4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
41 struct vfree_deferred
{
42 struct llist_head list
;
43 struct work_struct wq
;
45 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct
*w
)
51 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
52 struct llist_node
*llnode
= llist_del_all(&p
->list
);
55 llnode
= llist_next(llnode
);
60 /*** Page table manipulation functions ***/
62 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
66 pte
= pte_offset_kernel(pmd
, addr
);
68 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
69 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
70 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
73 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
78 pmd
= pmd_offset(pud
, addr
);
80 next
= pmd_addr_end(addr
, end
);
81 if (pmd_clear_huge(pmd
))
83 if (pmd_none_or_clear_bad(pmd
))
85 vunmap_pte_range(pmd
, addr
, next
);
86 } while (pmd
++, addr
= next
, addr
!= end
);
89 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
94 pud
= pud_offset(pgd
, addr
);
96 next
= pud_addr_end(addr
, end
);
97 if (pud_clear_huge(pud
))
99 if (pud_none_or_clear_bad(pud
))
101 vunmap_pmd_range(pud
, addr
, next
);
102 } while (pud
++, addr
= next
, addr
!= end
);
105 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
111 pgd
= pgd_offset_k(addr
);
113 next
= pgd_addr_end(addr
, end
);
114 if (pgd_none_or_clear_bad(pgd
))
116 vunmap_pud_range(pgd
, addr
, next
);
117 } while (pgd
++, addr
= next
, addr
!= end
);
120 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
121 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
130 pte
= pte_alloc_kernel(pmd
, addr
);
134 struct page
*page
= pages
[*nr
];
136 if (WARN_ON(!pte_none(*pte
)))
140 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
142 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
146 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
147 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
152 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
156 next
= pmd_addr_end(addr
, end
);
157 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
159 } while (pmd
++, addr
= next
, addr
!= end
);
163 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
164 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
169 pud
= pud_alloc(&init_mm
, pgd
, addr
);
173 next
= pud_addr_end(addr
, end
);
174 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
176 } while (pud
++, addr
= next
, addr
!= end
);
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
186 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
187 pgprot_t prot
, struct page
**pages
)
191 unsigned long addr
= start
;
196 pgd
= pgd_offset_k(addr
);
198 next
= pgd_addr_end(addr
, end
);
199 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
202 } while (pgd
++, addr
= next
, addr
!= end
);
207 static int vmap_page_range(unsigned long start
, unsigned long end
,
208 pgprot_t prot
, struct page
**pages
)
212 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
213 flush_cache_vmap(start
, end
);
217 int is_vmalloc_or_module_addr(const void *x
)
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr
= (unsigned long)x
;
226 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
229 return is_vmalloc_addr(x
);
233 * Walk a vmap address to the struct page it maps.
235 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
237 unsigned long addr
= (unsigned long) vmalloc_addr
;
238 struct page
*page
= NULL
;
239 pgd_t
*pgd
= pgd_offset_k(addr
);
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
247 if (!pgd_none(*pgd
)) {
248 pud_t
*pud
= pud_offset(pgd
, addr
);
249 if (!pud_none(*pud
)) {
250 pmd_t
*pmd
= pmd_offset(pud
, addr
);
251 if (!pmd_none(*pmd
)) {
254 ptep
= pte_offset_map(pmd
, addr
);
256 if (pte_present(pte
))
257 page
= pte_page(pte
);
264 EXPORT_SYMBOL(vmalloc_to_page
);
267 * Map a vmalloc()-space virtual address to the physical page frame number.
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
271 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
273 EXPORT_SYMBOL(vmalloc_to_pfn
);
276 /*** Global kva allocator ***/
278 #define VM_VM_AREA 0x04
280 static DEFINE_SPINLOCK(vmap_area_lock
);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list
);
283 static LLIST_HEAD(vmap_purge_list
);
284 static struct rb_root vmap_area_root
= RB_ROOT
;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node
*free_vmap_cache
;
288 static unsigned long cached_hole_size
;
289 static unsigned long cached_vstart
;
290 static unsigned long cached_align
;
292 static unsigned long vmap_area_pcpu_hole
;
294 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
296 struct rb_node
*n
= vmap_area_root
.rb_node
;
299 struct vmap_area
*va
;
301 va
= rb_entry(n
, struct vmap_area
, rb_node
);
302 if (addr
< va
->va_start
)
304 else if (addr
>= va
->va_end
)
313 static void __insert_vmap_area(struct vmap_area
*va
)
315 struct rb_node
**p
= &vmap_area_root
.rb_node
;
316 struct rb_node
*parent
= NULL
;
320 struct vmap_area
*tmp_va
;
323 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
324 if (va
->va_start
< tmp_va
->va_end
)
326 else if (va
->va_end
> tmp_va
->va_start
)
332 rb_link_node(&va
->rb_node
, parent
, p
);
333 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
335 /* address-sort this list */
336 tmp
= rb_prev(&va
->rb_node
);
338 struct vmap_area
*prev
;
339 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
340 list_add_rcu(&va
->list
, &prev
->list
);
342 list_add_rcu(&va
->list
, &vmap_area_list
);
345 static void purge_vmap_area_lazy(void);
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
350 * Allocate a region of KVA of the specified size and alignment, within the
353 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
355 unsigned long vstart
, unsigned long vend
,
356 int node
, gfp_t gfp_mask
)
358 struct vmap_area
*va
;
362 struct vmap_area
*first
;
365 BUG_ON(offset_in_page(size
));
366 BUG_ON(!is_power_of_2(align
));
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask
));
370 va
= kmalloc_node(sizeof(struct vmap_area
),
371 gfp_mask
& GFP_RECLAIM_MASK
, node
);
373 return ERR_PTR(-ENOMEM
);
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
379 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
382 spin_lock(&vmap_area_lock
);
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
392 if (!free_vmap_cache
||
393 size
< cached_hole_size
||
394 vstart
< cached_vstart
||
395 align
< cached_align
) {
397 cached_hole_size
= 0;
398 free_vmap_cache
= NULL
;
400 /* record if we encounter less permissive parameters */
401 cached_vstart
= vstart
;
402 cached_align
= align
;
404 /* find starting point for our search */
405 if (free_vmap_cache
) {
406 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
407 addr
= ALIGN(first
->va_end
, align
);
410 if (addr
+ size
< addr
)
414 addr
= ALIGN(vstart
, align
);
415 if (addr
+ size
< addr
)
418 n
= vmap_area_root
.rb_node
;
422 struct vmap_area
*tmp
;
423 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
424 if (tmp
->va_end
>= addr
) {
426 if (tmp
->va_start
<= addr
)
437 /* from the starting point, walk areas until a suitable hole is found */
438 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
439 if (addr
+ cached_hole_size
< first
->va_start
)
440 cached_hole_size
= first
->va_start
- addr
;
441 addr
= ALIGN(first
->va_end
, align
);
442 if (addr
+ size
< addr
)
445 if (list_is_last(&first
->list
, &vmap_area_list
))
448 first
= list_next_entry(first
