3 * Copyright (c) 2009, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/kernel.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
34 #include "hyperv_vmbus.h"
36 #define VMBUS_PKT_TRAILER 8
39 * When we write to the ring buffer, check if the host needs to
40 * be signaled. Here is the details of this protocol:
42 * 1. The host guarantees that while it is draining the
43 * ring buffer, it will set the interrupt_mask to
44 * indicate it does not need to be interrupted when
47 * 2. The host guarantees that it will completely drain
48 * the ring buffer before exiting the read loop. Further,
49 * once the ring buffer is empty, it will clear the
50 * interrupt_mask and re-check to see if new data has
54 * It looks like Windows hosts have logic to deal with DOS attacks that
55 * can be triggered if it receives interrupts when it is not expecting
56 * the interrupt. The host expects interrupts only when the ring
57 * transitions from empty to non-empty (or full to non full on the guest
59 * So, base the signaling decision solely on the ring state until the
60 * host logic is fixed.
63 static void hv_signal_on_write(u32 old_write
, struct vmbus_channel
*channel
)
65 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
68 if (READ_ONCE(rbi
->ring_buffer
->interrupt_mask
))
71 /* check interrupt_mask before read_index */
74 * This is the only case we need to signal when the
75 * ring transitions from being empty to non-empty.
77 if (old_write
== READ_ONCE(rbi
->ring_buffer
->read_index
)) {
78 ++channel
->intr_out_empty
;
79 vmbus_setevent(channel
);
83 /* Get the next write location for the specified ring buffer. */
85 hv_get_next_write_location(struct hv_ring_buffer_info
*ring_info
)
87 u32 next
= ring_info
->ring_buffer
->write_index
;
92 /* Set the next write location for the specified ring buffer. */
94 hv_set_next_write_location(struct hv_ring_buffer_info
*ring_info
,
95 u32 next_write_location
)
97 ring_info
->ring_buffer
->write_index
= next_write_location
;
100 /* Set the next read location for the specified ring buffer. */
102 hv_set_next_read_location(struct hv_ring_buffer_info
*ring_info
,
103 u32 next_read_location
)
105 ring_info
->ring_buffer
->read_index
= next_read_location
;
106 ring_info
->priv_read_index
= next_read_location
;
109 /* Get the size of the ring buffer. */
111 hv_get_ring_buffersize(const struct hv_ring_buffer_info
*ring_info
)
113 return ring_info
->ring_datasize
;
116 /* Get the read and write indices as u64 of the specified ring buffer. */
118 hv_get_ring_bufferindices(struct hv_ring_buffer_info
*ring_info
)
120 return (u64
)ring_info
->ring_buffer
->write_index
<< 32;
124 * Helper routine to copy from source to ring buffer.
125 * Assume there is enough room. Handles wrap-around in dest case only!!
127 static u32
hv_copyto_ringbuffer(
128 struct hv_ring_buffer_info
*ring_info
,
129 u32 start_write_offset
,
133 void *ring_buffer
= hv_get_ring_buffer(ring_info
);
134 u32 ring_buffer_size
= hv_get_ring_buffersize(ring_info
);
136 memcpy(ring_buffer
+ start_write_offset
, src
, srclen
);
138 start_write_offset
+= srclen
;
139 if (start_write_offset
>= ring_buffer_size
)
140 start_write_offset
-= ring_buffer_size
;
142 return start_write_offset
;
147 * hv_get_ringbuffer_availbytes()
149 * Get number of bytes available to read and to write to
150 * for the specified ring buffer
153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info
