1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
18 #include "btrfs_inode.h"
20 #include "check-integrity.h"
22 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers
);
30 static LIST_HEAD(states
);
32 static DEFINE_SPINLOCK(leak_lock
);
35 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
39 spin_lock_irqsave(&leak_lock
, flags
);
41 spin_unlock_irqrestore(&leak_lock
, flags
);
45 void btrfs_leak_debug_del(struct list_head
*entry
)
49 spin_lock_irqsave(&leak_lock
, flags
);
51 spin_unlock_irqrestore(&leak_lock
, flags
);
55 void btrfs_leak_debug_check(void)
57 struct extent_state
*state
;
58 struct extent_buffer
*eb
;
60 while (!list_empty(&states
)) {
61 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
62 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state
->start
,
65 (unsigned long long)state
->end
,
66 state
->state
, state
->tree
, atomic_read(&state
->refs
));
67 list_del(&state
->leak_list
);
68 kmem_cache_free(extent_state_cache
, state
);
71 while (!list_empty(&buffers
)) {
72 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
73 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb
->start
,
75 eb
->len
, atomic_read(&eb
->refs
));
76 list_del(&eb
->leak_list
);
77 kmem_cache_free(extent_buffer_cache
, eb
);
81 #define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
84 struct inode
*inode
, u64 start
, u64 end
)
86 u64 isize
= i_size_read(inode
);
88 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
92 (unsigned long long)btrfs_ino(inode
),
93 (unsigned long long)isize
,
94 (unsigned long long)start
,
95 (unsigned long long)end
);
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry) do {} while (0)
101 #define btrfs_leak_debug_check() do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
105 #define BUFFER_LRU_MAX 64
110 struct rb_node rb_node
;
113 struct extent_page_data
{
115 struct extent_io_tree
*tree
;
116 get_extent_t
*get_extent
;
117 unsigned long bio_flags
;
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
122 unsigned int extent_locked
:1;
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io
:1;
128 static noinline
void flush_write_bio(void *data
);
129 static inline struct btrfs_fs_info
*
130 tree_fs_info(struct extent_io_tree
*tree
)
132 return btrfs_sb(tree
->mapping
->host
->i_sb
);
135 int __init
extent_io_init(void)
137 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
138 sizeof(struct extent_state
), 0,
139 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
140 if (!extent_state_cache
)
143 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
144 sizeof(struct extent_buffer
), 0,
145 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
146 if (!extent_buffer_cache
)
147 goto free_state_cache
;
149 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
150 offsetof(struct btrfs_io_bio
, bio
));
152 goto free_buffer_cache
;
156 kmem_cache_destroy(extent_buffer_cache
);
157 extent_buffer_cache
= NULL
;
160 kmem_cache_destroy(extent_state_cache
);
161 extent_state_cache
= NULL
;
165 void extent_io_exit(void)
167 btrfs_leak_debug_check();
170 * Make sure all delayed rcu free are flushed before we
174 if (extent_state_cache
)
175 kmem_cache_destroy(extent_state_cache
);
176 if (extent_buffer_cache
)
177 kmem_cache_destroy(extent_buffer_cache
);
179 bioset_free(btrfs_bioset
);
182 void extent_io_tree_init(struct extent_io_tree
*tree
,
183 struct address_space
*mapping
)
185 tree
->state
= RB_ROOT
;
186 INIT_RADIX_TREE(&tree
->buffer
, GFP_ATOMIC
);
188 tree
->dirty_bytes
= 0;
189 spin_lock_init(&tree
->lock
);
190 spin_lock_init(&tree
->buffer_lock
);
191 tree
->mapping
= mapping
;
194 static struct extent_state
*alloc_extent_state(gfp_t mask
)
196 struct extent_state
*state
;
198 state
= kmem_cache_alloc(extent_state_cache
, mask
);
204 btrfs_leak_debug_add(&state
->leak_list
, &states
);
205 atomic_set(&state
->refs
, 1);
206 init_waitqueue_head(&state
->wq
);
207 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
211 void free_extent_state(struct extent_state
*state
)
215 if (atomic_dec_and_test(&state
->refs
)) {
216 WARN_ON(state
->tree
);
217 btrfs_leak_debug_del(&state
->leak_list
);
218 trace_free_extent_state(state
, _RET_IP_
);
219 kmem_cache_free(extent_state_cache
, state
);
223 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
224 struct rb_node
*node
)
226 struct rb_node
**p
= &root
->rb_node
;
227 struct rb_node
*parent
= NULL
;
228 struct tree_entry
*entry
;
232 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
234 if (offset
< entry
->start
)
236 else if (offset
> entry
->end
)
242 rb_link_node(node
, parent
, p
);
243 rb_insert_color(node
, root
);
247 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
248 struct rb_node
**prev_ret
,
249 struct rb_node
**next_ret
)
251 struct rb_root
*root
= &tree
->state
;
252 struct rb_node
*n
= root
->rb_node
;
253 struct rb_node
*prev
= NULL
;
254 struct rb_node
*orig_prev
= NULL
;
255 struct tree_entry
*entry
;
256 struct tree_entry
*prev_entry
= NULL
;
259 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
263 if (offset
< entry
->start
)
265 else if (offset
> entry
->end
)
273 while (prev
&& offset
> prev_entry
->end
) {
274 prev
= rb_next(prev
);
275 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
282 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
283 while (prev
&& offset
< prev_entry
->start
) {
284 prev
= rb_prev(prev
);
285 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
292 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
295 struct rb_node
*prev
= NULL
;
298 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
304 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
305 struct extent_state
*other
)
307 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
308 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
319 * This should be called with the tree lock held.
321 static void merge_state(struct extent_io_tree
*tree
,
322 struct extent_state
*state
)
324 struct extent_state
*other
;
325 struct rb_node
*other_node
;
327 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
330 other_node
= rb_prev(&state
->rb_node
);
332 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
333 if (other
->end
== state
->start
- 1 &&
334 other
->state
== state
->state
) {
335 merge_cb(tree
, state
, other
);
336 state
->start
= other
->start
;
338 rb_erase(&other
->rb_node
, &tree
->state
);
339 free_extent_state(other
);
342 other_node
= rb_next(&state
->rb_node
);
344 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
345 if (other
->start
== state
->end
+ 1 &&
346 other
->state
== state
->state
) {
347 merge_cb(tree
, state
, other
);
348 state
->end
= other
->end
;
350 rb_erase(&other
->rb_node
, &tree
->state
);
351 free_extent_state(other
);
356 static void set_state_cb(struct extent_io_tree
*tree
,
357 struct extent_state
*state
, unsigned long *bits
)
359 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
360 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
363 static void clear_state_cb(struct extent_io_tree
*tree
,
364 struct extent_state
*state
, unsigned long *bits
)
366 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
367 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
370 static void set_state_bits(struct extent_io_tree
*tree
,
371 struct extent_state
*state
, unsigned long *bits
);
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
383 static int insert_state(struct extent_io_tree
*tree
,
384 struct extent_state
*state
, u64 start
, u64 end
,
387 struct rb_node
*node
;
390 WARN(1, KERN_ERR
"btrfs end < start %llu %llu\n",
391 (unsigned long long)end
,
392 (unsigned long long)start
);
393 state
->start
= start
;
396 set_state_bits(tree
, state
, bits
);
398 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
400 struct extent_state
*found
;
401 found
= rb_entry(node
, struct extent_state
, rb_node
);
402 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found
->start
,
404 (unsigned long long)found
->end
,
405 (unsigned long long)start
, (unsigned long long)end
);
409 merge_state(tree
, state
);
413 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
416 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
417 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
431 * The tree locks are not taken by this function. They need to be held
434 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
435 struct extent_state
*prealloc
, u64 split
)
437 struct rb_node
*node
;
439 split_cb(tree
, orig
, split
);
441 prealloc
->start
= orig
->start
;
442 prealloc
->end
= split
- 1;
443 prealloc
->state
= orig
->state
;
446 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
448 free_extent_state(prealloc
);
451 prealloc
->tree
= tree
;
455 static struct extent_state
*next_state(struct extent_state
*state
)
457 struct rb_node
*next
= rb_next(&state
->rb_node
);
459 return rb_entry(next
, struct extent_state
, rb_node
);
465 * utility function to clear some bits in an extent state struct.
466 * it will optionally wake up any one waiting on this state (wake == 1).
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
471 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
472 struct extent_state
*state
,
473 unsigned long *bits
, int wake
)
475 struct extent_state
*next
;
476 unsigned long bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
478 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
479 u64 range
= state
->end
- state
->start
+ 1;
480 WARN_ON(range
> tree
->dirty_bytes
);
481 tree
->dirty_bytes
-= range
;
483 clear_state_cb(tree
, state
, bits
);
484 state
->state
&= ~bits_to_clear
;
487 if (state
->state
== 0) {
488 next
= next_state(state
);
490 rb_erase(&state
->rb_node
, &tree
->state
);
492 free_extent_state(state
);
497 merge_state(tree
, state
);
498 next
= next_state(state
);
503 static struct extent_state
*
504 alloc_extent_state_atomic(struct extent_state
*prealloc
)
507 prealloc
= alloc_extent_state(GFP_ATOMIC
);
512 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
514 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
527 * the range [start, end] is inclusive.
529 * This takes the tree lock, and returns 0 on success and < 0 on error.
531 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
532 unsigned long bits
, int wake
, int delete,
533 struct extent_state
**cached_state
,
536 struct extent_state
*state
;
537 struct extent_state
*cached
;
538 struct extent_state
*prealloc
= NULL
;
539 struct rb_node
*node
;
544 btrfs_debug_check_extent_io_range(tree
->mapping
->host
, start
, end
);
546 if (bits
& EXTENT_DELALLOC
)
547 bits
|= EXTENT_NORESERVE
;
550 bits
|= ~EXTENT_CTLBITS
;
551 bits
|= EXTENT_FIRST_DELALLOC
;
553 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
556 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
557 prealloc
= alloc_extent_state(mask
);
562 spin_lock(&tree
->lock
);
564 cached
= *cached_state
;
567 *cached_state
= NULL
;
571 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
572 cached
->end
> start
) {
574 atomic_dec(&cached
->refs
);
579 free_extent_state(cached
);
582 * this search will find the extents that end after
585 node
= tree_search(tree
, start
);
588 state
= rb_entry(node
, struct extent_state
, rb_node
);
590 if (state
->start
> end
)
592 WARN_ON(state
->end
< start
);
593 last_end
= state
->end
;
595 /* the state doesn't have the wanted bits, go ahead */
596 if (!(state
->state
& bits
)) {
597 state
= next_state(state
);
602 * | ---- desired range ---- |
604 * | ------------- state -------------- |
606 * We need to split the extent we found, and may flip
607 * bits on second half.
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
617 if (state
->start
< start
) {
618 prealloc
= alloc_extent_state_atomic(prealloc
);
620 err
= split_state(tree
, state
, prealloc
, start
);
622 extent_io_tree_panic(tree
, err
);
627 if (state
->end
<= end
) {
628 state
= clear_state_bit(tree
, state
, &bits
, wake
);
634 * | ---- desired range ---- |
636 * We need to split the extent, and clear the bit
639 if (state
->start
<= end
&& state
->end
> end
) {
640 prealloc
= alloc_extent_state_atomic(prealloc
);
642 err
= split_state(tree
, state
, prealloc
, end
+ 1);
644 extent_io_tree_panic(tree
, err
);
649 clear_state_bit(tree
, prealloc
, &bits
, wake
);
655 state
= clear_state_bit(tree
, state
, &bits
, wake
);
657 if (last_end
== (u64
)-1)
659 start
= last_end
+ 1;
660 if (start
<= end
&& state
&& !need_resched())
665 spin_unlock(&tree
->lock
);
667 free_extent_state(prealloc
);
674 spin_unlock(&tree
->lock
);
675 if (mask
& __GFP_WAIT
)
680 static void wait_on_state(struct extent_io_tree
*tree
,
681 struct extent_state
*state
)
682 __releases(tree
->lock
)
683 __acquires(tree
->lock
)
686 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
687 spin_unlock(&tree
->lock
);
689 spin_lock(&tree
->lock
);
690 finish_wait(&state
->wq
, &wait
);
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
698 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
701 struct extent_state
*state
;
702 struct rb_node
*node
;
704 btrfs_debug_check_extent_io_range(tree
->mapping
->host
, start
, end
);
706 spin_lock(&tree
->lock
);
710 * this search will find all the extents that end after
713 node
= tree_search(tree
, start
);
717 state
= rb_entry(node
, struct extent_state
, rb_node
);
719 if (state
->start
> end
)
722 if (state
->state
& bits
) {
723 start
= state
->start
;
724 atomic_inc(&state
->refs
);
725 wait_on_state(tree
, state
);
726 free_extent_state(state
);
729 start
= state
->end
+ 1;
734 cond_resched_lock(&tree
->lock
);
737 spin_unlock(&tree
->lock
);
740 static void set_state_bits(struct extent_io_tree
*tree
,
741 struct extent_state
*state
,
744 unsigned long bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
746 set_state_cb(tree
, state
, bits
);
747 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
748 u64 range
= state
->end
- state
->start
+ 1;
749 tree
->dirty_bytes
+= range
;
751 state
->state
|= bits_to_set
;
754 static void cache_state(struct extent_state
*state
,
755 struct extent_state
**cached_ptr
)
757 if (cached_ptr
&& !(*cached_ptr
)) {
758 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
760 atomic_inc(&state
->refs
);
765 static void uncache_state(struct extent_state
**cached_ptr
)
767 if (cached_ptr
&& (*cached_ptr
)) {
768 struct extent_state
*state
= *cached_ptr
;
770 free_extent_state(state
);
775 * set some bits on a range in the tree. This may require allocations or
776 * sleeping, so the gfp mask is used to indicate what is allowed.