, list
);
452 if (addr
+ size
> vend
)
456 va
->va_end
= addr
+ size
;
458 __insert_vmap_area(va
);
459 free_vmap_cache
= &va
->rb_node
;
460 spin_unlock(&vmap_area_lock
);
462 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
463 BUG_ON(va
->va_start
< vstart
);
464 BUG_ON(va
->va_end
> vend
);
469 spin_unlock(&vmap_area_lock
);
471 purge_vmap_area_lazy();
476 if (gfpflags_allow_blocking(gfp_mask
)) {
477 unsigned long freed
= 0;
478 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
485 if (printk_ratelimit())
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
489 return ERR_PTR(-EBUSY
);
492 int register_vmap_purge_notifier(struct notifier_block
*nb
)
494 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
498 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
500 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
504 static void __free_vmap_area(struct vmap_area
*va
)
506 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
508 if (free_vmap_cache
) {
509 if (va
->va_end
< cached_vstart
) {
510 free_vmap_cache
= NULL
;
512 struct vmap_area
*cache
;
513 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
514 if (va
->va_start
<= cache
->va_start
) {
515 free_vmap_cache
= rb_prev(&va
->rb_node
);
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
523 rb_erase(&va
->rb_node
, &vmap_area_root
);
524 RB_CLEAR_NODE(&va
->rb_node
);
525 list_del_rcu(&va
->list
);
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
533 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
534 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
536 kfree_rcu(va
, rcu_head
);
540 * Free a region of KVA allocated by alloc_vmap_area
542 static void free_vmap_area(struct vmap_area
*va
)
544 spin_lock(&vmap_area_lock
);
545 __free_vmap_area(va
);
546 spin_unlock(&vmap_area_lock
);
550 * Clear the pagetable entries of a given vmap_area
552 static void unmap_vmap_area(struct vmap_area
*va
)
554 vunmap_page_range(va
->va_start
, va
->va_end
);
557 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start
, end
);
573 flush_tlb_kernel_range(start
, end
);
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
593 static unsigned long lazy_max_pages(void)
597 log
= fls(num_online_cpus());
599 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
602 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
604 /* for per-CPU blocks */
605 static void purge_fragmented_blocks_allcpus(void);
608 * called before a call to iounmap() if the caller wants vm_area_struct's
611 void set_iounmap_nonlazy(void)
613 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
617 * Purges all lazily-freed vmap areas.
619 * If sync is 0 then don't purge if there is already a purge in progress.
620 * If force_flush is 1, then flush kernel TLBs between *start and *end even
621 * if we found no lazy vmap areas to unmap (callers can use this to optimise
622 * their own TLB flushing).
623 * Returns with *start = min(*start, lowest purged address)
624 * *end = max(*end, highest purged address)
626 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
627 int sync
, int force_flush
)
629 static DEFINE_SPINLOCK(purge_lock
);
630 struct llist_node
*valist
;
631 struct vmap_area
*va
;
632 struct vmap_area
*n_va
;
636 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
637 * should not expect such behaviour. This just simplifies locking for
638 * the case that isn't actually used at the moment anyway.
640 if (!sync
&& !force_flush
) {
641 if (!spin_trylock(&purge_lock
))
644 spin_lock(&purge_lock
);
647 purge_fragmented_blocks_allcpus();
649 valist
= llist_del_all(&vmap_purge_list
);
650 llist_for_each_entry(va
, valist
, purge_list
) {
651 if (va
->va_start
< *start
)
652 *start
= va
->va_start
;
653 if (va
->va_end
> *end
)
655 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
659 atomic_sub(nr
, &vmap_lazy_nr
);
661 if (nr
|| force_flush
)
662 flush_tlb_kernel_range(*start
, *end
);
665 spin_lock(&vmap_area_lock
);
666 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
)
667 __free_vmap_area(va
);
668 spin_unlock(&vmap_area_lock
);
670 spin_unlock(&purge_lock
);
674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
675 * is already purging.
677 static void try_purge_vmap_area_lazy(void)
679 unsigned long start
= ULONG_MAX
, end
= 0;
681 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
685 * Kick off a purge of the outstanding lazy areas.
687 static void purge_vmap_area_lazy(void)
689 unsigned long start
= ULONG_MAX
, end
= 0;
691 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
695 * Free a vmap area, caller ensuring that the area has been unmapped
696 * and flush_cache_vunmap had been called for the correct range
699 static void free_vmap_area_noflush(struct vmap_area
*va
)
703 nr_lazy
= atomic_add_return((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
,
706 /* After this point, we may free va at any time */
707 llist_add(&va
->purge_list
, &vmap_purge_list
);
709 if (unlikely(nr_lazy
> lazy_max_pages()))
710 try_purge_vmap_area_lazy();
714 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
715 * called for the correct range previously.
717 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
720 free_vmap_area_noflush(va
);
724 * Free and unmap a vmap area
726 static void free_unmap_vmap_area(struct vmap_area
*va
)
728 flush_cache_vunmap(va
->va_start
, va
->va_end
);
729 free_unmap_vmap_area_noflush(va
);
732 static struct vmap_area
*find_vmap_area(unsigned long addr
)
734 struct vmap_area
*va
;
736 spin_lock(&vmap_area_lock
);
737 va
= __find_vmap_area(addr
);
738 spin_unlock(&vmap_area_lock
);
743 static void free_unmap_vmap_area_addr(unsigned long addr
)
745 struct vmap_area
*va
;
747 va
= find_vmap_area(addr
);
749 free_unmap_vmap_area(va
);
753 /*** Per cpu kva allocator ***/
756 * vmap space is limited especially on 32 bit architectures. Ensure there is
757 * room for at least 16 percpu vmap blocks per CPU.
760 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
761 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
762 * instead (we just need a rough idea)
764 #if BITS_PER_LONG == 32
765 #define VMALLOC_SPACE (128UL*1024*1024)
767 #define VMALLOC_SPACE (128UL*1024*1024*1024)
770 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
771 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
772 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
773 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
774 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
775 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
776 #define VMAP_BBMAP_BITS \
777 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
778 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
779 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
781 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
783 static bool vmap_initialized __read_mostly
= false;
785 struct vmap_block_queue
{
787 struct list_head free
;
792 struct vmap_area
*va
;
793 unsigned long free
, dirty
;
794 unsigned long dirty_min
, dirty_max
; /*< dirty range */
795 struct list_head free_list
;
796 struct rcu_head rcu_head
;
797 struct list_head purge
;
800 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
801 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
804 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
805 * in the free path. Could get rid of this if we change the API to return a
806 * "cookie" from alloc, to be passed to free. But no big deal yet.
