drm/nv4c/mc: disable msi
[linux/fpc-iii.git] / fs / namespace.c
blob039f3802d70efed3d5e2b5efea811dde3d41e69d
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include "pnode.h"
28 #include "internal.h"
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
53 __setup("mphash_entries=", set_mphash_entries);
55 static int event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
102 int res;
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
114 return res;
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
134 int res;
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
145 return res;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
193 static struct mount *alloc_vfsmnt(const char *name)
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
232 return mnt;
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 mnt_free_id(mnt);
240 out_free_cache:
241 kmem_cache_free(mnt_cache, mnt);
242 return NULL;
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
264 int __mnt_is_readonly(struct vfsmount *mnt)
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 static inline void mnt_inc_writers(struct mount *mnt)
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
283 static inline void mnt_dec_writers(struct mount *mnt)
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
292 static unsigned int mnt_get_writers(struct mount *mnt)
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
308 static int mnt_is_readonly(struct vfsmount *mnt)
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
333 int __mnt_want_write(struct vfsmount *m)
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
338 preempt_disable();
339 mnt_inc_writers(mnt);
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
345 smp_mb();
346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
358 preempt_enable();
360 return ret;
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 int mnt_want_write(struct vfsmount *m)
374 int ret;
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
382 EXPORT_SYMBOL_GPL(mnt_want_write);
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
396 int mnt_clone_write(struct vfsmount *mnt)
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
402 mnt_inc_writers(real_mount(mnt));
403 preempt_enable();
404 return 0;
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
415 int __mnt_want_write_file(struct file *file)
417 struct inode *inode = file_inode(file);
419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
420 return __mnt_want_write(file->f_path.mnt);
421 else
422 return mnt_clone_write(file->f_path.mnt);
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
432 int mnt_want_write_file(struct file *file)
434 int ret;
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
442 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
452 void __mnt_drop_write(struct vfsmount *mnt)
454 preempt_disable();
455 mnt_dec_writers(real_mount(mnt));
456 preempt_enable();
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
467 void mnt_drop_write(struct vfsmount *mnt)
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
472 EXPORT_SYMBOL_GPL(mnt_drop_write);
474 void __mnt_drop_write_file(struct file *file)
476 __mnt_drop_write(file->f_path.mnt);
479 void mnt_drop_write_file(struct file *file)
481 mnt_drop_write(file->f_path.mnt);
483 EXPORT_SYMBOL(mnt_drop_write_file);
485 static int mnt_make_readonly(struct mount *mnt)
487 int ret = 0;
489 lock_mount_hash();
490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
495 smp_mb();
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
513 if (mnt_get_writers(mnt) > 0)
514 ret = -EBUSY;
515 else
516 mnt->mnt.mnt_flags |= MNT_READONLY;
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
521 smp_wmb();
522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
523 unlock_mount_hash();
524 return ret;
527 static void __mnt_unmake_readonly(struct mount *mnt)
529 lock_mount_hash();
530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
531 unlock_mount_hash();
534 int sb_prepare_remount_readonly(struct super_block *sb)
536 struct mount *mnt;
537 int err = 0;
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
543 lock_mount_hash();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
565 unlock_mount_hash();
567 return err;
570 static void free_vfsmnt(struct mount *mnt)
572 kfree(mnt->mnt_devname);
573 mnt_free_id(mnt);
574 #ifdef CONFIG_SMP
575 free_percpu(mnt->mnt_pcp);
576 #endif
577 kmem_cache_free(mnt_cache, mnt);
580 /* call under rcu_read_lock */
581 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
603 * find the first mount at @dentry on vfsmount @mnt.
604 * call under rcu_read_lock()
606 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
608 struct hlist_head *head = m_hash(mnt, dentry);
609 struct mount *p;
611 hlist_for_each_entry_rcu(p, head, mnt_hash)
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
618 * find the last mount at @dentry on vfsmount @mnt.
619 * mount_lock must be held.
621 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623 struct mount *p, *res;
624 res = p = __lookup_mnt(mnt, dentry);
625 if (!p)
626 goto out;
627 hlist_for_each_entry_continue(p, mnt_hash) {
628 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
629 break;
630 res = p;
632 out:
633 return res;
637 * lookup_mnt - Return the first child mount mounted at path
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
650 * lookup_mnt takes a reference to the found vfsmount.
652 struct vfsmount *lookup_mnt(struct path *path)
654 struct mount *child_mnt;
655 struct vfsmount *m;
656 unsigned seq;
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
668 static struct mountpoint *new_mountpoint(struct dentry *dentry)
670 struct hlist_head *chain = mp_hash(dentry);
671 struct mountpoint *mp;
672 int ret;
674 hlist_for_each_entry(mp, chain, m_hash) {
675 if (mp->m_dentry == dentry) {
676 /* might be worth a WARN_ON() */
677 if (d_unlinked(dentry))
678 return ERR_PTR(-ENOENT);
679 mp->m_count++;
680 return mp;
684 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
685 if (!mp)
686 return ERR_PTR(-ENOMEM);
688 ret = d_set_mounted(dentry);
689 if (ret) {
690 kfree(mp);
691 return ERR_PTR(ret);
694 mp->m_dentry = dentry;
695 mp->m_count = 1;
696 hlist_add_head(&mp->m_hash, chain);
697 return mp;
700 static void put_mountpoint(struct mountpoint *mp)
702 if (!--mp->m_count) {
703 struct dentry *dentry = mp->m_dentry;
704 spin_lock(&dentry->d_lock);
705 dentry->d_flags &= ~DCACHE_MOUNTED;
706 spin_unlock(&dentry->d_lock);
707 hlist_del(&mp->m_hash);
708 kfree(mp);
712 static inline int check_mnt(struct mount *mnt)
714 return mnt->mnt_ns == current->nsproxy->mnt_ns;
718 * vfsmount lock must be held for write
720 static void touch_mnt_namespace(struct mnt_namespace *ns)
722 if (ns) {
723 ns->event = ++event;
724 wake_up_interruptible(&ns->poll);
729 * vfsmount lock must be held for write
731 static void __touch_mnt_namespace(struct mnt_namespace *ns)
733 if (ns && ns->event != event) {
734 ns->event = event;
735 wake_up_interruptible(&ns->poll);
740 * vfsmount lock must be held for write
742 static void detach_mnt(struct mount *mnt, struct path *old_path)
744 old_path->dentry = mnt->mnt_mountpoint;
745 old_path->mnt = &mnt->mnt_parent->mnt;
746 mnt->mnt_parent = mnt;
747 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
748 list_del_init(&mnt->mnt_child);
749 hlist_del_init_rcu(&mnt->mnt_hash);
750 put_mountpoint(mnt->mnt_mp);
751 mnt->mnt_mp = NULL;
755 * vfsmount lock must be held for write
757 void mnt_set_mountpoint(struct mount *mnt,
758 struct mountpoint *mp,
759 struct mount *child_mnt)
761 mp->m_count++;
762 mnt_add_count(mnt, 1); /* essentially, that's mntget */
763 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
764 child_mnt->mnt_parent = mnt;
765 child_mnt->mnt_mp = mp;
769 * vfsmount lock must be held for write
771 static void attach_mnt(struct mount *mnt,
772 struct mount *parent,
773 struct mountpoint *mp)
775 mnt_set_mountpoint(parent, mp, mnt);
776 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
777 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
780 static void attach_shadowed(struct mount *mnt,
781 struct mount *parent,
782 struct mount *shadows)
784 if (shadows) {
785 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
786 list_add(&mnt->mnt_child, &shadows->mnt_child);
787 } else {
788 hlist_add_head_rcu(&mnt->mnt_hash,
789 m_hash(&parent->mnt, mnt->mnt_mountpoint));
790 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
795 * vfsmount lock must be held for write
797 static void commit_tree(struct mount *mnt, struct mount *shadows)
799 struct mount *parent = mnt->mnt_parent;
800 struct mount *m;
801 LIST_HEAD(head);
802 struct mnt_namespace *n = parent->mnt_ns;
804 BUG_ON(parent == mnt);
806 list_add_tail(&head, &mnt->mnt_list);
807 list_for_each_entry(m, &head, mnt_list)
808 m->mnt_ns = n;
810 list_splice(&head, n->list.prev);