*rbi
,
154 u32
*read
, u32
*write
)
156 u32 read_loc
, write_loc
, dsize
;
158 /* Capture the read/write indices before they changed */
159 read_loc
= READ_ONCE(rbi
->ring_buffer
->read_index
);
160 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
161 dsize
= rbi
->ring_datasize
;
163 *write
= write_loc
>= read_loc
? dsize
- (write_loc
- read_loc
) :
164 read_loc
- write_loc
;
165 *read
= dsize
- *write
;
168 /* Get various debug metrics for the specified ring buffer. */
169 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info
*ring_info
,
170 struct hv_ring_buffer_debug_info
*debug_info
)
172 u32 bytes_avail_towrite
;
173 u32 bytes_avail_toread
;
175 if (!ring_info
->ring_buffer
)
178 hv_get_ringbuffer_availbytes(ring_info
,
180 &bytes_avail_towrite
);
181 debug_info
->bytes_avail_toread
= bytes_avail_toread
;
182 debug_info
->bytes_avail_towrite
= bytes_avail_towrite
;
183 debug_info
->current_read_index
= ring_info
->ring_buffer
->read_index
;
184 debug_info
->current_write_index
= ring_info
->ring_buffer
->write_index
;
185 debug_info
->current_interrupt_mask
186 = ring_info
->ring_buffer
->interrupt_mask
;
189 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo
);
191 /* Initialize the ring buffer. */
192 int hv_ringbuffer_init(struct hv_ring_buffer_info
*ring_info
,
193 struct page
*pages
, u32 page_cnt
)
196 struct page
**pages_wraparound
;
198 BUILD_BUG_ON((sizeof(struct hv_ring_buffer
) != PAGE_SIZE
));
200 memset(ring_info
, 0, sizeof(struct hv_ring_buffer_info
));
203 * First page holds struct hv_ring_buffer, do wraparound mapping for
206 pages_wraparound
= kcalloc(page_cnt
* 2 - 1, sizeof(struct page
*),
208 if (!pages_wraparound
)
211 pages_wraparound
[0] = pages
;
212 for (i
= 0; i
< 2 * (page_cnt
- 1); i
++)
213 pages_wraparound
[i
+ 1] = &pages
[i
% (page_cnt
- 1) + 1];
215 ring_info
->ring_buffer
= (struct hv_ring_buffer
*)
216 vmap(pages_wraparound
, page_cnt
* 2 - 1, VM_MAP
, PAGE_KERNEL
);
218 kfree(pages_wraparound
);
221 if (!ring_info
->ring_buffer
)
224 ring_info
->ring_buffer
->read_index
=
225 ring_info
->ring_buffer
->write_index
= 0;
227 /* Set the feature bit for enabling flow control. */
228 ring_info
->ring_buffer
->feature_bits
.value
= 1;
230 ring_info
->ring_size
= page_cnt
<< PAGE_SHIFT
;
231 ring_info
->ring_size_div10_reciprocal
=
232 reciprocal_value(ring_info
->ring_size
/ 10);
233 ring_info
->ring_datasize
= ring_info
->ring_size
-
234 sizeof(struct hv_ring_buffer
);
236 spin_lock_init(&ring_info
->ring_lock
);
241 /* Cleanup the ring buffer. */
242 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info
*ring_info
)
244 vunmap(ring_info
->ring_buffer
);
245 ring_info
->ring_buffer
= NULL
;
248 /* Write to the ring buffer. */
249 int hv_ringbuffer_write(struct vmbus_channel
*channel
,
250 const struct kvec
*kv_list
, u32 kv_count
)
253 u32 bytes_avail_towrite
;
254 u32 totalbytes_towrite
= sizeof(u64
);
255 u32 next_write_location
;
259 struct hv_ring_buffer_info
*outring_info
= &channel
->outbound
;
261 if (channel
->rescind
)
264 for (i
= 0; i
< kv_count
; i
++)
265 totalbytes_towrite
+= kv_list
[i
].iov_len
;
267 spin_lock_irqsave(&outring_info
->ring_lock
, flags
);
269 bytes_avail_towrite
= hv_get_bytes_to_write(outring_info
);
272 * If there is only room for the packet, assume it is full.
273 * Otherwise, the next time around, we think the ring buffer
274 * is empty since the read index == write index.