808 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
809 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
812 * We should probably have a fallback mechanism to allocate virtual memory
813 * out of partially filled vmap blocks. However vmap block sizing should be
814 * fairly reasonable according to the vmalloc size, so it shouldn't be a
818 static unsigned long addr_to_vb_idx(unsigned long addr
)
820 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
821 addr
/= VMAP_BLOCK_SIZE
;
825 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
829 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
830 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
835 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
836 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
837 * @order: how many 2^order pages should be occupied in newly allocated block
838 * @gfp_mask: flags for the page level allocator
840 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
842 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
844 struct vmap_block_queue
*vbq
;
845 struct vmap_block
*vb
;
846 struct vmap_area
*va
;
847 unsigned long vb_idx
;
851 node
= numa_node_id();
853 vb
= kmalloc_node(sizeof(struct vmap_block
),
854 gfp_mask
& GFP_RECLAIM_MASK
, node
);
856 return ERR_PTR(-ENOMEM
);
858 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
859 VMALLOC_START
, VMALLOC_END
,
866 err
= radix_tree_preload(gfp_mask
);
873 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
874 spin_lock_init(&vb
->lock
);
876 /* At least something should be left free */
877 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
878 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
880 vb
->dirty_min
= VMAP_BBMAP_BITS
;
882 INIT_LIST_HEAD(&vb
->free_list
);
884 vb_idx
= addr_to_vb_idx(va
->va_start
);
885 spin_lock(&vmap_block_tree_lock
);
886 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
887 spin_unlock(&vmap_block_tree_lock
);
889 radix_tree_preload_end();
891 vbq
= &get_cpu_var(vmap_block_queue
);
892 spin_lock(&vbq
->lock
);
893 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
894 spin_unlock(&vbq
->lock
);
895 put_cpu_var(vmap_block_queue
);
900 static void free_vmap_block(struct vmap_block
*vb
)
902 struct vmap_block
*tmp
;
903 unsigned long vb_idx
;
905 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
906 spin_lock(&vmap_block_tree_lock
);
907 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
908 spin_unlock(&vmap_block_tree_lock
);
911 free_vmap_area_noflush(vb
->va
);
912 kfree_rcu(vb
, rcu_head
);
915 static void purge_fragmented_blocks(int cpu
)
918 struct vmap_block
*vb
;
919 struct vmap_block
*n_vb
;
920 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
923 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
925 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
928 spin_lock(&vb
->lock
);
929 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
930 vb
->free
= 0; /* prevent further allocs after releasing lock */
931 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
933 vb
->dirty_max
= VMAP_BBMAP_BITS
;
934 spin_lock(&vbq
->lock
);
935 list_del_rcu(&vb
->free_list
);
936 spin_unlock(&vbq
->lock
);
937 spin_unlock(&vb
->lock
);
938 list_add_tail(&vb
->purge
, &purge
);
940 spin_unlock(&vb
->lock
);
944 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
945 list_del(&vb
->purge
);
950 static void purge_fragmented_blocks_allcpus(void)
954 for_each_possible_cpu(cpu
)
955 purge_fragmented_blocks(cpu
);
958 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
960 struct vmap_block_queue
*vbq
;
961 struct vmap_block
*vb
;
965 BUG_ON(offset_in_page(size
));
966 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
967 if (WARN_ON(size
== 0)) {
969 * Allocating 0 bytes isn't what caller wants since
970 * get_order(0) returns funny result. Just warn and terminate
975 order
= get_order(size
);
978 vbq
= &get_cpu_var(vmap_block_queue
);
979 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
980 unsigned long pages_off
;
982 spin_lock(&vb
->lock
);
983 if (vb
->free
< (1UL << order
)) {
984 spin_unlock(&vb
->lock
);
988 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
989 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
990 vb
->free
-= 1UL << order
;
992 spin_lock(&vbq
->lock
);
993 list_del_rcu(&vb
->free_list
);
994 spin_unlock(&vbq
->lock
);
997 spin_unlock(&vb
->lock
);
1001 put_cpu_var(vmap_block_queue
);
1004 /* Allocate new block if nothing was found */
1006 vaddr
= new_vmap_block(order
, gfp_mask
);
1011 static void vb_free(const void *addr
, unsigned long size
)
1013 unsigned long offset
;
1014 unsigned long vb_idx
;
1016 struct vmap_block
*vb
;
1018 BUG_ON(offset_in_page(size
));
1019 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1021 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1023 order
= get_order(size
);
1025 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1026 offset
>>= PAGE_SHIFT
;
1028 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1030 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1034 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1036 spin_lock(&vb
->lock
);
1038 /* Expand dirty range */
1039 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1040 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1042 vb
->dirty
+= 1UL << order
;
1043 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1045 spin_unlock(&vb
->lock
);
1046 free_vmap_block(vb
);
1048 spin_unlock(&vb
->lock
);
1052 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1054 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1055 * to amortize TLB flushing overheads. What this means is that any page you
1056 * have now, may, in a former life, have been mapped into kernel virtual
1057 * address by the vmap layer and so there might be some CPUs with TLB entries
1058 * still referencing that page (additional to the regular 1:1 kernel mapping).
1060 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1061 * be sure that none of the pages we have control over will have any aliases
1062 * from the vmap layer.
1064 void vm_unmap_aliases(void)
1066 unsigned long start
= ULONG_MAX
, end
= 0;
1070 if (unlikely(!vmap_initialized
))
1073 for_each_possible_cpu(cpu
) {
1074 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1075 struct vmap_block
*vb
;
1078 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1079 spin_lock(&vb
->lock
);
1081 unsigned long va_start
= vb
->va
->va_start
;
1084 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1085 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1087 start
= min(s
, start
);
1092 spin_unlock(&vb
->lock
);
1097 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1099 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1102 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1103 * @mem: the pointer returned by vm_map_ram
1104 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1106 void vm_unmap_ram(const void *mem
, unsigned int count
)
1108 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1109 unsigned long addr
= (unsigned long)mem
;
1112 BUG_ON(addr
< VMALLOC_START
);
1113 BUG_ON(addr
> VMALLOC_END
);
1114 BUG_ON(!PAGE_ALIGNED(addr
));
1116 debug_check_no_locks_freed(mem
, size
);
1117 vmap_debug_free_range(addr
, addr
+size
);
1119 if (likely(count
<= VMAP_MAX_ALLOC
))
1122 free_unmap_vmap_area_addr(addr
);
1124 EXPORT_SYMBOL(vm_unmap_ram
);
1127 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1128 * @pages: an array of pointers to the pages to be mapped
1129 * @count: number of pages
1130 * @node: prefer to allocate data structures on this node
1131 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1133 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1134 * faster than vmap so it's good. But if you mix long-life and short-life
1135 * objects with vm_map_ram(), it could consume lots of address space through
1136 * fragmentation (especially on a 32bit machine). You could see failures in
1137 * the end. Please use this function for short-lived objects.
