4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
30 static unsigned int m_hash_mask __read_mostly
;
31 static unsigned int m_hash_shift __read_mostly
;
32 static unsigned int mp_hash_mask __read_mostly
;
33 static unsigned int mp_hash_shift __read_mostly
;
35 static __initdata
unsigned long mhash_entries
;
36 static int __init
set_mhash_entries(char *str
)
40 mhash_entries
= simple_strtoul(str
, &str
, 0);
43 __setup("mhash_entries=", set_mhash_entries
);
45 static __initdata
unsigned long mphash_entries
;
46 static int __init
set_mphash_entries(char *str
)
50 mphash_entries
= simple_strtoul(str
, &str
, 0);
53 __setup("mphash_entries=", set_mphash_entries
);
56 static DEFINE_IDA(mnt_id_ida
);
57 static DEFINE_IDA(mnt_group_ida
);
58 static DEFINE_SPINLOCK(mnt_id_lock
);
59 static int mnt_id_start
= 0;
60 static int mnt_group_start
= 1;
62 static struct hlist_head
*mount_hashtable __read_mostly
;
63 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
64 static struct kmem_cache
*mnt_cache __read_mostly
;
65 static DECLARE_RWSEM(namespace_sem
);
68 struct kobject
*fs_kobj
;
69 EXPORT_SYMBOL_GPL(fs_kobj
);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
81 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
83 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
84 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
85 tmp
= tmp
+ (tmp
>> m_hash_shift
);
86 return &mount_hashtable
[tmp
& m_hash_mask
];
89 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
91 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
92 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
93 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount
*mnt
)
105 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
106 spin_lock(&mnt_id_lock
);
107 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
109 mnt_id_start
= mnt
->mnt_id
+ 1;
110 spin_unlock(&mnt_id_lock
);
117 static void mnt_free_id(struct mount
*mnt
)
119 int id
= mnt
->mnt_id
;
120 spin_lock(&mnt_id_lock
);
121 ida_remove(&mnt_id_ida
, id
);
122 if (mnt_id_start
> id
)
124 spin_unlock(&mnt_id_lock
);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount
*mnt
)
136 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
139 res
= ida_get_new_above(&mnt_group_ida
,
143 mnt_group_start
= mnt
->mnt_group_id
+ 1;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount
*mnt
)
153 int id
= mnt
->mnt_group_id
;
154 ida_remove(&mnt_group_ida
, id
);
155 if (mnt_group_start
> id
)
156 mnt_group_start
= id
;
157 mnt
->mnt_group_id
= 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount
*mnt
, int n
)
166 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount
*mnt
)
180 unsigned int count
= 0;
183 for_each_possible_cpu(cpu
) {
184 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
189 return mnt
->mnt_count
;
193 static struct mount
*alloc_vfsmnt(const char *name
)
195 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
199 err
= mnt_alloc_id(mnt
);
204 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
205 if (!mnt
->mnt_devname
)
210 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
212 goto out_free_devname
;
214 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
217 mnt
->mnt_writers
= 0;
220 INIT_HLIST_NODE(&mnt
->mnt_hash
);
221 INIT_LIST_HEAD(&mnt
->mnt_child
);
222 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
223 INIT_LIST_HEAD(&mnt
->mnt_list
);
224 INIT_LIST_HEAD(&mnt
->mnt_expire
);
225 INIT_LIST_HEAD(&mnt
->mnt_share
);
226 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
227 INIT_LIST_HEAD(&mnt
->mnt_slave
);
228 #ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
236 kfree(mnt
->mnt_devname
);
241 kmem_cache_free(mnt_cache
, mnt
);
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
264 int __mnt_is_readonly(struct vfsmount
*mnt
)
266 if (mnt
->mnt_flags
& MNT_READONLY
)
268 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
274 static inline void mnt_inc_writers(struct mount
*mnt
)
277 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
283 static inline void mnt_dec_writers(struct mount
*mnt
)
286 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
292 static unsigned int mnt_get_writers(struct mount
*mnt
)
295 unsigned int count
= 0;
298 for_each_possible_cpu(cpu
) {
299 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
304 return mnt
->mnt_writers
;
308 static int mnt_is_readonly(struct vfsmount
*mnt
)
310 if (mnt
->mnt_sb
->s_readonly_remount
)
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 return __mnt_is_readonly(mnt
);
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
333 int __mnt_want_write(struct vfsmount
*m
)
335 struct mount
*mnt
= real_mount(m
);
339 mnt_inc_writers(mnt
);
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
346 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
354 if (mnt_is_readonly(m
)) {
355 mnt_dec_writers(mnt
);
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 int mnt_want_write(struct vfsmount
*m
)
376 sb_start_write(m
->mnt_sb
);
377 ret
= __mnt_want_write(m
);
379 sb_end_write(m
->mnt_sb
);
382 EXPORT_SYMBOL_GPL(mnt_want_write
);
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
396 int mnt_clone_write(struct vfsmount
*mnt
)
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt
))
402 mnt_inc_writers(real_mount(mnt
));
406 EXPORT_SYMBOL_GPL(mnt_clone_write
);
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
415 int __mnt_want_write_file(struct file
*file
)
417 struct inode
*inode
= file_inode(file
);
419 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
420 return __mnt_want_write(file
->f_path
.mnt
);
422 return mnt_clone_write(file
->f_path
.mnt
);
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
432 int mnt_want_write_file(struct file
*file
)
436 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
437 ret
= __mnt_want_write_file(file
);
439 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
442 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
452 void __mnt_drop_write(struct vfsmount
*mnt
)
455 mnt_dec_writers(real_mount(mnt
));
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
467 void mnt_drop_write(struct vfsmount
*mnt
)
469 __mnt_drop_write(mnt
);
470 sb_end_write(mnt
->mnt_sb
);
472 EXPORT_SYMBOL_GPL(mnt_drop_write
);
474 void __mnt_drop_write_file(struct file
*file
)
476 __mnt_drop_write(file
->f_path
.mnt
);
479 void mnt_drop_write_file(struct file
*file
)
481 mnt_drop_write(file
->f_path
.mnt
);
483 EXPORT_SYMBOL(mnt_drop_write_file
);
485 static int mnt_make_readonly(struct mount
*mnt
)
490 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
513 if (mnt_get_writers(mnt
) > 0)
516 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
522 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
527 static void __mnt_unmake_readonly(struct mount
*mnt
)
530 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
534 int sb_prepare_remount_readonly(struct super_block
*sb
)
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb
->s_remove_count
))
544 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
545 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
546 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
548 if (mnt_get_writers(mnt
) > 0) {
554 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
558 sb
->s_readonly_remount
= 1;
561 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
562 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
563 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
570 static void free_vfsmnt(struct mount
*mnt
)
572 kfree(mnt
->mnt_devname
);
575 free_percpu(mnt
->mnt_pcp
);
577 kmem_cache_free(mnt_cache
, mnt
);
580 /* call under rcu_read_lock */
581 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
584 if (read_seqretry(&mount_lock
, seq
))
588 mnt
= real_mount(bastard
);
589 mnt_add_count(mnt
, 1);
590 if (likely(!read_seqretry(&mount_lock
, seq
)))
592 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
593 mnt_add_count(mnt
, -1);
603 * find the first mount at @dentry on vfsmount @mnt.
