delayed ack.
3301 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3305 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3312 ato
= min(ato
, max_ato
);
3315 /* Stay within the limit we were given */
3316 timeout
= jiffies
+ ato
;
3318 /* Use new timeout only if there wasn't a older one earlier. */
3319 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3320 /* If delack timer was blocked or is about to expire,
3323 if (icsk
->icsk_ack
.blocked
||
3324 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3329 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3330 timeout
= icsk
->icsk_ack
.timeout
;
3332 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3333 icsk
->icsk_ack
.timeout
= timeout
;
3334 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3337 /* This routine sends an ack and also updates the window. */
3338 void tcp_send_ack(struct sock
*sk
)
3340 struct sk_buff
*buff
;
3342 /* If we have been reset, we may not send again. */
3343 if (sk
->sk_state
== TCP_CLOSE
)
3346 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3348 /* We are not putting this on the write queue, so
3349 * tcp_transmit_skb() will set the ownership to this
3352 buff
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3354 inet_csk_schedule_ack(sk
);
3355 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3356 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3357 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3361 /* Reserve space for headers and prepare control bits. */
3362 skb_reserve(buff
, MAX_TCP_HEADER
);
3363 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3365 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3367 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3368 * We also avoid tcp_wfree() overhead (cache line miss accessing
3369 * tp->tsq_flags) by using regular sock_wfree()
3371 skb_set_tcp_pure_ack(buff
);
3373 /* Send it off, this clears delayed acks for us. */
3374 skb_mstamp_get(&buff
->skb_mstamp
);
3375 tcp_transmit_skb(sk
, buff
, 0, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3377 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3379 /* This routine sends a packet with an out of date sequence
3380 * number. It assumes the other end will try to ack it.
3382 * Question: what should we make while urgent mode?
3383 * 4.4BSD forces sending single byte of data. We cannot send
3384 * out of window data, because we have SND.NXT==SND.MAX...
3386 * Current solution: to send TWO zero-length segments in urgent mode:
3387 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3388 * out-of-date with SND.UNA-1 to probe window.
3390 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3392 struct tcp_sock
*tp
= tcp_sk(sk
);
3393 struct sk_buff
*skb
;
3395 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3396 skb
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3400 /* Reserve space for headers and set control bits. */
3401 skb_reserve(skb
, MAX_TCP_HEADER
);
3402 /* Use a previous sequence. This should cause the other
3403 * end to send an ack. Don't queue or clone SKB, just
3406 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3407 skb_mstamp_get(&skb
->skb_mstamp
);
3408 NET_INC_STATS_BH(sock_net(sk
), mib
);
3409 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
3412 void tcp_send_window_probe(struct sock
*sk
)
3414 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3415 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3416 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3420 /* Initiate keepalive or window probe from timer. */
3421 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3423 struct tcp_sock
*tp
= tcp_sk(sk
);
3424 struct sk_buff
*skb
;
3426 if (sk
->sk_state
== TCP_CLOSE
)
3429 skb
= tcp_send_head(sk
);
3430 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3432 unsigned int mss
= tcp_current_mss(sk
);
3433 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3435 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3436 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3438 /* We are probing the opening of a window
3439 * but the window size is != 0
3440 * must have been a result SWS avoidance ( sender )
3442 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3444 seg_size
= min(seg_size
, mss
);
3445 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3446 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3448 } else if (!tcp_skb_pcount(skb
))
3449 tcp_set_skb_tso_segs(skb
, mss
);
3451 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3452 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3454 tcp_event_new_data_sent(sk
, skb
);
3457 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3458 tcp_xmit_probe_skb(sk
, 1, mib
);
3459 return tcp_xmit_probe_skb(sk
, 0, mib
);
3463 /* A window probe timeout has occurred. If window is not closed send
3464 * a partial packet else a zero probe.
3466 void tcp_send_probe0(struct sock
*sk
)
3468 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3469 struct tcp_sock
*tp
= tcp_sk(sk
);
3470 unsigned long probe_max
;
3473 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3475 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3476 /* Cancel probe timer, if it is not required. */
3477 icsk
->icsk_probes_out
= 0;
3478 icsk
->icsk_backoff
= 0;
3483 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
3484 icsk
->icsk_backoff
++;
3485 icsk
->icsk_probes_out
++;
3486 probe_max
= TCP_RTO_MAX
;
3488 /* If packet was not sent due to local congestion,
3489 * do not backoff and do not remember icsk_probes_out.
3490 * Let local senders to fight for local resources.
3492 * Use accumulated backoff yet.
3494 if (!icsk
->icsk_probes_out
)
3495 icsk
->icsk_probes_out
= 1;
3496 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3498 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3499 tcp_probe0_when(sk
, probe_max
),
3503 int tcp_rtx_synack(struct sock
*sk
, struct request_sock
*req
)
3505 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3509 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, 0, NULL
);
3511 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3512 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3516 EXPORT_SYMBOL(tcp_rtx_synack
);