1139 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1141 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1143 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1147 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1148 mem
= vb_alloc(size
, GFP_KERNEL
);
1151 addr
= (unsigned long)mem
;
1153 struct vmap_area
*va
;
1154 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1155 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1159 addr
= va
->va_start
;
1162 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1163 vm_unmap_ram(mem
, count
);
1168 EXPORT_SYMBOL(vm_map_ram
);
1170 static struct vm_struct
*vmlist __initdata
;
1172 * vm_area_add_early - add vmap area early during boot
1173 * @vm: vm_struct to add
1175 * This function is used to add fixed kernel vm area to vmlist before
1176 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1177 * should contain proper values and the other fields should be zero.
1179 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1181 void __init
vm_area_add_early(struct vm_struct
*vm
)
1183 struct vm_struct
*tmp
, **p
;
1185 BUG_ON(vmap_initialized
);
1186 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1187 if (tmp
->addr
>= vm
->addr
) {
1188 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1191 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1198 * vm_area_register_early - register vmap area early during boot
1199 * @vm: vm_struct to register
1200 * @align: requested alignment
1202 * This function is used to register kernel vm area before
1203 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1204 * proper values on entry and other fields should be zero. On return,
1205 * vm->addr contains the allocated address.
1207 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1209 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1211 static size_t vm_init_off __initdata
;
1214 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1215 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1217 vm
->addr
= (void *)addr
;
1219 vm_area_add_early(vm
);
1222 void __init
vmalloc_init(void)
1224 struct vmap_area
*va
;
1225 struct vm_struct
*tmp
;
1228 for_each_possible_cpu(i
) {
1229 struct vmap_block_queue
*vbq
;
1230 struct vfree_deferred
*p
;
1232 vbq
= &per_cpu(vmap_block_queue
, i
);
1233 spin_lock_init(&vbq
->lock
);
1234 INIT_LIST_HEAD(&vbq
->free
);
1235 p
= &per_cpu(vfree_deferred
, i
);
1236 init_llist_head(&p
->list
);
1237 INIT_WORK(&p
->wq
, free_work
);
1240 /* Import existing vmlist entries. */
1241 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1242 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1243 va
->flags
= VM_VM_AREA
;
1244 va
->va_start
= (unsigned long)tmp
->addr
;
1245 va
->va_end
= va
->va_start
+ tmp
->size
;
1247 __insert_vmap_area(va
);
1250 vmap_area_pcpu_hole
= VMALLOC_END
;
1252 vmap_initialized
= true;
1256 * map_kernel_range_noflush - map kernel VM area with the specified pages
1257 * @addr: start of the VM area to map
1258 * @size: size of the VM area to map
1259 * @prot: page protection flags to use
1260 * @pages: pages to map
1262 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1263 * specify should have been allocated using get_vm_area() and its
1267 * This function does NOT do any cache flushing. The caller is
1268 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1269 * before calling this function.
1272 * The number of pages mapped on success, -errno on failure.
1274 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1275 pgprot_t prot
, struct page
**pages
)
1277 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1281 * unmap_kernel_range_noflush - unmap kernel VM area
1282 * @addr: start of the VM area to unmap
1283 * @size: size of the VM area to unmap
1285 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1286 * specify should have been allocated using get_vm_area() and its
1290 * This function does NOT do any cache flushing. The caller is
1291 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1292 * before calling this function and flush_tlb_kernel_range() after.
1294 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1296 vunmap_page_range(addr
, addr
+ size
);
1298 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1301 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1302 * @addr: start of the VM area to unmap
1303 * @size: size of the VM area to unmap
1305 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1306 * the unmapping and tlb after.
1308 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1310 unsigned long end
= addr
+ size
;
1312 flush_cache_vunmap(addr
, end
);
1313 vunmap_page_range(addr
, end
);
1314 flush_tlb_kernel_range(addr
, end
);
1316 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1318 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1320 unsigned long addr
= (unsigned long)area
->addr
;
1321 unsigned long end
= addr
+ get_vm_area_size(area
);
1324 err
= vmap_page_range(addr
, end
, prot
, pages
);
1326 return err
> 0 ? 0 : err
;
1328 EXPORT_SYMBOL_GPL(map_vm_area
);
1330 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1331 unsigned long flags
, const void *caller
)
1333 spin_lock(&vmap_area_lock
);
1335 vm
->addr
= (void *)va
->va_start
;
1336 vm
->size
= va
->va_end
- va
->va_start
;
1337 vm
->caller
= caller
;
1339 va
->flags
|= VM_VM_AREA
;
1340 spin_unlock(&vmap_area_lock
);
1343 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1346 * Before removing VM_UNINITIALIZED,
1347 * we should make sure that vm has proper values.
1348 * Pair with smp_rmb() in show_numa_info().
1351 vm
->flags
&= ~VM_UNINITIALIZED
;
1354 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1355 unsigned long align
, unsigned long flags
, unsigned long start
,
1356 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1358 struct vmap_area
*va
;
1359 struct vm_struct
*area
;
1361 BUG_ON(in_interrupt());
1362 if (flags
& VM_IOREMAP
)
1363 align
= 1ul << clamp_t(int, fls_long(size
),
1364 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1366 size
= PAGE_ALIGN(size
);
1367 if (unlikely(!size
))
1370 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1371 if (unlikely(!area
))
1374 if (!(flags
& VM_NO_GUARD
))
1377 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1383 setup_vmalloc_vm(area
, va
, flags
, caller
);
1388 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1389 unsigned long start
, unsigned long end
)
1391 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1392 GFP_KERNEL
, __builtin_return_address(0));
1394 EXPORT_SYMBOL_GPL(__get_vm_area
);
1396 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1397 unsigned long start
, unsigned long end
,
1400 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1401 GFP_KERNEL
, caller
);
1405 * get_vm_area - reserve a contiguous kernel virtual area
1406 * @size: size of the area
1407 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1409 * Search an area of @size in the kernel virtual mapping area,
1410 * and reserved it for out purposes. Returns the area descriptor
1411 * on success or %NULL on failure.
1413 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1415 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1416 NUMA_NO_NODE
, GFP_KERNEL
,
1417 __builtin_return_address(0));
1420 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1423 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1424 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1428 * find_vm_area - find a continuous kernel virtual area
1429 * @addr: base address
1431 * Search for the kernel VM area starting at @addr, and return it.
1432 * It is up to the caller to do all required locking to keep the returned
1435 struct vm_struct
*find_vm_area(const void *addr
)
1437 struct vmap_area
*va
;
1439 va
= find_vmap_area((unsigned long)addr
);
1440 if (va
&& va
->flags
& VM_VM_AREA
)
1447 * remove_vm_area - find and remove a continuous kernel virtual area
1448 * @addr: base address
1450 * Search for the kernel VM area starting at @addr, and remove it.
1451 * This function returns the found VM area, but using it is NOT safe
1452 * on SMP machines, except for its size or flags.
