2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
45 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node
;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
72 struct inode_defrag
*defrag2
)
74 if (defrag1
->root
> defrag2
->root
)
76 else if (defrag1
->root
< defrag2
->root
)
78 else if (defrag1
->ino
> defrag2
->ino
)
80 else if (defrag1
->ino
< defrag2
->ino
)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct inode
*inode
,
96 struct inode_defrag
*defrag
)
98 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
99 struct inode_defrag
*entry
;
101 struct rb_node
*parent
= NULL
;
104 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
107 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
109 ret
= __compare_inode_defrag(defrag
, entry
);
111 p
= &parent
->rb_left
;
113 p
= &parent
->rb_right
;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag
->transid
< entry
->transid
)
120 entry
->transid
= defrag
->transid
;
121 if (defrag
->last_offset
> entry
->last_offset
)
122 entry
->last_offset
= defrag
->last_offset
;
126 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
127 rb_link_node(&defrag
->rb_node
, parent
, p
);
128 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
132 static inline int __need_auto_defrag(struct btrfs_root
*root
)
134 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
137 if (btrfs_fs_closing(root
->fs_info
))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
151 struct inode_defrag
*defrag
;
155 if (!__need_auto_defrag(root
))
158 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
162 transid
= trans
->transid
;
164 transid
= BTRFS_I(inode
)->root
->last_trans
;
166 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
170 defrag
->ino
= btrfs_ino(inode
);
171 defrag
->transid
= transid
;
172 defrag
->root
= root
->root_key
.objectid
;
174 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
183 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
185 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
187 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode
*inode
,
197 struct inode_defrag
*defrag
)
199 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
202 if (!__need_auto_defrag(root
))
206 * Here we don't check the IN_DEFRAG flag, because we need merge
209 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
210 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
211 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
216 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
223 static struct inode_defrag
*
224 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
226 struct inode_defrag
*entry
= NULL
;
227 struct inode_defrag tmp
;
229 struct rb_node
*parent
= NULL
;
235 spin_lock(&fs_info
->defrag_inodes_lock
);
236 p
= fs_info
->defrag_inodes
.rb_node
;
239 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
241 ret
= __compare_inode_defrag(&tmp
, entry
);
245 p
= parent
->rb_right
;
250 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
251 parent
= rb_next(parent
);
253 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
259 rb_erase(parent
, &fs_info
->defrag_inodes
);
260 spin_unlock(&fs_info
->defrag_inodes_lock
);
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
266 struct inode_defrag
*defrag
;
267 struct rb_node
*node
;
269 spin_lock(&fs_info
->defrag_inodes_lock
);
270 node
= rb_first(&fs_info
->defrag_inodes
);
272 rb_erase(node
, &fs_info
->defrag_inodes
);
273 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
274 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
276 if (need_resched()) {
277 spin_unlock(&fs_info
->defrag_inodes_lock
);
279 spin_lock(&fs_info
->defrag_inodes_lock
);
282 node
= rb_first(&fs_info
->defrag_inodes
);
284 spin_unlock(&fs_info
->defrag_inodes_lock
);
287 #define BTRFS_DEFRAG_BATCH 1024
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
290 struct inode_defrag
*defrag
)
292 struct btrfs_root
*inode_root
;
294 struct btrfs_key key
;
295 struct btrfs_ioctl_defrag_range_args range
;
301 key
.objectid
= defrag
->root
;
302 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
303 key
.offset
= (u64
)-1;
305 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
307 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
308 if (IS_ERR(inode_root
)) {
309 ret
= PTR_ERR(inode_root
);
313 key
.objectid
= defrag
->ino
;
314 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
316 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
318 ret
= PTR_ERR(inode
);
321 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
323 /* do a chunk of defrag */
324 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
325 memset(&range
, 0, sizeof(range
));
327 range
.start
= defrag
->last_offset
;
329 sb_start_write(fs_info
->sb
);
330 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
332 sb_end_write(fs_info
->sb
);
334 * if we filled the whole defrag batch, there
335 * must be more work to do. Queue this defrag
338 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
339 defrag
->last_offset
= range
.start
;
340 btrfs_requeue_inode_defrag(inode
, defrag
);
341 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
343 * we didn't fill our defrag batch, but
344 * we didn't start at zero. Make sure we loop
345 * around to the start of the file.
347 defrag
->last_offset
= 0;
349 btrfs_requeue_inode_defrag(inode
, defrag
);
351 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
357 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
358 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
363 * run through the list of inodes in the FS that need
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
368 struct inode_defrag
*defrag
;
370 u64 root_objectid
= 0;
372 atomic_inc(&fs_info
->defrag_running
);
374 /* Pause the auto defragger. */
375 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
379 if (!__need_auto_defrag(fs_info
->tree_root
))
382 /* find an inode to defrag */
383 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
386 if (root_objectid
|| first_ino
) {
395 first_ino
= defrag
->ino
+ 1;
396 root_objectid
= defrag
->root
;
398 __btrfs_run_defrag_inode(fs_info
, defrag
);
400 atomic_dec(&fs_info
->defrag_running
);
403 * during unmount, we use the transaction_wait queue to
404 * wait for the defragger to stop
406 wake_up(&fs_info
->transaction_wait
);
410 /* simple helper to fault in pages and copy. This should go away
411 * and be replaced with calls into generic code.