812 attach_shadowed(mnt, parent, shadows);
813 touch_mnt_namespace(n);
816 static struct mount *next_mnt(struct mount *p, struct mount *root)
818 struct list_head *next = p->mnt_mounts.next;
819 if (next == &p->mnt_mounts) {
820 while (1) {
821 if (p == root)
822 return NULL;
823 next = p->mnt_child.next;
824 if (next != &p->mnt_parent->mnt_mounts)
825 break;
826 p = p->mnt_parent;
829 return list_entry(next, struct mount, mnt_child);
832 static struct mount *skip_mnt_tree(struct mount *p)
834 struct list_head *prev = p->mnt_mounts.prev;
835 while (prev != &p->mnt_mounts) {
836 p = list_entry(prev, struct mount, mnt_child);
837 prev = p->mnt_mounts.prev;
839 return p;
842 struct vfsmount *
843 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
845 struct mount *mnt;
846 struct dentry *root;
848 if (!type)
849 return ERR_PTR(-ENODEV);
851 mnt = alloc_vfsmnt(name);
852 if (!mnt)
853 return ERR_PTR(-ENOMEM);
855 if (flags & MS_KERNMOUNT)
856 mnt->mnt.mnt_flags = MNT_INTERNAL;
858 root = mount_fs(type, flags, name, data);
859 if (IS_ERR(root)) {
860 free_vfsmnt(mnt);
861 return ERR_CAST(root);
864 mnt->mnt.mnt_root = root;
865 mnt->mnt.mnt_sb = root->d_sb;
866 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
867 mnt->mnt_parent = mnt;
868 lock_mount_hash();
869 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
870 unlock_mount_hash();
871 return &mnt->mnt;
873 EXPORT_SYMBOL_GPL(vfs_kern_mount);
875 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
876 int flag)
878 struct super_block *sb = old->mnt.mnt_sb;
879 struct mount *mnt;
880 int err;
882 mnt = alloc_vfsmnt(old->mnt_devname);
883 if (!mnt)
884 return ERR_PTR(-ENOMEM);
886 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
887 mnt->mnt_group_id = 0; /* not a peer of original */
888 else
889 mnt->mnt_group_id = old->mnt_group_id;
891 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
892 err = mnt_alloc_group_id(mnt);
893 if (err)
894 goto out_free;
897 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
898 /* Don't allow unprivileged users to change mount flags */
899 if (flag & CL_UNPRIVILEGED) {
900 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
902 if (mnt->mnt.mnt_flags & MNT_READONLY)
903 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
905 if (mnt->mnt.mnt_flags & MNT_NODEV)
906 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
908 if (mnt->mnt.mnt_flags & MNT_NOSUID)
909 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
911 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
912 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
915 /* Don't allow unprivileged users to reveal what is under a mount */
916 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
917 mnt->mnt.mnt_flags |= MNT_LOCKED;
919 atomic_inc(&sb->s_active);
920 mnt->mnt.mnt_sb = sb;
921 mnt->mnt.mnt_root = dget(root);
922 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
923 mnt->mnt_parent = mnt;
924 lock_mount_hash();
925 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
926 unlock_mount_hash();
928 if ((flag & CL_SLAVE) ||
929 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
930 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
931 mnt->mnt_master = old;
932 CLEAR_MNT_SHARED(mnt);
933 } else if (!(flag & CL_PRIVATE)) {
934 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
935 list_add(&mnt->mnt_share, &old->mnt_share);
936 if (IS_MNT_SLAVE(old))
937 list_add(&mnt->mnt_slave, &old->mnt_slave);
938 mnt->mnt_master = old->mnt_master;
940 if (flag & CL_MAKE_SHARED)
941 set_mnt_shared(mnt);
943 /* stick the duplicate mount on the same expiry list
944 * as the original if that was on one */
945 if (flag & CL_EXPIRE) {
946 if (!list_empty(&old->mnt_expire))
947 list_add(&mnt->mnt_expire, &old->mnt_expire);
950 return mnt;
952 out_free:
953 free_vfsmnt(mnt);
954 return ERR_PTR(err);
957 static void delayed_free(struct rcu_head *head)
959 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
960 kfree(mnt->mnt_devname);
961 #ifdef CONFIG_SMP
962 free_percpu(mnt->mnt_pcp);
963 #endif
964 kmem_cache_free(mnt_cache, mnt);
967 static void mntput_no_expire(struct mount *mnt)
969 put_again:
970 rcu_read_lock();
971 mnt_add_count(mnt, -1);
972 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
973 rcu_read_unlock();
974 return;
976 lock_mount_hash();
977 if (mnt_get_count(mnt)) {
978 rcu_read_unlock();
979 unlock_mount_hash();
980 return;
982 if (unlikely(mnt->mnt_pinned)) {
983 mnt_add_count(mnt, mnt->mnt_pinned + 1);
984 mnt->mnt_pinned = 0;
985 rcu_read_unlock();
986 unlock_mount_hash();
987 acct_auto_close_mnt(&mnt->mnt);
988 goto put_again;
990 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
991 rcu_read_unlock();
992 unlock_mount_hash();
993 return;
995 mnt->mnt.mnt_flags |= MNT_DOOMED;
996 rcu_read_unlock();
998 list_del(&mnt->mnt_instance);
999 unlock_mount_hash();
1002 * This probably indicates that somebody messed
1003 * up a mnt_want/drop_write() pair. If this
1004 * happens, the filesystem was probably unable
1005 * to make r/w->r/o transitions.
1008 * The locking used to deal with mnt_count decrement provides barriers,
1009 * so mnt_get_writers() below is safe.
1011 WARN_ON(mnt_get_writers(mnt));
1012 fsnotify_vfsmount_delete(&mnt->mnt);
1013 dput(mnt->mnt.mnt_root);
1014 deactivate_super(mnt->mnt.mnt_sb);
1015 mnt_free_id(mnt);
1016 call_rcu(&mnt->mnt_rcu, delayed_free);
1019 void mntput(struct vfsmount *mnt)
1021 if (mnt) {
1022 struct mount *m = real_mount(mnt);
1023 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1024 if (unlikely(m->mnt_expiry_mark))
1025 m->mnt_expiry_mark = 0;
1026 mntput_no_expire(m);
1029 EXPORT_SYMBOL(mntput);
1031 struct vfsmount *mntget(struct vfsmount *mnt)
1033 if (mnt)
1034 mnt_add_count(real_mount(mnt), 1);
1035 return mnt;
1037 EXPORT_SYMBOL(mntget);
1039 void mnt_pin(struct vfsmount *mnt)
1041 lock_mount_hash();
1042 real_mount(mnt)->mnt_pinned++;
1043 unlock_mount_hash();
1045 EXPORT_SYMBOL(mnt_pin);
1047 void mnt_unpin(struct vfsmount *m)
1049 struct mount *mnt = real_mount(m);
1050 lock_mount_hash();
1051 if (mnt->mnt_pinned) {
1052 mnt_add_count(mnt, 1);
1053 mnt->mnt_pinned--;
1055 unlock_mount_hash();
1057 EXPORT_SYMBOL(mnt_unpin);
1059 static inline void mangle(struct seq_file *m, const char *s)
1061 seq_escape(m, s, " \t\n\\");
1065 * Simple .show_options callback for filesystems which don't want to
1066 * implement more complex mount option showing.
1068 * See also save_mount_options().
1070 int generic_show_options(struct seq_file *m, struct dentry *root)
1072 const char *options;
1074 rcu_read_lock();
1075 options = rcu_dereference(root->d_sb->s_options);
1077 if (options != NULL && options[0]) {
1078 seq_putc(m, ',');
1079 mangle(m, options);
1081 rcu_read_unlock();
1083 return 0;
1085 EXPORT_SYMBOL(generic_show_options);
1088 * If filesystem uses generic_show_options(), this function should be
1089 * called from the fill_super() callback.
1091 * The .remount_fs callback usually needs to be handled in a special
1092 * way, to make sure, that previous options are not overwritten if the
1093 * remount fails.
1095 * Also note, that if the filesystem's .remount_fs function doesn't
1096 * reset all options to their default value, but changes only newly
1097 * given options, then the displayed options will not reflect reality
1098 * any more.
1100 void save_mount_options(struct super_block *sb, char *options)
1102 BUG_ON(sb->s_options);
1103 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1105 EXPORT_SYMBOL(save_mount_options);
1107 void replace_mount_options(struct super_block *sb, char *options)
1109 char *old = sb->s_options;
1110 rcu_assign_pointer(sb->s_options, options);
1111 if (old) {
1112 synchronize_rcu();
1113 kfree(old);
1116 EXPORT_SYMBOL(replace_mount_options);
1118 #ifdef CONFIG_PROC_FS
1119 /* iterator; we want it to have access to namespace_sem, thus here... */
1120 static void *m_start(struct seq_file *m, loff_t *pos)
1122 struct proc_mounts *p = proc_mounts(m);
1124 down_read(&namespace_sem);
1125 return seq_list_start(&p->ns->list, *pos);
1128 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1130 struct proc_mounts *p = proc_mounts(m);
1132 return seq_list_next(v, &p->ns->list, pos);
1135 static void m_stop(struct seq_file *m, void *v)
1137 up_read(&namespace_sem);
1140 static int m_show(struct seq_file *m, void *v)
1142 struct proc_mounts *p = proc_mounts(m);
1143 struct mount *r = list_entry(v, struct mount, mnt_list);
1144 return p->show(m, &r->mnt);
1147 const struct seq_operations mounts_op = {
1148 .start = m_start,
1149 .next = m_next,
1150 .stop = m_stop,
1151 .show = m_show,
1153 #endif /* CONFIG_PROC_FS */
1156 * may_umount_tree - check if a mount tree is busy
1157 * @mnt: root of mount tree
1159 * This is called to check if a tree of mounts has any
1160 * open files, pwds, chroots or sub mounts that are
1161 * busy.