1454 struct vm_struct
*remove_vm_area(const void *addr
)
1456 struct vmap_area
*va
;
1458 va
= find_vmap_area((unsigned long)addr
);
1459 if (va
&& va
->flags
& VM_VM_AREA
) {
1460 struct vm_struct
*vm
= va
->vm
;
1462 spin_lock(&vmap_area_lock
);
1464 va
->flags
&= ~VM_VM_AREA
;
1465 spin_unlock(&vmap_area_lock
);
1467 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1468 kasan_free_shadow(vm
);
1469 free_unmap_vmap_area(va
);
1476 static void __vunmap(const void *addr
, int deallocate_pages
)
1478 struct vm_struct
*area
;
1483 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1487 area
= remove_vm_area(addr
);
1488 if (unlikely(!area
)) {
1489 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1494 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1495 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1497 if (deallocate_pages
) {
1500 for (i
= 0; i
< area
->nr_pages
; i
++) {
1501 struct page
*page
= area
->pages
[i
];
1504 __free_pages(page
, 0);
1507 kvfree(area
->pages
);
1515 * vfree - release memory allocated by vmalloc()
1516 * @addr: memory base address
1518 * Free the virtually continuous memory area starting at @addr, as
1519 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520 * NULL, no operation is performed.
1522 * Must not be called in NMI context (strictly speaking, only if we don't
1523 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1524 * conventions for vfree() arch-depenedent would be a really bad idea)
1526 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1528 void vfree(const void *addr
)
1532 kmemleak_free(addr
);
1536 if (unlikely(in_interrupt())) {
1537 struct vfree_deferred
*p
= this_cpu_ptr(&vfree_deferred
);
1538 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1539 schedule_work(&p
->wq
);
1543 EXPORT_SYMBOL(vfree
);
1546 * vunmap - release virtual mapping obtained by vmap()
1547 * @addr: memory base address
1549 * Free the virtually contiguous memory area starting at @addr,
1550 * which was created from the page array passed to vmap().
1552 * Must not be called in interrupt context.
1554 void vunmap(const void *addr
)
1556 BUG_ON(in_interrupt());
1561 EXPORT_SYMBOL(vunmap
);
1564 * vmap - map an array of pages into virtually contiguous space
1565 * @pages: array of page pointers
1566 * @count: number of pages to map
1567 * @flags: vm_area->flags
1568 * @prot: page protection for the mapping
1570 * Maps @count pages from @pages into contiguous kernel virtual
1573 void *vmap(struct page
**pages
, unsigned int count
,
1574 unsigned long flags
, pgprot_t prot
)
1576 struct vm_struct
*area
;
1577 unsigned long size
; /* In bytes */
1581 if (count
> totalram_pages
)
1584 size
= (unsigned long)count
<< PAGE_SHIFT
;
1585 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
1589 if (map_vm_area(area
, prot
, pages
)) {
1596 EXPORT_SYMBOL(vmap
);
1598 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1599 gfp_t gfp_mask
, pgprot_t prot
,
1600 int node
, const void *caller
);
1601 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1602 pgprot_t prot
, int node
)
1604 const int order
= 0;
1605 struct page
**pages
;
1606 unsigned int nr_pages
, array_size
, i
;
1607 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1608 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1610 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1611 array_size
= (nr_pages
* sizeof(struct page
*));
1613 area
->nr_pages
= nr_pages
;
1614 /* Please note that the recursion is strictly bounded. */
1615 if (array_size
> PAGE_SIZE
) {
1616 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1617 PAGE_KERNEL
, node
, area
->caller
);
1619 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1621 area
->pages
= pages
;
1623 remove_vm_area(area
->addr
);
1628 for (i
= 0; i
< area
->nr_pages
; i
++) {
1631 if (node
== NUMA_NO_NODE
)
1632 page
= alloc_pages(alloc_mask
, order
);
1634 page
= alloc_pages_node(node
, alloc_mask
, order
);
1636 if (unlikely(!page
)) {
1637 /* Successfully allocated i pages, free them in __vunmap() */
1641 area
->pages
[i
] = page
;
1642 if (gfpflags_allow_blocking(gfp_mask
))
1646 if (map_vm_area(area
, prot
, pages
))
1651 warn_alloc_failed(gfp_mask
, order
,
1652 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1653 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1659 * __vmalloc_node_range - allocate virtually contiguous memory
1660 * @size: allocation size
1661 * @align: desired alignment
1662 * @start: vm area range start
1663 * @end: vm area range end
1664 * @gfp_mask: flags for the page level allocator
1665 * @prot: protection mask for the allocated pages
1666 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1667 * @node: node to use for allocation or NUMA_NO_NODE
1668 * @caller: caller's return address
1670 * Allocate enough pages to cover @size from the page level
1671 * allocator with @gfp_mask flags. Map them into contiguous
1672 * kernel virtual space, using a pagetable protection of @prot.
1674 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1675 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1676 pgprot_t prot
, unsigned long vm_flags
, int node
,
1679 struct vm_struct
*area
;
1681 unsigned long real_size
= size
;
1683 size
= PAGE_ALIGN(size
);
1684 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1687 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1688 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1692 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1697 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1698 * flag. It means that vm_struct is not fully initialized.
1699 * Now, it is fully initialized, so remove this flag here.
1701 clear_vm_uninitialized_flag(area
);
1704 * A ref_count = 2 is needed because vm_struct allocated in
1705 * __get_vm_area_node() contains a reference to the virtual address of
1706 * the vmalloc'ed block.
1708 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1713 warn_alloc_failed(gfp_mask
, 0,
1714 "vmalloc: allocation failure: %lu bytes\n",
1720 * __vmalloc_node - allocate virtually contiguous memory
1721 * @size: allocation size
1722 * @align: desired alignment
1723 * @gfp_mask: flags for the page level allocator
1724 * @prot: protection mask for the allocated pages
1725 * @node: node to use for allocation or NUMA_NO_NODE
1726 * @caller: caller's return address
1728 * Allocate enough pages to cover @size from the page level
1729 * allocator with @gfp_mask flags. Map them into contiguous
1730 * kernel virtual space, using a pagetable protection of @prot.
1732 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1733 gfp_t gfp_mask
, pgprot_t prot
,
1734 int node
, const void *caller
)
1736 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1737 gfp_mask
, prot
, 0, node
, caller
);
1740 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1742 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1743 __builtin_return_address(0));
1745 EXPORT_SYMBOL(__vmalloc
);
1747 static inline void *__vmalloc_node_flags(unsigned long size
,
1748 int node
, gfp_t flags
)
1750 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1751 node
, __builtin_return_address(0));
1755 * vmalloc - allocate virtually contiguous memory
1756 * @size: allocation size
1757 * Allocate enough pages to cover @size from the page level
1758 * allocator and map them into contiguous kernel virtual space.
1760 * For tight control over page level allocator and protection flags
1761 * use __vmalloc() instead.