778 * If any of the exclusive bits are set, this will fail with -EEXIST if some
779 * part of the range already has the desired bits set. The start of the
780 * existing range is returned in failed_start in this case.
782 * [start, end] is inclusive This takes the tree lock.
785 static int __must_check
786 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
787 unsigned long bits
, unsigned long exclusive_bits
,
788 u64
*failed_start
, struct extent_state
**cached_state
,
791 struct extent_state
*state
;
792 struct extent_state
*prealloc
= NULL
;
793 struct rb_node
*node
;
798 btrfs_debug_check_extent_io_range(tree
->mapping
->host
, start
, end
);
800 bits
|= EXTENT_FIRST_DELALLOC
;
802 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
803 prealloc
= alloc_extent_state(mask
);
807 spin_lock(&tree
->lock
);
808 if (cached_state
&& *cached_state
) {
809 state
= *cached_state
;
810 if (state
->start
<= start
&& state
->end
> start
&&
812 node
= &state
->rb_node
;
817 * this search will find all the extents that end after
820 node
= tree_search(tree
, start
);
822 prealloc
= alloc_extent_state_atomic(prealloc
);
824 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
826 extent_io_tree_panic(tree
, err
);
831 state
= rb_entry(node
, struct extent_state
, rb_node
);
833 last_start
= state
->start
;
834 last_end
= state
->end
;
837 * | ---- desired range ---- |
840 * Just lock what we found and keep going
842 if (state
->start
== start
&& state
->end
<= end
) {
843 if (state
->state
& exclusive_bits
) {
844 *failed_start
= state
->start
;
849 set_state_bits(tree
, state
, &bits
);
850 cache_state(state
, cached_state
);
851 merge_state(tree
, state
);
852 if (last_end
== (u64
)-1)
854 start
= last_end
+ 1;
855 state
= next_state(state
);
856 if (start
< end
&& state
&& state
->start
== start
&&
863 * | ---- desired range ---- |
866 * | ------------- state -------------- |
868 * We need to split the extent we found, and may flip bits on
871 * If the extent we found extends past our
872 * range, we just split and search again. It'll get split
873 * again the next time though.
875 * If the extent we found is inside our range, we set the
878 if (state
->start
< start
) {
879 if (state
->state
& exclusive_bits
) {
880 *failed_start
= start
;
885 prealloc
= alloc_extent_state_atomic(prealloc
);
887 err
= split_state(tree
, state
, prealloc
, start
);
889 extent_io_tree_panic(tree
, err
);
894 if (state
->end
<= end
) {
895 set_state_bits(tree
, state
, &bits
);
896 cache_state(state
, cached_state
);
897 merge_state(tree
, state
);
898 if (last_end
== (u64
)-1)
900 start
= last_end
+ 1;
901 state
= next_state(state
);
902 if (start
< end
&& state
&& state
->start
== start
&&
909 * | ---- desired range ---- |
910 * | state | or | state |
912 * There's a hole, we need to insert something in it and
913 * ignore the extent we found.
915 if (state
->start
> start
) {
917 if (end
< last_start
)
920 this_end
= last_start
- 1;
922 prealloc
= alloc_extent_state_atomic(prealloc
);
926 * Avoid to free 'prealloc' if it can be merged with
929 err
= insert_state(tree
, prealloc
, start
, this_end
,
932 extent_io_tree_panic(tree
, err
);
934 cache_state(prealloc
, cached_state
);
936 start
= this_end
+ 1;
940 * | ---- desired range ---- |
942 * We need to split the extent, and set the bit
945 if (state
->start
<= end
&& state
->end
> end
) {
946 if (state
->state
& exclusive_bits
) {
947 *failed_start
= start
;
952 prealloc
= alloc_extent_state_atomic(prealloc
);
954 err
= split_state(tree
, state
, prealloc
, end
+ 1);
956 extent_io_tree_panic(tree
, err
);
958 set_state_bits(tree
, prealloc
, &bits
);
959 cache_state(prealloc
, cached_state
);
960 merge_state(tree
, prealloc
);
968 spin_unlock(&tree
->lock
);
970 free_extent_state(prealloc
);
977 spin_unlock(&tree
->lock
);
978 if (mask
& __GFP_WAIT
)
983 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
984 unsigned long bits
, u64
* failed_start
,
985 struct extent_state
**cached_state
, gfp_t mask
)
987 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
993 * convert_extent_bit - convert all bits in a given range from one bit to
995 * @tree: the io tree to search
996 * @start: the start offset in bytes
997 * @end: the end offset in bytes (inclusive)
998 * @bits: the bits to set in this range
999 * @clear_bits: the bits to clear in this range
1000 * @cached_state: state that we're going to cache
1001 * @mask: the allocation mask
1003 * This will go through and set bits for the given range. If any states exist
1004 * already in this range they are set with the given bit and cleared of the
1005 * clear_bits. This is only meant to be used by things that are mergeable, ie
1006 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1007 * boundary bits like LOCK.
1009 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1010 unsigned long bits
, unsigned long clear_bits
,
1011 struct extent_state
**cached_state
, gfp_t mask
)
1013 struct extent_state
*state
;
1014 struct extent_state
*prealloc
= NULL
;
1015 struct rb_node
*node
;
1020 btrfs_debug_check_extent_io_range(tree
->mapping
->host
, start
, end
);
1023 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
1024 prealloc
= alloc_extent_state(mask
);
1029 spin_lock(&tree
->lock
);
1030 if (cached_state
&& *cached_state
) {
1031 state
= *cached_state
;
1032 if (state
->start
<= start
&& state
->end
> start
&&
1034 node
= &state
->rb_node
;
1040 * this search will find all the extents that end after
1043 node
= tree_search(tree
, start
);
1045 prealloc
= alloc_extent_state_atomic(prealloc
);
1050 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
1053 extent_io_tree_panic(tree
, err
);
1056 state
= rb_entry(node
, struct extent_state
, rb_node
);
1058 last_start
= state
->start
;
1059 last_end
= state
->end
;
1062 * | ---- desired range ---- |
1065 * Just lock what we found and keep going
1067 if (state
->start
== start
&& state
->end
<= end
) {
1068 set_state_bits(tree
, state
, &bits
);
1069 cache_state(state
, cached_state
);
1070 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1071 if (last_end
== (u64
)-1)
1073 start
= last_end
+ 1;
1074 if (start
< end
&& state
&& state
->start
== start
&&
1081 * | ---- desired range ---- |
1084 * | ------------- state -------------- |
1086 * We need to split the extent we found, and may flip bits on
1089 * If the extent we found extends past our
1090 * range, we just split and search again. It'll get split
1091 * again the next time though.
1093 * If the extent we found is inside our range, we set the
1094 * desired bit on it.
1096 if (state
->start
< start
) {
1097 prealloc
= alloc_extent_state_atomic(prealloc
);
1102 err
= split_state(tree
, state
, prealloc
, start
);
1104 extent_io_tree_panic(tree
, err
);
1108 if (state
->end
<= end
) {
1109 set_state_bits(tree
, state
, &bits
);
1110 cache_state(state
, cached_state
);
1111 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1112 if (last_end
== (u64
)-1)
1114 start
= last_end
+ 1;
1115 if (start
< end
&& state
&& state
->start
== start
&&
1122 * | ---- desired range ---- |
1123 * | state | or | state |
1125 * There's a hole, we need to insert something in it and
1126 * ignore the extent we found.
1128 if (state
->start
> start
) {
1130 if (end
< last_start
)
1133 this_end
= last_start
- 1;
1135 prealloc
= alloc_extent_state_atomic(prealloc
);
1142 * Avoid to free 'prealloc' if it can be merged with
1145 err
= insert_state(tree
, prealloc
, start
, this_end
,
1148 extent_io_tree_panic(tree
, err
);
1149 cache_state(prealloc
, cached_state
);
1151 start
= this_end
+ 1;
1155 * | ---- desired range ---- |
1157 * We need to split the extent, and set the bit
1160 if (state
->start
<= end
&& state
->end
> end
) {
1161 prealloc
= alloc_extent_state_atomic(prealloc
);
1167 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1169 extent_io_tree_panic(tree
, err
);
1171 set_state_bits(tree
, prealloc
, &bits
);
1172 cache_state(prealloc
, cached_state
);
1173 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1181 spin_unlock(&tree
->lock
);
1183 free_extent_state(prealloc
);
1190 spin_unlock(&tree
->lock
);
1191 if (mask
& __GFP_WAIT
)
1196 /* wrappers around set/clear extent bit */
1197 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1200 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1204 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1205 unsigned long bits
, gfp_t mask
)
1207 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1211 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1212 unsigned long bits
, gfp_t mask
)
1214 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1217 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1218 struct extent_state
**cached_state
, gfp_t mask
)
1220 return set_extent_bit(tree
, start
, end
,
1221 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1222 NULL
, cached_state
, mask
);
1225 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1226 struct extent_state
**cached_state
, gfp_t mask
)
1228 return set_extent_bit(tree
, start
, end
,
1229 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1230 NULL
, cached_state
, mask
);
1233 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1236 return clear_extent_bit(tree
, start
, end
,
1237 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1238 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1241 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1244 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1248 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1249 struct extent_state
**cached_state
, gfp_t mask
)
1251 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1252 cached_state
, mask
);
1255 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1256 struct extent_state
**cached_state
, gfp_t mask
)
1258 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1259 cached_state
, mask
);
1263 * either insert or lock state struct between start and end use mask to tell
1264 * us if waiting is desired.
1266 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1267 unsigned long bits
, struct extent_state
**cached_state
)
1272 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1273 EXTENT_LOCKED
, &failed_start
,
1274 cached_state
, GFP_NOFS
);
1275 if (err
== -EEXIST
) {
1276 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1277 start
= failed_start
;
1280 WARN_ON(start
> end
);
1285 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1287 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1290 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1295 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1296 &failed_start
, NULL
, GFP_NOFS
);
1297 if (err
== -EEXIST
) {
1298 if (failed_start
> start
)
1299 clear_extent_bit(tree
, start
, failed_start
- 1,
1300 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1306 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1307 struct extent_state
**cached
, gfp_t mask
)
1309 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1313 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1315 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1319 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1321 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1322 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1325 while (index
<= end_index
) {
1326 page
= find_get_page(inode
->i_mapping
, index
);
1327 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1328 clear_page_dirty_for_io(page
);
1329 page_cache_release(page
);
1335 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1337 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1338 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1341 while (index
<= end_index
) {
1342 page
= find_get_page(inode
->i_mapping
, index
);
1343 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1344 account_page_redirty(page
);
1345 __set_page_dirty_nobuffers(page
);
1346 page_cache_release(page
);
1353 * helper function to set both pages and extents in the tree writeback
1355 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1357 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1358 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1361 while (index
<= end_index
) {
1362 page
= find_get_page(tree
->mapping
, index
);
1363 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1364 set_page_writeback(page
);
1365 page_cache_release(page
);
1371 /* find the first state struct with 'bits' set after 'start', and
1372 * return it. tree->lock must be held. NULL will returned if
1373 * nothing was found after 'start'
1375 static struct extent_state
*
1376 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1377 u64 start
, unsigned long bits
)
1379 struct rb_node
*node
;
1380 struct extent_state
*state
;
1383 * this search will find all the extents that end after
1386 node
= tree_search(tree
, start
);
1391 state
= rb_entry(node
, struct extent_state
, rb_node
);
1392 if (state
->end
>= start
&& (state
->state
& bits
))
1395 node
= rb_next(node
);
1404 * find the first offset in the io tree with 'bits' set. zero is
1405 * returned if we find something, and *start_ret and *end_ret are
1406 * set to reflect the state struct that was found.
1408 * If nothing was found, 1 is returned. If found something, return 0.