604 * call under rcu_read_lock()
606 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
608 struct hlist_head
*head
= m_hash(mnt
, dentry
);
611 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
612 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
618 * find the last mount at @dentry on vfsmount @mnt.
619 * mount_lock must be held.
621 struct mount
*__lookup_mnt_last(struct vfsmount
*mnt
, struct dentry
*dentry
)
623 struct mount
*p
, *res
;
624 res
= p
= __lookup_mnt(mnt
, dentry
);
627 hlist_for_each_entry_continue(p
, mnt_hash
) {
628 if (&p
->mnt_parent
->mnt
!= mnt
|| p
->mnt_mountpoint
!= dentry
)
637 * lookup_mnt - Return the first child mount mounted at path
639 * "First" means first mounted chronologically. If you create the
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
650 * lookup_mnt takes a reference to the found vfsmount.
652 struct vfsmount
*lookup_mnt(struct path
*path
)
654 struct mount
*child_mnt
;
660 seq
= read_seqbegin(&mount_lock
);
661 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
662 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
663 } while (!legitimize_mnt(m
, seq
));
668 static struct mountpoint
*new_mountpoint(struct dentry
*dentry
)
670 struct hlist_head
*chain
= mp_hash(dentry
);
671 struct mountpoint
*mp
;
674 hlist_for_each_entry(mp
, chain
, m_hash
) {
675 if (mp
->m_dentry
== dentry
) {
676 /* might be worth a WARN_ON() */
677 if (d_unlinked(dentry
))
678 return ERR_PTR(-ENOENT
);
684 mp
= kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
686 return ERR_PTR(-ENOMEM
);
688 ret
= d_set_mounted(dentry
);
694 mp
->m_dentry
= dentry
;
696 hlist_add_head(&mp
->m_hash
, chain
);
700 static void put_mountpoint(struct mountpoint
*mp
)
702 if (!--mp
->m_count
) {
703 struct dentry
*dentry
= mp
->m_dentry
;
704 spin_lock(&dentry
->d_lock
);
705 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
706 spin_unlock(&dentry
->d_lock
);
707 hlist_del(&mp
->m_hash
);
712 static inline int check_mnt(struct mount
*mnt
)
714 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
718 * vfsmount lock must be held for write
720 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
724 wake_up_interruptible(&ns
->poll
);
729 * vfsmount lock must be held for write
731 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
733 if (ns
&& ns
->event
!= event
) {
735 wake_up_interruptible(&ns
->poll
);
740 * vfsmount lock must be held for write
742 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
744 old_path
->dentry
= mnt
->mnt_mountpoint
;
745 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
746 mnt
->mnt_parent
= mnt
;
747 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
748 list_del_init(&mnt
->mnt_child
);
749 hlist_del_init_rcu(&mnt
->mnt_hash
);
750 put_mountpoint(mnt
->mnt_mp
);
755 * vfsmount lock must be held for write
757 void mnt_set_mountpoint(struct mount
*mnt
,
758 struct mountpoint
*mp
,
759 struct mount
*child_mnt
)
762 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
763 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
764 child_mnt
->mnt_parent
= mnt
;
765 child_mnt
->mnt_mp
= mp
;
769 * vfsmount lock must be held for write
771 static void attach_mnt(struct mount
*mnt
,
772 struct mount
*parent
,
773 struct mountpoint
*mp
)
775 mnt_set_mountpoint(parent
, mp
, mnt
);
776 hlist_add_head_rcu(&mnt
->mnt_hash
, m_hash(&parent
->mnt
, mp
->m_dentry
));
777 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
780 static void attach_shadowed(struct mount
*mnt
,
781 struct mount
*parent
,
782 struct mount
*shadows
)
785 hlist_add_after_rcu(&shadows
->mnt_hash
, &mnt
->mnt_hash
);
786 list_add(&mnt
->mnt_child
, &shadows
->mnt_child
);
788 hlist_add_head_rcu(&mnt
->mnt_hash
,
789 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
790 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
795 * vfsmount lock must be held for write
797 static void commit_tree(struct mount
*mnt
, struct mount
*shadows
)
799 struct mount
*parent
= mnt
->mnt_parent
;
802 struct mnt_namespace
*n
= parent
->mnt_ns
;
804 BUG_ON(parent
== mnt
);
806 list_add_tail(&head
, &mnt
->mnt_list
);
807 list_for_each_entry(m
, &head
, mnt_list
)
810 list_splice(&head
, n
->list
.prev
);
812 attach_shadowed(mnt
, parent
, shadows
);
813 touch_mnt_namespace(n
);
816 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
818 struct list_head
*next
= p
->mnt_mounts
.next
;
819 if (next
== &p
->mnt_mounts
) {
823 next
= p
->mnt_child
.next
;
824 if (next
!= &p
->mnt_parent
->mnt_mounts
)
829 return list_entry(next
, struct mount
, mnt_child
);
832 static struct mount
*skip_mnt_tree(struct mount
*p
)
834 struct list_head
*prev
= p
->mnt_mounts
.prev
;
835 while (prev
!= &p
->mnt_mounts
) {
836 p
= list_entry(prev
, struct mount
, mnt_child
);
837 prev
= p
->mnt_mounts
.prev
;
843 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
849 return ERR_PTR(-ENODEV
);
851 mnt
= alloc_vfsmnt(name
);
853 return ERR_PTR(-ENOMEM
);
855 if (flags
& MS_KERNMOUNT
)
856 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
858 root
= mount_fs(type
, flags
, name
, data
);
861 return ERR_CAST(root
);
864 mnt
->mnt
.mnt_root
= root
;
865 mnt
->mnt
.mnt_sb
= root
->d_sb
;
866 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
867 mnt
->mnt_parent
= mnt
;
869 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
873 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
875 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
878 struct super_block
*sb
= old
->mnt
.mnt_sb
;
882 mnt
= alloc_vfsmnt(old
->mnt_devname
);
884 return ERR_PTR(-ENOMEM
);
886 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
887 mnt
->mnt_group_id
= 0; /* not a peer of original */
889 mnt
->mnt_group_id
= old
->mnt_group_id
;
891 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
892 err
= mnt_alloc_group_id(mnt
);
897 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
898 /* Don't allow unprivileged users to change mount flags */
899 if (flag
& CL_UNPRIVILEGED
) {
900 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
902 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
903 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
905 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
906 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
908 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
909 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
911 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
912 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
915 /* Don't allow unprivileged users to reveal what is under a mount */
916 if ((flag
& CL_UNPRIVILEGED
) && list_empty(&old
->mnt_expire
))
917 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
919 atomic_inc(&sb
->s_active
);
920 mnt
->mnt
.mnt_sb
= sb
;
921 mnt
->mnt
.mnt_root
= dget(root
);
922 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
923 mnt
->mnt_parent
= mnt
;
925 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
928 if ((flag
& CL_SLAVE
) ||
929 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
930 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
931 mnt
->mnt_master
= old
;
932 CLEAR_MNT_SHARED(mnt
);
933 } else if (!(flag
& CL_PRIVATE
)) {
934 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
935 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
936 if (IS_MNT_SLAVE(old
))
937 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
938 mnt
->mnt_master
= old
->mnt_master
;
940 if (flag
& CL_MAKE_SHARED
)
943 /* stick the duplicate mount on the same expiry list
944 * as the original if that was on one */
945 if (flag
& CL_EXPIRE
) {
946 if (!list_empty(&old
->mnt_expire
))
947 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
957 static void delayed_free(struct rcu_head
*head
)
959 struct mount
*mnt
= container_of(head
, struct mount
, mnt_rcu
);
960 kfree(mnt
->mnt_devname
);
962 free_percpu(mnt
->mnt_pcp
);
964 kmem_cache_free(mnt_cache
, mnt
);
967 static void mntput_no_expire(struct mount
*mnt
)
971 mnt_add_count(mnt
, -1);
972 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
977 if (mnt_get_count(mnt
)) {
982 if (unlikely(mnt
->mnt_pinned
)) {
983 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
987 acct_auto_close_mnt(&mnt
->mnt
);
990 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
995 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
998 list_del(&mnt
->mnt_instance
);
1002 * This probably indicates that somebody messed
1003 * up a mnt_want/drop_write() pair. If this
1004 * happens, the filesystem was probably unable
1005 * to make r/w->r/o transitions.