1763 void *vmalloc(unsigned long size
)
1765 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1766 GFP_KERNEL
| __GFP_HIGHMEM
);
1768 EXPORT_SYMBOL(vmalloc
);
1771 * vzalloc - allocate virtually contiguous memory with zero fill
1772 * @size: allocation size
1773 * Allocate enough pages to cover @size from the page level
1774 * allocator and map them into contiguous kernel virtual space.
1775 * The memory allocated is set to zero.
1777 * For tight control over page level allocator and protection flags
1778 * use __vmalloc() instead.
1780 void *vzalloc(unsigned long size
)
1782 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1783 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1785 EXPORT_SYMBOL(vzalloc
);
1788 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1789 * @size: allocation size
1791 * The resulting memory area is zeroed so it can be mapped to userspace
1792 * without leaking data.
1794 void *vmalloc_user(unsigned long size
)
1796 struct vm_struct
*area
;
1799 ret
= __vmalloc_node(size
, SHMLBA
,
1800 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1801 PAGE_KERNEL
, NUMA_NO_NODE
,
1802 __builtin_return_address(0));
1804 area
= find_vm_area(ret
);
1805 area
->flags
|= VM_USERMAP
;
1809 EXPORT_SYMBOL(vmalloc_user
);
1812 * vmalloc_node - allocate memory on a specific node
1813 * @size: allocation size
1816 * Allocate enough pages to cover @size from the page level
1817 * allocator and map them into contiguous kernel virtual space.
1819 * For tight control over page level allocator and protection flags
1820 * use __vmalloc() instead.
1822 void *vmalloc_node(unsigned long size
, int node
)
1824 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1825 node
, __builtin_return_address(0));
1827 EXPORT_SYMBOL(vmalloc_node
);
1830 * vzalloc_node - allocate memory on a specific node with zero fill
1831 * @size: allocation size
1834 * Allocate enough pages to cover @size from the page level
1835 * allocator and map them into contiguous kernel virtual space.
1836 * The memory allocated is set to zero.
1838 * For tight control over page level allocator and protection flags
1839 * use __vmalloc_node() instead.
1841 void *vzalloc_node(unsigned long size
, int node
)
1843 return __vmalloc_node_flags(size
, node
,
1844 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1846 EXPORT_SYMBOL(vzalloc_node
);
1848 #ifndef PAGE_KERNEL_EXEC
1849 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1853 * vmalloc_exec - allocate virtually contiguous, executable memory
1854 * @size: allocation size
1856 * Kernel-internal function to allocate enough pages to cover @size
1857 * the page level allocator and map them into contiguous and
1858 * executable kernel virtual space.
1860 * For tight control over page level allocator and protection flags
1861 * use __vmalloc() instead.
1864 void *vmalloc_exec(unsigned long size
)
1866 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1867 NUMA_NO_NODE
, __builtin_return_address(0));
1870 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1871 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1872 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1873 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1875 #define GFP_VMALLOC32 GFP_KERNEL
1879 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1880 * @size: allocation size
1882 * Allocate enough 32bit PA addressable pages to cover @size from the
1883 * page level allocator and map them into contiguous kernel virtual space.
1885 void *vmalloc_32(unsigned long size
)
1887 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1888 NUMA_NO_NODE
, __builtin_return_address(0));
1890 EXPORT_SYMBOL(vmalloc_32
);
1893 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1894 * @size: allocation size
1896 * The resulting memory area is 32bit addressable and zeroed so it can be
1897 * mapped to userspace without leaking data.
1899 void *vmalloc_32_user(unsigned long size
)
1901 struct vm_struct
*area
;
1904 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1905 NUMA_NO_NODE
, __builtin_return_address(0));
1907 area
= find_vm_area(ret
);
1908 area
->flags
|= VM_USERMAP
;
1912 EXPORT_SYMBOL(vmalloc_32_user
);
1915 * small helper routine , copy contents to buf from addr.
1916 * If the page is not present, fill zero.
1919 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1925 unsigned long offset
, length
;
1927 offset
= offset_in_page(addr
);
1928 length
= PAGE_SIZE
- offset
;
1931 p
= vmalloc_to_page(addr
);
1933 * To do safe access to this _mapped_ area, we need
1934 * lock. But adding lock here means that we need to add
1935 * overhead of vmalloc()/vfree() calles for this _debug_
1936 * interface, rarely used. Instead of that, we'll use
1937 * kmap() and get small overhead in this access function.
1941 * we can expect USER0 is not used (see vread/vwrite's
1942 * function description)
1944 void *map
= kmap_atomic(p
);
1945 memcpy(buf
, map
+ offset
, length
);
1948 memset(buf
, 0, length
);
1958 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1964 unsigned long offset
, length
;
1966 offset
= offset_in_page(addr
);
1967 length
= PAGE_SIZE
- offset
;
1970 p
= vmalloc_to_page(addr
);
1972 * To do safe access to this _mapped_ area, we need
1973 * lock. But adding lock here means that we need to add
1974 * overhead of vmalloc()/vfree() calles for this _debug_
1975 * interface, rarely used. Instead of that, we'll use
1976 * kmap() and get small overhead in this access function.
1980 * we can expect USER0 is not used (see vread/vwrite's
1981 * function description)
1983 void *map
= kmap_atomic(p
);
1984 memcpy(map
+ offset
, buf
, length
);
1996 * vread() - read vmalloc area in a safe way.
1997 * @buf: buffer for reading data
1998 * @addr: vm address.
1999 * @count: number of bytes to be read.
2001 * Returns # of bytes which addr and buf should be increased.
2002 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2003 * includes any intersect with alive vmalloc area.
2005 * This function checks that addr is a valid vmalloc'ed area, and
2006 * copy data from that area to a given buffer. If the given memory range
2007 * of [addr...addr+count) includes some valid address, data is copied to
2008 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2009 * IOREMAP area is treated as memory hole and no copy is done.
2011 * If [addr...addr+count) doesn't includes any intersects with alive
2012 * vm_struct area, returns 0. @buf should be kernel's buffer.
2014 * Note: In usual ops, vread() is never necessary because the caller
2015 * should know vmalloc() area is valid and can use memcpy().
2016 * This is for routines which have to access vmalloc area without
2017 * any informaion, as /dev/kmem.
