2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @clk: clock for the controller
74 * @mmio: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @tx: current byte in transfer to transmit
77 * @rx: current byte in transfer to receive
78 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
79 * frame decreases this level and sending one frame increases it.
80 * @dma_rx: RX DMA channel
81 * @dma_tx: TX DMA channel
82 * @dma_rx_data: RX parameters passed to the DMA engine
83 * @dma_tx_data: TX parameters passed to the DMA engine
84 * @rx_sgt: sg table for RX transfers
85 * @tx_sgt: sg table for TX transfers
86 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
92 unsigned long sspdr_phys
;
96 struct dma_chan
*dma_rx
;
97 struct dma_chan
*dma_tx
;
98 struct ep93xx_dma_data dma_rx_data
;
99 struct ep93xx_dma_data dma_tx_data
;
100 struct sg_table rx_sgt
;
101 struct sg_table tx_sgt
;
105 /* converts bits per word to CR0.DSS value */
106 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
109 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
110 * @master: SPI master
111 * @rate: desired SPI output clock rate
112 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113 * @div_scr: pointer to return the scr divider
115 static int ep93xx_spi_calc_divisors(struct spi_master
*master
,
116 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
118 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
119 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
123 * Make sure that max value is between values supported by the
126 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
129 * Calculate divisors so that we can get speed according the
131 * rate = spi_clock_rate / (cpsr * (1 + scr))
133 * cpsr must be even number and starts from 2, scr can be any number
136 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
137 for (scr
= 0; scr
<= 255; scr
++) {
138 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
140 *div_cpsr
= (u8
)cpsr
;
149 static int ep93xx_spi_chip_setup(struct spi_master
*master
,
150 struct spi_device
*spi
,
151 struct spi_transfer
*xfer
)
153 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
154 u8 dss
= bits_per_word_to_dss(xfer
->bits_per_word
);
160 err
= ep93xx_spi_calc_divisors(master
, xfer
->speed_hz
,
161 &div_cpsr
, &div_scr
);
165 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
166 cr0
|= (spi
->mode
& (SPI_CPHA
| SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
169 dev_dbg(&master
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 spi
->mode
, div_cpsr
, div_scr
, dss
);
171 dev_dbg(&master
->dev
, "setup: cr0 %#x\n", cr0
);
173 writel(div_cpsr
, espi
->mmio
+ SSPCPSR
);
174 writel(cr0
, espi
->mmio
+ SSPCR0
);
179 static void ep93xx_do_write(struct spi_master
*master
)
181 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
182 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
185 if (xfer
->bits_per_word
> 8) {
187 val
= ((u16
*)xfer
->tx_buf
)[espi
->tx
];
191 val
= ((u8
*)xfer
->tx_buf
)[espi
->tx
];
194 writel(val
, espi
->mmio
+ SSPDR
);
197 static void ep93xx_do_read(struct spi_master
*master
)
199 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
200 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
203 val
= readl(espi
->mmio
+ SSPDR
);
204 if (xfer
->bits_per_word
> 8) {
206 ((u16
*)xfer
->rx_buf
)[espi
->rx
] = val
;
210 ((u8
*)xfer
->rx_buf
)[espi
->rx
] = val
;
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @espi: ep93xx SPI controller struct
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
226 static int ep93xx_spi_read_write(struct spi_master
*master
)
228 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
229 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
231 /* read as long as RX FIFO has frames in it */
232 while ((readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
)) {
233 ep93xx_do_read(master
);
237 /* write as long as TX FIFO has room */
238 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< xfer
->len
) {
239 ep93xx_do_write(master
);
243 if (espi
->rx
== xfer
->len
)
249 static enum dma_transfer_direction
250 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir
)
254 return DMA_MEM_TO_DEV
;
255 case DMA_FROM_DEVICE
:
256 return DMA_DEV_TO_MEM
;
258 return DMA_TRANS_NONE
;
263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
264 * @master: SPI master
265 * @dir: DMA transfer direction
267 * Function configures the DMA, maps the buffer and prepares the DMA
268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
269 * in case of failure.
271 static struct dma_async_tx_descriptor
*
272 ep93xx_spi_dma_prepare(struct spi_master
*master
,
273 enum dma_data_direction dir
)
275 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
276 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
277 struct dma_async_tx_descriptor
*txd
;
278 enum dma_slave_buswidth buswidth
;
279 struct dma_slave_config conf
;
280 struct scatterlist
*sg
;
281 struct sg_table
*sgt
;
282 struct dma_chan
*chan
;
283 const void *buf
, *pbuf
;
284 size_t len
= xfer
->len
;
287 if (xfer
->bits_per_word
> 8)
288 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
290 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
292 memset(&conf
, 0, sizeof(conf
));
293 conf
.direction
= ep93xx_dma_data_to_trans_dir(dir
);
295 if (dir
== DMA_FROM_DEVICE
) {
300 conf
.src_addr
= espi
->sspdr_phys
;
301 conf
.src_addr_width
= buswidth
;
307 conf
.dst_addr
= espi
->sspdr_phys
;
308 conf
.dst_addr_width
= buswidth
;
311 ret
= dmaengine_slave_config(chan
, &conf
);
316 * We need to split the transfer into PAGE_SIZE'd chunks. This is
317 * because we are using @espi->zeropage to provide a zero RX buffer
318 * for the TX transfers and we have only allocated one page for that.