1008 * The locking used to deal with mnt_count decrement provides barriers,
1009 * so mnt_get_writers() below is safe.
1011 WARN_ON(mnt_get_writers(mnt
));
1012 fsnotify_vfsmount_delete(&mnt
->mnt
);
1013 dput(mnt
->mnt
.mnt_root
);
1014 deactivate_super(mnt
->mnt
.mnt_sb
);
1016 call_rcu(&mnt
->mnt_rcu
, delayed_free
);
1019 void mntput(struct vfsmount
*mnt
)
1022 struct mount
*m
= real_mount(mnt
);
1023 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1024 if (unlikely(m
->mnt_expiry_mark
))
1025 m
->mnt_expiry_mark
= 0;
1026 mntput_no_expire(m
);
1029 EXPORT_SYMBOL(mntput
);
1031 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1034 mnt_add_count(real_mount(mnt
), 1);
1037 EXPORT_SYMBOL(mntget
);
1039 void mnt_pin(struct vfsmount
*mnt
)
1042 real_mount(mnt
)->mnt_pinned
++;
1043 unlock_mount_hash();
1045 EXPORT_SYMBOL(mnt_pin
);
1047 void mnt_unpin(struct vfsmount
*m
)
1049 struct mount
*mnt
= real_mount(m
);
1051 if (mnt
->mnt_pinned
) {
1052 mnt_add_count(mnt
, 1);
1055 unlock_mount_hash();
1057 EXPORT_SYMBOL(mnt_unpin
);
1059 static inline void mangle(struct seq_file
*m
, const char *s
)
1061 seq_escape(m
, s
, " \t\n\\");
1065 * Simple .show_options callback for filesystems which don't want to
1066 * implement more complex mount option showing.
1068 * See also save_mount_options().
1070 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1072 const char *options
;
1075 options
= rcu_dereference(root
->d_sb
->s_options
);
1077 if (options
!= NULL
&& options
[0]) {
1085 EXPORT_SYMBOL(generic_show_options
);
1088 * If filesystem uses generic_show_options(), this function should be
1089 * called from the fill_super() callback.
1091 * The .remount_fs callback usually needs to be handled in a special
1092 * way, to make sure, that previous options are not overwritten if the
1095 * Also note, that if the filesystem's .remount_fs function doesn't
1096 * reset all options to their default value, but changes only newly
1097 * given options, then the displayed options will not reflect reality
1100 void save_mount_options(struct super_block
*sb
, char *options
)
1102 BUG_ON(sb
->s_options
);
1103 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1105 EXPORT_SYMBOL(save_mount_options
);
1107 void replace_mount_options(struct super_block
*sb
, char *options
)
1109 char *old
= sb
->s_options
;
1110 rcu_assign_pointer(sb
->s_options
, options
);
1116 EXPORT_SYMBOL(replace_mount_options
);
1118 #ifdef CONFIG_PROC_FS
1119 /* iterator; we want it to have access to namespace_sem, thus here... */
1120 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1122 struct proc_mounts
*p
= proc_mounts(m
);
1124 down_read(&namespace_sem
);
1125 return seq_list_start(&p
->ns
->list
, *pos
);
1128 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1130 struct proc_mounts
*p
= proc_mounts(m
);
1132 return seq_list_next(v
, &p
->ns
->list
, pos
);
1135 static void m_stop(struct seq_file
*m
, void *v
)
1137 up_read(&namespace_sem
);
1140 static int m_show(struct seq_file
*m
, void *v
)
1142 struct proc_mounts
*p
= proc_mounts(m
);
1143 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1144 return p
->show(m
, &r
->mnt
);
1147 const struct seq_operations mounts_op
= {
1153 #endif /* CONFIG_PROC_FS */
1156 * may_umount_tree - check if a mount tree is busy
1157 * @mnt: root of mount tree
1159 * This is called to check if a tree of mounts has any
1160 * open files, pwds, chroots or sub mounts that are
1163 int may_umount_tree(struct vfsmount
*m
)
1165 struct mount
*mnt
= real_mount(m
);
1166 int actual_refs
= 0;
1167 int minimum_refs
= 0;
1171 /* write lock needed for mnt_get_count */
1173 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1174 actual_refs
+= mnt_get_count(p
);
1177 unlock_mount_hash();
1179 if (actual_refs
> minimum_refs
)
1185 EXPORT_SYMBOL(may_umount_tree
);
1188 * may_umount - check if a mount point is busy
1189 * @mnt: root of mount
1191 * This is called to check if a mount point has any
1192 * open files, pwds, chroots or sub mounts. If the
1193 * mount has sub mounts this will return busy
1194 * regardless of whether the sub mounts are busy.
1196 * Doesn't take quota and stuff into account. IOW, in some cases it will
1197 * give false negatives. The main reason why it's here is that we need
1198 * a non-destructive way to look for easily umountable filesystems.