276 if (bytes_avail_towrite
<= totalbytes_towrite
) {
277 ++channel
->out_full_total
;
279 if (!channel
->out_full_flag
) {
280 ++channel
->out_full_first
;
281 channel
->out_full_flag
= true;
284 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
288 channel
->out_full_flag
= false;
290 /* Write to the ring buffer */
291 next_write_location
= hv_get_next_write_location(outring_info
);
293 old_write
= next_write_location
;
295 for (i
= 0; i
< kv_count
; i
++) {
296 next_write_location
= hv_copyto_ringbuffer(outring_info
,
302 /* Set previous packet start */
303 prev_indices
= hv_get_ring_bufferindices(outring_info
);
305 next_write_location
= hv_copyto_ringbuffer(outring_info
,
310 /* Issue a full memory barrier before updating the write index */
313 /* Now, update the write location */
314 hv_set_next_write_location(outring_info
, next_write_location
);
317 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
319 hv_signal_on_write(old_write
, channel
);
321 if (channel
->rescind
)
327 int hv_ringbuffer_read(struct vmbus_channel
*channel
,
328 void *buffer
, u32 buflen
, u32
*buffer_actual_len
,
329 u64
*requestid
, bool raw
)
331 struct vmpacket_descriptor
*desc
;
332 u32 packetlen
, offset
;
334 if (unlikely(buflen
== 0))
337 *buffer_actual_len
= 0;
340 /* Make sure there is something to read */
341 desc
= hv_pkt_iter_first(channel
);
344 * No error is set when there is even no header, drivers are
345 * supposed to analyze buffer_actual_len.
350 offset
= raw
? 0 : (desc
->offset8
<< 3);
351 packetlen
= (desc
->len8
<< 3) - offset
;
352 *buffer_actual_len
= packetlen
;
353 *requestid
= desc
->trans_id
;
355 if (unlikely(packetlen
> buflen
))
358 /* since ring is double mapped, only one copy is necessary */
359 memcpy(buffer
, (const char *)desc
+ offset
, packetlen
);
361 /* Advance ring index to next packet descriptor */
362 __hv_pkt_iter_next(channel
, desc
);
364 /* Notify host of update */
365 hv_pkt_iter_close(channel
);
371 * Determine number of bytes available in ring buffer after
372 * the current iterator (priv_read_index) location.
374 * This is similar to hv_get_bytes_to_read but with private
375 * read index instead.
377 static u32
hv_pkt_iter_avail(const struct hv_ring_buffer_info
*rbi
)
379 u32 priv_read_loc
= rbi
->priv_read_index
;
380 u32 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
382 if (write_loc
>= priv_read_loc
)
383 return write_loc
- priv_read_loc
;
385 return (rbi
->ring_datasize
- priv_read_loc
) + write_loc
;
389 * Get first vmbus packet from ring buffer after read_index
391 * If ring buffer is empty, returns NULL and no other action needed.
393 struct vmpacket_descriptor
*hv_pkt_iter_first(struct vmbus_channel
*channel
)
395 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
396 struct vmpacket_descriptor
*desc
;
398 if (hv_pkt_iter_avail(rbi
) < sizeof(struct vmpacket_descriptor
))
401 desc
= hv_get_ring_buffer(rbi
) + rbi
->priv_read_index
;
403 prefetch((char *)desc
+ (desc
->len8
<< 3));
407 EXPORT_SYMBOL_GPL(hv_pkt_iter_first
);
410 * Get next vmbus packet from ring buffer.
412 * Advances the current location (priv_read_index) and checks for more
413 * data. If the end of the ring buffer is reached, then return NULL.