2021 long vread(char *buf
, char *addr
, unsigned long count
)
2023 struct vmap_area
*va
;
2024 struct vm_struct
*vm
;
2025 char *vaddr
, *buf_start
= buf
;
2026 unsigned long buflen
= count
;
2029 /* Don't allow overflow */
2030 if ((unsigned long) addr
+ count
< count
)
2031 count
= -(unsigned long) addr
;
2033 spin_lock(&vmap_area_lock
);
2034 list_for_each_entry(va
, &vmap_area_list
, list
) {
2038 if (!(va
->flags
& VM_VM_AREA
))
2042 vaddr
= (char *) vm
->addr
;
2043 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2045 while (addr
< vaddr
) {
2053 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2056 if (!(vm
->flags
& VM_IOREMAP
))
2057 aligned_vread(buf
, addr
, n
);
2058 else /* IOREMAP area is treated as memory hole */
2065 spin_unlock(&vmap_area_lock
);
2067 if (buf
== buf_start
)
2069 /* zero-fill memory holes */
2070 if (buf
!= buf_start
+ buflen
)
2071 memset(buf
, 0, buflen
- (buf
- buf_start
));
2077 * vwrite() - write vmalloc area in a safe way.
2078 * @buf: buffer for source data
2079 * @addr: vm address.
2080 * @count: number of bytes to be read.
2082 * Returns # of bytes which addr and buf should be incresed.
2083 * (same number to @count).
2084 * If [addr...addr+count) doesn't includes any intersect with valid
2085 * vmalloc area, returns 0.
2087 * This function checks that addr is a valid vmalloc'ed area, and
2088 * copy data from a buffer to the given addr. If specified range of
2089 * [addr...addr+count) includes some valid address, data is copied from
2090 * proper area of @buf. If there are memory holes, no copy to hole.
2091 * IOREMAP area is treated as memory hole and no copy is done.
2093 * If [addr...addr+count) doesn't includes any intersects with alive
2094 * vm_struct area, returns 0. @buf should be kernel's buffer.
2096 * Note: In usual ops, vwrite() is never necessary because the caller
2097 * should know vmalloc() area is valid and can use memcpy().
2098 * This is for routines which have to access vmalloc area without
2099 * any informaion, as /dev/kmem.
2102 long vwrite(char *buf
, char *addr
, unsigned long count
)
2104 struct vmap_area
*va
;
2105 struct vm_struct
*vm
;
2107 unsigned long n
, buflen
;
2110 /* Don't allow overflow */
2111 if ((unsigned long) addr
+ count
< count
)
2112 count
= -(unsigned long) addr
;
2115 spin_lock(&vmap_area_lock
);
2116 list_for_each_entry(va
, &vmap_area_list
, list
) {
2120 if (!(va
->flags
& VM_VM_AREA
))
2124 vaddr
= (char *) vm
->addr
;
2125 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2127 while (addr
< vaddr
) {
2134 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2137 if (!(vm
->flags
& VM_IOREMAP
)) {
2138 aligned_vwrite(buf
, addr
, n
);
2146 spin_unlock(&vmap_area_lock
);
2153 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2154 * @vma: vma to cover
2155 * @uaddr: target user address to start at
2156 * @kaddr: virtual address of vmalloc kernel memory
2157 * @size: size of map area
2159 * Returns: 0 for success, -Exxx on failure
2161 * This function checks that @kaddr is a valid vmalloc'ed area,
2162 * and that it is big enough to cover the range starting at
2163 * @uaddr in @vma. Will return failure if that criteria isn't
2166 * Similar to remap_pfn_range() (see mm/memory.c)
2168 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2169 void *kaddr
, unsigned long size
)
2171 struct vm_struct
*area
;
2173 size
= PAGE_ALIGN(size
);
2175 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2178 area
= find_vm_area(kaddr
);
2182 if (!(area
->flags
& VM_USERMAP
))
2185 if (kaddr
+ size
> area
->addr
+ area
->size
)
2189 struct page
*page
= vmalloc_to_page(kaddr
);
2192 ret
= vm_insert_page(vma
, uaddr
, page
);
2201 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2205 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2208 * remap_vmalloc_range - map vmalloc pages to userspace
2209 * @vma: vma to cover (map full range of vma)
2210 * @addr: vmalloc memory
2211 * @pgoff: number of pages into addr before first page to map
2213 * Returns: 0 for success, -Exxx on failure
2215 * This function checks that addr is a valid vmalloc'ed area, and
2216 * that it is big enough to cover the vma. Will return failure if
2217 * that criteria isn't met.
2219 * Similar to remap_pfn_range() (see mm/memory.c)
2221 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2222 unsigned long pgoff
)
2224 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2225 addr
+ (pgoff
<< PAGE_SHIFT
),
2226 vma
->vm_end
- vma
->vm_start
);
2228 EXPORT_SYMBOL(remap_vmalloc_range
);
2231 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2234 void __weak
vmalloc_sync_all(void)
2239 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2251 * alloc_vm_area - allocate a range of kernel address space
2252 * @size: size of the area
2253 * @ptes: returns the PTEs for the address space
2255 * Returns: NULL on failure, vm_struct on success
2257 * This function reserves a range of kernel address space, and
2258 * allocates pagetables to map that range. No actual mappings
2261 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2262 * allocated for the VM area are returned.
2264 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2266 struct vm_struct
*area
;
2268 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2269 __builtin_return_address(0));
2274 * This ensures that page tables are constructed for this region
2275 * of kernel virtual address space and mapped into init_mm.
2277 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2278 size
, f
, ptes
? &ptes
: NULL
)) {
2285 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2287 void free_vm_area(struct vm_struct
*area
)
2289 struct vm_struct
*ret
;
2290 ret
= remove_vm_area(area
->addr
);
2291 BUG_ON(ret
!= area
);
2294 EXPORT_SYMBOL_GPL(free_vm_area
);
2297 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2299 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2303 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2304 * @end: target address
2305 * @pnext: out arg for the next vmap_area
2306 * @pprev: out arg for the previous vmap_area
2308 * Returns: %true if either or both of next and prev are found,
2309 * %false if no vmap_area exists
2311 * Find vmap_areas end addresses of which enclose @end. ie. if not
2312 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2314 static bool pvm_find_next_prev(unsigned long end
,
2315 struct vmap_area
**pnext
,
2316 struct vmap_area
**pprev
)
2318 struct rb_node
*n
= vmap_area_root
.rb_node
;
2319 struct vmap_area
*va
= NULL
;
2322 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2323 if (end
< va
->va_end
)
2325 else if (end
> va
->va_end
)
2334 if (va
->va_end
> end
) {
2336 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2339 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2345 * pvm_determine_end - find the highest aligned address between two vmap_areas
2346 * @pnext: in/out arg for the next vmap_area
2347 * @pprev: in/out arg for the previous vmap_area
2350 * Returns: determined end address
2352 * Find the highest aligned address between *@pnext and *@pprev below
2353 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2354 * down address is between the end addresses of the two vmap_areas.
2356 * Please note that the address returned by this function may fall
2357 * inside *@pnext vmap_area. The caller is responsible for checking
2360 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2361 struct vmap_area
**pprev
,
2362 unsigned long align
)
2364 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2368 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2372 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2374 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2381 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2382 * @offsets: array containing offset of each area
2383 * @sizes: array containing size of each area
2384 * @nr_vms: the number of areas to allocate
2385 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2387 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2388 * vm_structs on success, %NULL on failure
2390 * Percpu allocator wants to use congruent vm areas so that it can
2391 * maintain the offsets among percpu areas. This function allocates
2392 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2393 * be scattered pretty far, distance between two areas easily going up
2394 * to gigabytes. To avoid interacting with regular vmallocs, these
2395 * areas are allocated from top.