1200 int may_umount(struct vfsmount
*mnt
)
1203 down_read(&namespace_sem
);
1205 if (propagate_mount_busy(real_mount(mnt
), 2))
1207 unlock_mount_hash();
1208 up_read(&namespace_sem
);
1212 EXPORT_SYMBOL(may_umount
);
1214 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1216 static void namespace_unlock(void)
1219 struct hlist_head head
= unmounted
;
1221 if (likely(hlist_empty(&head
))) {
1222 up_write(&namespace_sem
);
1226 head
.first
->pprev
= &head
.first
;
1227 INIT_HLIST_HEAD(&unmounted
);
1229 /* undo decrements we'd done in umount_tree() */
1230 hlist_for_each_entry(mnt
, &head
, mnt_hash
)
1231 if (mnt
->mnt_ex_mountpoint
.mnt
)
1232 mntget(mnt
->mnt_ex_mountpoint
.mnt
);
1234 up_write(&namespace_sem
);
1238 while (!hlist_empty(&head
)) {
1239 mnt
= hlist_entry(head
.first
, struct mount
, mnt_hash
);
1240 hlist_del_init(&mnt
->mnt_hash
);
1241 if (mnt
->mnt_ex_mountpoint
.mnt
)
1242 path_put(&mnt
->mnt_ex_mountpoint
);
1247 static inline void namespace_lock(void)
1249 down_write(&namespace_sem
);
1253 * mount_lock must be held
1254 * namespace_sem must be held for write
1255 * how = 0 => just this tree, don't propagate
1256 * how = 1 => propagate; we know that nobody else has reference to any victims
1257 * how = 2 => lazy umount
1259 void umount_tree(struct mount
*mnt
, int how
)
1261 HLIST_HEAD(tmp_list
);
1263 struct mount
*last
= NULL
;
1265 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1266 hlist_del_init_rcu(&p
->mnt_hash
);
1267 hlist_add_head(&p
->mnt_hash
, &tmp_list
);
1270 hlist_for_each_entry(p
, &tmp_list
, mnt_hash
)
1271 list_del_init(&p
->mnt_child
);
1274 propagate_umount(&tmp_list
);
1276 hlist_for_each_entry(p
, &tmp_list
, mnt_hash
) {
1277 list_del_init(&p
->mnt_expire
);
1278 list_del_init(&p
->mnt_list
);
1279 __touch_mnt_namespace(p
->mnt_ns
);
1282 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1283 if (mnt_has_parent(p
)) {
1284 put_mountpoint(p
->mnt_mp
);
1285 mnt_add_count(p
->mnt_parent
, -1);
1286 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1287 p
->mnt_ex_mountpoint
.dentry
= p
->mnt_mountpoint
;
1288 p
->mnt_ex_mountpoint
.mnt
= &p
->mnt_parent
->mnt
;
1289 p
->mnt_mountpoint
= p
->mnt
.mnt_root
;
1293 change_mnt_propagation(p
, MS_PRIVATE
);
1297 last
->mnt_hash
.next
= unmounted
.first
;
1298 if (unmounted
.first
)
1299 unmounted
.first
->pprev
= &last
->mnt_hash
.next
;
1300 unmounted
.first
= tmp_list
.first
;
1301 unmounted
.first
->pprev
= &unmounted
.first
;
1305 static void shrink_submounts(struct mount
*mnt
);
1307 static int do_umount(struct mount
*mnt
, int flags
)
1309 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1312 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1317 * Allow userspace to request a mountpoint be expired rather than
1318 * unmounting unconditionally. Unmount only happens if:
1319 * (1) the mark is already set (the mark is cleared by mntput())
1320 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1322 if (flags
& MNT_EXPIRE
) {
1323 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1324 flags
& (MNT_FORCE
| MNT_DETACH
))
1328 * probably don't strictly need the lock here if we examined
1329 * all race cases, but it's a slowpath.
1332 if (mnt_get_count(mnt
) != 2) {
1333 unlock_mount_hash();
1336 unlock_mount_hash();
1338 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1343 * If we may have to abort operations to get out of this
1344 * mount, and they will themselves hold resources we must
1345 * allow the fs to do things. In the Unix tradition of
1346 * 'Gee thats tricky lets do it in userspace' the umount_begin
1347 * might fail to complete on the first run through as other tasks
1348 * must return, and the like. Thats for the mount program to worry
1349 * about for the moment.
1352 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1353 sb
->s_op
->umount_begin(sb
);
1357 * No sense to grab the lock for this test, but test itself looks
1358 * somewhat bogus. Suggestions for better replacement?
1359 * Ho-hum... In principle, we might treat that as umount + switch
1360 * to rootfs. GC would eventually take care of the old vfsmount.
1361 * Actually it makes sense, especially if rootfs would contain a
1362 * /reboot - static binary that would close all descriptors and
1363 * call reboot(9). Then init(8) could umount root and exec /reboot.
1365 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1367 * Special case for "unmounting" root ...
1368 * we just try to remount it readonly.
1370 if (!capable(CAP_SYS_ADMIN
))
1372 down_write(&sb
->s_umount
);
1373 if (!(sb
->s_flags
& MS_RDONLY
))
1374 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1375 up_write(&sb
->s_umount
);
1383 if (flags
& MNT_DETACH
) {
1384 if (!list_empty(&mnt
->mnt_list
))
1385 umount_tree(mnt
, 2);
1388 shrink_submounts(mnt
);
1390 if (!propagate_mount_busy(mnt
, 2)) {
1391 if (!list_empty(&mnt
->mnt_list
))
1392 umount_tree(mnt
, 1);
1396 unlock_mount_hash();
1402 * Is the caller allowed to modify his namespace?
1404 static inline bool may_mount(void)
1406 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1410 * Now umount can handle mount points as well as block devices.
1411 * This is important for filesystems which use unnamed block devices.
1413 * We now support a flag for forced unmount like the other 'big iron'
1414 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1417 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1422 int lookup_flags
= 0;
1424 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1430 if (!(flags
& UMOUNT_NOFOLLOW
))
1431 lookup_flags
|= LOOKUP_FOLLOW
;
1433 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1436 mnt
= real_mount(path
.mnt
);
1438 if (path
.dentry
!= path
.mnt
->mnt_root
)
1440 if (!check_mnt(mnt
))
1442 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1445 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1448 retval
= do_umount(mnt
, flags
);
1450 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1452 mntput_no_expire(mnt
);
1457 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1460 * The 2.0 compatible umount. No flags.
1462 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1464 return sys_umount(name
, 0);
1469 static bool is_mnt_ns_file(struct dentry
*dentry
)
1471 /* Is this a proxy for a mount namespace? */
1472 struct inode
*inode
= dentry
->d_inode
;
1475 if (!proc_ns_inode(inode
))
1478 ei
= get_proc_ns(inode
);
1479 if (ei
->ns_ops
!= &mntns_operations
)
1485 static bool mnt_ns_loop(struct dentry
*dentry
)
1487 /* Could bind mounting the mount namespace inode cause a
1488 * mount namespace loop?
1490 struct mnt_namespace
*mnt_ns
;
1491 if (!is_mnt_ns_file(dentry
))
1494 mnt_ns
= get_proc_ns(dentry
->d_inode
)->ns
;
1495 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1498 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1501 struct mount
*res
, *p
, *q
, *r
, *parent
;
1503 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1504 return ERR_PTR(-EINVAL
);
1506 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1507 return ERR_PTR(-EINVAL
);
1509 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1513 q
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
1514 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1517 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1519 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1522 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1523 struct mount
*t
= NULL
;
1524 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1525 IS_MNT_UNBINDABLE(s
)) {
1526 s
= skip_mnt_tree(s
);
1529 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1530 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1531 s
= skip_mnt_tree(s
);
1534 while (p
!= s
->mnt_parent
) {
1540 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1544 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1545 mnt_set_mountpoint(parent
, p
->mnt_mp
, q
);
1546 if (!list_empty(&parent
->mnt_mounts
)) {
1547 t
= list_last_entry(&parent
->mnt_mounts
,
1548 struct mount
, mnt_child
);
1549 if (t
->mnt_mp
!= p
->mnt_mp
)
1552 attach_shadowed(q
, parent
, t
);
1553 unlock_mount_hash();
1560 umount_tree(res
, 0);
1561 unlock_mount_hash();
1566 /* Caller should check returned pointer for errors */
1568 struct vfsmount
*collect_mounts(struct path
*path
)
1572 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1573 CL_COPY_ALL
| CL_PRIVATE
);
1576 return ERR_CAST(tree
);
1580 void drop_collected_mounts(struct vfsmount
*mnt
)
1584 umount_tree(real_mount(mnt
), 0);
1585 unlock_mount_hash();
1589 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1590 struct vfsmount
*root
)
1593 int res
= f(root
, arg
);
1596 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1597 res
= f(&mnt
->mnt
, arg
);
1604 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1608 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1609 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1610 mnt_release_group_id(p
);
1614 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1618 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1619 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1620 int err
= mnt_alloc_group_id(p
);
1622 cleanup_group_ids(mnt
, p
);
1632 * @source_mnt : mount tree to be attached
1633 * @nd : place the mount tree @source_mnt is attached
1634 * @parent_nd : if non-null, detach the source_mnt from its parent and
1635 * store the parent mount and mountpoint dentry.