1163 int may_umount_tree(struct vfsmount *m)
1165 struct mount *mnt = real_mount(m);
1166 int actual_refs = 0;
1167 int minimum_refs = 0;
1168 struct mount *p;
1169 BUG_ON(!m);
1171 /* write lock needed for mnt_get_count */
1172 lock_mount_hash();
1173 for (p = mnt; p; p = next_mnt(p, mnt)) {
1174 actual_refs += mnt_get_count(p);
1175 minimum_refs += 2;
1177 unlock_mount_hash();
1179 if (actual_refs > minimum_refs)
1180 return 0;
1182 return 1;
1185 EXPORT_SYMBOL(may_umount_tree);
1188 * may_umount - check if a mount point is busy
1189 * @mnt: root of mount
1191 * This is called to check if a mount point has any
1192 * open files, pwds, chroots or sub mounts. If the
1193 * mount has sub mounts this will return busy
1194 * regardless of whether the sub mounts are busy.
1196 * Doesn't take quota and stuff into account. IOW, in some cases it will
1197 * give false negatives. The main reason why it's here is that we need
1198 * a non-destructive way to look for easily umountable filesystems.
1200 int may_umount(struct vfsmount *mnt)
1202 int ret = 1;
1203 down_read(&namespace_sem);
1204 lock_mount_hash();
1205 if (propagate_mount_busy(real_mount(mnt), 2))
1206 ret = 0;
1207 unlock_mount_hash();
1208 up_read(&namespace_sem);
1209 return ret;
1212 EXPORT_SYMBOL(may_umount);
1214 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1216 static void namespace_unlock(void)
1218 struct mount *mnt;
1219 struct hlist_head head = unmounted;
1221 if (likely(hlist_empty(&head))) {
1222 up_write(&namespace_sem);
1223 return;
1226 head.first->pprev = &head.first;
1227 INIT_HLIST_HEAD(&unmounted);
1229 /* undo decrements we'd done in umount_tree() */
1230 hlist_for_each_entry(mnt, &head, mnt_hash)
1231 if (mnt->mnt_ex_mountpoint.mnt)
1232 mntget(mnt->mnt_ex_mountpoint.mnt);
1234 up_write(&namespace_sem);
1236 synchronize_rcu();
1238 while (!hlist_empty(&head)) {
1239 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1240 hlist_del_init(&mnt->mnt_hash);
1241 if (mnt->mnt_ex_mountpoint.mnt)
1242 path_put(&mnt->mnt_ex_mountpoint);
1243 mntput(&mnt->mnt);
1247 static inline void namespace_lock(void)
1249 down_write(&namespace_sem);
1253 * mount_lock must be held
1254 * namespace_sem must be held for write
1255 * how = 0 => just this tree, don't propagate
1256 * how = 1 => propagate; we know that nobody else has reference to any victims
1257 * how = 2 => lazy umount
1259 void umount_tree(struct mount *mnt, int how)
1261 HLIST_HEAD(tmp_list);
1262 struct mount *p;
1263 struct mount *last = NULL;
1265 for (p = mnt; p; p = next_mnt(p, mnt)) {
1266 hlist_del_init_rcu(&p->mnt_hash);
1267 hlist_add_head(&p->mnt_hash, &tmp_list);
1270 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1271 list_del_init(&p->mnt_child);
1273 if (how)
1274 propagate_umount(&tmp_list);
1276 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1277 list_del_init(&p->mnt_expire);
1278 list_del_init(&p->mnt_list);
1279 __touch_mnt_namespace(p->mnt_ns);
1280 p->mnt_ns = NULL;
1281 if (how < 2)
1282 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1283 if (mnt_has_parent(p)) {
1284 put_mountpoint(p->mnt_mp);
1285 mnt_add_count(p->mnt_parent, -1);
1286 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1287 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1288 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1289 p->mnt_mountpoint = p->mnt.mnt_root;
1290 p->mnt_parent = p;
1291 p->mnt_mp = NULL;
1293 change_mnt_propagation(p, MS_PRIVATE);
1294 last = p;
1296 if (last) {
1297 last->mnt_hash.next = unmounted.first;
1298 if (unmounted.first)
1299 unmounted.first->pprev = &last->mnt_hash.next;
1300 unmounted.first = tmp_list.first;
1301 unmounted.first->pprev = &unmounted.first;
1305 static void shrink_submounts(struct mount *mnt);
1307 static int do_umount(struct mount *mnt, int flags)
1309 struct super_block *sb = mnt->mnt.mnt_sb;
1310 int retval;
1312 retval = security_sb_umount(&mnt->mnt, flags);
1313 if (retval)
1314 return retval;
1317 * Allow userspace to request a mountpoint be expired rather than
1318 * unmounting unconditionally. Unmount only happens if:
1319 * (1) the mark is already set (the mark is cleared by mntput())
1320 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1322 if (flags & MNT_EXPIRE) {
1323 if (&mnt->mnt == current->fs->root.mnt ||
1324 flags & (MNT_FORCE | MNT_DETACH))
1325 return -EINVAL;
1328 * probably don't strictly need the lock here if we examined
1329 * all race cases, but it's a slowpath.
1331 lock_mount_hash();
1332 if (mnt_get_count(mnt) != 2) {
1333 unlock_mount_hash();
1334 return -EBUSY;
1336 unlock_mount_hash();
1338 if (!xchg(&mnt->mnt_expiry_mark, 1))
1339 return -EAGAIN;
1343 * If we may have to abort operations to get out of this
1344 * mount, and they will themselves hold resources we must
1345 * allow the fs to do things. In the Unix tradition of
1346 * 'Gee thats tricky lets do it in userspace' the umount_begin
1347 * might fail to complete on the first run through as other tasks
1348 * must return, and the like. Thats for the mount program to worry
1349 * about for the moment.
1352 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1353 sb->s_op->umount_begin(sb);
1357 * No sense to grab the lock for this test, but test itself looks
1358 * somewhat bogus. Suggestions for better replacement?
1359 * Ho-hum... In principle, we might treat that as umount + switch
1360 * to rootfs. GC would eventually take care of the old vfsmount.
1361 * Actually it makes sense, especially if rootfs would contain a
1362 * /reboot - static binary that would close all descriptors and
1363 * call reboot(9). Then init(8) could umount root and exec /reboot.
1365 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1367 * Special case for "unmounting" root ...
1368 * we just try to remount it readonly.
1370 if (!capable(CAP_SYS_ADMIN))
1371 return -EPERM;
1372 down_write(&sb->s_umount);
1373 if (!(sb->s_flags & MS_RDONLY))
1374 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1375 up_write(&sb->s_umount);
1376 return retval;
1379 namespace_lock();
1380 lock_mount_hash();
1381 event++;
1383 if (flags & MNT_DETACH) {
1384 if (!list_empty(&mnt->mnt_list))
1385 umount_tree(mnt, 2);
1386 retval = 0;
1387 } else {
1388 shrink_submounts(mnt);
1389 retval = -EBUSY;
1390 if (!propagate_mount_busy(mnt, 2)) {
1391 if (!list_empty(&mnt->mnt_list))
1392 umount_tree(mnt, 1);
1393 retval = 0;
1396 unlock_mount_hash();
1397 namespace_unlock();
1398 return retval;
1402 * Is the caller allowed to modify his namespace?
1404 static inline bool may_mount(void)
1406 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1410 * Now umount can handle mount points as well as block devices.
1411 * This is important for filesystems which use unnamed block devices.
1413 * We now support a flag for forced unmount like the other 'big iron'
1414 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1417 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1419 struct path path;
1420 struct mount *mnt;
1421 int retval;
1422 int lookup_flags = 0;
1424 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1425 return -EINVAL;
1427 if (!may_mount())
1428 return -EPERM;
1430 if (!(flags & UMOUNT_NOFOLLOW))
1431 lookup_flags |= LOOKUP_FOLLOW;
1433 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1434 if (retval)
1435 goto out;
1436 mnt = real_mount(path.mnt);
1437 retval = -EINVAL;
1438 if (path.dentry != path.mnt->mnt_root)
1439 goto dput_and_out;
1440 if (!check_mnt(mnt))
1441 goto dput_and_out;
1442 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1443 goto dput_and_out;
1444 retval = -EPERM;
1445 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1446 goto dput_and_out;
1448 retval = do_umount(mnt, flags);
1449 dput_and_out:
1450 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1451 dput(path.dentry);
1452 mntput_no_expire(mnt);
1453 out:
1454 return retval;
1457 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1460 * The 2.0 compatible umount. No flags.