1410 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1411 u64
*start_ret
, u64
*end_ret
, unsigned long bits
,
1412 struct extent_state
**cached_state
)
1414 struct extent_state
*state
;
1418 spin_lock(&tree
->lock
);
1419 if (cached_state
&& *cached_state
) {
1420 state
= *cached_state
;
1421 if (state
->end
== start
- 1 && state
->tree
) {
1422 n
= rb_next(&state
->rb_node
);
1424 state
= rb_entry(n
, struct extent_state
,
1426 if (state
->state
& bits
)
1430 free_extent_state(*cached_state
);
1431 *cached_state
= NULL
;
1434 free_extent_state(*cached_state
);
1435 *cached_state
= NULL
;
1438 state
= find_first_extent_bit_state(tree
, start
, bits
);
1441 cache_state(state
, cached_state
);
1442 *start_ret
= state
->start
;
1443 *end_ret
= state
->end
;
1447 spin_unlock(&tree
->lock
);
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1457 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1458 u64
*start
, u64
*end
, u64 max_bytes
,
1459 struct extent_state
**cached_state
)
1461 struct rb_node
*node
;
1462 struct extent_state
*state
;
1463 u64 cur_start
= *start
;
1465 u64 total_bytes
= 0;
1467 spin_lock(&tree
->lock
);
1470 * this search will find all the extents that end after
1473 node
= tree_search(tree
, cur_start
);
1481 state
= rb_entry(node
, struct extent_state
, rb_node
);
1482 if (found
&& (state
->start
!= cur_start
||
1483 (state
->state
& EXTENT_BOUNDARY
))) {
1486 if (!(state
->state
& EXTENT_DELALLOC
)) {
1492 *start
= state
->start
;
1493 *cached_state
= state
;
1494 atomic_inc(&state
->refs
);
1498 cur_start
= state
->end
+ 1;
1499 node
= rb_next(node
);
1502 total_bytes
+= state
->end
- state
->start
+ 1;
1503 if (total_bytes
>= max_bytes
)
1507 spin_unlock(&tree
->lock
);
1511 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1512 struct page
*locked_page
,
1516 struct page
*pages
[16];
1517 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1518 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1519 unsigned long nr_pages
= end_index
- index
+ 1;
1522 if (index
== locked_page
->index
&& end_index
== index
)
1525 while (nr_pages
> 0) {
1526 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1527 min_t(unsigned long, nr_pages
,
1528 ARRAY_SIZE(pages
)), pages
);
1529 for (i
= 0; i
< ret
; i
++) {
1530 if (pages
[i
] != locked_page
)
1531 unlock_page(pages
[i
]);
1532 page_cache_release(pages
[i
]);
1540 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1541 struct page
*locked_page
,
1545 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1546 unsigned long start_index
= index
;
1547 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1548 unsigned long pages_locked
= 0;
1549 struct page
*pages
[16];
1550 unsigned long nrpages
;
1554 /* the caller is responsible for locking the start index */
1555 if (index
== locked_page
->index
&& index
== end_index
)
1558 /* skip the page at the start index */
1559 nrpages
= end_index
- index
+ 1;
1560 while (nrpages
> 0) {
1561 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1562 min_t(unsigned long,
1563 nrpages
, ARRAY_SIZE(pages
)), pages
);
1568 /* now we have an array of pages, lock them all */
1569 for (i
= 0; i
< ret
; i
++) {
1571 * the caller is taking responsibility for
1574 if (pages
[i
] != locked_page
) {
1575 lock_page(pages
[i
]);
1576 if (!PageDirty(pages
[i
]) ||
1577 pages
[i
]->mapping
!= inode
->i_mapping
) {
1579 unlock_page(pages
[i
]);
1580 page_cache_release(pages
[i
]);
1584 page_cache_release(pages
[i
]);
1593 if (ret
&& pages_locked
) {
1594 __unlock_for_delalloc(inode
, locked_page
,
1596 ((u64
)(start_index
+ pages_locked
- 1)) <<
1603 * find a contiguous range of bytes in the file marked as delalloc, not
1604 * more than 'max_bytes'. start and end are used to return the range,
1606 * 1 is returned if we find something, 0 if nothing was in the tree
1608 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1609 struct extent_io_tree
*tree
,
1610 struct page
*locked_page
,
1611 u64
*start
, u64
*end
,
1617 struct extent_state
*cached_state
= NULL
;
1622 /* step one, find a bunch of delalloc bytes starting at start */
1623 delalloc_start
= *start
;
1625 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1626 max_bytes
, &cached_state
);
1627 if (!found
|| delalloc_end
<= *start
) {
1628 *start
= delalloc_start
;
1629 *end
= delalloc_end
;
1630 free_extent_state(cached_state
);
1635 * start comes from the offset of locked_page. We have to lock
1636 * pages in order, so we can't process delalloc bytes before
1639 if (delalloc_start
< *start
)
1640 delalloc_start
= *start
;
1643 * make sure to limit the number of pages we try to lock down
1646 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1647 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1649 /* step two, lock all the pages after the page that has start */
1650 ret
= lock_delalloc_pages(inode
, locked_page
,
1651 delalloc_start
, delalloc_end
);
1652 if (ret
== -EAGAIN
) {
1653 /* some of the pages are gone, lets avoid looping by
1654 * shortening the size of the delalloc range we're searching
1656 free_extent_state(cached_state
);
1658 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1659 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1667 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1669 /* step three, lock the state bits for the whole range */
1670 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1672 /* then test to make sure it is all still delalloc */
1673 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1674 EXTENT_DELALLOC
, 1, cached_state
);
1676 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1677 &cached_state
, GFP_NOFS
);
1678 __unlock_for_delalloc(inode
, locked_page
,
1679 delalloc_start
, delalloc_end
);
1683 free_extent_state(cached_state
);
1684 *start
= delalloc_start
;
1685 *end
= delalloc_end
;
1690 int extent_clear_unlock_delalloc(struct inode
*inode
,
1691 struct extent_io_tree
*tree
,
1692 u64 start
, u64 end
, struct page
*locked_page
,
1696 struct page
*pages
[16];
1697 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1698 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1699 unsigned long nr_pages
= end_index
- index
+ 1;
1701 unsigned long clear_bits
= 0;
1703 if (op
& EXTENT_CLEAR_UNLOCK
)
1704 clear_bits
|= EXTENT_LOCKED
;
1705 if (op
& EXTENT_CLEAR_DIRTY
)
1706 clear_bits
|= EXTENT_DIRTY
;
1708 if (op
& EXTENT_CLEAR_DELALLOC
)
1709 clear_bits
|= EXTENT_DELALLOC
;
1711 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1712 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1713 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1714 EXTENT_SET_PRIVATE2
)))
1717 while (nr_pages
> 0) {
1718 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1719 min_t(unsigned long,
1720 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1721 for (i
= 0; i
< ret
; i
++) {
1723 if (op
& EXTENT_SET_PRIVATE2
)
1724 SetPagePrivate2(pages
[i
]);
1726 if (pages
[i
] == locked_page
) {
1727 page_cache_release(pages
[i
]);
1730 if (op
& EXTENT_CLEAR_DIRTY
)
1731 clear_page_dirty_for_io(pages
[i
]);
1732 if (op
& EXTENT_SET_WRITEBACK
)
1733 set_page_writeback(pages
[i
]);
1734 if (op
& EXTENT_END_WRITEBACK
)
1735 end_page_writeback(pages
[i
]);
1736 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1737 unlock_page(pages
[i
]);
1738 page_cache_release(pages
[i
]);
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached. The total number found is returned.
1752 u64
count_range_bits(struct extent_io_tree
*tree
,
1753 u64
*start
, u64 search_end
, u64 max_bytes
,
1754 unsigned long bits
, int contig
)
1756 struct rb_node
*node
;
1757 struct extent_state
*state
;
1758 u64 cur_start
= *start
;
1759 u64 total_bytes
= 0;
1763 if (search_end
<= cur_start
) {
1768 spin_lock(&tree
->lock
);
1769 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1770 total_bytes
= tree
->dirty_bytes
;
1774 * this search will find all the extents that end after
1777 node
= tree_search(tree
, cur_start
);
1782 state
= rb_entry(node
, struct extent_state
, rb_node
);
1783 if (state
->start
> search_end
)
1785 if (contig
&& found
&& state
->start
> last
+ 1)
1787 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1788 total_bytes
+= min(search_end
, state
->end
) + 1 -
1789 max(cur_start
, state
->start
);
1790 if (total_bytes
>= max_bytes
)
1793 *start
= max(cur_start
, state
->start
);
1797 } else if (contig
&& found
) {
1800 node
= rb_next(node
);
1805 spin_unlock(&tree
->lock
);
1810 * set the private field for a given byte offset in the tree. If there isn't
1811 * an extent_state there already, this does nothing.
1813 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1815 struct rb_node
*node
;
1816 struct extent_state
*state
;
1819 spin_lock(&tree
->lock
);
1821 * this search will find all the extents that end after
1824 node
= tree_search(tree
, start
);
1829 state
= rb_entry(node
, struct extent_state
, rb_node
);
1830 if (state
->start
!= start
) {
1834 state
->private = private;
1836 spin_unlock(&tree
->lock
);
1840 void extent_cache_csums_dio(struct extent_io_tree
*tree
, u64 start
, u32 csums
[],
1843 struct rb_node
*node
;
1844 struct extent_state
*state
;
1846 spin_lock(&tree
->lock
);
1848 * this search will find all the extents that end after
1851 node
= tree_search(tree
, start
);
1854 state
= rb_entry(node
, struct extent_state
, rb_node
);
1855 BUG_ON(state
->start
!= start
);
1858 state
->private = *csums
++;
1860 state
= next_state(state
);
1862 spin_unlock(&tree
->lock
);
1865 static inline u64
__btrfs_get_bio_offset(struct bio
*bio
, int bio_index
)
1867 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio_index
;
1869 return page_offset(bvec
->bv_page
) + bvec
->bv_offset
;
1872 void extent_cache_csums(struct extent_io_tree
*tree
, struct bio
*bio
, int bio_index
,
1873 u32 csums
[], int count
)
1875 struct rb_node
*node
;
1876 struct extent_state
*state
= NULL
;
1879 spin_lock(&tree
->lock
);
1881 start
= __btrfs_get_bio_offset(bio
, bio_index
);
1882 if (state
== NULL
|| state
->start
!= start
) {
1883 node
= tree_search(tree
, start
);
1886 state
= rb_entry(node
, struct extent_state
, rb_node
);
1887 BUG_ON(state
->start
!= start
);
1889 state
->private = *csums
++;
1893 state
= next_state(state
);
1895 spin_unlock(&tree
->lock
);
1898 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1900 struct rb_node
*node
;
1901 struct extent_state
*state
;
1904 spin_lock(&tree
->lock
);
1906 * this search will find all the extents that end after
1909 node
= tree_search(tree
, start
);
1914 state
= rb_entry(node
, struct extent_state
, rb_node
);
1915 if (state
->start
!= start
) {
1919 *private = state
->private;
1921 spin_unlock(&tree
->lock
);
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1931 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1932 unsigned long bits
, int filled
, struct extent_state
*cached
)
1934 struct extent_state
*state
= NULL
;
1935 struct rb_node
*node
;
1938 spin_lock(&tree
->lock
);
1939 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
1940 cached
->end
> start
)
1941 node
= &cached
->rb_node
;
1943 node
= tree_search(tree
, start
);
1944 while (node
&& start
<= end
) {
1945 state
= rb_entry(node
, struct extent_state
, rb_node
);
1947 if (filled
&& state
->start
> start
) {
1952 if (state
->start
> end
)
1955 if (state
->state
& bits
) {
1959 } else if (filled
) {
1964 if (state
->end
== (u64
)-1)
1967 start
= state
->end
+ 1;
1970 node
= rb_next(node
);
1977 spin_unlock(&tree
->lock
);
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1985 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1987 u64 start
= page_offset(page
);
1988 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1989 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1990 SetPageUptodate(page
);
1994 * When IO fails, either with EIO or csum verification fails, we
1995 * try other mirrors that might have a good copy of the data. This
1996 * io_failure_record is used to record state as we go through all the
1997 * mirrors. If another mirror has good data, the page is set up to date
1998 * and things continue. If a good mirror can't be found, the original
1999 * bio end_io callback is called to indicate things have failed.
2001 struct io_failure_record
{
2006 unsigned long bio_flags
;
2012 static int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
,
2017 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2019 set_state_private(failure_tree
, rec
->start
, 0);
2020 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2021 rec
->start
+ rec
->len
- 1,
2022 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2026 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
2027 rec
->start
+ rec
->len
- 1,
2028 EXTENT_DAMAGED
, GFP_NOFS
);
2036 static void repair_io_failure_callback(struct bio
*bio
, int err
)
2038 complete(bio
->bi_private
);
2042 * this bypasses the standard btrfs submit functions deliberately, as
2043 * the standard behavior is to write all copies in a raid setup. here we only
2044 * want to write the one bad copy. so we do the mapping for ourselves and issue
2045 * submit_bio directly.