1636 * (done when source_mnt is moved)
1638 * NOTE: in the table below explains the semantics when a source mount
1639 * of a given type is attached to a destination mount of a given type.
1640 * ---------------------------------------------------------------------------
1641 * | BIND MOUNT OPERATION |
1642 * |**************************************************************************
1643 * | source-->| shared | private | slave | unbindable |
1647 * |**************************************************************************
1648 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1650 * |non-shared| shared (+) | private | slave (*) | invalid |
1651 * ***************************************************************************
1652 * A bind operation clones the source mount and mounts the clone on the
1653 * destination mount.
1655 * (++) the cloned mount is propagated to all the mounts in the propagation
1656 * tree of the destination mount and the cloned mount is added to
1657 * the peer group of the source mount.
1658 * (+) the cloned mount is created under the destination mount and is marked
1659 * as shared. The cloned mount is added to the peer group of the source
1661 * (+++) the mount is propagated to all the mounts in the propagation tree
1662 * of the destination mount and the cloned mount is made slave
1663 * of the same master as that of the source mount. The cloned mount
1664 * is marked as 'shared and slave'.
1665 * (*) the cloned mount is made a slave of the same master as that of the
1668 * ---------------------------------------------------------------------------
1669 * | MOVE MOUNT OPERATION |
1670 * |**************************************************************************
1671 * | source-->| shared | private | slave | unbindable |
1675 * |**************************************************************************
1676 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1678 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1679 * ***************************************************************************
1681 * (+) the mount is moved to the destination. And is then propagated to
1682 * all the mounts in the propagation tree of the destination mount.
1683 * (+*) the mount is moved to the destination.
1684 * (+++) the mount is moved to the destination and is then propagated to
1685 * all the mounts belonging to the destination mount's propagation tree.
1686 * the mount is marked as 'shared and slave'.
1687 * (*) the mount continues to be a slave at the new location.
1689 * if the source mount is a tree, the operations explained above is
1690 * applied to each mount in the tree.
1691 * Must be called without spinlocks held, since this function can sleep
1694 static int attach_recursive_mnt(struct mount
*source_mnt
,
1695 struct mount
*dest_mnt
,
1696 struct mountpoint
*dest_mp
,
1697 struct path
*parent_path
)
1699 HLIST_HEAD(tree_list
);
1700 struct mount
*child
, *p
;
1701 struct hlist_node
*n
;
1704 if (IS_MNT_SHARED(dest_mnt
)) {
1705 err
= invent_group_ids(source_mnt
, true);
1708 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1711 goto out_cleanup_ids
;
1712 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1718 detach_mnt(source_mnt
, parent_path
);
1719 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1720 touch_mnt_namespace(source_mnt
->mnt_ns
);
1722 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1723 commit_tree(source_mnt
, NULL
);
1726 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
1728 hlist_del_init(&child
->mnt_hash
);
1729 q
= __lookup_mnt_last(&child
->mnt_parent
->mnt
,
1730 child
->mnt_mountpoint
);
1731 commit_tree(child
, q
);
1733 unlock_mount_hash();
1738 while (!hlist_empty(&tree_list
)) {
1739 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
1740 umount_tree(child
, 0);
1742 unlock_mount_hash();
1743 cleanup_group_ids(source_mnt
, NULL
);
1748 static struct mountpoint
*lock_mount(struct path
*path
)
1750 struct vfsmount
*mnt
;
1751 struct dentry
*dentry
= path
->dentry
;
1753 mutex_lock(&dentry
->d_inode
->i_mutex
);
1754 if (unlikely(cant_mount(dentry
))) {
1755 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1756 return ERR_PTR(-ENOENT
);
1759 mnt
= lookup_mnt(path
);
1761 struct mountpoint
*mp
= new_mountpoint(dentry
);
1764 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1770 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1773 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
1777 static void unlock_mount(struct mountpoint
*where
)
1779 struct dentry
*dentry
= where
->m_dentry
;
1780 put_mountpoint(where
);
1782 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1785 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
1787 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1790 if (S_ISDIR(mp
->m_dentry
->d_inode
->i_mode
) !=
1791 S_ISDIR(mnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1794 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
1798 * Sanity check the flags to change_mnt_propagation.
1801 static int flags_to_propagation_type(int flags
)
1803 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1805 /* Fail if any non-propagation flags are set */
1806 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1808 /* Only one propagation flag should be set */
1809 if (!is_power_of_2(type
))
1815 * recursively change the type of the mountpoint.
1817 static int do_change_type(struct path
*path
, int flag
)
1820 struct mount
*mnt
= real_mount(path
->mnt
);
1821 int recurse
= flag
& MS_REC
;
1825 if (path
->dentry
!= path
->mnt
->mnt_root
)
1828 type
= flags_to_propagation_type(flag
);
1833 if (type
== MS_SHARED
) {
1834 err
= invent_group_ids(mnt
, recurse
);
1840 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1841 change_mnt_propagation(m
, type
);
1842 unlock_mount_hash();
1849 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
1851 struct mount
*child
;
1852 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
1853 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
1856 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
1863 * do loopback mount.
1865 static int do_loopback(struct path
*path
, const char *old_name
,
1868 struct path old_path
;
1869 struct mount
*mnt
= NULL
, *old
, *parent
;
1870 struct mountpoint
*mp
;
1872 if (!old_name
|| !*old_name
)
1874 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
1879 if (mnt_ns_loop(old_path
.dentry
))
1882 mp
= lock_mount(path
);
1887 old
= real_mount(old_path
.mnt
);
1888 parent
= real_mount(path
->mnt
);
1891 if (IS_MNT_UNBINDABLE(old
))
1894 if (!check_mnt(parent
) || !check_mnt(old
))
1897 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
1901 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
1903 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
1910 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
1912 err
= graft_tree(mnt
, parent
, mp
);
1915 umount_tree(mnt
, 0);
1916 unlock_mount_hash();
1921 path_put(&old_path
);
1925 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1928 int readonly_request
= 0;
1930 if (ms_flags
& MS_RDONLY
)
1931 readonly_request
= 1;
1932 if (readonly_request
== __mnt_is_readonly(mnt
))
1935 if (readonly_request
)
1936 error
= mnt_make_readonly(real_mount(mnt
));
1938 __mnt_unmake_readonly(real_mount(mnt
));
1943 * change filesystem flags. dir should be a physical root of filesystem.
1944 * If you've mounted a non-root directory somewhere and want to do remount
1945 * on it - tough luck.
1947 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1951 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1952 struct mount
*mnt
= real_mount(path
->mnt
);
1954 if (!check_mnt(mnt
))
1957 if (path
->dentry
!= path
->mnt
->mnt_root
)
1960 /* Don't allow changing of locked mnt flags.
1962 * No locks need to be held here while testing the various
1963 * MNT_LOCK flags because those flags can never be cleared
1964 * once they are set.