413 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
415 struct page
**prepared_pages
,
419 size_t total_copied
= 0;
421 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
423 while (write_bytes
> 0) {
424 size_t count
= min_t(size_t,
425 PAGE_CACHE_SIZE
- offset
, write_bytes
);
426 struct page
*page
= prepared_pages
[pg
];
428 * Copy data from userspace to the current page
430 * Disable pagefault to avoid recursive lock since
431 * the pages are already locked
434 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
437 /* Flush processor's dcache for this page */
438 flush_dcache_page(page
);
441 * if we get a partial write, we can end up with
442 * partially up to date pages. These add
443 * a lot of complexity, so make sure they don't
444 * happen by forcing this copy to be retried.
446 * The rest of the btrfs_file_write code will fall
447 * back to page at a time copies after we return 0.
449 if (!PageUptodate(page
) && copied
< count
)
452 iov_iter_advance(i
, copied
);
453 write_bytes
-= copied
;
454 total_copied
+= copied
;
456 /* Return to btrfs_file_aio_write to fault page */
457 if (unlikely(copied
== 0))
460 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
471 * unlocks pages after btrfs_file_write is done with them
473 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
476 for (i
= 0; i
< num_pages
; i
++) {
477 /* page checked is some magic around finding pages that
478 * have been modified without going through btrfs_set_page_dirty
481 ClearPageChecked(pages
[i
]);
482 unlock_page(pages
[i
]);
483 mark_page_accessed(pages
[i
]);
484 page_cache_release(pages
[i
]);
489 * after copy_from_user, pages need to be dirtied and we need to make
490 * sure holes are created between the current EOF and the start of
491 * any next extents (if required).
493 * this also makes the decision about creating an inline extent vs
494 * doing real data extents, marking pages dirty and delalloc as required.
496 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
497 struct page
**pages
, size_t num_pages
,
498 loff_t pos
, size_t write_bytes
,
499 struct extent_state
**cached
)
505 u64 end_of_last_block
;
506 u64 end_pos
= pos
+ write_bytes
;
507 loff_t isize
= i_size_read(inode
);
509 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
510 num_bytes
= ALIGN(write_bytes
+ pos
- start_pos
, root
->sectorsize
);
512 end_of_last_block
= start_pos
+ num_bytes
- 1;
513 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
518 for (i
= 0; i
< num_pages
; i
++) {
519 struct page
*p
= pages
[i
];
526 * we've only changed i_size in ram, and we haven't updated
527 * the disk i_size. There is no need to log the inode
531 i_size_write(inode
, end_pos
);
536 * this drops all the extents in the cache that intersect the range
537 * [start, end]. Existing extents are split as required.
539 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
542 struct extent_map
*em
;
543 struct extent_map
*split
= NULL
;
544 struct extent_map
*split2
= NULL
;
545 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
546 u64 len
= end
- start
+ 1;
554 WARN_ON(end
< start
);
555 if (end
== (u64
)-1) {
564 split
= alloc_extent_map();
566 split2
= alloc_extent_map();
567 if (!split
|| !split2
)
570 write_lock(&em_tree
->lock
);
571 em
= lookup_extent_mapping(em_tree
, start
, len
);
573 write_unlock(&em_tree
->lock
);
577 gen
= em
->generation
;
578 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
579 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
581 write_unlock(&em_tree
->lock
);
584 start
= em
->start
+ em
->len
;
586 len
= start
+ len
- (em
->start
+ em
->len
);
588 write_unlock(&em_tree
->lock
);
591 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
592 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
593 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
594 modified
= !list_empty(&em
->list
);
595 remove_extent_mapping(em_tree
, em
);
599 if (em
->start
< start
) {
600 split
->start
= em
->start
;
601 split
->len
= start
- em
->start
;
603 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
604 split
->orig_start
= em
->orig_start
;
605 split
->block_start
= em
->block_start
;
608 split
->block_len
= em
->block_len
;
610 split
->block_len
= split
->len
;
611 split
->orig_block_len
= max(split
->block_len
,
613 split
->ram_bytes
= em
->ram_bytes
;
615 split
->orig_start
= split
->start
;
616 split
->block_len
= 0;
617 split
->block_start
= em
->block_start
;
618 split
->orig_block_len
= 0;
619 split
->ram_bytes
= split
->len
;
622 split
->generation
= gen
;
623 split
->bdev
= em
->bdev
;
624 split
->flags
= flags
;
625 split
->compress_type
= em
->compress_type
;
626 ret
= add_extent_mapping(em_tree
, split
, modified
);
627 BUG_ON(ret
); /* Logic error */
628 free_extent_map(split
);
632 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
633 u64 diff
= start
+ len
- em
->start
;
635 split
->start
= start
+ len
;
636 split
->len
= em
->start
+ em
->len
- (start
+ len
);
637 split
->bdev
= em
->bdev
;
638 split
->flags
= flags
;
639 split
->compress_type
= em
->compress_type
;
640 split
->generation
= gen
;
642 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
643 split
->orig_block_len
= max(em
->block_len
,
646 split
->ram_bytes
= em
->ram_bytes
;
648 split
->block_len
= em
->block_len
;
649 split
->block_start
= em
->block_start
;
650 split
->orig_start
= em
->orig_start
;
652 split
->block_len
= split
->len
;
653 split
->block_start
= em
->block_start
655 split
->orig_start
= em
->orig_start
;
658 split
->ram_bytes
= split
->len
;
659 split
->orig_start
= split
->start
;
660 split
->block_len
= 0;
661 split
->block_start
= em
->block_start
;
662 split
->orig_block_len
= 0;
665 ret
= add_extent_mapping(em_tree
, split
, modified
);
666 BUG_ON(ret
); /* Logic error */
667 free_extent_map(split
);
671 write_unlock(&em_tree
->lock
);
675 /* once for the tree*/
679 free_extent_map(split
);
681 free_extent_map(split2
);
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
693 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
694 struct btrfs_root
*root
, struct inode
*inode
,
695 struct btrfs_path
*path
, u64 start
, u64 end
,
696 u64
*drop_end
, int drop_cache
)