2046 * to avoid any synchronization issues, wait for the data after writing, which
2047 * actually prevents the read that triggered the error from finishing.
2048 * currently, there can be no more than two copies of every data bit. thus,
2049 * exactly one rewrite is required.
2051 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 start
,
2052 u64 length
, u64 logical
, struct page
*page
,
2056 struct btrfs_device
*dev
;
2057 DECLARE_COMPLETION_ONSTACK(compl);
2060 struct btrfs_bio
*bbio
= NULL
;
2061 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2064 BUG_ON(!mirror_num
);
2066 /* we can't repair anything in raid56 yet */
2067 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2070 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2073 bio
->bi_private
= &compl;
2074 bio
->bi_end_io
= repair_io_failure_callback
;
2076 map_length
= length
;
2078 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2079 &map_length
, &bbio
, mirror_num
);
2084 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2085 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2086 bio
->bi_sector
= sector
;
2087 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2089 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2093 bio
->bi_bdev
= dev
->bdev
;
2094 bio_add_page(bio
, page
, length
, start
- page_offset(page
));
2095 btrfsic_submit_bio(WRITE_SYNC
, bio
);
2096 wait_for_completion(&compl);
2098 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2099 /* try to remap that extent elsewhere? */
2101 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2105 printk_ratelimited_in_rcu(KERN_INFO
"btrfs read error corrected: ino %lu off %llu "
2106 "(dev %s sector %llu)\n", page
->mapping
->host
->i_ino
,
2107 start
, rcu_str_deref(dev
->name
), sector
);
2113 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2116 u64 start
= eb
->start
;
2117 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2120 for (i
= 0; i
< num_pages
; i
++) {
2121 struct page
*p
= extent_buffer_page(eb
, i
);
2122 ret
= repair_io_failure(root
->fs_info
, start
, PAGE_CACHE_SIZE
,
2123 start
, p
, mirror_num
);
2126 start
+= PAGE_CACHE_SIZE
;
2133 * each time an IO finishes, we do a fast check in the IO failure tree
2134 * to see if we need to process or clean up an io_failure_record
2136 static int clean_io_failure(u64 start
, struct page
*page
)
2139 u64 private_failure
;
2140 struct io_failure_record
*failrec
;
2141 struct btrfs_fs_info
*fs_info
;
2142 struct extent_state
*state
;
2146 struct inode
*inode
= page
->mapping
->host
;
2149 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2150 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2154 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2159 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2160 BUG_ON(!failrec
->this_mirror
);
2162 if (failrec
->in_validation
) {
2163 /* there was no real error, just free the record */
2164 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2170 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2171 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2174 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2176 if (state
&& state
->start
== failrec
->start
) {
2177 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2178 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2180 if (num_copies
> 1) {
2181 ret
= repair_io_failure(fs_info
, start
, failrec
->len
,
2182 failrec
->logical
, page
,
2183 failrec
->failed_mirror
);
2191 ret
= free_io_failure(inode
, failrec
, did_repair
);
2197 * this is a generic handler for readpage errors (default
2198 * readpage_io_failed_hook). if other copies exist, read those and write back
2199 * good data to the failed position. does not investigate in remapping the
2200 * failed extent elsewhere, hoping the device will be smart enough to do this as
2204 static int bio_readpage_error(struct bio
*failed_bio
, struct page
*page
,
2205 u64 start
, u64 end
, int failed_mirror
,
2206 struct extent_state
*state
)
2208 struct io_failure_record
*failrec
= NULL
;
2210 struct extent_map
*em
;
2211 struct inode
*inode
= page
->mapping
->host
;
2212 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2213 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2214 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2221 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2223 ret
= get_state_private(failure_tree
, start
, &private);
2225 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2228 failrec
->start
= start
;
2229 failrec
->len
= end
- start
+ 1;
2230 failrec
->this_mirror
= 0;
2231 failrec
->bio_flags
= 0;
2232 failrec
->in_validation
= 0;
2234 read_lock(&em_tree
->lock
);
2235 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2237 read_unlock(&em_tree
->lock
);
2242 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
2243 free_extent_map(em
);
2246 read_unlock(&em_tree
->lock
);
2252 logical
= start
- em
->start
;
2253 logical
= em
->block_start
+ logical
;
2254 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2255 logical
= em
->block_start
;
2256 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2257 extent_set_compress_type(&failrec
->bio_flags
,
2260 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261 "len=%llu\n", logical
, start
, failrec
->len
);
2262 failrec
->logical
= logical
;
2263 free_extent_map(em
);
2265 /* set the bits in the private failure tree */
2266 ret
= set_extent_bits(failure_tree
, start
, end
,
2267 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2269 ret
= set_state_private(failure_tree
, start
,
2270 (u64
)(unsigned long)failrec
);
2271 /* set the bits in the inode's tree */
2273 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2280 failrec
= (struct io_failure_record
*)(unsigned long)private;
2281 pr_debug("bio_readpage_error: (found) logical=%llu, "
2282 "start=%llu, len=%llu, validation=%d\n",
2283 failrec
->logical
, failrec
->start
, failrec
->len
,
2284 failrec
->in_validation
);
2286 * when data can be on disk more than twice, add to failrec here
2287 * (e.g. with a list for failed_mirror) to make
2288 * clean_io_failure() clean all those errors at once.
2291 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2292 failrec
->logical
, failrec
->len
);
2293 if (num_copies
== 1) {
2295 * we only have a single copy of the data, so don't bother with
2296 * all the retry and error correction code that follows. no
2297 * matter what the error is, it is very likely to persist.
2299 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2300 "state=%p, num_copies=%d, next_mirror %d, "
2301 "failed_mirror %d\n", state
, num_copies
,
2302 failrec
->this_mirror
, failed_mirror
);
2303 free_io_failure(inode
, failrec
, 0);
2308 spin_lock(&tree
->lock
);
2309 state
= find_first_extent_bit_state(tree
, failrec
->start
,
2311 if (state
&& state
->start
!= failrec
->start
)
2313 spin_unlock(&tree
->lock
);
2317 * there are two premises:
2318 * a) deliver good data to the caller
2319 * b) correct the bad sectors on disk
2321 if (failed_bio
->bi_vcnt
> 1) {
2323 * to fulfill b), we need to know the exact failing sectors, as
2324 * we don't want to rewrite any more than the failed ones. thus,
2325 * we need separate read requests for the failed bio
2327 * if the following BUG_ON triggers, our validation request got
2328 * merged. we need separate requests for our algorithm to work.
2330 BUG_ON(failrec
->in_validation
);
2331 failrec
->in_validation
= 1;
2332 failrec
->this_mirror
= failed_mirror
;
2333 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2336 * we're ready to fulfill a) and b) alongside. get a good copy
2337 * of the failed sector and if we succeed, we have setup
2338 * everything for repair_io_failure to do the rest for us.
2340 if (failrec
->in_validation
) {
2341 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2342 failrec
->in_validation
= 0;
2343 failrec
->this_mirror
= 0;
2345 failrec
->failed_mirror
= failed_mirror
;
2346 failrec
->this_mirror
++;
2347 if (failrec
->this_mirror
== failed_mirror
)
2348 failrec
->this_mirror
++;
2349 read_mode
= READ_SYNC
;
2352 if (!state
|| failrec
->this_mirror
> num_copies
) {
2353 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2354 "next_mirror %d, failed_mirror %d\n", state
,
2355 num_copies
, failrec
->this_mirror
, failed_mirror
);
2356 free_io_failure(inode
, failrec
, 0);
2360 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2362 free_io_failure(inode
, failrec
, 0);
2365 bio
->bi_private
= state
;
2366 bio
->bi_end_io
= failed_bio
->bi_end_io
;
2367 bio
->bi_sector
= failrec
->logical
>> 9;
2368 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2371 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
2373 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2374 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode
,
2375 failrec
->this_mirror
, num_copies
, failrec
->in_validation
);
2377 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2378 failrec
->this_mirror
,
2379 failrec
->bio_flags
, 0);
2383 /* lots and lots of room for performance fixes in the end_bio funcs */
2385 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2387 int uptodate
= (err
== 0);
2388 struct extent_io_tree
*tree
;
2391 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2393 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2394 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2395 end
, NULL
, uptodate
);
2401 ClearPageUptodate(page
);
2408 * after a writepage IO is done, we need to:
2409 * clear the uptodate bits on error
2410 * clear the writeback bits in the extent tree for this IO
2411 * end_page_writeback if the page has no more pending IO
2413 * Scheduling is not allowed, so the extent state tree is expected
2414 * to have one and only one object corresponding to this IO.
2416 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2418 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2419 struct extent_io_tree
*tree
;
2424 struct page
*page
= bvec
->bv_page
;
2425 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2427 /* We always issue full-page reads, but if some block
2428 * in a page fails to read, blk_update_request() will
2429 * advance bv_offset and adjust bv_len to compensate.
2430 * Print a warning for nonzero offsets, and an error
2431 * if they don't add up to a full page. */
2432 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2433 printk("%s page write in btrfs with offset %u and length %u\n",
2434 bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
2435 ? KERN_ERR
"partial" : KERN_INFO
"incomplete",
2436 bvec
->bv_offset
, bvec
->bv_len
);
2438 start
= page_offset(page
);
2439 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2441 if (--bvec
>= bio
->bi_io_vec
)
2442 prefetchw(&bvec
->bv_page
->flags
);
2444 if (end_extent_writepage(page
, err
, start
, end
))
2447 end_page_writeback(page
);
2448 } while (bvec
>= bio
->bi_io_vec
);
2454 * after a readpage IO is done, we need to:
2455 * clear the uptodate bits on error
2456 * set the uptodate bits if things worked
2457 * set the page up to date if all extents in the tree are uptodate
2458 * clear the lock bit in the extent tree
2459 * unlock the page if there are no other extents locked for it
2461 * Scheduling is not allowed, so the extent state tree is expected
2462 * to have one and only one object corresponding to this IO.
2464 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2466 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2467 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2468 struct bio_vec
*bvec
= bio
->bi_io_vec
;
2469 struct extent_io_tree
*tree
;
2479 struct page
*page
= bvec
->bv_page
;
2480 struct extent_state
*cached
= NULL
;
2481 struct extent_state
*state
;
2482 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2483 struct inode
*inode
= page
->mapping
->host
;
2485 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2486 "mirror=%lu\n", (u64
)bio
->bi_sector
, err
,
2487 io_bio
->mirror_num
);
2488 tree
= &BTRFS_I(inode
)->io_tree
;
2490 /* We always issue full-page reads, but if some block
2491 * in a page fails to read, blk_update_request() will
2492 * advance bv_offset and adjust bv_len to compensate.
2493 * Print a warning for nonzero offsets, and an error
2494 * if they don't add up to a full page. */
2495 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2496 printk("%s page read in btrfs with offset %u and length %u\n",
2497 bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
2498 ? KERN_ERR
"partial" : KERN_INFO
"incomplete",
2499 bvec
->bv_offset
, bvec
->bv_len
);
2501 start
= page_offset(page
);
2502 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2504 if (++bvec
<= bvec_end
)
2505 prefetchw(&bvec
->bv_page
->flags
);
2507 spin_lock(&tree
->lock
);
2508 state
= find_first_extent_bit_state(tree
, start
, EXTENT_LOCKED
);
2509 if (state
&& state
->start
== start
) {
2511 * take a reference on the state, unlock will drop
2514 cache_state(state
, &cached
);
2516 spin_unlock(&tree
->lock
);
2518 mirror
= io_bio
->mirror_num
;
2519 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
2520 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
2525 clean_io_failure(start
, page
);
2528 if (!uptodate
&& tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2529 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2531 test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
2533 } else if (!uptodate
) {
2535 * The generic bio_readpage_error handles errors the
2536 * following way: If possible, new read requests are
2537 * created and submitted and will end up in
2538 * end_bio_extent_readpage as well (if we're lucky, not
2539 * in the !uptodate case). In that case it returns 0 and
2540 * we just go on with the next page in our bio. If it
2541 * can't handle the error it will return -EIO and we
2542 * remain responsible for that page.