1966 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
1967 !(mnt_flags
& MNT_READONLY
)) {
1970 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
1971 !(mnt_flags
& MNT_NODEV
)) {
1972 /* Was the nodev implicitly added in mount? */
1973 if ((mnt
->mnt_ns
->user_ns
!= &init_user_ns
) &&
1974 !(sb
->s_type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
1975 mnt_flags
|= MNT_NODEV
;
1980 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
1981 !(mnt_flags
& MNT_NOSUID
)) {
1984 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
1985 !(mnt_flags
& MNT_NOEXEC
)) {
1988 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
1989 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
1993 err
= security_sb_remount(sb
, data
);
1997 down_write(&sb
->s_umount
);
1998 if (flags
& MS_BIND
)
1999 err
= change_mount_flags(path
->mnt
, flags
);
2000 else if (!capable(CAP_SYS_ADMIN
))
2003 err
= do_remount_sb(sb
, flags
, data
, 0);
2006 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2007 mnt
->mnt
.mnt_flags
= mnt_flags
;
2008 touch_mnt_namespace(mnt
->mnt_ns
);
2009 unlock_mount_hash();
2011 up_write(&sb
->s_umount
);
2015 static inline int tree_contains_unbindable(struct mount
*mnt
)
2018 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2019 if (IS_MNT_UNBINDABLE(p
))
2025 static int do_move_mount(struct path
*path
, const char *old_name
)
2027 struct path old_path
, parent_path
;
2030 struct mountpoint
*mp
;
2032 if (!old_name
|| !*old_name
)
2034 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2038 mp
= lock_mount(path
);
2043 old
= real_mount(old_path
.mnt
);
2044 p
= real_mount(path
->mnt
);
2047 if (!check_mnt(p
) || !check_mnt(old
))
2050 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2054 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2057 if (!mnt_has_parent(old
))
2060 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
2061 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
2064 * Don't move a mount residing in a shared parent.
2066 if (IS_MNT_SHARED(old
->mnt_parent
))
2069 * Don't move a mount tree containing unbindable mounts to a destination
2070 * mount which is shared.
2072 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2075 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2079 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2083 /* if the mount is moved, it should no longer be expire
2085 list_del_init(&old
->mnt_expire
);
2090 path_put(&parent_path
);
2091 path_put(&old_path
);
2095 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2098 const char *subtype
= strchr(fstype
, '.');
2107 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2109 if (!mnt
->mnt_sb
->s_subtype
)
2115 return ERR_PTR(err
);
2119 * add a mount into a namespace's mount tree
2121 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2123 struct mountpoint
*mp
;
2124 struct mount
*parent
;
2127 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2129 mp
= lock_mount(path
);
2133 parent
= real_mount(path
->mnt
);
2135 if (unlikely(!check_mnt(parent
))) {
2136 /* that's acceptable only for automounts done in private ns */
2137 if (!(mnt_flags
& MNT_SHRINKABLE
))
2139 /* ... and for those we'd better have mountpoint still alive */
2140 if (!parent
->mnt_ns
)
2144 /* Refuse the same filesystem on the same mount point */
2146 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2147 path
->mnt
->mnt_root
== path
->dentry
)
2151 if (S_ISLNK(newmnt
->mnt
.mnt_root
->d_inode
->i_mode
))
2154 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2155 err
= graft_tree(newmnt
, parent
, mp
);
2163 * create a new mount for userspace and request it to be added into the
2166 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2167 int mnt_flags
, const char *name
, void *data
)
2169 struct file_system_type
*type
;
2170 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2171 struct vfsmount
*mnt
;
2177 type
= get_fs_type(fstype
);
2181 if (user_ns
!= &init_user_ns
) {
2182 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2183 put_filesystem(type
);
2186 /* Only in special cases allow devices from mounts
2187 * created outside the initial user namespace.
2189 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2191 mnt_flags
|= MNT_NODEV
| MNT_LOCK_NODEV
;
2195 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2196 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2197 !mnt
->mnt_sb
->s_subtype
)
2198 mnt
= fs_set_subtype(mnt
, fstype
);
2200 put_filesystem(type
);
2202 return PTR_ERR(mnt
);
2204 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2210 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2212 struct mount
*mnt
= real_mount(m
);
2214 /* The new mount record should have at least 2 refs to prevent it being
2215 * expired before we get a chance to add it
2217 BUG_ON(mnt_get_count(mnt
) < 2);
2219 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2220 m
->mnt_root
== path
->dentry
) {
2225 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2229 /* remove m from any expiration list it may be on */
2230 if (!list_empty(&mnt
->mnt_expire
)) {
2232 list_del_init(&mnt
->mnt_expire
);
2241 * mnt_set_expiry - Put a mount on an expiration list
2242 * @mnt: The mount to list.
2243 * @expiry_list: The list to add the mount to.
2245 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2249 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2253 EXPORT_SYMBOL(mnt_set_expiry
);
2256 * process a list of expirable mountpoints with the intent of discarding any
2257 * mountpoints that aren't in use and haven't been touched since last we came
2260 void mark_mounts_for_expiry(struct list_head
*mounts
)
2262 struct mount
*mnt
, *next
;
2263 LIST_HEAD(graveyard
);
2265 if (list_empty(mounts
))
2271 /* extract from the expiration list every vfsmount that matches the
2272 * following criteria:
2273 * - only referenced by its parent vfsmount
2274 * - still marked for expiry (marked on the last call here; marks are
2275 * cleared by mntput())
2277 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2278 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2279 propagate_mount_busy(mnt
, 1))
2281 list_move(&mnt
->mnt_expire
, &graveyard
);
2283 while (!list_empty(&graveyard
)) {
2284 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2285 touch_mnt_namespace(mnt
->mnt_ns
);
2286 umount_tree(mnt
, 1);
2288 unlock_mount_hash();
2292 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2295 * Ripoff of 'select_parent()'
2297 * search the list of submounts for a given mountpoint, and move any
2298 * shrinkable submounts to the 'graveyard' list.
2300 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2302 struct mount
*this_parent
= parent
;
2303 struct list_head
*next
;
2307 next
= this_parent
->mnt_mounts
.next
;
2309 while (next
!= &this_parent
->mnt_mounts
) {
2310 struct list_head
*tmp
= next
;
2311 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2314 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2317 * Descend a level if the d_mounts list is non-empty.
2319 if (!list_empty(&mnt
->mnt_mounts
)) {
2324 if (!propagate_mount_busy(mnt
, 1)) {
2325 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2330 * All done at this level ... ascend and resume the search
2332 if (this_parent
!= parent
) {
2333 next
= this_parent
->mnt_child
.next
;
2334 this_parent
= this_parent
->mnt_parent
;
2341 * process a list of expirable mountpoints with the intent of discarding any
2342 * submounts of a specific parent mountpoint
2344 * mount_lock must be held for write
2346 static void shrink_submounts(struct mount
*mnt
)
2348 LIST_HEAD(graveyard
);
2351 /* extract submounts of 'mountpoint' from the expiration list */
2352 while (select_submounts(mnt
, &graveyard
)) {
2353 while (!list_empty(&graveyard
)) {
2354 m
= list_first_entry(&graveyard
, struct mount
,
2356 touch_mnt_namespace(m
->mnt_ns
);
2363 * Some copy_from_user() implementations do not return the exact number of
2364 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2365 * Note that this function differs from copy_from_user() in that it will oops
2366 * on bad values of `to', rather than returning a short copy.