320 * For performance reasons we allocate a new sg_table only when
321 * needed. Otherwise we will re-use the current one. Eventually the
322 * last sg_table is released in ep93xx_spi_release_dma().
325 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
326 if (nents
!= sgt
->nents
) {
329 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
335 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
336 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
339 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
340 offset_in_page(pbuf
));
342 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
351 dev_warn(&master
->dev
, "len = %zu expected 0!\n", len
);
352 return ERR_PTR(-EINVAL
);
355 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
357 return ERR_PTR(-ENOMEM
);
359 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, conf
.direction
,
362 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
363 return ERR_PTR(-ENOMEM
);
369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
370 * @master: SPI master
371 * @dir: DMA transfer direction
373 * Function finishes with the DMA transfer. After this, the DMA buffer is
376 static void ep93xx_spi_dma_finish(struct spi_master
*master
,
377 enum dma_data_direction dir
)
379 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
380 struct dma_chan
*chan
;
381 struct sg_table
*sgt
;
383 if (dir
== DMA_FROM_DEVICE
) {
391 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
394 static void ep93xx_spi_dma_callback(void *callback_param
)
396 struct spi_master
*master
= callback_param
;
398 ep93xx_spi_dma_finish(master
, DMA_TO_DEVICE
);
399 ep93xx_spi_dma_finish(master
, DMA_FROM_DEVICE
);
401 spi_finalize_current_transfer(master
);
404 static int ep93xx_spi_dma_transfer(struct spi_master
*master
)
406 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
407 struct dma_async_tx_descriptor
*rxd
, *txd
;
409 rxd
= ep93xx_spi_dma_prepare(master
, DMA_FROM_DEVICE
);
411 dev_err(&master
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
415 txd
= ep93xx_spi_dma_prepare(master
, DMA_TO_DEVICE
);
417 ep93xx_spi_dma_finish(master
, DMA_FROM_DEVICE
);
418 dev_err(&master
->dev
, "DMA TX failed: %ld\n", PTR_ERR(txd
));
422 /* We are ready when RX is done */
423 rxd
->callback
= ep93xx_spi_dma_callback
;
424 rxd
->callback_param
= master
;
426 /* Now submit both descriptors and start DMA */
427 dmaengine_submit(rxd
);
428 dmaengine_submit(txd
);
430 dma_async_issue_pending(espi
->dma_rx
);
431 dma_async_issue_pending(espi
->dma_tx
);
433 /* signal that we need to wait for completion */
437 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
439 struct spi_master
*master
= dev_id
;
440 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
444 * If we got ROR (receive overrun) interrupt we know that something is
445 * wrong. Just abort the message.
447 if (readl(espi
->mmio
+ SSPIIR
) & SSPIIR_RORIS
) {
448 /* clear the overrun interrupt */
449 writel(0, espi
->mmio
+ SSPICR
);
450 dev_warn(&master
->dev
,
451 "receive overrun, aborting the message\n");
452 master
->cur_msg
->status
= -EIO
;
455 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
456 * simply execute next data transfer.
458 if (ep93xx_spi_read_write(master
)) {
460 * In normal case, there still is some processing left
461 * for current transfer. Let's wait for the next
469 * Current transfer is finished, either with error or with success. In
470 * any case we disable interrupts and notify the worker to handle
471 * any post-processing of the message.
473 val
= readl(espi
->mmio
+ SSPCR1
);
474 val
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
475 writel(val
, espi
->mmio
+ SSPCR1
);
477 spi_finalize_current_transfer(master
);
482 static int ep93xx_spi_transfer_one(struct spi_master
*master
,
483 struct spi_device
*spi
,
484 struct spi_transfer
*xfer
)
486 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
490 ret
= ep93xx_spi_chip_setup(master
, spi
, xfer
);
492 dev_err(&master
->dev
, "failed to setup chip for transfer\n");
496 master
->cur_msg
->state
= xfer
;
501 * There is no point of setting up DMA for the transfers which will
502 * fit into the FIFO and can be transferred with a single interrupt.
503 * So in these cases we will be using PIO and don't bother for DMA.
505 if (espi
->dma_rx
&& xfer
->len
> SPI_FIFO_SIZE
)
506 return ep93xx_spi_dma_transfer(master
);
508 /* Using PIO so prime the TX FIFO and enable interrupts */
509 ep93xx_spi_read_write(master
);
511 val
= readl(espi
->mmio
+ SSPCR1
);
512 val
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
513 writel(val
, espi
->mmio
+ SSPCR1
);
515 /* signal that we need to wait for completion */
519 static int ep93xx_spi_prepare_message(struct spi_master
*master
,
520 struct spi_message
*msg
)
522 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
523 unsigned long timeout
;
526 * Just to be sure: flush any data from RX FIFO.