2544 ret
= bio_readpage_error(bio
, page
, start
, end
, mirror
, NULL
);
2547 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2550 uncache_state(&cached
);
2555 if (uptodate
&& tree
->track_uptodate
) {
2556 set_extent_uptodate(tree
, start
, end
, &cached
,
2559 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2562 loff_t i_size
= i_size_read(inode
);
2563 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2566 /* Zero out the end if this page straddles i_size */
2567 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2568 if (page
->index
== end_index
&& offset
)
2569 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2570 SetPageUptodate(page
);
2572 ClearPageUptodate(page
);
2576 } while (bvec
<= bvec_end
);
2582 * this allocates from the btrfs_bioset. We're returning a bio right now
2583 * but you can call btrfs_io_bio for the appropriate container_of magic
2586 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2591 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2593 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2594 while (!bio
&& (nr_vecs
/= 2)) {
2595 bio
= bio_alloc_bioset(gfp_flags
,
2596 nr_vecs
, btrfs_bioset
);
2602 bio
->bi_bdev
= bdev
;
2603 bio
->bi_sector
= first_sector
;
2608 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2610 return bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2617 return bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2621 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2622 int mirror_num
, unsigned long bio_flags
)
2625 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2626 struct page
*page
= bvec
->bv_page
;
2627 struct extent_io_tree
*tree
= bio
->bi_private
;
2630 start
= page_offset(page
) + bvec
->bv_offset
;
2632 bio
->bi_private
= NULL
;
2636 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2637 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2638 mirror_num
, bio_flags
, start
);
2640 btrfsic_submit_bio(rw
, bio
);
2642 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2648 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2649 unsigned long offset
, size_t size
, struct bio
*bio
,
2650 unsigned long bio_flags
)
2653 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2654 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2661 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2662 struct page
*page
, sector_t sector
,
2663 size_t size
, unsigned long offset
,
2664 struct block_device
*bdev
,
2665 struct bio
**bio_ret
,
2666 unsigned long max_pages
,
2667 bio_end_io_t end_io_func
,
2669 unsigned long prev_bio_flags
,
2670 unsigned long bio_flags
)
2676 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2677 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2678 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2680 if (bio_ret
&& *bio_ret
) {
2683 contig
= bio
->bi_sector
== sector
;
2685 contig
= bio_end_sector(bio
) == sector
;
2687 if (prev_bio_flags
!= bio_flags
|| !contig
||
2688 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2689 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2690 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2699 if (this_compressed
)
2702 nr
= bio_get_nr_vecs(bdev
);
2704 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2708 bio_add_page(bio
, page
, page_size
, offset
);
2709 bio
->bi_end_io
= end_io_func
;
2710 bio
->bi_private
= tree
;
2715 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2720 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2723 if (!PagePrivate(page
)) {
2724 SetPagePrivate(page
);
2725 page_cache_get(page
);
2726 set_page_private(page
, (unsigned long)eb
);
2728 WARN_ON(page
->private != (unsigned long)eb
);
2732 void set_page_extent_mapped(struct page
*page
)
2734 if (!PagePrivate(page
)) {
2735 SetPagePrivate(page
);
2736 page_cache_get(page
);
2737 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2742 * basic readpage implementation. Locked extent state structs are inserted
2743 * into the tree that are removed when the IO is done (by the end_io
2745 * XXX JDM: This needs looking at to ensure proper page locking
2747 static int __extent_read_full_page(struct extent_io_tree
*tree
,
2749 get_extent_t
*get_extent
,
2750 struct bio
**bio
, int mirror_num
,
2751 unsigned long *bio_flags
, int rw
)
2753 struct inode
*inode
= page
->mapping
->host
;
2754 u64 start
= page_offset(page
);
2755 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2759 u64 last_byte
= i_size_read(inode
);
2763 struct extent_map
*em
;
2764 struct block_device
*bdev
;
2765 struct btrfs_ordered_extent
*ordered
;
2768 size_t pg_offset
= 0;
2770 size_t disk_io_size
;
2771 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2772 unsigned long this_bio_flag
= 0;
2774 set_page_extent_mapped(page
);
2776 if (!PageUptodate(page
)) {
2777 if (cleancache_get_page(page
) == 0) {
2778 BUG_ON(blocksize
!= PAGE_SIZE
);
2785 lock_extent(tree
, start
, end
);
2786 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
2789 unlock_extent(tree
, start
, end
);
2790 btrfs_start_ordered_extent(inode
, ordered
, 1);
2791 btrfs_put_ordered_extent(ordered
);
2794 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2796 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2799 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2800 userpage
= kmap_atomic(page
);
2801 memset(userpage
+ zero_offset
, 0, iosize
);
2802 flush_dcache_page(page
);
2803 kunmap_atomic(userpage
);
2806 while (cur
<= end
) {
2807 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2809 if (cur
>= last_byte
) {
2811 struct extent_state
*cached
= NULL
;
2813 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2814 userpage
= kmap_atomic(page
);
2815 memset(userpage
+ pg_offset
, 0, iosize
);
2816 flush_dcache_page(page
);
2817 kunmap_atomic(userpage
);
2818 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2820 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2824 em
= get_extent(inode
, page
, pg_offset
, cur
,
2826 if (IS_ERR_OR_NULL(em
)) {
2828 unlock_extent(tree
, cur
, end
);
2831 extent_offset
= cur
- em
->start
;
2832 BUG_ON(extent_map_end(em
) <= cur
);
2835 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2836 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2837 extent_set_compress_type(&this_bio_flag
,
2841 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2842 cur_end
= min(extent_map_end(em
) - 1, end
);
2843 iosize
= ALIGN(iosize
, blocksize
);
2844 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2845 disk_io_size
= em
->block_len
;
2846 sector
= em
->block_start
>> 9;
2848 sector
= (em
->block_start
+ extent_offset
) >> 9;
2849 disk_io_size
= iosize
;
2852 block_start
= em
->block_start
;
2853 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2854 block_start
= EXTENT_MAP_HOLE
;
2855 free_extent_map(em
);
2858 /* we've found a hole, just zero and go on */
2859 if (block_start
== EXTENT_MAP_HOLE
) {
2861 struct extent_state
*cached
= NULL
;
2863 userpage
= kmap_atomic(page
);
2864 memset(userpage
+ pg_offset
, 0, iosize
);
2865 flush_dcache_page(page
);
2866 kunmap_atomic(userpage
);
2868 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2870 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2873 pg_offset
+= iosize
;
2876 /* the get_extent function already copied into the page */
2877 if (test_range_bit(tree
, cur
, cur_end
,
2878 EXTENT_UPTODATE
, 1, NULL
)) {
2879 check_page_uptodate(tree
, page
);
2880 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2882 pg_offset
+= iosize
;
2885 /* we have an inline extent but it didn't get marked up
2886 * to date. Error out
2888 if (block_start
== EXTENT_MAP_INLINE
) {
2890 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2892 pg_offset
+= iosize
;
2897 ret
= submit_extent_page(rw
, tree
, page
,
2898 sector
, disk_io_size
, pg_offset
,
2900 end_bio_extent_readpage
, mirror_num
,
2905 *bio_flags
= this_bio_flag
;
2908 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
2911 pg_offset
+= iosize
;
2915 if (!PageError(page
))
2916 SetPageUptodate(page
);
2922 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2923 get_extent_t
*get_extent
, int mirror_num
)
2925 struct bio
*bio
= NULL
;
2926 unsigned long bio_flags
= 0;
2929 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
2932 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
2936 static noinline
void update_nr_written(struct page
*page
,
2937 struct writeback_control
*wbc
,
2938 unsigned long nr_written
)
2940 wbc
->nr_to_write
-= nr_written
;
2941 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2942 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2943 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2947 * the writepage semantics are similar to regular writepage. extent
2948 * records are inserted to lock ranges in the tree, and as dirty areas
2949 * are found, they are marked writeback. Then the lock bits are removed
2950 * and the end_io handler clears the writeback ranges
2952 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2955 struct inode
*inode
= page
->mapping
->host
;
2956 struct extent_page_data
*epd
= data
;
2957 struct extent_io_tree
*tree
= epd
->tree
;
2958 u64 start
= page_offset(page
);
2960 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2964 u64 last_byte
= i_size_read(inode
);
2968 struct extent_state
*cached_state
= NULL
;
2969 struct extent_map
*em
;
2970 struct block_device
*bdev
;
2973 size_t pg_offset
= 0;
2975 loff_t i_size
= i_size_read(inode
);
2976 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2982 unsigned long nr_written
= 0;
2983 bool fill_delalloc
= true;
2985 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2986 write_flags
= WRITE_SYNC
;
2988 write_flags
= WRITE
;
2990 trace___extent_writepage(page
, inode
, wbc
);
2992 WARN_ON(!PageLocked(page
));
2994 ClearPageError(page
);
2996 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2997 if (page
->index
> end_index
||
2998 (page
->index
== end_index
&& !pg_offset
)) {
2999 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3004 if (page
->index
== end_index
) {
3007 userpage
= kmap_atomic(page
);
3008 memset(userpage
+ pg_offset
, 0,
3009 PAGE_CACHE_SIZE
- pg_offset
);
3010 kunmap_atomic(userpage
);
3011 flush_dcache_page(page
);
3015 set_page_extent_mapped(page
);
3017 if (!tree
->ops
|| !tree
->ops
->fill_delalloc
)
3018 fill_delalloc
= false;
3020 delalloc_start
= start
;
3023 if (!epd
->extent_locked
&& fill_delalloc
) {
3024 u64 delalloc_to_write
= 0;
3026 * make sure the wbc mapping index is at least updated
3029 update_nr_written(page
, wbc
, 0);
3031 while (delalloc_end
< page_end
) {
3032 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3037 if (nr_delalloc
== 0) {
3038 delalloc_start
= delalloc_end
+ 1;
3041 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3046 /* File system has been set read-only */
3052 * delalloc_end is already one less than the total
3053 * length, so we don't subtract one from
3056 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3059 delalloc_start
= delalloc_end
+ 1;
3061 if (wbc
->nr_to_write
< delalloc_to_write
) {
3064 if (delalloc_to_write
< thresh
* 2)
3065 thresh
= delalloc_to_write
;
3066 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3070 /* did the fill delalloc function already unlock and start
3076 * we've unlocked the page, so we can't update
3077 * the mapping's writeback index, just update
3080 wbc
->nr_to_write
-= nr_written
;
3084 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3085 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3088 /* Fixup worker will requeue */
3090 wbc
->pages_skipped
++;
3092 redirty_page_for_writepage(wbc
, page
);
3093 update_nr_written(page
, wbc
, nr_written
);
3101 * we don't want to touch the inode after unlocking the page,
3102 * so we update the mapping writeback index now
3104 update_nr_written(page
, wbc
, nr_written
+ 1);
3107 if (last_byte
<= start
) {
3108 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3109 tree
->ops
->writepage_end_io_hook(page
, start
,
3114 blocksize
= inode
->i_sb
->s_blocksize
;
3116 while (cur
<= end
) {
3117 if (cur
>= last_byte
) {
3118 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3119 tree
->ops
->writepage_end_io_hook(page
, cur
,
3123 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3125 if (IS_ERR_OR_NULL(em
)) {
3130 extent_offset
= cur
- em
->start
;
3131 BUG_ON(extent_map_end(em
) <= cur
);
3133 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3134 iosize
= ALIGN(iosize
, blocksize
);
3135 sector
= (em
->block_start
+ extent_offset
) >> 9;
3137 block_start
= em
->block_start
;
3138 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3139 free_extent_map(em
);
3143 * compressed and inline extents are written through other
3146 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3147 block_start
== EXTENT_MAP_INLINE
) {
3149 * end_io notification does not happen here for
3150 * compressed extents
3152 if (!compressed
&& tree
->ops
&&
3153 tree
->ops
->writepage_end_io_hook
)
3154 tree
->ops
->writepage_end_io_hook(page
, cur
,
3157 else if (compressed
) {
3158 /* we don't want to end_page_writeback on
3159 * a compressed extent. this happens
3166 pg_offset
+= iosize
;
3169 /* leave this out until we have a page_mkwrite call */
3170 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
3171 EXTENT_DIRTY
, 0, NULL
)) {
3173 pg_offset
+= iosize
;
3177 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3178 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3186 unsigned long max_nr
= end_index
+ 1;
3188 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3189 if (!PageWriteback(page
)) {
3190 printk(KERN_ERR
"btrfs warning page %lu not "
3191 "writeback, cur %llu end %llu\n",
3192 page
->index
, (unsigned long long)cur
,
3193 (unsigned long long)end
);
3196 ret
= submit_extent_page(write_flags
, tree
, page
,
3197 sector
, iosize
, pg_offset
,
3198 bdev
, &epd
->bio
, max_nr
,
3199 end_bio_extent_writepage
,
3205 pg_offset
+= iosize
;
3210 /* make sure the mapping tag for page dirty gets cleared */
3211 set_page_writeback(page
);
3212 end_page_writeback(page
);
3218 /* drop our reference on any cached states */