2397 * Despite its complicated look, this allocator is rather simple. It
2398 * does everything top-down and scans areas from the end looking for
2399 * matching slot. While scanning, if any of the areas overlaps with
2400 * existing vmap_area, the base address is pulled down to fit the
2401 * area. Scanning is repeated till all the areas fit and then all
2402 * necessary data structres are inserted and the result is returned.
2404 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2405 const size_t *sizes
, int nr_vms
,
2408 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2409 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2410 struct vmap_area
**vas
, *prev
, *next
;
2411 struct vm_struct
**vms
;
2412 int area
, area2
, last_area
, term_area
;
2413 unsigned long base
, start
, end
, last_end
;
2414 bool purged
= false;
2416 /* verify parameters and allocate data structures */
2417 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2418 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2419 start
= offsets
[area
];
2420 end
= start
+ sizes
[area
];
2422 /* is everything aligned properly? */
2423 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2424 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2426 /* detect the area with the highest address */
2427 if (start
> offsets
[last_area
])
2430 for (area2
= 0; area2
< nr_vms
; area2
++) {
2431 unsigned long start2
= offsets
[area2
];
2432 unsigned long end2
= start2
+ sizes
[area2
];
2437 BUG_ON(start2
>= start
&& start2
< end
);
2438 BUG_ON(end2
<= end
&& end2
> start
);
2441 last_end
= offsets
[last_area
] + sizes
[last_area
];
2443 if (vmalloc_end
- vmalloc_start
< last_end
) {
2448 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2449 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2453 for (area
= 0; area
< nr_vms
; area
++) {
2454 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2455 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2456 if (!vas
[area
] || !vms
[area
])
2460 spin_lock(&vmap_area_lock
);
2462 /* start scanning - we scan from the top, begin with the last area */
2463 area
= term_area
= last_area
;
2464 start
= offsets
[area
];
2465 end
= start
+ sizes
[area
];
2467 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2468 base
= vmalloc_end
- last_end
;
2471 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2474 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2475 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2478 * base might have underflowed, add last_end before
2481 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2482 spin_unlock(&vmap_area_lock
);
2484 purge_vmap_area_lazy();
2492 * If next overlaps, move base downwards so that it's
2493 * right below next and then recheck.
2495 if (next
&& next
->va_start
< base
+ end
) {
2496 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2502 * If prev overlaps, shift down next and prev and move
2503 * base so that it's right below new next and then
2506 if (prev
&& prev
->va_end
> base
+ start
) {
2508 prev
= node_to_va(rb_prev(&next
->rb_node
));
2509 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2515 * This area fits, move on to the previous one. If
2516 * the previous one is the terminal one, we're done.
2518 area
= (area
+ nr_vms
- 1) % nr_vms
;
2519 if (area
== term_area
)
2521 start
= offsets
[area
];
2522 end
= start
+ sizes
[area
];
2523 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2526 /* we've found a fitting base, insert all va's */
2527 for (area
= 0; area
< nr_vms
; area
++) {
2528 struct vmap_area
*va
= vas
[area
];
2530 va
->va_start
= base
+ offsets
[area
];
2531 va
->va_end
= va
->va_start
+ sizes
[area
];
2532 __insert_vmap_area(va
);
2535 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2537 spin_unlock(&vmap_area_lock
);
2539 /* insert all vm's */
2540 for (area
= 0; area
< nr_vms
; area
++)
2541 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2548 for (area
= 0; area
< nr_vms
; area
++) {
2559 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2560 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2561 * @nr_vms: the number of allocated areas
2563 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2565 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2569 for (i
= 0; i
< nr_vms
; i
++)
2570 free_vm_area(vms
[i
]);
2573 #endif /* CONFIG_SMP */
2575 #ifdef CONFIG_PROC_FS
2576 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2577 __acquires(&vmap_area_lock
)
2580 struct vmap_area
*va
;
2582 spin_lock(&vmap_area_lock
);
2583 va
= list_first_entry(&vmap_area_list
, typeof(*va
), list
);
2584 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2586 va
= list_next_entry(va
, list
);
2588 if (!n
&& &va
->list
!= &vmap_area_list
)
2595 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2597 struct vmap_area
*va
= p
, *next
;
2600 next
= list_next_entry(va
, list
);
2601 if (&next
->list
!= &vmap_area_list
)
2607 static void s_stop(struct seq_file
*m
, void *p
)
2608 __releases(&vmap_area_lock
)
2610 spin_unlock(&vmap_area_lock
);
2613 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2615 if (IS_ENABLED(CONFIG_NUMA
)) {
2616 unsigned int nr
, *counters
= m
->private;
2621 if (v
->flags
& VM_UNINITIALIZED
)
2623 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2626 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2628 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2629 counters
[page_to_nid(v
->pages
[nr
])]++;
2631 for_each_node_state(nr
, N_HIGH_MEMORY
)
2633 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2637 static int s_show(struct seq_file
*m
, void *p
)
2639 struct vmap_area
*va
= p
;
2640 struct vm_struct
*v
;
2643 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2644 * behalf of vmap area is being tear down or vm_map_ram allocation.
2646 if (!(va
->flags
& VM_VM_AREA
))
2651 seq_printf(m
, "0x%pK-0x%pK %7ld",
2652 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2655 seq_printf(m
, " %pS", v
->caller
);
2658 seq_printf(m
, " pages=%d", v
->nr_pages
);
2661 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2663 if (v
->flags
& VM_IOREMAP
)
2664 seq_puts(m
, " ioremap");
2666 if (v
->flags
& VM_ALLOC
)
2667 seq_puts(m
, " vmalloc");
2669 if (v
->flags
& VM_MAP
)
2670 seq_puts(m
, " vmap");
2672 if (v
->flags
& VM_USERMAP
)
2673 seq_puts(m
, " user");
2675 if (is_vmalloc_addr(v
->pages
))
2676 seq_puts(m
, " vpages");
2678 show_numa_info(m
, v
);
2683 static const struct seq_operations vmalloc_op
= {
2690 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2692 if (IS_ENABLED(CONFIG_NUMA
))
2693 return seq_open_private(file
, &vmalloc_op
,
2694 nr_node_ids
* sizeof(unsigned int));
2696 return seq_open(file
, &vmalloc_op
);
2699 static const struct file_operations proc_vmalloc_operations
= {
2700 .open
= vmalloc_open
,
2702 .llseek
= seq_lseek
,
2703 .release
= seq_release_private
,
2706 static int __init
proc_vmalloc_init(void)
2708 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2711 module_init(proc_vmalloc_init
);