698 struct extent_buffer
*leaf
;
699 struct btrfs_file_extent_item
*fi
;
700 struct btrfs_key key
;
701 struct btrfs_key new_key
;
702 u64 ino
= btrfs_ino(inode
);
703 u64 search_start
= start
;
706 u64 extent_offset
= 0;
713 int modify_tree
= -1;
714 int update_refs
= (root
->ref_cows
|| root
== root
->fs_info
->tree_root
);
718 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
720 if (start
>= BTRFS_I(inode
)->disk_i_size
)
725 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
726 search_start
, modify_tree
);
729 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
730 leaf
= path
->nodes
[0];
731 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
732 if (key
.objectid
== ino
&&
733 key
.type
== BTRFS_EXTENT_DATA_KEY
)
738 leaf
= path
->nodes
[0];
739 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
741 ret
= btrfs_next_leaf(root
, path
);
748 leaf
= path
->nodes
[0];
752 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
753 if (key
.objectid
> ino
||
754 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
757 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
758 struct btrfs_file_extent_item
);
759 extent_type
= btrfs_file_extent_type(leaf
, fi
);
761 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
762 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
763 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
764 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
765 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
766 extent_end
= key
.offset
+
767 btrfs_file_extent_num_bytes(leaf
, fi
);
768 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
769 extent_end
= key
.offset
+
770 btrfs_file_extent_inline_len(leaf
, fi
);
773 extent_end
= search_start
;
776 if (extent_end
<= search_start
) {
782 search_start
= max(key
.offset
, start
);
783 if (recow
|| !modify_tree
) {
785 btrfs_release_path(path
);
790 * | - range to drop - |
791 * | -------- extent -------- |
793 if (start
> key
.offset
&& end
< extent_end
) {
795 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
797 memcpy(&new_key
, &key
, sizeof(new_key
));
798 new_key
.offset
= start
;
799 ret
= btrfs_duplicate_item(trans
, root
, path
,
801 if (ret
== -EAGAIN
) {
802 btrfs_release_path(path
);
808 leaf
= path
->nodes
[0];
809 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
810 struct btrfs_file_extent_item
);
811 btrfs_set_file_extent_num_bytes(leaf
, fi
,
814 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
815 struct btrfs_file_extent_item
);
817 extent_offset
+= start
- key
.offset
;
818 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
819 btrfs_set_file_extent_num_bytes(leaf
, fi
,
821 btrfs_mark_buffer_dirty(leaf
);
823 if (update_refs
&& disk_bytenr
> 0) {
824 ret
= btrfs_inc_extent_ref(trans
, root
,
825 disk_bytenr
, num_bytes
, 0,
826 root
->root_key
.objectid
,
828 start
- extent_offset
, 0);
829 BUG_ON(ret
); /* -ENOMEM */
834 * | ---- range to drop ----- |
835 * | -------- extent -------- |
837 if (start
<= key
.offset
&& end
< extent_end
) {
838 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
840 memcpy(&new_key
, &key
, sizeof(new_key
));
841 new_key
.offset
= end
;
842 btrfs_set_item_key_safe(root
, path
, &new_key
);
844 extent_offset
+= end
- key
.offset
;
845 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
846 btrfs_set_file_extent_num_bytes(leaf
, fi
,
848 btrfs_mark_buffer_dirty(leaf
);
849 if (update_refs
&& disk_bytenr
> 0)
850 inode_sub_bytes(inode
, end
- key
.offset
);
854 search_start
= extent_end
;
856 * | ---- range to drop ----- |
857 * | -------- extent -------- |
859 if (start
> key
.offset
&& end
>= extent_end
) {
861 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
863 btrfs_set_file_extent_num_bytes(leaf
, fi
,
865 btrfs_mark_buffer_dirty(leaf
);
866 if (update_refs
&& disk_bytenr
> 0)
867 inode_sub_bytes(inode
, extent_end
- start
);
868 if (end
== extent_end
)
876 * | ---- range to drop ----- |
877 * | ------ extent ------ |
879 if (start
<= key
.offset
&& end
>= extent_end
) {
881 del_slot
= path
->slots
[0];
884 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
889 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
890 inode_sub_bytes(inode
,
891 extent_end
- key
.offset
);
892 extent_end
= ALIGN(extent_end
,
894 } else if (update_refs
&& disk_bytenr
> 0) {
895 ret
= btrfs_free_extent(trans
, root
,
896 disk_bytenr
, num_bytes
, 0,
897 root
->root_key
.objectid
,
898 key
.objectid
, key
.offset
-
900 BUG_ON(ret
); /* -ENOMEM */
901 inode_sub_bytes(inode
,
902 extent_end
- key
.offset
);
905 if (end
== extent_end
)
908 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
913 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
916 btrfs_abort_transaction(trans
, root
, ret
);
923 btrfs_release_path(path
);
930 if (!ret
&& del_nr
> 0) {
931 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
933 btrfs_abort_transaction(trans
, root
, ret
);
937 *drop_end
= found
? min(end
, extent_end
) : end
;
938 btrfs_release_path(path
);
942 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
943 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
944 u64 end
, int drop_cache
)
946 struct btrfs_path
*path
;
949 path
= btrfs_alloc_path();
952 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
954 btrfs_free_path(path
);
958 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
959 u64 objectid
, u64 bytenr
, u64 orig_offset
,
960 u64
*start
, u64
*end
)
962 struct btrfs_file_extent_item
*fi
;
963 struct btrfs_key key
;
966 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
969 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
970 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
973 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
974 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
975 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
976 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
977 btrfs_file_extent_compression(leaf
, fi
) ||
978 btrfs_file_extent_encryption(leaf
, fi
) ||
979 btrfs_file_extent_other_encoding(leaf
, fi
))
982 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
983 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
992 * Mark extent in the range start - end as written.