3219 free_extent_state(cached_state
);
3223 static int eb_wait(void *word
)
3229 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3231 wait_on_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
, eb_wait
,
3232 TASK_UNINTERRUPTIBLE
);
3235 static int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3236 struct btrfs_fs_info
*fs_info
,
3237 struct extent_page_data
*epd
)
3239 unsigned long i
, num_pages
;
3243 if (!btrfs_try_tree_write_lock(eb
)) {
3245 flush_write_bio(epd
);
3246 btrfs_tree_lock(eb
);
3249 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3250 btrfs_tree_unlock(eb
);
3254 flush_write_bio(epd
);
3258 wait_on_extent_buffer_writeback(eb
);
3259 btrfs_tree_lock(eb
);
3260 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3262 btrfs_tree_unlock(eb
);
3267 * We need to do this to prevent races in people who check if the eb is
3268 * under IO since we can end up having no IO bits set for a short period
3271 spin_lock(&eb
->refs_lock
);
3272 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3273 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3274 spin_unlock(&eb
->refs_lock
);
3275 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3276 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3278 fs_info
->dirty_metadata_batch
);
3281 spin_unlock(&eb
->refs_lock
);
3284 btrfs_tree_unlock(eb
);
3289 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3290 for (i
= 0; i
< num_pages
; i
++) {
3291 struct page
*p
= extent_buffer_page(eb
, i
);
3293 if (!trylock_page(p
)) {
3295 flush_write_bio(epd
);
3305 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3307 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3308 smp_mb__after_clear_bit();
3309 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3312 static void end_bio_extent_buffer_writepage(struct bio
*bio
, int err
)
3314 int uptodate
= err
== 0;
3315 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
3316 struct extent_buffer
*eb
;
3320 struct page
*page
= bvec
->bv_page
;
3323 eb
= (struct extent_buffer
*)page
->private;
3325 done
= atomic_dec_and_test(&eb
->io_pages
);
3327 if (!uptodate
|| test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
3328 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3329 ClearPageUptodate(page
);
3333 end_page_writeback(page
);
3338 end_extent_buffer_writeback(eb
);
3339 } while (bvec
>= bio
->bi_io_vec
);
3345 static int write_one_eb(struct extent_buffer
*eb
,
3346 struct btrfs_fs_info
*fs_info
,
3347 struct writeback_control
*wbc
,
3348 struct extent_page_data
*epd
)
3350 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3351 u64 offset
= eb
->start
;
3352 unsigned long i
, num_pages
;
3353 unsigned long bio_flags
= 0;
3354 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3357 clear_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3358 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3359 atomic_set(&eb
->io_pages
, num_pages
);
3360 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3361 bio_flags
= EXTENT_BIO_TREE_LOG
;
3363 for (i
= 0; i
< num_pages
; i
++) {
3364 struct page
*p
= extent_buffer_page(eb
, i
);
3366 clear_page_dirty_for_io(p
);
3367 set_page_writeback(p
);
3368 ret
= submit_extent_page(rw
, eb
->tree
, p
, offset
>> 9,
3369 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3370 -1, end_bio_extent_buffer_writepage
,
3371 0, epd
->bio_flags
, bio_flags
);
3372 epd
->bio_flags
= bio_flags
;
3374 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
3376 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3377 end_extent_buffer_writeback(eb
);
3381 offset
+= PAGE_CACHE_SIZE
;
3382 update_nr_written(p
, wbc
, 1);
3386 if (unlikely(ret
)) {
3387 for (; i
< num_pages
; i
++) {
3388 struct page
*p
= extent_buffer_page(eb
, i
);
3396 int btree_write_cache_pages(struct address_space
*mapping
,
3397 struct writeback_control
*wbc
)
3399 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3400 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3401 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3402 struct extent_page_data epd
= {
3406 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3411 int nr_to_write_done
= 0;
3412 struct pagevec pvec
;
3415 pgoff_t end
; /* Inclusive */
3419 pagevec_init(&pvec
, 0);
3420 if (wbc
->range_cyclic
) {
3421 index
= mapping
->writeback_index
; /* Start from prev offset */
3424 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3425 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3428 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3429 tag
= PAGECACHE_TAG_TOWRITE
;
3431 tag
= PAGECACHE_TAG_DIRTY
;
3433 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3434 tag_pages_for_writeback(mapping
, index
, end
);
3435 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3436 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3437 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3441 for (i
= 0; i
< nr_pages
; i
++) {
3442 struct page
*page
= pvec
.pages
[i
];
3444 if (!PagePrivate(page
))
3447 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3452 spin_lock(&mapping
->private_lock
);
3453 if (!PagePrivate(page
)) {
3454 spin_unlock(&mapping
->private_lock
);
3458 eb
= (struct extent_buffer
*)page
->private;
3461 * Shouldn't happen and normally this would be a BUG_ON
3462 * but no sense in crashing the users box for something
3463 * we can survive anyway.
3466 spin_unlock(&mapping
->private_lock
);
3471 if (eb
== prev_eb
) {
3472 spin_unlock(&mapping
->private_lock
);
3476 ret
= atomic_inc_not_zero(&eb
->refs
);
3477 spin_unlock(&mapping
->private_lock
);
3482 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3484 free_extent_buffer(eb
);
3488 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3491 free_extent_buffer(eb
);
3494 free_extent_buffer(eb
);
3497 * the filesystem may choose to bump up nr_to_write.
3498 * We have to make sure to honor the new nr_to_write
3501 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3503 pagevec_release(&pvec
);
3506 if (!scanned
&& !done
) {
3508 * We hit the last page and there is more work to be done: wrap
3509 * back to the start of the file
3515 flush_write_bio(&epd
);
3520 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3521 * @mapping: address space structure to write
3522 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3523 * @writepage: function called for each page
3524 * @data: data passed to writepage function
3526 * If a page is already under I/O, write_cache_pages() skips it, even
3527 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3528 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3529 * and msync() need to guarantee that all the data which was dirty at the time
3530 * the call was made get new I/O started against them. If wbc->sync_mode is
3531 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3532 * existing IO to complete.
3534 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
3535 struct address_space
*mapping
,
3536 struct writeback_control
*wbc
,
3537 writepage_t writepage
, void *data
,
3538 void (*flush_fn
)(void *))
3540 struct inode
*inode
= mapping
->host
;
3543 int nr_to_write_done
= 0;
3544 struct pagevec pvec
;
3547 pgoff_t end
; /* Inclusive */
3552 * We have to hold onto the inode so that ordered extents can do their
3553 * work when the IO finishes. The alternative to this is failing to add
3554 * an ordered extent if the igrab() fails there and that is a huge pain
3555 * to deal with, so instead just hold onto the inode throughout the
3556 * writepages operation. If it fails here we are freeing up the inode
3557 * anyway and we'd rather not waste our time writing out stuff that is
3558 * going to be truncated anyway.
3563 pagevec_init(&pvec
, 0);
3564 if (wbc
->range_cyclic
) {
3565 index
= mapping
->writeback_index
; /* Start from prev offset */
3568 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3569 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3572 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3573 tag
= PAGECACHE_TAG_TOWRITE
;
3575 tag
= PAGECACHE_TAG_DIRTY
;
3577 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3578 tag_pages_for_writeback(mapping
, index
, end
);
3579 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3580 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3581 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3585 for (i
= 0; i
< nr_pages
; i
++) {
3586 struct page
*page
= pvec
.pages
[i
];
3589 * At this point we hold neither mapping->tree_lock nor
3590 * lock on the page itself: the page may be truncated or
3591 * invalidated (changing page->mapping to NULL), or even
3592 * swizzled back from swapper_space to tmpfs file
3595 if (!trylock_page(page
)) {
3600 if (unlikely(page
->mapping
!= mapping
)) {
3605 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3611 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
3612 if (PageWriteback(page
))
3614 wait_on_page_writeback(page
);
3617 if (PageWriteback(page
) ||
3618 !clear_page_dirty_for_io(page
)) {
3623 ret
= (*writepage
)(page
, wbc
, data
);
3625 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
3633 * the filesystem may choose to bump up nr_to_write.
3634 * We have to make sure to honor the new nr_to_write
3637 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3639 pagevec_release(&pvec
);
3642 if (!scanned
&& !done
) {
3644 * We hit the last page and there is more work to be done: wrap
3645 * back to the start of the file
3651 btrfs_add_delayed_iput(inode
);
3655 static void flush_epd_write_bio(struct extent_page_data
*epd
)
3664 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
3665 BUG_ON(ret
< 0); /* -ENOMEM */
3670 static noinline
void flush_write_bio(void *data
)
3672 struct extent_page_data
*epd
= data
;
3673 flush_epd_write_bio(epd
);
3676 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3677 get_extent_t
*get_extent
,
3678 struct writeback_control
*wbc
)
3681 struct extent_page_data epd
= {
3684 .get_extent
= get_extent
,
3686 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3690 ret
= __extent_writepage(page
, wbc
, &epd
);
3692 flush_epd_write_bio(&epd
);
3696 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
3697 u64 start
, u64 end
, get_extent_t
*get_extent
,
3701 struct address_space
*mapping
= inode
->i_mapping
;
3703 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
3706 struct extent_page_data epd
= {
3709 .get_extent
= get_extent
,
3711 .sync_io
= mode
== WB_SYNC_ALL
,
3714 struct writeback_control wbc_writepages
= {
3716 .nr_to_write
= nr_pages
* 2,
3717 .range_start
= start
,
3718 .range_end
= end
+ 1,
3721 while (start
<= end
) {
3722 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
3723 if (clear_page_dirty_for_io(page
))
3724 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
3726 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3727 tree
->ops
->writepage_end_io_hook(page
, start
,
3728 start
+ PAGE_CACHE_SIZE
- 1,
3732 page_cache_release(page
);
3733 start
+= PAGE_CACHE_SIZE
;
3736 flush_epd_write_bio(&epd
);
3740 int extent_writepages(struct extent_io_tree
*tree
,
3741 struct address_space
*mapping
,
3742 get_extent_t
*get_extent
,
3743 struct writeback_control
*wbc
)
3746 struct extent_page_data epd
= {
3749 .get_extent
= get_extent
,
3751 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3755 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
3756 __extent_writepage
, &epd
,
3758 flush_epd_write_bio(&epd
);
3762 int extent_readpages(struct extent_io_tree
*tree
,
3763 struct address_space
*mapping
,
3764 struct list_head
*pages
, unsigned nr_pages
,
3765 get_extent_t get_extent
)
3767 struct bio
*bio
= NULL
;
3769 unsigned long bio_flags
= 0;
3770 struct page
*pagepool
[16];
3775 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
3776 page
= list_entry(pages
->prev
, struct page
, lru
);
3778 prefetchw(&page
->flags
);
3779 list_del(&page
->lru
);
3780 if (add_to_page_cache_lru(page
, mapping
,
3781 page
->index
, GFP_NOFS
)) {
3782 page_cache_release(page
);
3786 pagepool
[nr
++] = page
;
3787 if (nr
< ARRAY_SIZE(pagepool
))
3789 for (i
= 0; i
< nr
; i
++) {
3790 __extent_read_full_page(tree
, pagepool
[i
], get_extent
,
3791 &bio
, 0, &bio_flags
, READ
);
3792 page_cache_release(pagepool
[i
]);
3796 for (i
= 0; i
< nr
; i
++) {
3797 __extent_read_full_page(tree
, pagepool
[i
], get_extent
,
3798 &bio
, 0, &bio_flags
, READ
);
3799 page_cache_release(pagepool
[i
]);
3802 BUG_ON(!list_empty(pages
));
3804 return submit_one_bio(READ
, bio
, 0, bio_flags
);
3809 * basic invalidatepage code, this waits on any locked or writeback
3810 * ranges corresponding to the page, and then deletes any extent state
3811 * records from the tree
3813 int extent_invalidatepage(struct extent_io_tree
*tree
,
3814 struct page
*page
, unsigned long offset
)
3816 struct extent_state
*cached_state
= NULL
;
3817 u64 start
= page_offset(page
);
3818 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3819 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
3821 start
+= ALIGN(offset
, blocksize
);
3825 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
3826 wait_on_page_writeback(page
);
3827 clear_extent_bit(tree
, start
, end
,
3828 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
3829 EXTENT_DO_ACCOUNTING
,
3830 1, 1, &cached_state
, GFP_NOFS
);
3835 * a helper for releasepage, this tests for areas of the page that
3836 * are locked or under IO and drops the related state bits if it is safe
3839 static int try_release_extent_state(struct extent_map_tree
*map
,
3840 struct extent_io_tree
*tree
,
3841 struct page
*page
, gfp_t mask
)
3843 u64 start
= page_offset(page
);
3844 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3847 if (test_range_bit(tree
, start
, end
,
3848 EXTENT_IOBITS
, 0, NULL
))
3851 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
3854 * at this point we can safely clear everything except the
3855 * locked bit and the nodatasum bit
3857 ret
= clear_extent_bit(tree
, start
, end
,
3858 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
3861 /* if clear_extent_bit failed for enomem reasons,
3862 * we can't allow the release to continue.