415 struct vmpacket_descriptor
*
416 __hv_pkt_iter_next(struct vmbus_channel
*channel
,
417 const struct vmpacket_descriptor
*desc
)
419 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
420 u32 packetlen
= desc
->len8
<< 3;
421 u32 dsize
= rbi
->ring_datasize
;
423 /* bump offset to next potential packet */
424 rbi
->priv_read_index
+= packetlen
+ VMBUS_PKT_TRAILER
;
425 if (rbi
->priv_read_index
>= dsize
)
426 rbi
->priv_read_index
-= dsize
;
429 return hv_pkt_iter_first(channel
);
431 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next
);
433 /* How many bytes were read in this iterator cycle */
434 static u32
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info
*rbi
,
435 u32 start_read_index
)
437 if (rbi
->priv_read_index
>= start_read_index
)
438 return rbi
->priv_read_index
- start_read_index
;
440 return rbi
->ring_datasize
- start_read_index
+
441 rbi
->priv_read_index
;
445 * Update host ring buffer after iterating over packets. If the host has
446 * stopped queuing new entries because it found the ring buffer full, and
447 * sufficient space is being freed up, signal the host. But be careful to
448 * only signal the host when necessary, both for performance reasons and
449 * because Hyper-V protects itself by throttling guests that signal
452 * Determining when to signal is tricky. There are three key data inputs
453 * that must be handled in this order to avoid race conditions:
455 * 1. Update the read_index
456 * 2. Read the pending_send_sz
457 * 3. Read the current write_index
459 * The interrupt_mask is not used to determine when to signal. The
460 * interrupt_mask is used only on the guest->host ring buffer when
461 * sending requests to the host. The host does not use it on the host->
462 * guest ring buffer to indicate whether it should be signaled.
464 void hv_pkt_iter_close(struct vmbus_channel
*channel
)
466 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
467 u32 curr_write_sz
, pending_sz
, bytes_read
, start_read_index
;
470 * Make sure all reads are done before we update the read index since
471 * the writer may start writing to the read area once the read index
475 start_read_index
= rbi
->ring_buffer
->read_index
;
476 rbi
->ring_buffer
->read_index
= rbi
->priv_read_index
;
479 * Older versions of Hyper-V (before WS2102 and Win8) do not
480 * implement pending_send_sz and simply poll if the host->guest
481 * ring buffer is full. No signaling is needed or expected.
483 if (!rbi
->ring_buffer
->feature_bits
.feat_pending_send_sz
)
487 * Issue a full memory barrier before making the signaling decision.
488 * If reading pending_send_sz were to be reordered and happen
489 * before we commit the new read_index, a race could occur. If the
490 * host were to set the pending_send_sz after we have sampled
491 * pending_send_sz, and the ring buffer blocks before we commit the
492 * read index, we could miss sending the interrupt. Issue a full
493 * memory barrier to address this.
498 * If the pending_send_sz is zero, then the ring buffer is not
499 * blocked and there is no need to signal. This is far by the
500 * most common case, so exit quickly for best performance.
502 pending_sz
= READ_ONCE(rbi
->ring_buffer
->pending_send_sz
);
507 * Ensure the read of write_index in hv_get_bytes_to_write()
508 * happens after the read of pending_send_sz.
511 curr_write_sz
= hv_get_bytes_to_write(rbi
);
512 bytes_read
= hv_pkt_iter_bytes_read(rbi
, start_read_index
);
515 * We want to signal the host only if we're transitioning
516 * from a "not enough free space" state to a "enough free
517 * space" state. For example, it's possible that this function
518 * could run and free up enough space to signal the host, and then
519 * run again and free up additional space before the host has a
520 * chance to clear the pending_send_sz. The 2nd invocation would
521 * be a null transition from "enough free space" to "enough free
522 * space", which doesn't warrant a signal.
524 * Exactly filling the ring buffer is treated as "not enough
525 * space". The ring buffer always must have at least one byte
526 * empty so the empty and full conditions are distinguishable.
527 * hv_get_bytes_to_write() doesn't fully tell the truth in
530 * So first check if we were in the "enough free space" state
531 * before we began the iteration. If so, the host was not
532 * blocked, and there's no need to signal.
534 if (curr_write_sz
- bytes_read
> pending_sz
)
538 * Similarly, if the new state is "not enough space", then
539 * there's no need to signal.
541 if (curr_write_sz
<= pending_sz
)
544 ++channel
->intr_in_full
;
545 vmbus_setevent(channel
);
547 EXPORT_SYMBOL_GPL(hv_pkt_iter_close
);