1462 SYSCALL_DEFINE1(oldumount, char __user *, name)
1464 return sys_umount(name, 0);
1467 #endif
1469 static bool is_mnt_ns_file(struct dentry *dentry)
1471 /* Is this a proxy for a mount namespace? */
1472 struct inode *inode = dentry->d_inode;
1473 struct proc_ns *ei;
1475 if (!proc_ns_inode(inode))
1476 return false;
1478 ei = get_proc_ns(inode);
1479 if (ei->ns_ops != &mntns_operations)
1480 return false;
1482 return true;
1485 static bool mnt_ns_loop(struct dentry *dentry)
1487 /* Could bind mounting the mount namespace inode cause a
1488 * mount namespace loop?
1490 struct mnt_namespace *mnt_ns;
1491 if (!is_mnt_ns_file(dentry))
1492 return false;
1494 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1495 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1498 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1499 int flag)
1501 struct mount *res, *p, *q, *r, *parent;
1503 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1504 return ERR_PTR(-EINVAL);
1506 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1507 return ERR_PTR(-EINVAL);
1509 res = q = clone_mnt(mnt, dentry, flag);
1510 if (IS_ERR(q))
1511 return q;
1513 q->mnt.mnt_flags &= ~MNT_LOCKED;
1514 q->mnt_mountpoint = mnt->mnt_mountpoint;
1516 p = mnt;
1517 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1518 struct mount *s;
1519 if (!is_subdir(r->mnt_mountpoint, dentry))
1520 continue;
1522 for (s = r; s; s = next_mnt(s, r)) {
1523 struct mount *t = NULL;
1524 if (!(flag & CL_COPY_UNBINDABLE) &&
1525 IS_MNT_UNBINDABLE(s)) {
1526 s = skip_mnt_tree(s);
1527 continue;
1529 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1530 is_mnt_ns_file(s->mnt.mnt_root)) {
1531 s = skip_mnt_tree(s);
1532 continue;
1534 while (p != s->mnt_parent) {
1535 p = p->mnt_parent;
1536 q = q->mnt_parent;
1538 p = s;
1539 parent = q;
1540 q = clone_mnt(p, p->mnt.mnt_root, flag);
1541 if (IS_ERR(q))
1542 goto out;
1543 lock_mount_hash();
1544 list_add_tail(&q->mnt_list, &res->mnt_list);
1545 mnt_set_mountpoint(parent, p->mnt_mp, q);
1546 if (!list_empty(&parent->mnt_mounts)) {
1547 t = list_last_entry(&parent->mnt_mounts,
1548 struct mount, mnt_child);
1549 if (t->mnt_mp != p->mnt_mp)
1550 t = NULL;
1552 attach_shadowed(q, parent, t);
1553 unlock_mount_hash();
1556 return res;
1557 out:
1558 if (res) {
1559 lock_mount_hash();
1560 umount_tree(res, 0);
1561 unlock_mount_hash();
1563 return q;
1566 /* Caller should check returned pointer for errors */
1568 struct vfsmount *collect_mounts(struct path *path)
1570 struct mount *tree;
1571 namespace_lock();
1572 tree = copy_tree(real_mount(path->mnt), path->dentry,
1573 CL_COPY_ALL | CL_PRIVATE);
1574 namespace_unlock();
1575 if (IS_ERR(tree))
1576 return ERR_CAST(tree);
1577 return &tree->mnt;
1580 void drop_collected_mounts(struct vfsmount *mnt)
1582 namespace_lock();
1583 lock_mount_hash();
1584 umount_tree(real_mount(mnt), 0);
1585 unlock_mount_hash();
1586 namespace_unlock();
1589 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1590 struct vfsmount *root)
1592 struct mount *mnt;
1593 int res = f(root, arg);
1594 if (res)
1595 return res;
1596 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1597 res = f(&mnt->mnt, arg);
1598 if (res)
1599 return res;
1601 return 0;
1604 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1606 struct mount *p;
1608 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1609 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1610 mnt_release_group_id(p);
1614 static int invent_group_ids(struct mount *mnt, bool recurse)
1616 struct mount *p;
1618 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1619 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1620 int err = mnt_alloc_group_id(p);
1621 if (err) {
1622 cleanup_group_ids(mnt, p);
1623 return err;
1628 return 0;
1632 * @source_mnt : mount tree to be attached
1633 * @nd : place the mount tree @source_mnt is attached
1634 * @parent_nd : if non-null, detach the source_mnt from its parent and
1635 * store the parent mount and mountpoint dentry.
1636 * (done when source_mnt is moved)
1638 * NOTE: in the table below explains the semantics when a source mount
1639 * of a given type is attached to a destination mount of a given type.
1640 * ---------------------------------------------------------------------------
1641 * | BIND MOUNT OPERATION |
1642 * |**************************************************************************
1643 * | source-->| shared | private | slave | unbindable |
1644 * | dest | | | | |
1645 * | | | | | | |
1646 * | v | | | | |
1647 * |**************************************************************************
1648 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1649 * | | | | | |
1650 * |non-shared| shared (+) | private | slave (*) | invalid |
1651 * ***************************************************************************
1652 * A bind operation clones the source mount and mounts the clone on the
1653 * destination mount.
1655 * (++) the cloned mount is propagated to all the mounts in the propagation
1656 * tree of the destination mount and the cloned mount is added to
1657 * the peer group of the source mount.
1658 * (+) the cloned mount is created under the destination mount and is marked
1659 * as shared. The cloned mount is added to the peer group of the source
1660 * mount.
1661 * (+++) the mount is propagated to all the mounts in the propagation tree
1662 * of the destination mount and the cloned mount is made slave
1663 * of the same master as that of the source mount. The cloned mount
1664 * is marked as 'shared and slave'.
1665 * (*) the cloned mount is made a slave of the same master as that of the
1666 * source mount.
1668 * ---------------------------------------------------------------------------
1669 * | MOVE MOUNT OPERATION |
1670 * |**************************************************************************
1671 * | source-->| shared | private | slave | unbindable |
1672 * | dest | | | | |
1673 * | | | | | | |
1674 * | v | | | | |
1675 * |**************************************************************************
1676 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1677 * | | | | | |
1678 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1679 * ***************************************************************************
1681 * (+) the mount is moved to the destination. And is then propagated to
1682 * all the mounts in the propagation tree of the destination mount.
1683 * (+*) the mount is moved to the destination.
1684 * (+++) the mount is moved to the destination and is then propagated to
1685 * all the mounts belonging to the destination mount's propagation tree.
1686 * the mount is marked as 'shared and slave'.
1687 * (*) the mount continues to be a slave at the new location.
1689 * if the source mount is a tree, the operations explained above is
1690 * applied to each mount in the tree.
1691 * Must be called without spinlocks held, since this function can sleep
1692 * in allocations.
1694 static int attach_recursive_mnt(struct mount *source_mnt,
1695 struct mount *dest_mnt,
1696 struct mountpoint *dest_mp,
1697 struct path *parent_path)
1699 HLIST_HEAD(tree_list);
1700 struct mount *child, *p;
1701 struct hlist_node *n;
1702 int err;
1704 if (IS_MNT_SHARED(dest_mnt)) {
1705 err = invent_group_ids(source_mnt, true);
1706 if (err)
1707 goto out;
1708 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1709 lock_mount_hash();
1710 if (err)
1711 goto out_cleanup_ids;
1712 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1713 set_mnt_shared(p);
1714 } else {
1715 lock_mount_hash();
1717 if (parent_path) {
1718 detach_mnt(source_mnt, parent_path);
1719 attach_mnt(source_mnt, dest_mnt, dest_mp);
1720 touch_mnt_namespace(source_mnt->mnt_ns);
1721 } else {
1722 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1723 commit_tree(source_mnt, NULL);
1726 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1727 struct mount *q;
1728 hlist_del_init(&child->mnt_hash);
1729 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1730 child->mnt_mountpoint);
1731 commit_tree(child, q);
1733 unlock_mount_hash();
1735 return 0;
1737 out_cleanup_ids:
1738 while (!hlist_empty(&tree_list)) {
1739 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1740 umount_tree(child, 0);
1742 unlock_mount_hash();
1743 cleanup_group_ids(source_mnt, NULL);
1744 out:
1745 return err;
1748 static struct mountpoint *lock_mount(struct path *path)
1750 struct vfsmount *mnt;
1751 struct dentry *dentry = path->dentry;
1752 retry:
1753 mutex_lock(&dentry->d_inode->i_mutex);
1754 if (unlikely(cant_mount(dentry))) {
1755 mutex_unlock(&dentry->d_inode->i_mutex);
1756 return ERR_PTR(-ENOENT);
1758 namespace_lock();
1759 mnt = lookup_mnt(path);
1760 if (likely(!mnt)) {
1761 struct mountpoint *mp = new_mountpoint(dentry);
1762 if (IS_ERR(mp)) {
1763 namespace_unlock();
1764 mutex_unlock(&dentry->d_inode->i_mutex);
1765 return mp;
1767 return mp;
1769 namespace_unlock();
1770 mutex_unlock(&path->dentry->d_inode->i_mutex);
1771 path_put(path);
1772 path->mnt = mnt;
1773 dentry = path->dentry = dget(mnt->mnt_root);
1774 goto retry;
1777 static void unlock_mount(struct mountpoint *where)
1779 struct dentry *dentry = where->m_dentry;
1780 put_mountpoint(where);
1781 namespace_unlock();
1782 mutex_unlock(&dentry->d_inode->i_mutex);
1785 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1787 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1788 return -EINVAL;
1790 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1791 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1792 return -ENOTDIR;
1794 return attach_recursive_mnt(mnt, p, mp, NULL);
1798 * Sanity check the flags to change_mnt_propagation.