3873 * a helper for releasepage. As long as there are no locked extents
3874 * in the range corresponding to the page, both state records and extent
3875 * map records are removed
3877 int try_release_extent_mapping(struct extent_map_tree
*map
,
3878 struct extent_io_tree
*tree
, struct page
*page
,
3881 struct extent_map
*em
;
3882 u64 start
= page_offset(page
);
3883 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3885 if ((mask
& __GFP_WAIT
) &&
3886 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
3888 while (start
<= end
) {
3889 len
= end
- start
+ 1;
3890 write_lock(&map
->lock
);
3891 em
= lookup_extent_mapping(map
, start
, len
);
3893 write_unlock(&map
->lock
);
3896 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
3897 em
->start
!= start
) {
3898 write_unlock(&map
->lock
);
3899 free_extent_map(em
);
3902 if (!test_range_bit(tree
, em
->start
,
3903 extent_map_end(em
) - 1,
3904 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
3906 remove_extent_mapping(map
, em
);
3907 /* once for the rb tree */
3908 free_extent_map(em
);
3910 start
= extent_map_end(em
);
3911 write_unlock(&map
->lock
);
3914 free_extent_map(em
);
3917 return try_release_extent_state(map
, tree
, page
, mask
);
3921 * helper function for fiemap, which doesn't want to see any holes.
3922 * This maps until we find something past 'last'
3924 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
3927 get_extent_t
*get_extent
)
3929 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
3930 struct extent_map
*em
;
3937 len
= last
- offset
;
3940 len
= ALIGN(len
, sectorsize
);
3941 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
3942 if (IS_ERR_OR_NULL(em
))
3945 /* if this isn't a hole return it */
3946 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
3947 em
->block_start
!= EXTENT_MAP_HOLE
) {
3951 /* this is a hole, advance to the next extent */
3952 offset
= extent_map_end(em
);
3953 free_extent_map(em
);
3960 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
3961 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
3965 u64 max
= start
+ len
;
3969 u64 last_for_get_extent
= 0;
3971 u64 isize
= i_size_read(inode
);
3972 struct btrfs_key found_key
;
3973 struct extent_map
*em
= NULL
;
3974 struct extent_state
*cached_state
= NULL
;
3975 struct btrfs_path
*path
;
3976 struct btrfs_file_extent_item
*item
;
3981 unsigned long emflags
;
3986 path
= btrfs_alloc_path();
3989 path
->leave_spinning
= 1;
3991 start
= ALIGN(start
, BTRFS_I(inode
)->root
->sectorsize
);
3992 len
= ALIGN(len
, BTRFS_I(inode
)->root
->sectorsize
);
3995 * lookup the last file extent. We're not using i_size here
3996 * because there might be preallocation past i_size
3998 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
3999 path
, btrfs_ino(inode
), -1, 0);
4001 btrfs_free_path(path
);
4006 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4007 struct btrfs_file_extent_item
);
4008 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4009 found_type
= btrfs_key_type(&found_key
);
4011 /* No extents, but there might be delalloc bits */
4012 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4013 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4014 /* have to trust i_size as the end */
4016 last_for_get_extent
= isize
;
4019 * remember the start of the last extent. There are a
4020 * bunch of different factors that go into the length of the
4021 * extent, so its much less complex to remember where it started
4023 last
= found_key
.offset
;
4024 last_for_get_extent
= last
+ 1;
4026 btrfs_free_path(path
);
4029 * we might have some extents allocated but more delalloc past those
4030 * extents. so, we trust isize unless the start of the last extent is
4035 last_for_get_extent
= isize
;
4038 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4041 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4051 u64 offset_in_extent
= 0;
4053 /* break if the extent we found is outside the range */
4054 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4058 * get_extent may return an extent that starts before our
4059 * requested range. We have to make sure the ranges
4060 * we return to fiemap always move forward and don't
4061 * overlap, so adjust the offsets here
4063 em_start
= max(em
->start
, off
);
4066 * record the offset from the start of the extent
4067 * for adjusting the disk offset below. Only do this if the
4068 * extent isn't compressed since our in ram offset may be past
4069 * what we have actually allocated on disk.
4071 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4072 offset_in_extent
= em_start
- em
->start
;
4073 em_end
= extent_map_end(em
);
4074 em_len
= em_end
- em_start
;
4075 emflags
= em
->flags
;
4080 * bump off for our next call to get_extent
4082 off
= extent_map_end(em
);
4086 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4088 flags
|= FIEMAP_EXTENT_LAST
;
4089 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4090 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4091 FIEMAP_EXTENT_NOT_ALIGNED
);
4092 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4093 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4094 FIEMAP_EXTENT_UNKNOWN
);
4096 disko
= em
->block_start
+ offset_in_extent
;
4098 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4099 flags
|= FIEMAP_EXTENT_ENCODED
;
4101 free_extent_map(em
);
4103 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4104 (last
== (u64
)-1 && isize
<= em_end
)) {
4105 flags
|= FIEMAP_EXTENT_LAST
;
4109 /* now scan forward to see if this is really the last extent. */
4110 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4117 flags
|= FIEMAP_EXTENT_LAST
;
4120 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4126 free_extent_map(em
);
4128 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4129 &cached_state
, GFP_NOFS
);
4133 static void __free_extent_buffer(struct extent_buffer
*eb
)
4135 btrfs_leak_debug_del(&eb
->leak_list
);
4136 kmem_cache_free(extent_buffer_cache
, eb
);
4139 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
4144 struct extent_buffer
*eb
= NULL
;
4146 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
4153 rwlock_init(&eb
->lock
);
4154 atomic_set(&eb
->write_locks
, 0);
4155 atomic_set(&eb
->read_locks
, 0);
4156 atomic_set(&eb
->blocking_readers
, 0);
4157 atomic_set(&eb
->blocking_writers
, 0);
4158 atomic_set(&eb
->spinning_readers
, 0);
4159 atomic_set(&eb
->spinning_writers
, 0);
4160 eb
->lock_nested
= 0;
4161 init_waitqueue_head(&eb
->write_lock_wq
);
4162 init_waitqueue_head(&eb
->read_lock_wq
);
4164 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4166 spin_lock_init(&eb
->refs_lock
);
4167 atomic_set(&eb
->refs
, 1);
4168 atomic_set(&eb
->io_pages
, 0);
4171 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4173 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4174 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4175 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4180 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4184 struct extent_buffer
*new;
4185 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4187 new = __alloc_extent_buffer(NULL
, src
->start
, src
->len
, GFP_ATOMIC
);
4191 for (i
= 0; i
< num_pages
; i
++) {
4192 p
= alloc_page(GFP_ATOMIC
);
4194 attach_extent_buffer_page(new, p
);
4195 WARN_ON(PageDirty(p
));
4200 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4201 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4202 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4207 struct extent_buffer
*alloc_dummy_extent_buffer(u64 start
, unsigned long len
)
4209 struct extent_buffer
*eb
;
4210 unsigned long num_pages
= num_extent_pages(0, len
);
4213 eb
= __alloc_extent_buffer(NULL
, start
, len
, GFP_ATOMIC
);
4217 for (i
= 0; i
< num_pages
; i
++) {
4218 eb
->pages
[i
] = alloc_page(GFP_ATOMIC
);
4222 set_extent_buffer_uptodate(eb
);
4223 btrfs_set_header_nritems(eb
, 0);
4224 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4229 __free_page(eb
->pages
[i
- 1]);
4230 __free_extent_buffer(eb
);
4234 static int extent_buffer_under_io(struct extent_buffer
*eb
)
4236 return (atomic_read(&eb
->io_pages
) ||
4237 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4238 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4242 * Helper for releasing extent buffer page.
4244 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
4245 unsigned long start_idx
)
4247 unsigned long index
;
4248 unsigned long num_pages
;
4250 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4252 BUG_ON(extent_buffer_under_io(eb
));
4254 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4255 index
= start_idx
+ num_pages
;
4256 if (start_idx
>= index
)
4261 page
= extent_buffer_page(eb
, index
);
4262 if (page
&& mapped
) {
4263 spin_lock(&page
->mapping
->private_lock
);
4265 * We do this since we'll remove the pages after we've
4266 * removed the eb from the radix tree, so we could race
4267 * and have this page now attached to the new eb. So
4268 * only clear page_private if it's still connected to
4271 if (PagePrivate(page
) &&
4272 page
->private == (unsigned long)eb
) {
4273 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4274 BUG_ON(PageDirty(page
));
4275 BUG_ON(PageWriteback(page
));
4277 * We need to make sure we haven't be attached
4280 ClearPagePrivate(page
);
4281 set_page_private(page
, 0);
4282 /* One for the page private */
4283 page_cache_release(page
);
4285 spin_unlock(&page
->mapping
->private_lock
);
4289 /* One for when we alloced the page */
4290 page_cache_release(page
);
4292 } while (index
!= start_idx
);
4296 * Helper for releasing the extent buffer.
4298 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4300 btrfs_release_extent_buffer_page(eb
, 0);
4301 __free_extent_buffer(eb
);
4304 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4307 /* the ref bit is tricky. We have to make sure it is set
4308 * if we have the buffer dirty. Otherwise the
4309 * code to free a buffer can end up dropping a dirty
4312 * Once the ref bit is set, it won't go away while the
4313 * buffer is dirty or in writeback, and it also won't
4314 * go away while we have the reference count on the
4317 * We can't just set the ref bit without bumping the
4318 * ref on the eb because free_extent_buffer might
4319 * see the ref bit and try to clear it. If this happens
4320 * free_extent_buffer might end up dropping our original
4321 * ref by mistake and freeing the page before we are able
4322 * to add one more ref.
4324 * So bump the ref count first, then set the bit. If someone
4325 * beat us to it, drop the ref we added.
4327 refs
= atomic_read(&eb
->refs
);
4328 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4331 spin_lock(&eb
->refs_lock
);
4332 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4333 atomic_inc(&eb
->refs
);
4334 spin_unlock(&eb
->refs_lock
);
4337 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
)
4339 unsigned long num_pages
, i
;
4341 check_buffer_tree_ref(eb
);
4343 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4344 for (i
= 0; i
< num_pages
; i
++) {
4345 struct page
*p
= extent_buffer_page(eb
, i
);
4346 mark_page_accessed(p
);
4350 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
4351 u64 start
, unsigned long len
)
4353 unsigned long num_pages
= num_extent_pages(start
, len
);
4355 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4356 struct extent_buffer
*eb
;
4357 struct extent_buffer
*exists
= NULL
;
4359 struct address_space
*mapping
= tree
->mapping
;
4364 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4365 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4367 mark_extent_buffer_accessed(eb
);
4372 eb
= __alloc_extent_buffer(tree
, start
, len
, GFP_NOFS
);
4376 for (i
= 0; i
< num_pages
; i
++, index
++) {
4377 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
4381 spin_lock(&mapping
->private_lock
);
4382 if (PagePrivate(p
)) {
4384 * We could have already allocated an eb for this page
4385 * and attached one so lets see if we can get a ref on
4386 * the existing eb, and if we can we know it's good and
4387 * we can just return that one, else we know we can just
4388 * overwrite page->private.
4390 exists
= (struct extent_buffer
*)p
->private;
4391 if (atomic_inc_not_zero(&exists
->refs
)) {
4392 spin_unlock(&mapping
->private_lock
);
4394 page_cache_release(p
);
4395 mark_extent_buffer_accessed(exists
);
4400 * Do this so attach doesn't complain and we need to
4401 * drop the ref the old guy had.
4403 ClearPagePrivate(p
);
4404 WARN_ON(PageDirty(p
));
4405 page_cache_release(p
);
4407 attach_extent_buffer_page(eb
, p
);
4408 spin_unlock(&mapping
->private_lock
);
4409 WARN_ON(PageDirty(p
));
4410 mark_page_accessed(p
);
4412 if (!PageUptodate(p
))
4416 * see below about how we avoid a nasty race with release page
4417 * and why we unlock later
4421 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4423 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4427 spin_lock(&tree
->buffer_lock
);
4428 ret
= radix_tree_insert(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
, eb
);
4429 if (ret
== -EEXIST
) {
4430 exists
= radix_tree_lookup(&tree
->buffer
,
4431 start
>> PAGE_CACHE_SHIFT
);
4432 if (!atomic_inc_not_zero(&exists
->refs
)) {
4433 spin_unlock(&tree
->buffer_lock
);
4434 radix_tree_preload_end();
4438 spin_unlock(&tree
->buffer_lock
);
4439 radix_tree_preload_end();
4440 mark_extent_buffer_accessed(exists
);
4443 /* add one reference for the tree */
4444 check_buffer_tree_ref(eb
);
4445 spin_unlock(&tree
->buffer_lock
);
4446 radix_tree_preload_end();
4449 * there is a race where release page may have
4450 * tried to find this extent buffer in the radix
4451 * but failed. It will tell the VM it is safe to
4452 * reclaim the, and it will clear the page private bit.