994 * This changes extent type from 'pre-allocated' to 'regular'. If only
995 * part of extent is marked as written, the extent will be split into
998 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
999 struct inode
*inode
, u64 start
, u64 end
)
1001 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1002 struct extent_buffer
*leaf
;
1003 struct btrfs_path
*path
;
1004 struct btrfs_file_extent_item
*fi
;
1005 struct btrfs_key key
;
1006 struct btrfs_key new_key
;
1018 u64 ino
= btrfs_ino(inode
);
1020 path
= btrfs_alloc_path();
1027 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1030 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1033 if (ret
> 0 && path
->slots
[0] > 0)
1036 leaf
= path
->nodes
[0];
1037 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1038 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
1039 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1040 struct btrfs_file_extent_item
);
1041 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
1042 BTRFS_FILE_EXTENT_PREALLOC
);
1043 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1044 BUG_ON(key
.offset
> start
|| extent_end
< end
);
1046 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1047 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1048 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1049 memcpy(&new_key
, &key
, sizeof(new_key
));
1051 if (start
== key
.offset
&& end
< extent_end
) {
1054 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1055 ino
, bytenr
, orig_offset
,
1056 &other_start
, &other_end
)) {
1057 new_key
.offset
= end
;
1058 btrfs_set_item_key_safe(root
, path
, &new_key
);
1059 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1060 struct btrfs_file_extent_item
);
1061 btrfs_set_file_extent_generation(leaf
, fi
,
1063 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1065 btrfs_set_file_extent_offset(leaf
, fi
,
1067 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1068 struct btrfs_file_extent_item
);
1069 btrfs_set_file_extent_generation(leaf
, fi
,
1071 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1073 btrfs_mark_buffer_dirty(leaf
);
1078 if (start
> key
.offset
&& end
== extent_end
) {
1081 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1082 ino
, bytenr
, orig_offset
,
1083 &other_start
, &other_end
)) {
1084 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1085 struct btrfs_file_extent_item
);
1086 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1087 start
- key
.offset
);
1088 btrfs_set_file_extent_generation(leaf
, fi
,
1091 new_key
.offset
= start
;
1092 btrfs_set_item_key_safe(root
, path
, &new_key
);
1094 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1095 struct btrfs_file_extent_item
);
1096 btrfs_set_file_extent_generation(leaf
, fi
,
1098 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1100 btrfs_set_file_extent_offset(leaf
, fi
,
1101 start
- orig_offset
);
1102 btrfs_mark_buffer_dirty(leaf
);
1107 while (start
> key
.offset
|| end
< extent_end
) {
1108 if (key
.offset
== start
)
1111 new_key
.offset
= split
;
1112 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1113 if (ret
== -EAGAIN
) {
1114 btrfs_release_path(path
);
1118 btrfs_abort_transaction(trans
, root
, ret
);
1122 leaf
= path
->nodes
[0];
1123 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1124 struct btrfs_file_extent_item
);
1125 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1126 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1127 split
- key
.offset
);
1129 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1130 struct btrfs_file_extent_item
);
1132 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1133 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1134 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1135 extent_end
- split
);
1136 btrfs_mark_buffer_dirty(leaf
);
1138 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
1139 root
->root_key
.objectid
,
1140 ino
, orig_offset
, 0);
1141 BUG_ON(ret
); /* -ENOMEM */
1143 if (split
== start
) {
1146 BUG_ON(start
!= key
.offset
);
1155 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1156 ino
, bytenr
, orig_offset
,
1157 &other_start
, &other_end
)) {
1159 btrfs_release_path(path
);
1162 extent_end
= other_end
;
1163 del_slot
= path
->slots
[0] + 1;
1165 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1166 0, root
->root_key
.objectid
,
1167 ino
, orig_offset
, 0);
1168 BUG_ON(ret
); /* -ENOMEM */
1172 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1173 ino
, bytenr
, orig_offset
,
1174 &other_start
, &other_end
)) {
1176 btrfs_release_path(path
);
1179 key
.offset
= other_start
;
1180 del_slot
= path
->slots
[0];
1182 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1183 0, root
->root_key
.objectid
,
1184 ino
, orig_offset
, 0);
1185 BUG_ON(ret
); /* -ENOMEM */
1188 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1189 struct btrfs_file_extent_item
);
1190 btrfs_set_file_extent_type(leaf
, fi
,
1191 BTRFS_FILE_EXTENT_REG
);
1192 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1193 btrfs_mark_buffer_dirty(leaf
);
1195 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1196 struct btrfs_file_extent_item
);
1197 btrfs_set_file_extent_type(leaf
, fi
,
1198 BTRFS_FILE_EXTENT_REG
);
1199 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1200 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1201 extent_end
- key
.offset
);
1202 btrfs_mark_buffer_dirty(leaf
);
1204 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1206 btrfs_abort_transaction(trans
, root
, ret
);
1211 btrfs_free_path(path
);
1216 * on error we return an unlocked page and the error value
1217 * on success we return a locked page and 0