1801 static int flags_to_propagation_type(int flags)
1803 int type = flags & ~(MS_REC | MS_SILENT);
1805 /* Fail if any non-propagation flags are set */
1806 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1807 return 0;
1808 /* Only one propagation flag should be set */
1809 if (!is_power_of_2(type))
1810 return 0;
1811 return type;
1815 * recursively change the type of the mountpoint.
1817 static int do_change_type(struct path *path, int flag)
1819 struct mount *m;
1820 struct mount *mnt = real_mount(path->mnt);
1821 int recurse = flag & MS_REC;
1822 int type;
1823 int err = 0;
1825 if (path->dentry != path->mnt->mnt_root)
1826 return -EINVAL;
1828 type = flags_to_propagation_type(flag);
1829 if (!type)
1830 return -EINVAL;
1832 namespace_lock();
1833 if (type == MS_SHARED) {
1834 err = invent_group_ids(mnt, recurse);
1835 if (err)
1836 goto out_unlock;
1839 lock_mount_hash();
1840 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1841 change_mnt_propagation(m, type);
1842 unlock_mount_hash();
1844 out_unlock:
1845 namespace_unlock();
1846 return err;
1849 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1851 struct mount *child;
1852 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1853 if (!is_subdir(child->mnt_mountpoint, dentry))
1854 continue;
1856 if (child->mnt.mnt_flags & MNT_LOCKED)
1857 return true;
1859 return false;
1863 * do loopback mount.
1865 static int do_loopback(struct path *path, const char *old_name,
1866 int recurse)
1868 struct path old_path;
1869 struct mount *mnt = NULL, *old, *parent;
1870 struct mountpoint *mp;
1871 int err;
1872 if (!old_name || !*old_name)
1873 return -EINVAL;
1874 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1875 if (err)
1876 return err;
1878 err = -EINVAL;
1879 if (mnt_ns_loop(old_path.dentry))
1880 goto out;
1882 mp = lock_mount(path);
1883 err = PTR_ERR(mp);
1884 if (IS_ERR(mp))
1885 goto out;
1887 old = real_mount(old_path.mnt);
1888 parent = real_mount(path->mnt);
1890 err = -EINVAL;
1891 if (IS_MNT_UNBINDABLE(old))
1892 goto out2;
1894 if (!check_mnt(parent) || !check_mnt(old))
1895 goto out2;
1897 if (!recurse && has_locked_children(old, old_path.dentry))
1898 goto out2;
1900 if (recurse)
1901 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1902 else
1903 mnt = clone_mnt(old, old_path.dentry, 0);
1905 if (IS_ERR(mnt)) {
1906 err = PTR_ERR(mnt);
1907 goto out2;
1910 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1912 err = graft_tree(mnt, parent, mp);
1913 if (err) {
1914 lock_mount_hash();
1915 umount_tree(mnt, 0);
1916 unlock_mount_hash();
1918 out2:
1919 unlock_mount(mp);
1920 out:
1921 path_put(&old_path);
1922 return err;
1925 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1927 int error = 0;
1928 int readonly_request = 0;
1930 if (ms_flags & MS_RDONLY)
1931 readonly_request = 1;
1932 if (readonly_request == __mnt_is_readonly(mnt))
1933 return 0;
1935 if (readonly_request)
1936 error = mnt_make_readonly(real_mount(mnt));
1937 else
1938 __mnt_unmake_readonly(real_mount(mnt));
1939 return error;
1943 * change filesystem flags. dir should be a physical root of filesystem.
1944 * If you've mounted a non-root directory somewhere and want to do remount
1945 * on it - tough luck.
1947 static int do_remount(struct path *path, int flags, int mnt_flags,
1948 void *data)
1950 int err;
1951 struct super_block *sb = path->mnt->mnt_sb;
1952 struct mount *mnt = real_mount(path->mnt);
1954 if (!check_mnt(mnt))
1955 return -EINVAL;
1957 if (path->dentry != path->mnt->mnt_root)
1958 return -EINVAL;
1960 /* Don't allow changing of locked mnt flags.
1962 * No locks need to be held here while testing the various
1963 * MNT_LOCK flags because those flags can never be cleared
1964 * once they are set.
1966 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1967 !(mnt_flags & MNT_READONLY)) {
1968 return -EPERM;
1970 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1971 !(mnt_flags & MNT_NODEV)) {
1972 /* Was the nodev implicitly added in mount? */
1973 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
1974 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1975 mnt_flags |= MNT_NODEV;
1976 } else {
1977 return -EPERM;
1980 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1981 !(mnt_flags & MNT_NOSUID)) {
1982 return -EPERM;
1984 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1985 !(mnt_flags & MNT_NOEXEC)) {
1986 return -EPERM;
1988 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1989 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1990 return -EPERM;
1993 err = security_sb_remount(sb, data);
1994 if (err)
1995 return err;
1997 down_write(&sb->s_umount);
1998 if (flags & MS_BIND)
1999 err = change_mount_flags(path->mnt, flags);
2000 else if (!capable(CAP_SYS_ADMIN))
2001 err = -EPERM;
2002 else
2003 err = do_remount_sb(sb, flags, data, 0);
2004 if (!err) {
2005 lock_mount_hash();
2006 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2007 mnt->mnt.mnt_flags = mnt_flags;
2008 touch_mnt_namespace(mnt->mnt_ns);
2009 unlock_mount_hash();
2011 up_write(&sb->s_umount);
2012 return err;
2015 static inline int tree_contains_unbindable(struct mount *mnt)
2017 struct mount *p;
2018 for (p = mnt; p; p = next_mnt(p, mnt)) {
2019 if (IS_MNT_UNBINDABLE(p))
2020 return 1;
2022 return 0;
2025 static int do_move_mount(struct path *path, const char *old_name)
2027 struct path old_path, parent_path;
2028 struct mount *p;
2029 struct mount *old;
2030 struct mountpoint *mp;
2031 int err;
2032 if (!old_name || !*old_name)
2033 return -EINVAL;
2034 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2035 if (err)
2036 return err;
2038 mp = lock_mount(path);
2039 err = PTR_ERR(mp);
2040 if (IS_ERR(mp))
2041 goto out;
2043 old = real_mount(old_path.mnt);
2044 p = real_mount(path->mnt);
2046 err = -EINVAL;
2047 if (!check_mnt(p) || !check_mnt(old))
2048 goto out1;
2050 if (old->mnt.mnt_flags & MNT_LOCKED)
2051 goto out1;
2053 err = -EINVAL;
2054 if (old_path.dentry != old_path.mnt->mnt_root)
2055 goto out1;
2057 if (!mnt_has_parent(old))
2058 goto out1;
2060 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2061 S_ISDIR(old_path.dentry->d_inode->i_mode))
2062 goto out1;
2064 * Don't move a mount residing in a shared parent.
2066 if (IS_MNT_SHARED(old->mnt_parent))
2067 goto out1;
2069 * Don't move a mount tree containing unbindable mounts to a destination
2070 * mount which is shared.