2368 static long exact_copy_from_user(void *to
, const void __user
* from
,
2372 const char __user
*f
= from
;
2375 if (!access_ok(VERIFY_READ
, from
, n
))
2379 if (__get_user(c
, f
)) {
2390 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2400 if (!(page
= __get_free_page(GFP_KERNEL
)))
2403 /* We only care that *some* data at the address the user
2404 * gave us is valid. Just in case, we'll zero
2405 * the remainder of the page.
2407 /* copy_from_user cannot cross TASK_SIZE ! */
2408 size
= TASK_SIZE
- (unsigned long)data
;
2409 if (size
> PAGE_SIZE
)
2412 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2418 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2423 int copy_mount_string(const void __user
*data
, char **where
)
2432 tmp
= strndup_user(data
, PAGE_SIZE
);
2434 return PTR_ERR(tmp
);
2441 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2442 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2444 * data is a (void *) that can point to any structure up to
2445 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2446 * information (or be NULL).
2448 * Pre-0.97 versions of mount() didn't have a flags word.
2449 * When the flags word was introduced its top half was required
2450 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2451 * Therefore, if this magic number is present, it carries no information
2452 * and must be discarded.
2454 long do_mount(const char *dev_name
, const char *dir_name
,
2455 const char *type_page
, unsigned long flags
, void *data_page
)
2462 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2463 flags
&= ~MS_MGC_MSK
;
2465 /* Basic sanity checks */
2467 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2471 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2473 /* ... and get the mountpoint */
2474 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2478 retval
= security_sb_mount(dev_name
, &path
,
2479 type_page
, flags
, data_page
);
2480 if (!retval
&& !may_mount())
2485 /* Default to relatime unless overriden */
2486 if (!(flags
& MS_NOATIME
))
2487 mnt_flags
|= MNT_RELATIME
;
2489 /* Separate the per-mountpoint flags */
2490 if (flags
& MS_NOSUID
)
2491 mnt_flags
|= MNT_NOSUID
;
2492 if (flags
& MS_NODEV
)
2493 mnt_flags
|= MNT_NODEV
;
2494 if (flags
& MS_NOEXEC
)
2495 mnt_flags
|= MNT_NOEXEC
;
2496 if (flags
& MS_NOATIME
)
2497 mnt_flags
|= MNT_NOATIME
;
2498 if (flags
& MS_NODIRATIME
)
2499 mnt_flags
|= MNT_NODIRATIME
;
2500 if (flags
& MS_STRICTATIME
)
2501 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2502 if (flags
& MS_RDONLY
)
2503 mnt_flags
|= MNT_READONLY
;
2505 /* The default atime for remount is preservation */
2506 if ((flags
& MS_REMOUNT
) &&
2507 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2508 MS_STRICTATIME
)) == 0)) {
2509 mnt_flags
&= ~MNT_ATIME_MASK
;
2510 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2513 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2514 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2517 if (flags
& MS_REMOUNT
)
2518 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2520 else if (flags
& MS_BIND
)
2521 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2522 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2523 retval
= do_change_type(&path
, flags
);
2524 else if (flags
& MS_MOVE
)
2525 retval
= do_move_mount(&path
, dev_name
);
2527 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2528 dev_name
, data_page
);
2534 static void free_mnt_ns(struct mnt_namespace
*ns
)
2536 proc_free_inum(ns
->proc_inum
);
2537 put_user_ns(ns
->user_ns
);
2542 * Assign a sequence number so we can detect when we attempt to bind
2543 * mount a reference to an older mount namespace into the current
2544 * mount namespace, preventing reference counting loops. A 64bit
2545 * number incrementing at 10Ghz will take 12,427 years to wrap which
2546 * is effectively never, so we can ignore the possibility.
2548 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2550 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2552 struct mnt_namespace
*new_ns
;
2555 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2557 return ERR_PTR(-ENOMEM
);
2558 ret
= proc_alloc_inum(&new_ns
->proc_inum
);
2561 return ERR_PTR(ret
);
2563 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2564 atomic_set(&new_ns
->count
, 1);
2565 new_ns
->root
= NULL
;
2566 INIT_LIST_HEAD(&new_ns
->list
);
2567 init_waitqueue_head(&new_ns
->poll
);
2569 new_ns
->user_ns
= get_user_ns(user_ns
);
2573 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2574 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2576 struct mnt_namespace
*new_ns
;
2577 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2578 struct mount
*p
, *q
;
2585 if (likely(!(flags
& CLONE_NEWNS
))) {
2592 new_ns
= alloc_mnt_ns(user_ns
);
2597 /* First pass: copy the tree topology */
2598 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2599 if (user_ns
!= ns
->user_ns
)
2600 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2601 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2604 free_mnt_ns(new_ns
);
2605 return ERR_CAST(new);
2608 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2611 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2612 * as belonging to new namespace. We have already acquired a private
2613 * fs_struct, so tsk->fs->lock is not needed.
2620 if (&p
->mnt
== new_fs
->root
.mnt
) {
2621 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2624 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2625 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2629 p
= next_mnt(p
, old
);
2630 q
= next_mnt(q
, new);
2633 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2634 p
= next_mnt(p
, old
);
2647 * create_mnt_ns - creates a private namespace and adds a root filesystem
2648 * @mnt: pointer to the new root filesystem mountpoint
2650 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2652 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2653 if (!IS_ERR(new_ns
)) {
2654 struct mount
*mnt
= real_mount(m
);
2655 mnt
->mnt_ns
= new_ns
;
2657 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2664 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2666 struct mnt_namespace
*ns
;
2667 struct super_block
*s
;
2671 ns
= create_mnt_ns(mnt
);
2673 return ERR_CAST(ns
);
2675 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2676 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2681 return ERR_PTR(err
);
2683 /* trade a vfsmount reference for active sb one */
2684 s
= path
.mnt
->mnt_sb
;
2685 atomic_inc(&s
->s_active
);
2687 /* lock the sucker */
2688 down_write(&s
->s_umount
);
2689 /* ... and return the root of (sub)tree on it */
2692 EXPORT_SYMBOL(mount_subtree
);
2694 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2695 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2699 struct filename
*kernel_dir
;
2701 unsigned long data_page
;
2703 ret
= copy_mount_string(type
, &kernel_type
);
2707 kernel_dir
= getname(dir_name
);
2708 if (IS_ERR(kernel_dir
)) {
2709 ret
= PTR_ERR(kernel_dir
);
2713 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2717 ret
= copy_mount_options(data
, &data_page
);
2721 ret
= do_mount(kernel_dev
, kernel_dir
->name
, kernel_type
, flags
,
2722 (void *) data_page
);
2724 free_page(data_page
);
2728 putname(kernel_dir
);
2736 * Return true if path is reachable from root
2738 * namespace_sem or mount_lock is held
2740 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2741 const struct path
*root
)
2743 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2744 dentry
= mnt
->mnt_mountpoint
;
2745 mnt
= mnt
->mnt_parent
;
2747 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2750 int path_is_under(struct path
*path1
, struct path
*path2
)
2753 read_seqlock_excl(&mount_lock
);
2754 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2755 read_sequnlock_excl(&mount_lock
);
2758 EXPORT_SYMBOL(path_is_under
);
2761 * pivot_root Semantics:
2762 * Moves the root file system of the current process to the directory put_old,
2763 * makes new_root as the new root file system of the current process, and sets
2764 * root/cwd of all processes which had them on the current root to new_root.