1219 static int prepare_uptodate_page(struct page
*page
, u64 pos
,
1220 bool force_uptodate
)
1224 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1225 !PageUptodate(page
)) {
1226 ret
= btrfs_readpage(NULL
, page
);
1230 if (!PageUptodate(page
)) {
1239 * this gets pages into the page cache and locks them down, it also properly
1240 * waits for data=ordered extents to finish before allowing the pages to be
1243 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
1244 struct page
**pages
, size_t num_pages
,
1245 loff_t pos
, unsigned long first_index
,
1246 size_t write_bytes
, bool force_uptodate
)
1248 struct extent_state
*cached_state
= NULL
;
1250 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1251 struct inode
*inode
= file_inode(file
);
1252 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1258 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
1259 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
1262 for (i
= 0; i
< num_pages
; i
++) {
1263 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1264 mask
| __GFP_WRITE
);
1272 err
= prepare_uptodate_page(pages
[i
], pos
,
1274 if (i
== num_pages
- 1)
1275 err
= prepare_uptodate_page(pages
[i
],
1276 pos
+ write_bytes
, false);
1278 page_cache_release(pages
[i
]);
1282 wait_on_page_writeback(pages
[i
]);
1285 if (start_pos
< inode
->i_size
) {
1286 struct btrfs_ordered_extent
*ordered
;
1287 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1288 start_pos
, last_pos
- 1, 0, &cached_state
);
1289 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1292 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1293 ordered
->file_offset
< last_pos
) {
1294 btrfs_put_ordered_extent(ordered
);
1295 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1296 start_pos
, last_pos
- 1,
1297 &cached_state
, GFP_NOFS
);
1298 for (i
= 0; i
< num_pages
; i
++) {
1299 unlock_page(pages
[i
]);
1300 page_cache_release(pages
[i
]);
1302 btrfs_wait_ordered_range(inode
, start_pos
,
1303 last_pos
- start_pos
);
1307 btrfs_put_ordered_extent(ordered
);
1309 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1310 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1311 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1312 0, 0, &cached_state
, GFP_NOFS
);
1313 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1314 start_pos
, last_pos
- 1, &cached_state
,
1317 for (i
= 0; i
< num_pages
; i
++) {
1318 if (clear_page_dirty_for_io(pages
[i
]))
1319 account_page_redirty(pages
[i
]);
1320 set_page_extent_mapped(pages
[i
]);
1321 WARN_ON(!PageLocked(pages
[i
]));
1325 while (faili
>= 0) {
1326 unlock_page(pages
[faili
]);
1327 page_cache_release(pages
[faili
]);
1334 static noinline
int check_can_nocow(struct inode
*inode
, loff_t pos
,
1335 size_t *write_bytes
)
1337 struct btrfs_trans_handle
*trans
;
1338 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1339 struct btrfs_ordered_extent
*ordered
;
1340 u64 lockstart
, lockend
;
1344 lockstart
= round_down(pos
, root
->sectorsize
);
1345 lockend
= lockstart
+ round_up(*write_bytes
, root
->sectorsize
) - 1;
1348 lock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1349 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1350 lockend
- lockstart
+ 1);
1354 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1355 btrfs_start_ordered_extent(inode
, ordered
, 1);
1356 btrfs_put_ordered_extent(ordered
);
1359 trans
= btrfs_join_transaction(root
);
1360 if (IS_ERR(trans
)) {
1361 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1362 return PTR_ERR(trans
);
1365 num_bytes
= lockend
- lockstart
+ 1;
1366 ret
= can_nocow_extent(trans
, inode
, lockstart
, &num_bytes
, NULL
, NULL
,
1368 btrfs_end_transaction(trans
, root
);
1372 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
1373 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1374 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1376 *write_bytes
= min_t(size_t, *write_bytes
, num_bytes
);
1379 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1384 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1388 struct inode
*inode
= file_inode(file
);
1389 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1390 struct page
**pages
= NULL
;
1391 u64 release_bytes
= 0;
1392 unsigned long first_index
;
1393 size_t num_written
= 0;
1396 bool only_release_metadata
= false;
1397 bool force_page_uptodate
= false;
1399 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1400 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1401 (sizeof(struct page
*)));
1402 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1403 nrptrs
= max(nrptrs
, 8);
1404 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1408 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1410 while (iov_iter_count(i
) > 0) {
1411 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1412 size_t write_bytes
= min(iov_iter_count(i
),
1413 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1415 size_t num_pages
= (write_bytes
+ offset
+
1416 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1417 size_t reserve_bytes
;
1421 WARN_ON(num_pages
> nrptrs
);
1424 * Fault pages before locking them in prepare_pages
1425 * to avoid recursive lock
1427 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1432 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1433 ret
= btrfs_check_data_free_space(inode
, reserve_bytes
);
1434 if (ret
== -ENOSPC
&&
1435 (BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1436 BTRFS_INODE_PREALLOC
))) {
1437 ret
= check_can_nocow(inode
, pos
, &write_bytes
);
1439 only_release_metadata
= true;
1441 * our prealloc extent may be smaller than
1442 * write_bytes, so scale down.