2072 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2073 goto out1;
2074 err = -ELOOP;
2075 for (; mnt_has_parent(p); p = p->mnt_parent)
2076 if (p == old)
2077 goto out1;
2079 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2080 if (err)
2081 goto out1;
2083 /* if the mount is moved, it should no longer be expire
2084 * automatically */
2085 list_del_init(&old->mnt_expire);
2086 out1:
2087 unlock_mount(mp);
2088 out:
2089 if (!err)
2090 path_put(&parent_path);
2091 path_put(&old_path);
2092 return err;
2095 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2097 int err;
2098 const char *subtype = strchr(fstype, '.');
2099 if (subtype) {
2100 subtype++;
2101 err = -EINVAL;
2102 if (!subtype[0])
2103 goto err;
2104 } else
2105 subtype = "";
2107 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2108 err = -ENOMEM;
2109 if (!mnt->mnt_sb->s_subtype)
2110 goto err;
2111 return mnt;
2113 err:
2114 mntput(mnt);
2115 return ERR_PTR(err);
2119 * add a mount into a namespace's mount tree
2121 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2123 struct mountpoint *mp;
2124 struct mount *parent;
2125 int err;
2127 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2129 mp = lock_mount(path);
2130 if (IS_ERR(mp))
2131 return PTR_ERR(mp);
2133 parent = real_mount(path->mnt);
2134 err = -EINVAL;
2135 if (unlikely(!check_mnt(parent))) {
2136 /* that's acceptable only for automounts done in private ns */
2137 if (!(mnt_flags & MNT_SHRINKABLE))
2138 goto unlock;
2139 /* ... and for those we'd better have mountpoint still alive */
2140 if (!parent->mnt_ns)
2141 goto unlock;
2144 /* Refuse the same filesystem on the same mount point */
2145 err = -EBUSY;
2146 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2147 path->mnt->mnt_root == path->dentry)
2148 goto unlock;
2150 err = -EINVAL;
2151 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2152 goto unlock;
2154 newmnt->mnt.mnt_flags = mnt_flags;
2155 err = graft_tree(newmnt, parent, mp);
2157 unlock:
2158 unlock_mount(mp);
2159 return err;
2163 * create a new mount for userspace and request it to be added into the
2164 * namespace's tree
2166 static int do_new_mount(struct path *path, const char *fstype, int flags,
2167 int mnt_flags, const char *name, void *data)
2169 struct file_system_type *type;
2170 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2171 struct vfsmount *mnt;
2172 int err;
2174 if (!fstype)
2175 return -EINVAL;
2177 type = get_fs_type(fstype);
2178 if (!type)
2179 return -ENODEV;
2181 if (user_ns != &init_user_ns) {
2182 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2183 put_filesystem(type);
2184 return -EPERM;
2186 /* Only in special cases allow devices from mounts
2187 * created outside the initial user namespace.
2189 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2190 flags |= MS_NODEV;
2191 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2195 mnt = vfs_kern_mount(type, flags, name, data);
2196 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2197 !mnt->mnt_sb->s_subtype)
2198 mnt = fs_set_subtype(mnt, fstype);
2200 put_filesystem(type);
2201 if (IS_ERR(mnt))
2202 return PTR_ERR(mnt);
2204 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2205 if (err)
2206 mntput(mnt);
2207 return err;
2210 int finish_automount(struct vfsmount *m, struct path *path)
2212 struct mount *mnt = real_mount(m);
2213 int err;
2214 /* The new mount record should have at least 2 refs to prevent it being
2215 * expired before we get a chance to add it
2217 BUG_ON(mnt_get_count(mnt) < 2);
2219 if (m->mnt_sb == path->mnt->mnt_sb &&
2220 m->mnt_root == path->dentry) {
2221 err = -ELOOP;
2222 goto fail;
2225 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2226 if (!err)
2227 return 0;
2228 fail:
2229 /* remove m from any expiration list it may be on */
2230 if (!list_empty(&mnt->mnt_expire)) {
2231 namespace_lock();
2232 list_del_init(&mnt->mnt_expire);
2233 namespace_unlock();
2235 mntput(m);
2236 mntput(m);
2237 return err;
2241 * mnt_set_expiry - Put a mount on an expiration list
2242 * @mnt: The mount to list.
2243 * @expiry_list: The list to add the mount to.
2245 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2247 namespace_lock();
2249 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2251 namespace_unlock();
2253 EXPORT_SYMBOL(mnt_set_expiry);
2256 * process a list of expirable mountpoints with the intent of discarding any
2257 * mountpoints that aren't in use and haven't been touched since last we came
2258 * here
2260 void mark_mounts_for_expiry(struct list_head *mounts)
2262 struct mount *mnt, *next;
2263 LIST_HEAD(graveyard);
2265 if (list_empty(mounts))
2266 return;
2268 namespace_lock();
2269 lock_mount_hash();
2271 /* extract from the expiration list every vfsmount that matches the
2272 * following criteria:
2273 * - only referenced by its parent vfsmount
2274 * - still marked for expiry (marked on the last call here; marks are
2275 * cleared by mntput())
2277 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2278 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2279 propagate_mount_busy(mnt, 1))
2280 continue;
2281 list_move(&mnt->mnt_expire, &graveyard);
2283 while (!list_empty(&graveyard)) {
2284 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2285 touch_mnt_namespace(mnt->mnt_ns);
2286 umount_tree(mnt, 1);
2288 unlock_mount_hash();
2289 namespace_unlock();
2292 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2295 * Ripoff of 'select_parent()'
2297 * search the list of submounts for a given mountpoint, and move any
2298 * shrinkable submounts to the 'graveyard' list.
2300 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2302 struct mount *this_parent = parent;
2303 struct list_head *next;
2304 int found = 0;
2306 repeat:
2307 next = this_parent->mnt_mounts.next;
2308 resume:
2309 while (next != &this_parent->mnt_mounts) {
2310 struct list_head *tmp = next;
2311 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2313 next = tmp->next;
2314 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2315 continue;
2317 * Descend a level if the d_mounts list is non-empty.
2319 if (!list_empty(&mnt->mnt_mounts)) {
2320 this_parent = mnt;
2321 goto repeat;
2324 if (!propagate_mount_busy(mnt, 1)) {
2325 list_move_tail(&mnt->mnt_expire, graveyard);
2326 found++;
2330 * All done at this level ... ascend and resume the search
2332 if (this_parent != parent) {
2333 next = this_parent->mnt_child.next;
2334 this_parent = this_parent->mnt_parent;
2335 goto resume;
2337 return found;
2341 * process a list of expirable mountpoints with the intent of discarding any
2342 * submounts of a specific parent mountpoint
2344 * mount_lock must be held for write
2346 static void shrink_submounts(struct mount *mnt)
2348 LIST_HEAD(graveyard);
2349 struct mount *m;
2351 /* extract submounts of 'mountpoint' from the expiration list */
2352 while (select_submounts(mnt, &graveyard)) {
2353 while (!list_empty(&graveyard)) {
2354 m = list_first_entry(&graveyard, struct mount,
2355 mnt_expire);
2356 touch_mnt_namespace(m->mnt_ns);
2357 umount_tree(m, 1);
2363 * Some copy_from_user() implementations do not return the exact number of
2364 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2365 * Note that this function differs from copy_from_user() in that it will oops
2366 * on bad values of `to', rather than returning a short copy.
2368 static long exact_copy_from_user(void *to, const void __user * from,
2369 unsigned long n)
2371 char *t = to;
2372 const char __user *f = from;
2373 char c;
2375 if (!access_ok(VERIFY_READ, from, n))
2376 return n;
2378 while (n) {
2379 if (__get_user(c, f)) {
2380 memset(t, 0, n);
2381 break;
2383 *t++ = c;
2384 f++;
2385 n--;
2387 return n;
2390 int copy_mount_options(const void __user * data, unsigned long *where)
2392 int i;
2393 unsigned long page;
2394 unsigned long size;
2396 *where = 0;
2397 if (!data)
2398 return 0;
2400 if (!(page = __get_free_page(GFP_KERNEL)))
2401 return -ENOMEM;
2403 /* We only care that *some* data at the address the user
2404 * gave us is valid. Just in case, we'll zero
2405 * the remainder of the page.
2407 /* copy_from_user cannot cross TASK_SIZE ! */
2408 size = TASK_SIZE - (unsigned long)data;
2409 if (size > PAGE_SIZE)
2410 size = PAGE_SIZE;
2412 i = size - exact_copy_from_user((void *)page, data, size);
2413 if (!i) {
2414 free_page(page);
2415 return -EFAULT;
2417 if (i != PAGE_SIZE)
2418 memset((char *)page + i, 0, PAGE_SIZE - i);
2419 *where = page;
2420 return 0;
2423 int copy_mount_string(const void __user *data, char **where)
2425 char *tmp;
2427 if (!data) {
2428 *where = NULL;
2429 return 0;
2432 tmp = strndup_user(data, PAGE_SIZE);
2433 if (IS_ERR(tmp))
2434 return PTR_ERR(tmp);
2436 *where = tmp;
2437 return 0;
2441 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2442 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2444 * data is a (void *) that can point to any structure up to
2445 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2446 * information (or be NULL).
2448 * Pre-0.97 versions of mount() didn't have a flags word.
2449 * When the flags word was introduced its top half was required
2450 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2451 * Therefore, if this magic number is present, it carries no information
2452 * and must be discarded.