4453 * We must make sure to set the page private bit properly
4454 * after the extent buffer is in the radix tree so
4455 * it doesn't get lost
4457 SetPageChecked(eb
->pages
[0]);
4458 for (i
= 1; i
< num_pages
; i
++) {
4459 p
= extent_buffer_page(eb
, i
);
4460 ClearPageChecked(p
);
4463 unlock_page(eb
->pages
[0]);
4467 for (i
= 0; i
< num_pages
; i
++) {
4469 unlock_page(eb
->pages
[i
]);
4472 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
4473 btrfs_release_extent_buffer(eb
);
4477 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
4478 u64 start
, unsigned long len
)
4480 struct extent_buffer
*eb
;
4483 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4484 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4486 mark_extent_buffer_accessed(eb
);
4494 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
4496 struct extent_buffer
*eb
=
4497 container_of(head
, struct extent_buffer
, rcu_head
);
4499 __free_extent_buffer(eb
);
4502 /* Expects to have eb->eb_lock already held */
4503 static int release_extent_buffer(struct extent_buffer
*eb
)
4505 WARN_ON(atomic_read(&eb
->refs
) == 0);
4506 if (atomic_dec_and_test(&eb
->refs
)) {
4507 if (test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
)) {
4508 spin_unlock(&eb
->refs_lock
);
4510 struct extent_io_tree
*tree
= eb
->tree
;
4512 spin_unlock(&eb
->refs_lock
);
4514 spin_lock(&tree
->buffer_lock
);
4515 radix_tree_delete(&tree
->buffer
,
4516 eb
->start
>> PAGE_CACHE_SHIFT
);
4517 spin_unlock(&tree
->buffer_lock
);
4520 /* Should be safe to release our pages at this point */
4521 btrfs_release_extent_buffer_page(eb
, 0);
4522 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
4525 spin_unlock(&eb
->refs_lock
);
4530 void free_extent_buffer(struct extent_buffer
*eb
)
4538 refs
= atomic_read(&eb
->refs
);
4541 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
4546 spin_lock(&eb
->refs_lock
);
4547 if (atomic_read(&eb
->refs
) == 2 &&
4548 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
4549 atomic_dec(&eb
->refs
);
4551 if (atomic_read(&eb
->refs
) == 2 &&
4552 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
4553 !extent_buffer_under_io(eb
) &&
4554 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4555 atomic_dec(&eb
->refs
);
4558 * I know this is terrible, but it's temporary until we stop tracking
4559 * the uptodate bits and such for the extent buffers.
4561 release_extent_buffer(eb
);
4564 void free_extent_buffer_stale(struct extent_buffer
*eb
)
4569 spin_lock(&eb
->refs_lock
);
4570 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
4572 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
4573 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4574 atomic_dec(&eb
->refs
);
4575 release_extent_buffer(eb
);
4578 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
4581 unsigned long num_pages
;
4584 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4586 for (i
= 0; i
< num_pages
; i
++) {
4587 page
= extent_buffer_page(eb
, i
);
4588 if (!PageDirty(page
))
4592 WARN_ON(!PagePrivate(page
));
4594 clear_page_dirty_for_io(page
);
4595 spin_lock_irq(&page
->mapping
->tree_lock
);
4596 if (!PageDirty(page
)) {
4597 radix_tree_tag_clear(&page
->mapping
->page_tree
,
4599 PAGECACHE_TAG_DIRTY
);
4601 spin_unlock_irq(&page
->mapping
->tree_lock
);
4602 ClearPageError(page
);
4605 WARN_ON(atomic_read(&eb
->refs
) == 0);
4608 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
4611 unsigned long num_pages
;
4614 check_buffer_tree_ref(eb
);
4616 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
4618 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4619 WARN_ON(atomic_read(&eb
->refs
) == 0);
4620 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
4622 for (i
= 0; i
< num_pages
; i
++)
4623 set_page_dirty(extent_buffer_page(eb
, i
));
4627 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
4631 unsigned long num_pages
;
4633 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4634 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4635 for (i
= 0; i
< num_pages
; i
++) {
4636 page
= extent_buffer_page(eb
, i
);
4638 ClearPageUptodate(page
);
4643 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
4647 unsigned long num_pages
;
4649 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4650 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4651 for (i
= 0; i
< num_pages
; i
++) {
4652 page
= extent_buffer_page(eb
, i
);
4653 SetPageUptodate(page
);
4658 int extent_buffer_uptodate(struct extent_buffer
*eb
)
4660 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4663 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
4664 struct extent_buffer
*eb
, u64 start
, int wait
,
4665 get_extent_t
*get_extent
, int mirror_num
)
4668 unsigned long start_i
;
4672 int locked_pages
= 0;
4673 int all_uptodate
= 1;
4674 unsigned long num_pages
;
4675 unsigned long num_reads
= 0;
4676 struct bio
*bio
= NULL
;
4677 unsigned long bio_flags
= 0;
4679 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
4683 WARN_ON(start
< eb
->start
);
4684 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
4685 (eb
->start
>> PAGE_CACHE_SHIFT
);
4690 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4691 for (i
= start_i
; i
< num_pages
; i
++) {
4692 page
= extent_buffer_page(eb
, i
);
4693 if (wait
== WAIT_NONE
) {
4694 if (!trylock_page(page
))
4700 if (!PageUptodate(page
)) {
4707 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4711 clear_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
4712 eb
->read_mirror
= 0;
4713 atomic_set(&eb
->io_pages
, num_reads
);
4714 for (i
= start_i
; i
< num_pages
; i
++) {
4715 page
= extent_buffer_page(eb
, i
);
4716 if (!PageUptodate(page
)) {
4717 ClearPageError(page
);
4718 err
= __extent_read_full_page(tree
, page
,
4720 mirror_num
, &bio_flags
,
4730 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
4736 if (ret
|| wait
!= WAIT_COMPLETE
)
4739 for (i
= start_i
; i
< num_pages
; i
++) {
4740 page
= extent_buffer_page(eb
, i
);
4741 wait_on_page_locked(page
);
4742 if (!PageUptodate(page
))
4750 while (locked_pages
> 0) {
4751 page
= extent_buffer_page(eb
, i
);
4759 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
4760 unsigned long start
,
4767 char *dst
= (char *)dstv
;
4768 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4769 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4771 WARN_ON(start
> eb
->len
);
4772 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4774 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4777 page
= extent_buffer_page(eb
, i
);
4779 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4780 kaddr
= page_address(page
);
4781 memcpy(dst
, kaddr
+ offset
, cur
);
4790 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
4791 unsigned long min_len
, char **map
,
4792 unsigned long *map_start
,
4793 unsigned long *map_len
)
4795 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
4798 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4799 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4800 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
4807 offset
= start_offset
;
4811 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
4814 if (start
+ min_len
> eb
->len
) {
4815 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
4816 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
4817 eb
->len
, start
, min_len
);
4821 p
= extent_buffer_page(eb
, i
);
4822 kaddr
= page_address(p
);
4823 *map
= kaddr
+ offset
;
4824 *map_len
= PAGE_CACHE_SIZE
- offset
;
4828 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
4829 unsigned long start
,
4836 char *ptr
= (char *)ptrv
;
4837 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4838 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4841 WARN_ON(start
> eb
->len
);
4842 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4844 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4847 page
= extent_buffer_page(eb
, i
);
4849 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4851 kaddr
= page_address(page
);
4852 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
4864 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
4865 unsigned long start
, unsigned long len
)
4871 char *src
= (char *)srcv
;
4872 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4873 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4875 WARN_ON(start
> eb
->len
);
4876 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4878 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4881 page
= extent_buffer_page(eb
, i
);
4882 WARN_ON(!PageUptodate(page
));
4884 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4885 kaddr
= page_address(page
);
4886 memcpy(kaddr
+ offset
, src
, cur
);
4895 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
4896 unsigned long start
, unsigned long len
)
4902 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4903 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4905 WARN_ON(start
> eb
->len
);
4906 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4908 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4911 page
= extent_buffer_page(eb
, i
);
4912 WARN_ON(!PageUptodate(page
));
4914 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4915 kaddr
= page_address(page
);
4916 memset(kaddr
+ offset
, c
, cur
);
4924 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
4925 unsigned long dst_offset
, unsigned long src_offset
,
4928 u64 dst_len
= dst
->len
;
4933 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4934 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
4936 WARN_ON(src
->len
!= dst_len
);
4938 offset
= (start_offset
+ dst_offset
) &
4939 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4942 page
= extent_buffer_page(dst
, i
);
4943 WARN_ON(!PageUptodate(page
));
4945 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
4947 kaddr
= page_address(page
);
4948 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
4957 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
4958 unsigned long dst_off
, unsigned long src_off
,
4961 char *dst_kaddr
= page_address(dst_page
);
4962 if (dst_page
== src_page
) {
4963 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
4965 char *src_kaddr
= page_address(src_page
);
4966 char *p
= dst_kaddr
+ dst_off
+ len
;
4967 char *s
= src_kaddr
+ src_off
+ len
;
4974 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
4976 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
4977 return distance
< len
;
4980 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
4981 unsigned long dst_off
, unsigned long src_off
,
4984 char *dst_kaddr
= page_address(dst_page
);
4986 int must_memmove
= 0;
4988 if (dst_page
!= src_page
) {
4989 src_kaddr
= page_address(src_page
);
4991 src_kaddr
= dst_kaddr
;
4992 if (areas_overlap(src_off
, dst_off
, len
))
4997 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
4999 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5002 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5003 unsigned long src_offset
, unsigned long len
)
5006 size_t dst_off_in_page
;
5007 size_t src_off_in_page
;
5008 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5009 unsigned long dst_i
;
5010 unsigned long src_i
;
5012 if (src_offset
+ len
> dst
->len
) {
5013 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
5014 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
5017 if (dst_offset
+ len
> dst
->len
) {
5018 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
5019 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
5024 dst_off_in_page
= (start_offset
+ dst_offset
) &
5025 ((unsigned long)PAGE_CACHE_SIZE
- 1);
5026 src_off_in_page
= (start_offset
+ src_offset
) &
5027 ((unsigned long)PAGE_CACHE_SIZE
- 1);
5029 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5030 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5032 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5034 cur
= min_t(unsigned long, cur
,
5035 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5037 copy_pages(extent_buffer_page(dst
, dst_i
),
5038 extent_buffer_page(dst
, src_i
),
5039 dst_off_in_page
, src_off_in_page
, cur
);
5047 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5048 unsigned long src_offset
, unsigned long len
)
5051 size_t dst_off_in_page
;
5052 size_t src_off_in_page
;
5053 unsigned long dst_end
= dst_offset
+ len
- 1;
5054 unsigned long src_end
= src_offset
+ len
- 1;
5055 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5056 unsigned long dst_i
;
5057 unsigned long src_i
;
5059 if (src_offset
+ len
> dst
->len
) {
5060 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
5061 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
5064 if (dst_offset
+ len
> dst
->len
) {
5065 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
5066 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
5069 if (dst_offset
< src_offset
) {
5070 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5074 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5075 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5077 dst_off_in_page
= (start_offset
+ dst_end
) &
5078 ((unsigned long)PAGE_CACHE_SIZE
- 1);
5079 src_off_in_page
= (start_offset
+ src_end
) &
5080 ((unsigned long)PAGE_CACHE_SIZE
- 1);
5082 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5083 cur
= min(cur
, dst_off_in_page
+ 1);
5084 move_pages(extent_buffer_page(dst
, dst_i
),
5085 extent_buffer_page(dst
, src_i
),
5086 dst_off_in_page
- cur
+ 1,
5087 src_off_in_page
- cur
+ 1, cur
);
5095 int try_release_extent_buffer(struct page
*page
)
5097 struct extent_buffer
*eb
;
5100 * We need to make sure noboody is attaching this page to an eb right
5103 spin_lock(&page
->mapping
->private_lock
);
5104 if (!PagePrivate(page
)) {
5105 spin_unlock(&page
->mapping
->private_lock
);
5109 eb
= (struct extent_buffer
*)page
->private;
5113 * This is a little awful but should be ok, we need to make sure that
5114 * the eb doesn't disappear out from under us while we're looking at
5117 spin_lock(&eb
->refs_lock
);
5118 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5119 spin_unlock(&eb
->refs_lock
);
5120 spin_unlock(&page
->mapping
->private_lock
);
5123 spin_unlock(&page
->mapping
->private_lock
);
5126 * If tree ref isn't set then we know the ref on this eb is a real ref,
5127 * so just return, this page will likely be freed soon anyway.
5129 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5130 spin_unlock(&eb
->refs_lock
);
5134 return release_extent_buffer(eb
);