1444 num_pages
= (write_bytes
+ offset
+
1445 PAGE_CACHE_SIZE
- 1) >>
1447 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1457 ret
= btrfs_delalloc_reserve_metadata(inode
, reserve_bytes
);
1459 if (!only_release_metadata
)
1460 btrfs_free_reserved_data_space(inode
,
1465 release_bytes
= reserve_bytes
;
1468 * This is going to setup the pages array with the number of
1469 * pages we want, so we don't really need to worry about the
1470 * contents of pages from loop to loop
1472 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1473 pos
, first_index
, write_bytes
,
1474 force_page_uptodate
);
1478 copied
= btrfs_copy_from_user(pos
, num_pages
,
1479 write_bytes
, pages
, i
);
1482 * if we have trouble faulting in the pages, fall
1483 * back to one page at a time
1485 if (copied
< write_bytes
)
1489 force_page_uptodate
= true;
1492 force_page_uptodate
= false;
1493 dirty_pages
= (copied
+ offset
+
1494 PAGE_CACHE_SIZE
- 1) >>
1499 * If we had a short copy we need to release the excess delaloc
1500 * bytes we reserved. We need to increment outstanding_extents
1501 * because btrfs_delalloc_release_space will decrement it, but
1502 * we still have an outstanding extent for the chunk we actually
1505 if (num_pages
> dirty_pages
) {
1506 release_bytes
= (num_pages
- dirty_pages
) <<
1509 spin_lock(&BTRFS_I(inode
)->lock
);
1510 BTRFS_I(inode
)->outstanding_extents
++;
1511 spin_unlock(&BTRFS_I(inode
)->lock
);
1513 if (only_release_metadata
)
1514 btrfs_delalloc_release_metadata(inode
,
1517 btrfs_delalloc_release_space(inode
,
1521 release_bytes
= dirty_pages
<< PAGE_CACHE_SHIFT
;
1523 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1524 dirty_pages
, pos
, copied
,
1527 btrfs_drop_pages(pages
, num_pages
);
1533 btrfs_drop_pages(pages
, num_pages
);
1535 if (only_release_metadata
&& copied
> 0) {
1536 u64 lockstart
= round_down(pos
, root
->sectorsize
);
1537 u64 lockend
= lockstart
+
1538 (dirty_pages
<< PAGE_CACHE_SHIFT
) - 1;
1540 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1541 lockend
, EXTENT_NORESERVE
, NULL
,
1543 only_release_metadata
= false;
1548 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1549 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1550 btrfs_btree_balance_dirty(root
);
1553 num_written
+= copied
;
1558 if (release_bytes
) {
1559 if (only_release_metadata
)
1560 btrfs_delalloc_release_metadata(inode
, release_bytes
);
1562 btrfs_delalloc_release_space(inode
, release_bytes
);
1565 return num_written
? num_written
: ret
;
1568 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1569 const struct iovec
*iov
,
1570 unsigned long nr_segs
, loff_t pos
,
1571 loff_t
*ppos
, size_t count
, size_t ocount
)
1573 struct file
*file
= iocb
->ki_filp
;
1576 ssize_t written_buffered
;
1580 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
, ppos
,
1583 if (written
< 0 || written
== count
)
1588 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1589 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1590 if (written_buffered
< 0) {
1591 err
= written_buffered
;
1594 endbyte
= pos
+ written_buffered
- 1;
1595 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1598 written
+= written_buffered
;
1599 *ppos
= pos
+ written_buffered
;
1600 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1601 endbyte
>> PAGE_CACHE_SHIFT
);
1603 return written
? written
: err
;
1606 static void update_time_for_write(struct inode
*inode
)
1608 struct timespec now
;
1610 if (IS_NOCMTIME(inode
))
1613 now
= current_fs_time(inode
->i_sb
);
1614 if (!timespec_equal(&inode
->i_mtime
, &now
))
1615 inode
->i_mtime
= now
;
1617 if (!timespec_equal(&inode
->i_ctime
, &now
))
1618 inode
->i_ctime
= now
;
1620 if (IS_I_VERSION(inode
))
1621 inode_inc_iversion(inode
);
1624 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1625 const struct iovec
*iov
,
1626 unsigned long nr_segs
, loff_t pos
)
1628 struct file
*file
= iocb
->ki_filp
;
1629 struct inode
*inode
= file_inode(file
);
1630 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1631 loff_t
*ppos
= &iocb
->ki_pos
;
1633 ssize_t num_written
= 0;
1635 size_t count
, ocount
;
1636 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1638 mutex_lock(&inode
->i_mutex
);
1640 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1642 mutex_unlock(&inode
->i_mutex
);
1647 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1648 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1650 mutex_unlock(&inode
->i_mutex
);
1655 mutex_unlock(&inode
->i_mutex
);
1659 err
= file_remove_suid(file
);
1661 mutex_unlock(&inode
->i_mutex
);
1666 * If BTRFS flips readonly due to some impossible error
1667 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1668 * although we have opened a file as writable, we have
1669 * to stop this write operation to ensure FS consistency.
1671 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1672 mutex_unlock(&inode
->i_mutex
);
1678 * We reserve space for updating the inode when we reserve space for the
1679 * extent we are going to write, so we will enospc out there. We don't
1680 * need to start yet another transaction to update the inode as we will
1681 * update the inode when we finish writing whatever data we write.
1683 update_time_for_write(inode
);
1685 start_pos
= round_down(pos
, root
->sectorsize
);
1686 if (start_pos
> i_size_read(inode
)) {
1687 err
= btrfs_cont_expand(inode
, i_size_read(inode
), start_pos
);
1689 mutex_unlock(&inode
->i_mutex
);
1695 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1697 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1698 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1699 pos
, ppos
, count
, ocount
);
1703 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1705 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1706 if (num_written
> 0)
1707 *ppos
= pos
+ num_written
;
1710 mutex_unlock(&inode
->i_mutex
);
1713 * we want to make sure fsync finds this change
1714 * but we haven't joined a transaction running right now.