2454 long do_mount(const char *dev_name, const char *dir_name,
2455 const char *type_page, unsigned long flags, void *data_page)
2457 struct path path;
2458 int retval = 0;
2459 int mnt_flags = 0;
2461 /* Discard magic */
2462 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2463 flags &= ~MS_MGC_MSK;
2465 /* Basic sanity checks */
2467 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2468 return -EINVAL;
2470 if (data_page)
2471 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2473 /* ... and get the mountpoint */
2474 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2475 if (retval)
2476 return retval;
2478 retval = security_sb_mount(dev_name, &path,
2479 type_page, flags, data_page);
2480 if (!retval && !may_mount())
2481 retval = -EPERM;
2482 if (retval)
2483 goto dput_out;
2485 /* Default to relatime unless overriden */
2486 if (!(flags & MS_NOATIME))
2487 mnt_flags |= MNT_RELATIME;
2489 /* Separate the per-mountpoint flags */
2490 if (flags & MS_NOSUID)
2491 mnt_flags |= MNT_NOSUID;
2492 if (flags & MS_NODEV)
2493 mnt_flags |= MNT_NODEV;
2494 if (flags & MS_NOEXEC)
2495 mnt_flags |= MNT_NOEXEC;
2496 if (flags & MS_NOATIME)
2497 mnt_flags |= MNT_NOATIME;
2498 if (flags & MS_NODIRATIME)
2499 mnt_flags |= MNT_NODIRATIME;
2500 if (flags & MS_STRICTATIME)
2501 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2502 if (flags & MS_RDONLY)
2503 mnt_flags |= MNT_READONLY;
2505 /* The default atime for remount is preservation */
2506 if ((flags & MS_REMOUNT) &&
2507 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2508 MS_STRICTATIME)) == 0)) {
2509 mnt_flags &= ~MNT_ATIME_MASK;
2510 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2513 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2514 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2515 MS_STRICTATIME);
2517 if (flags & MS_REMOUNT)
2518 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2519 data_page);
2520 else if (flags & MS_BIND)
2521 retval = do_loopback(&path, dev_name, flags & MS_REC);
2522 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2523 retval = do_change_type(&path, flags);
2524 else if (flags & MS_MOVE)
2525 retval = do_move_mount(&path, dev_name);
2526 else
2527 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2528 dev_name, data_page);
2529 dput_out:
2530 path_put(&path);
2531 return retval;
2534 static void free_mnt_ns(struct mnt_namespace *ns)
2536 proc_free_inum(ns->proc_inum);
2537 put_user_ns(ns->user_ns);
2538 kfree(ns);
2542 * Assign a sequence number so we can detect when we attempt to bind
2543 * mount a reference to an older mount namespace into the current
2544 * mount namespace, preventing reference counting loops. A 64bit
2545 * number incrementing at 10Ghz will take 12,427 years to wrap which
2546 * is effectively never, so we can ignore the possibility.
2548 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2550 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2552 struct mnt_namespace *new_ns;
2553 int ret;
2555 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2556 if (!new_ns)
2557 return ERR_PTR(-ENOMEM);
2558 ret = proc_alloc_inum(&new_ns->proc_inum);
2559 if (ret) {
2560 kfree(new_ns);
2561 return ERR_PTR(ret);
2563 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2564 atomic_set(&new_ns->count, 1);
2565 new_ns->root = NULL;
2566 INIT_LIST_HEAD(&new_ns->list);
2567 init_waitqueue_head(&new_ns->poll);
2568 new_ns->event = 0;
2569 new_ns->user_ns = get_user_ns(user_ns);
2570 return new_ns;
2573 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2574 struct user_namespace *user_ns, struct fs_struct *new_fs)
2576 struct mnt_namespace *new_ns;
2577 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2578 struct mount *p, *q;
2579 struct mount *old;
2580 struct mount *new;
2581 int copy_flags;
2583 BUG_ON(!ns);
2585 if (likely(!(flags & CLONE_NEWNS))) {
2586 get_mnt_ns(ns);
2587 return ns;
2590 old = ns->root;
2592 new_ns = alloc_mnt_ns(user_ns);
2593 if (IS_ERR(new_ns))
2594 return new_ns;
2596 namespace_lock();
2597 /* First pass: copy the tree topology */
2598 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2599 if (user_ns != ns->user_ns)
2600 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2601 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2602 if (IS_ERR(new)) {
2603 namespace_unlock();
2604 free_mnt_ns(new_ns);
2605 return ERR_CAST(new);
2607 new_ns->root = new;
2608 list_add_tail(&new_ns->list, &new->mnt_list);
2611 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2612 * as belonging to new namespace. We have already acquired a private
2613 * fs_struct, so tsk->fs->lock is not needed.
2615 p = old;
2616 q = new;
2617 while (p) {
2618 q->mnt_ns = new_ns;
2619 if (new_fs) {
2620 if (&p->mnt == new_fs->root.mnt) {
2621 new_fs->root.mnt = mntget(&q->mnt);
2622 rootmnt = &p->mnt;
2624 if (&p->mnt == new_fs->pwd.mnt) {
2625 new_fs->pwd.mnt = mntget(&q->mnt);
2626 pwdmnt = &p->mnt;
2629 p = next_mnt(p, old);
2630 q = next_mnt(q, new);
2631 if (!q)
2632 break;
2633 while (p->mnt.mnt_root != q->mnt.mnt_root)
2634 p = next_mnt(p, old);
2636 namespace_unlock();
2638 if (rootmnt)
2639 mntput(rootmnt);
2640 if (pwdmnt)
2641 mntput(pwdmnt);
2643 return new_ns;
2647 * create_mnt_ns - creates a private namespace and adds a root filesystem
2648 * @mnt: pointer to the new root filesystem mountpoint
2650 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2652 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2653 if (!IS_ERR(new_ns)) {
2654 struct mount *mnt = real_mount(m);
2655 mnt->mnt_ns = new_ns;
2656 new_ns->root = mnt;
2657 list_add(&mnt->mnt_list, &new_ns->list);
2658 } else {
2659 mntput(m);
2661 return new_ns;
2664 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2666 struct mnt_namespace *ns;
2667 struct super_block *s;
2668 struct path path;
2669 int err;
2671 ns = create_mnt_ns(mnt);
2672 if (IS_ERR(ns))
2673 return ERR_CAST(ns);
2675 err = vfs_path_lookup(mnt->mnt_root, mnt,
2676 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2678 put_mnt_ns(ns);
2680 if (err)
2681 return ERR_PTR(err);
2683 /* trade a vfsmount reference for active sb one */
2684 s = path.mnt->mnt_sb;
2685 atomic_inc(&s->s_active);
2686 mntput(path.mnt);
2687 /* lock the sucker */
2688 down_write(&s->s_umount);
2689 /* ... and return the root of (sub)tree on it */
2690 return path.dentry;
2692 EXPORT_SYMBOL(mount_subtree);
2694 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2695 char __user *, type, unsigned long, flags, void __user *, data)
2697 int ret;
2698 char *kernel_type;
2699 struct filename *kernel_dir;
2700 char *kernel_dev;
2701 unsigned long data_page;
2703 ret = copy_mount_string(type, &kernel_type);
2704 if (ret < 0)
2705 goto out_type;
2707 kernel_dir = getname(dir_name);
2708 if (IS_ERR(kernel_dir)) {
2709 ret = PTR_ERR(kernel_dir);
2710 goto out_dir;
2713 ret = copy_mount_string(dev_name, &kernel_dev);
2714 if (ret < 0)
2715 goto out_dev;
2717 ret = copy_mount_options(data, &data_page);
2718 if (ret < 0)
2719 goto out_data;
2721 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2722 (void *) data_page);
2724 free_page(data_page);
2725 out_data:
2726 kfree(kernel_dev);
2727 out_dev:
2728 putname(kernel_dir);
2729 out_dir:
2730 kfree(kernel_type);
2731 out_type:
2732 return ret;
2736 * Return true if path is reachable from root
2738 * namespace_sem or mount_lock is held
2740 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2741 const struct path *root)
2743 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2744 dentry = mnt->mnt_mountpoint;
2745 mnt = mnt->mnt_parent;
2747 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2750 int path_is_under(struct path *path1, struct path *path2)
2752 int res;
2753 read_seqlock_excl(&mount_lock);
2754 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2755 read_sequnlock_excl(&mount_lock);
2756 return res;
2758 EXPORT_SYMBOL(path_is_under);
2761 * pivot_root Semantics:
2762 * Moves the root file system of the current process to the directory put_old,
2763 * makes new_root as the new root file system of the current process, and sets
2764 * root/cwd of all processes which had them on the current root to new_root.
2766 * Restrictions:
2767 * The new_root and put_old must be directories, and must not be on the
2768 * same file system as the current process root. The put_old must be
2769 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2770 * pointed to by put_old must yield the same directory as new_root. No other
2771 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2773 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2774 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2775 * in this situation.
2777 * Notes:
2778 * - we don't move root/cwd if they are not at the root (reason: if something
2779 * cared enough to change them, it's probably wrong to force them elsewhere)
2780 * - it's okay to pick a root that isn't the root of a file system, e.g.
2781 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2782 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2783 * first.