528 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
529 while (readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
) {
530 if (time_after(jiffies
, timeout
)) {
531 dev_warn(&master
->dev
,
532 "timeout while flushing RX FIFO\n");
535 readl(espi
->mmio
+ SSPDR
);
539 * We explicitly handle FIFO level. This way we don't have to check TX
540 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
542 espi
->fifo_level
= 0;
547 static int ep93xx_spi_prepare_hardware(struct spi_master
*master
)
549 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
553 ret
= clk_enable(espi
->clk
);
557 val
= readl(espi
->mmio
+ SSPCR1
);
559 writel(val
, espi
->mmio
+ SSPCR1
);
564 static int ep93xx_spi_unprepare_hardware(struct spi_master
*master
)
566 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
569 val
= readl(espi
->mmio
+ SSPCR1
);
571 writel(val
, espi
->mmio
+ SSPCR1
);
573 clk_disable(espi
->clk
);
578 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
580 if (ep93xx_dma_chan_is_m2p(chan
))
583 chan
->private = filter_param
;
587 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
592 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
597 dma_cap_set(DMA_SLAVE
, mask
);
599 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
600 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
601 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
603 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
610 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
611 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
612 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
614 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
618 goto fail_release_rx
;
624 dma_release_channel(espi
->dma_rx
);
627 free_page((unsigned long)espi
->zeropage
);
632 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
635 dma_release_channel(espi
->dma_rx
);
636 sg_free_table(&espi
->rx_sgt
);
639 dma_release_channel(espi
->dma_tx
);
640 sg_free_table(&espi
->tx_sgt
);
644 free_page((unsigned long)espi
->zeropage
);
647 static int ep93xx_spi_probe(struct platform_device
*pdev
)
649 struct spi_master
*master
;
650 struct ep93xx_spi_info
*info
;
651 struct ep93xx_spi
*espi
;
652 struct resource
*res
;
657 info
= dev_get_platdata(&pdev
->dev
);
659 dev_err(&pdev
->dev
, "missing platform data\n");
663 irq
= platform_get_irq(pdev
, 0);
665 dev_err(&pdev
->dev
, "failed to get irq resources\n");
669 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
671 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
675 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
679 master
->prepare_transfer_hardware
= ep93xx_spi_prepare_hardware
;
680 master
->unprepare_transfer_hardware
= ep93xx_spi_unprepare_hardware
;
681 master
->prepare_message
= ep93xx_spi_prepare_message
;
682 master
->transfer_one
= ep93xx_spi_transfer_one
;
683 master
->bus_num
= pdev
->id
;
684 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
685 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
687 master
->num_chipselect
= info
->num_chipselect
;
688 master
->cs_gpios
= devm_kcalloc(&master
->dev
,
689 master
->num_chipselect
, sizeof(int),
691 if (!master
->cs_gpios
) {
693 goto fail_release_master
;
696 for (i
= 0; i
< master
->num_chipselect
; i
++) {
697 master
->cs_gpios
[i
] = info
->chipselect
[i
];
699 if (!gpio_is_valid(master
->cs_gpios
[i
]))
702 error
= devm_gpio_request_one(&pdev
->dev
, master
->cs_gpios
[i
],
706 dev_err(&pdev
->dev
, "could not request cs gpio %d\n",
707 master
->cs_gpios
[i
]);
708 goto fail_release_master
;
712 platform_set_drvdata(pdev
, master
);
714 espi
= spi_master_get_devdata(master
);
716 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
717 if (IS_ERR(espi
->clk
)) {
718 dev_err(&pdev
->dev
, "unable to get spi clock\n");
719 error
= PTR_ERR(espi
->clk
);
720 goto fail_release_master
;
724 * Calculate maximum and minimum supported clock rates
725 * for the controller.
727 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
728 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
730 espi
->sspdr_phys
= res
->start
+ SSPDR
;
732 espi
->mmio
= devm_ioremap_resource(&pdev
->dev
, res
);
733 if (IS_ERR(espi
->mmio
)) {
734 error
= PTR_ERR(espi
->mmio
);
735 goto fail_release_master
;
738 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
739 0, "ep93xx-spi", master
);
741 dev_err(&pdev
->dev
, "failed to request irq\n");
742 goto fail_release_master
;
745 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
746 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
748 /* make sure that the hardware is disabled */
749 writel(0, espi
->mmio
+ SSPCR1
);
751 error
= devm_spi_register_master(&pdev
->dev
, master
);
753 dev_err(&pdev
->dev
, "failed to register SPI master\n");
757 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
758 (unsigned long)res
->start
, irq
);
763 ep93xx_spi_release_dma(espi
);
765 spi_master_put(master
);
770 static int ep93xx_spi_remove(struct platform_device
*pdev
)
772 struct spi_master
*master
= platform_get_drvdata(pdev
);
773 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
775 ep93xx_spi_release_dma(espi
);
780 static struct platform_driver ep93xx_spi_driver
= {
782 .name
= "ep93xx-spi",
784 .probe
= ep93xx_spi_probe
,
785 .remove
= ep93xx_spi_remove
,
787 module_platform_driver(ep93xx_spi_driver
);
789 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
790 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
791 MODULE_LICENSE("GPL");
792 MODULE_ALIAS("platform:ep93xx-spi");