1716 * Later on, someone is sure to update the inode and get the
1717 * real transid recorded.
1719 * We set last_trans now to the fs_info generation + 1,
1720 * this will either be one more than the running transaction
1721 * or the generation used for the next transaction if there isn't
1722 * one running right now.
1724 * We also have to set last_sub_trans to the current log transid,
1725 * otherwise subsequent syncs to a file that's been synced in this
1726 * transaction will appear to have already occured.
1728 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1729 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1730 if (num_written
> 0 || num_written
== -EIOCBQUEUED
) {
1731 err
= generic_write_sync(file
, pos
, num_written
);
1732 if (err
< 0 && num_written
> 0)
1737 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1739 current
->backing_dev_info
= NULL
;
1740 return num_written
? num_written
: err
;
1743 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1746 * ordered_data_close is set by settattr when we are about to truncate
1747 * a file from a non-zero size to a zero size. This tries to
1748 * flush down new bytes that may have been written if the
1749 * application were using truncate to replace a file in place.
1751 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1752 &BTRFS_I(inode
)->runtime_flags
)) {
1753 struct btrfs_trans_handle
*trans
;
1754 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1757 * We need to block on a committing transaction to keep us from
1758 * throwing a ordered operation on to the list and causing
1759 * something like sync to deadlock trying to flush out this
1762 trans
= btrfs_start_transaction(root
, 0);
1764 return PTR_ERR(trans
);
1765 btrfs_add_ordered_operation(trans
, BTRFS_I(inode
)->root
, inode
);
1766 btrfs_end_transaction(trans
, root
);
1767 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1768 filemap_flush(inode
->i_mapping
);
1770 if (filp
->private_data
)
1771 btrfs_ioctl_trans_end(filp
);
1776 * fsync call for both files and directories. This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1782 * It drops the inode mutex before doing the tree log commit. This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1786 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1788 struct dentry
*dentry
= file
->f_path
.dentry
;
1789 struct inode
*inode
= dentry
->d_inode
;
1790 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1792 struct btrfs_trans_handle
*trans
;
1795 trace_btrfs_sync_file(file
, datasync
);
1798 * We write the dirty pages in the range and wait until they complete
1799 * out of the ->i_mutex. If so, we can flush the dirty pages by
1800 * multi-task, and make the performance up. See
1801 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1803 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1804 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1805 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1806 &BTRFS_I(inode
)->runtime_flags
))
1807 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1808 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1812 mutex_lock(&inode
->i_mutex
);
1815 * We flush the dirty pages again to avoid some dirty pages in the
1818 atomic_inc(&root
->log_batch
);
1819 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1820 &BTRFS_I(inode
)->runtime_flags
);
1822 btrfs_wait_ordered_range(inode
, start
, end
- start
+ 1);
1823 atomic_inc(&root
->log_batch
);
1826 * check the transaction that last modified this inode
1827 * and see if its already been committed
1829 if (!BTRFS_I(inode
)->last_trans
) {
1830 mutex_unlock(&inode
->i_mutex
);
1835 * if the last transaction that changed this file was before
1836 * the current transaction, we can bail out now without any
1840 if (btrfs_inode_in_log(inode
, root
->fs_info
->generation
) ||
1841 BTRFS_I(inode
)->last_trans
<=
1842 root
->fs_info
->last_trans_committed
) {
1843 BTRFS_I(inode
)->last_trans
= 0;
1846 * We'v had everything committed since the last time we were
1847 * modified so clear this flag in case it was set for whatever
1848 * reason, it's no longer relevant.
1850 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1851 &BTRFS_I(inode
)->runtime_flags
);
1852 mutex_unlock(&inode
->i_mutex
);
1857 * ok we haven't committed the transaction yet, lets do a commit
1859 if (file
->private_data
)
1860 btrfs_ioctl_trans_end(file
);
1862 trans
= btrfs_start_transaction(root
, 0);
1863 if (IS_ERR(trans
)) {
1864 ret
= PTR_ERR(trans
);
1865 mutex_unlock(&inode
->i_mutex
);
1869 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1871 mutex_unlock(&inode
->i_mutex
);
1875 /* we've logged all the items and now have a consistent
1876 * version of the file in the log. It is possible that
1877 * someone will come in and modify the file, but that's
1878 * fine because the log is consistent on disk, and we
1879 * have references to all of the file's extents
1881 * It is possible that someone will come in and log the
1882 * file again, but that will end up using the synchronization
1883 * inside btrfs_sync_log to keep things safe.