2785 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2786 const char __user *, put_old)
2788 struct path new, old, parent_path, root_parent, root;
2789 struct mount *new_mnt, *root_mnt, *old_mnt;
2790 struct mountpoint *old_mp, *root_mp;
2791 int error;
2793 if (!may_mount())
2794 return -EPERM;
2796 error = user_path_dir(new_root, &new);
2797 if (error)
2798 goto out0;
2800 error = user_path_dir(put_old, &old);
2801 if (error)
2802 goto out1;
2804 error = security_sb_pivotroot(&old, &new);
2805 if (error)
2806 goto out2;
2808 get_fs_root(current->fs, &root);
2809 old_mp = lock_mount(&old);
2810 error = PTR_ERR(old_mp);
2811 if (IS_ERR(old_mp))
2812 goto out3;
2814 error = -EINVAL;
2815 new_mnt = real_mount(new.mnt);
2816 root_mnt = real_mount(root.mnt);
2817 old_mnt = real_mount(old.mnt);
2818 if (IS_MNT_SHARED(old_mnt) ||
2819 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2820 IS_MNT_SHARED(root_mnt->mnt_parent))
2821 goto out4;
2822 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2823 goto out4;
2824 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2825 goto out4;
2826 error = -ENOENT;
2827 if (d_unlinked(new.dentry))
2828 goto out4;
2829 error = -EBUSY;
2830 if (new_mnt == root_mnt || old_mnt == root_mnt)
2831 goto out4; /* loop, on the same file system */
2832 error = -EINVAL;
2833 if (root.mnt->mnt_root != root.dentry)
2834 goto out4; /* not a mountpoint */
2835 if (!mnt_has_parent(root_mnt))
2836 goto out4; /* not attached */
2837 root_mp = root_mnt->mnt_mp;
2838 if (new.mnt->mnt_root != new.dentry)
2839 goto out4; /* not a mountpoint */
2840 if (!mnt_has_parent(new_mnt))
2841 goto out4; /* not attached */
2842 /* make sure we can reach put_old from new_root */
2843 if (!is_path_reachable(old_mnt, old.dentry, &new))
2844 goto out4;
2845 /* make certain new is below the root */
2846 if (!is_path_reachable(new_mnt, new.dentry, &root))
2847 goto out4;
2848 root_mp->m_count++; /* pin it so it won't go away */
2849 lock_mount_hash();
2850 detach_mnt(new_mnt, &parent_path);
2851 detach_mnt(root_mnt, &root_parent);
2852 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2853 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2854 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2856 /* mount old root on put_old */
2857 attach_mnt(root_mnt, old_mnt, old_mp);
2858 /* mount new_root on / */
2859 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2860 touch_mnt_namespace(current->nsproxy->mnt_ns);
2861 unlock_mount_hash();
2862 chroot_fs_refs(&root, &new);
2863 put_mountpoint(root_mp);
2864 error = 0;
2865 out4:
2866 unlock_mount(old_mp);
2867 if (!error) {
2868 path_put(&root_parent);
2869 path_put(&parent_path);
2871 out3:
2872 path_put(&root);
2873 out2:
2874 path_put(&old);
2875 out1:
2876 path_put(&new);
2877 out0:
2878 return error;
2881 static void __init init_mount_tree(void)
2883 struct vfsmount *mnt;
2884 struct mnt_namespace *ns;
2885 struct path root;
2886 struct file_system_type *type;
2888 type = get_fs_type("rootfs");
2889 if (!type)
2890 panic("Can't find rootfs type");
2891 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2892 put_filesystem(type);
2893 if (IS_ERR(mnt))
2894 panic("Can't create rootfs");
2896 ns = create_mnt_ns(mnt);
2897 if (IS_ERR(ns))
2898 panic("Can't allocate initial namespace");
2900 init_task.nsproxy->mnt_ns = ns;
2901 get_mnt_ns(ns);
2903 root.mnt = mnt;
2904 root.dentry = mnt->mnt_root;
2906 set_fs_pwd(current->fs, &root);
2907 set_fs_root(current->fs, &root);
2910 void __init mnt_init(void)
2912 unsigned u;
2913 int err;
2915 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2916 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2918 mount_hashtable = alloc_large_system_hash("Mount-cache",
2919 sizeof(struct hlist_head),
2920 mhash_entries, 19,
2922 &m_hash_shift, &m_hash_mask, 0, 0);
2923 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2924 sizeof(struct hlist_head),
2925 mphash_entries, 19,
2927 &mp_hash_shift, &mp_hash_mask, 0, 0);
2929 if (!mount_hashtable || !mountpoint_hashtable)
2930 panic("Failed to allocate mount hash table\n");
2932 for (u = 0; u <= m_hash_mask; u++)
2933 INIT_HLIST_HEAD(&mount_hashtable[u]);
2934 for (u = 0; u <= mp_hash_mask; u++)
2935 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2937 kernfs_init();
2939 err = sysfs_init();
2940 if (err)
2941 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2942 __func__, err);
2943 fs_kobj = kobject_create_and_add("fs", NULL);
2944 if (!fs_kobj)
2945 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2946 init_rootfs();
2947 init_mount_tree();
2950 void put_mnt_ns(struct mnt_namespace *ns)
2952 if (!atomic_dec_and_test(&ns->count))
2953 return;
2954 drop_collected_mounts(&ns->root->mnt);
2955 free_mnt_ns(ns);
2958 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2960 struct vfsmount *mnt;
2961 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2962 if (!IS_ERR(mnt)) {
2964 * it is a longterm mount, don't release mnt until
2965 * we unmount before file sys is unregistered
2967 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2969 return mnt;
2971 EXPORT_SYMBOL_GPL(kern_mount_data);
2973 void kern_unmount(struct vfsmount *mnt)
2975 /* release long term mount so mount point can be released */
2976 if (!IS_ERR_OR_NULL(mnt)) {
2977 real_mount(mnt)->mnt_ns = NULL;
2978 synchronize_rcu(); /* yecchhh... */
2979 mntput(mnt);
2982 EXPORT_SYMBOL(kern_unmount);
2984 bool our_mnt(struct vfsmount *mnt)
2986 return check_mnt(real_mount(mnt));
2989 bool current_chrooted(void)
2991 /* Does the current process have a non-standard root */
2992 struct path ns_root;
2993 struct path fs_root;
2994 bool chrooted;
2996 /* Find the namespace root */
2997 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2998 ns_root.dentry = ns_root.mnt->mnt_root;
2999 path_get(&ns_root);
3000 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3003 get_fs_root(current->fs, &fs_root);
3005 chrooted = !path_equal(&fs_root, &ns_root);
3007 path_put(&fs_root);
3008 path_put(&ns_root);
3010 return chrooted;
3013 bool fs_fully_visible(struct file_system_type *type)
3015 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3016 struct mount *mnt;
3017 bool visible = false;
3019 if (unlikely(!ns))
3020 return false;
3022 down_read(&namespace_sem);
3023 list_for_each_entry(mnt, &ns->list, mnt_list) {
3024 struct mount *child;
3025 if (mnt->mnt.mnt_sb->s_type != type)
3026 continue;
3028 /* This mount is not fully visible if there are any child mounts
3029 * that cover anything except for empty directories.
3031 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3032 struct inode *inode = child->mnt_mountpoint->d_inode;
3033 if (!S_ISDIR(inode->i_mode))
3034 goto next;
3035 if (inode->i_nlink > 2)
3036 goto next;
3038 visible = true;
3039 goto found;
3040 next: ;
3042 found:
3043 up_read(&namespace_sem);
3044 return visible;
3047 static void *mntns_get(struct task_struct *task)
3049 struct mnt_namespace *ns = NULL;
3050 struct nsproxy *nsproxy;
3052 rcu_read_lock();
3053 nsproxy = task_nsproxy(task);
3054 if (nsproxy) {
3055 ns = nsproxy->mnt_ns;
3056 get_mnt_ns(ns);
3058 rcu_read_unlock();
3060 return ns;
3063 static void mntns_put(void *ns)
3065 put_mnt_ns(ns);
3068 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3070 struct fs_struct *fs = current->fs;
3071 struct mnt_namespace *mnt_ns = ns;
3072 struct path root;
3074 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3075 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3076 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3077 return -EPERM;
3079 if (fs->users != 1)
3080 return -EINVAL;
3082 get_mnt_ns(mnt_ns);
3083 put_mnt_ns(nsproxy->mnt_ns);
3084 nsproxy->mnt_ns = mnt_ns;
3086 /* Find the root */
3087 root.mnt = &mnt_ns->root->mnt;
3088 root.dentry = mnt_ns->root->mnt.mnt_root;
3089 path_get(&root);
3090 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3093 /* Update the pwd and root */
3094 set_fs_pwd(fs, &root);
3095 set_fs_root(fs, &root);
3097 path_put(&root);
3098 return 0;
3101 static unsigned int mntns_inum(void *ns)
3103 struct mnt_namespace *mnt_ns = ns;
3104 return mnt_ns->proc_inum;
3107 const struct proc_ns_operations mntns_operations = {
3108 .name = "mnt",
3109 .type = CLONE_NEWNS,
3110 .get = mntns_get,
3111 .put = mntns_put,
3112 .install = mntns_install,
3113 .inum = mntns_inum,