2767 * The new_root and put_old must be directories, and must not be on the
2768 * same file system as the current process root. The put_old must be
2769 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2770 * pointed to by put_old must yield the same directory as new_root. No other
2771 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2773 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2774 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2775 * in this situation.
2778 * - we don't move root/cwd if they are not at the root (reason: if something
2779 * cared enough to change them, it's probably wrong to force them elsewhere)
2780 * - it's okay to pick a root that isn't the root of a file system, e.g.
2781 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2782 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2785 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2786 const char __user
*, put_old
)
2788 struct path
new, old
, parent_path
, root_parent
, root
;
2789 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
2790 struct mountpoint
*old_mp
, *root_mp
;
2796 error
= user_path_dir(new_root
, &new);
2800 error
= user_path_dir(put_old
, &old
);
2804 error
= security_sb_pivotroot(&old
, &new);
2808 get_fs_root(current
->fs
, &root
);
2809 old_mp
= lock_mount(&old
);
2810 error
= PTR_ERR(old_mp
);
2815 new_mnt
= real_mount(new.mnt
);
2816 root_mnt
= real_mount(root
.mnt
);
2817 old_mnt
= real_mount(old
.mnt
);
2818 if (IS_MNT_SHARED(old_mnt
) ||
2819 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
2820 IS_MNT_SHARED(root_mnt
->mnt_parent
))
2822 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
2824 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
2827 if (d_unlinked(new.dentry
))
2830 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
2831 goto out4
; /* loop, on the same file system */
2833 if (root
.mnt
->mnt_root
!= root
.dentry
)
2834 goto out4
; /* not a mountpoint */
2835 if (!mnt_has_parent(root_mnt
))
2836 goto out4
; /* not attached */
2837 root_mp
= root_mnt
->mnt_mp
;
2838 if (new.mnt
->mnt_root
!= new.dentry
)
2839 goto out4
; /* not a mountpoint */
2840 if (!mnt_has_parent(new_mnt
))
2841 goto out4
; /* not attached */
2842 /* make sure we can reach put_old from new_root */
2843 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
2845 /* make certain new is below the root */
2846 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
2848 root_mp
->m_count
++; /* pin it so it won't go away */
2850 detach_mnt(new_mnt
, &parent_path
);
2851 detach_mnt(root_mnt
, &root_parent
);
2852 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
2853 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
2854 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2856 /* mount old root on put_old */
2857 attach_mnt(root_mnt
, old_mnt
, old_mp
);
2858 /* mount new_root on / */
2859 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
2860 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2861 unlock_mount_hash();
2862 chroot_fs_refs(&root
, &new);
2863 put_mountpoint(root_mp
);
2866 unlock_mount(old_mp
);
2868 path_put(&root_parent
);
2869 path_put(&parent_path
);
2881 static void __init
init_mount_tree(void)
2883 struct vfsmount
*mnt
;
2884 struct mnt_namespace
*ns
;
2886 struct file_system_type
*type
;
2888 type
= get_fs_type("rootfs");
2890 panic("Can't find rootfs type");
2891 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
2892 put_filesystem(type
);
2894 panic("Can't create rootfs");
2896 ns
= create_mnt_ns(mnt
);
2898 panic("Can't allocate initial namespace");
2900 init_task
.nsproxy
->mnt_ns
= ns
;
2904 root
.dentry
= mnt
->mnt_root
;
2906 set_fs_pwd(current
->fs
, &root
);
2907 set_fs_root(current
->fs
, &root
);
2910 void __init
mnt_init(void)
2915 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
2916 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2918 mount_hashtable
= alloc_large_system_hash("Mount-cache",
2919 sizeof(struct hlist_head
),
2922 &m_hash_shift
, &m_hash_mask
, 0, 0);
2923 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
2924 sizeof(struct hlist_head
),
2927 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
2929 if (!mount_hashtable
|| !mountpoint_hashtable
)
2930 panic("Failed to allocate mount hash table\n");
2932 for (u
= 0; u
<= m_hash_mask
; u
++)
2933 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
2934 for (u
= 0; u
<= mp_hash_mask
; u
++)
2935 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
2941 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2943 fs_kobj
= kobject_create_and_add("fs", NULL
);
2945 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2950 void put_mnt_ns(struct mnt_namespace
*ns
)
2952 if (!atomic_dec_and_test(&ns
->count
))
2954 drop_collected_mounts(&ns
->root
->mnt
);
2958 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
2960 struct vfsmount
*mnt
;
2961 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
2964 * it is a longterm mount, don't release mnt until
2965 * we unmount before file sys is unregistered
2967 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
2971 EXPORT_SYMBOL_GPL(kern_mount_data
);
2973 void kern_unmount(struct vfsmount
*mnt
)
2975 /* release long term mount so mount point can be released */
2976 if (!IS_ERR_OR_NULL(mnt
)) {
2977 real_mount(mnt
)->mnt_ns
= NULL
;
2978 synchronize_rcu(); /* yecchhh... */
2982 EXPORT_SYMBOL(kern_unmount
);
2984 bool our_mnt(struct vfsmount
*mnt
)
2986 return check_mnt(real_mount(mnt
));
2989 bool current_chrooted(void)
2991 /* Does the current process have a non-standard root */
2992 struct path ns_root
;
2993 struct path fs_root
;
2996 /* Find the namespace root */
2997 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
2998 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3000 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3003 get_fs_root(current
->fs
, &fs_root
);
3005 chrooted
= !path_equal(&fs_root
, &ns_root
);
3013 bool fs_fully_visible(struct file_system_type
*type
)
3015 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3017 bool visible
= false;
3022 down_read(&namespace_sem
);
3023 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3024 struct mount
*child
;
3025 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
3028 /* This mount is not fully visible if there are any child mounts
3029 * that cover anything except for empty directories.
3031 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3032 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3033 if (!S_ISDIR(inode
->i_mode
))
3035 if (inode
->i_nlink
> 2)
3043 up_read(&namespace_sem
);
3047 static void *mntns_get(struct task_struct
*task
)
3049 struct mnt_namespace
*ns
= NULL
;
3050 struct nsproxy
*nsproxy
;
3053 nsproxy
= task_nsproxy(task
);
3055 ns
= nsproxy
->mnt_ns
;
3063 static void mntns_put(void *ns
)
3068 static int mntns_install(struct nsproxy
*nsproxy
, void *ns
)
3070 struct fs_struct
*fs
= current
->fs
;
3071 struct mnt_namespace
*mnt_ns
= ns
;
3074 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3075 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3076 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3083 put_mnt_ns(nsproxy
->mnt_ns
);
3084 nsproxy
->mnt_ns
= mnt_ns
;
3087 root
.mnt
= &mnt_ns
->root
->mnt
;
3088 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3090 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3093 /* Update the pwd and root */
3094 set_fs_pwd(fs
, &root
);
3095 set_fs_root(fs
, &root
);
3101 static unsigned int mntns_inum(void *ns
)
3103 struct mnt_namespace
*mnt_ns
= ns
;
3104 return mnt_ns
->proc_inum
;
3107 const struct proc_ns_operations mntns_operations
= {
3109 .type
= CLONE_NEWNS
,
3112 .install
= mntns_install
,