1885 mutex_unlock(&inode
->i_mutex
);
1887 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1890 * If we didn't already wait for ordered extents we need
1894 btrfs_wait_ordered_range(inode
, start
,
1896 ret
= btrfs_commit_transaction(trans
, root
);
1898 ret
= btrfs_sync_log(trans
, root
);
1900 ret
= btrfs_end_transaction(trans
, root
);
1903 btrfs_wait_ordered_range(inode
, start
,
1906 ret
= btrfs_commit_transaction(trans
, root
);
1910 ret
= btrfs_end_transaction(trans
, root
);
1913 return ret
> 0 ? -EIO
: ret
;
1916 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1917 .fault
= filemap_fault
,
1918 .page_mkwrite
= btrfs_page_mkwrite
,
1919 .remap_pages
= generic_file_remap_pages
,
1922 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1924 struct address_space
*mapping
= filp
->f_mapping
;
1926 if (!mapping
->a_ops
->readpage
)
1929 file_accessed(filp
);
1930 vma
->vm_ops
= &btrfs_file_vm_ops
;
1935 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
1936 int slot
, u64 start
, u64 end
)
1938 struct btrfs_file_extent_item
*fi
;
1939 struct btrfs_key key
;
1941 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1944 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1945 if (key
.objectid
!= btrfs_ino(inode
) ||
1946 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1949 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1951 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
1954 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
1957 if (key
.offset
== end
)
1959 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
1964 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
1965 struct btrfs_path
*path
, u64 offset
, u64 end
)
1967 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1968 struct extent_buffer
*leaf
;
1969 struct btrfs_file_extent_item
*fi
;
1970 struct extent_map
*hole_em
;
1971 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1972 struct btrfs_key key
;
1975 key
.objectid
= btrfs_ino(inode
);
1976 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1977 key
.offset
= offset
;
1980 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1985 leaf
= path
->nodes
[0];
1986 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
1990 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1991 struct btrfs_file_extent_item
);
1992 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
1994 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1995 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
1996 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1997 btrfs_mark_buffer_dirty(leaf
);
2001 if (hole_mergeable(inode
, leaf
, path
->slots
[0]+1, offset
, end
)) {
2005 key
.offset
= offset
;
2006 btrfs_set_item_key_safe(root
, path
, &key
);
2007 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2008 struct btrfs_file_extent_item
);
2009 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2011 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2012 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2013 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2014 btrfs_mark_buffer_dirty(leaf
);
2017 btrfs_release_path(path
);
2019 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
2020 0, 0, end
- offset
, 0, end
- offset
,
2026 btrfs_release_path(path
);
2028 hole_em
= alloc_extent_map();
2030 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2031 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2032 &BTRFS_I(inode
)->runtime_flags
);
2034 hole_em
->start
= offset
;
2035 hole_em
->len
= end
- offset
;
2036 hole_em
->ram_bytes
= hole_em
->len
;
2037 hole_em
->orig_start
= offset
;
2039 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2040 hole_em
->block_len
= 0;
2041 hole_em
->orig_block_len
= 0;
2042 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2043 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2044 hole_em
->generation
= trans
->transid
;
2047 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2048 write_lock(&em_tree
->lock
);
2049 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2050 write_unlock(&em_tree
->lock
);
2051 } while (ret
== -EEXIST
);
2052 free_extent_map(hole_em
);
2054 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2055 &BTRFS_I(inode
)->runtime_flags
);
2061 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2063 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2064 struct extent_state
*cached_state
= NULL
;
2065 struct btrfs_path
*path
;
2066 struct btrfs_block_rsv
*rsv
;
2067 struct btrfs_trans_handle
*trans
;
2068 u64 lockstart
= round_up(offset
, BTRFS_I(inode
)->root
->sectorsize
);
2069 u64 lockend
= round_down(offset
+ len
,
2070 BTRFS_I(inode
)->root
->sectorsize
) - 1;
2071 u64 cur_offset
= lockstart
;
2072 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
2076 bool same_page
= ((offset
>> PAGE_CACHE_SHIFT
) ==
2077 ((offset
+ len
- 1) >> PAGE_CACHE_SHIFT
));
2079 btrfs_wait_ordered_range(inode
, offset
, len
);
2081 mutex_lock(&inode
->i_mutex
);
2083 * We needn't truncate any page which is beyond the end of the file
2084 * because we are sure there is no data there.
2087 * Only do this if we are in the same page and we aren't doing the
2090 if (same_page
&& len
< PAGE_CACHE_SIZE
) {
2091 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
))
2092 ret
= btrfs_truncate_page(inode
, offset
, len
, 0);
2093 mutex_unlock(&inode
->i_mutex
);
2097 /* zero back part of the first page */
2098 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
2099 ret
= btrfs_truncate_page(inode
, offset
, 0, 0);
2101 mutex_unlock(&inode
->i_mutex
);
2106 /* zero the front end of the last page */
2107 if (offset
+ len
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
2108 ret
= btrfs_truncate_page(inode
, offset
+ len
, 0, 1);
2110 mutex_unlock(&inode
->i_mutex
);
2115 if (lockend
< lockstart
) {
2116 mutex_unlock(&inode
->i_mutex
);
2121 struct btrfs_ordered_extent
*ordered
;
2123 truncate_pagecache_range(inode
, lockstart
, lockend
);
2125 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2127 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2130 * We need to make sure we have no ordered extents in this range
2131 * and nobody raced in and read a page in this range, if we did
2132 * we need to try again.
2135 (ordered
->file_offset
+ ordered
->len
< lockstart
||
2136 ordered
->file_offset
> lockend
)) &&
2137 !test_range_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
2138 lockend
, EXTENT_UPTODATE
, 0,
2141 btrfs_put_ordered_extent(ordered
);
2145 btrfs_put_ordered_extent(ordered
);
2146 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2147 lockend
, &cached_state
, GFP_NOFS
);
2148 btrfs_wait_ordered_range(inode
, lockstart
,
2149 lockend
- lockstart
+ 1);
2152 path
= btrfs_alloc_path();
2158 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2163 rsv
->size
= btrfs_calc_trunc_metadata_size(root
, 1);
2167 * 1 - update the inode
2168 * 1 - removing the extents in the range
2169 * 1 - adding the hole extent
2171 trans
= btrfs_start_transaction(root
, 3);
2172 if (IS_ERR(trans
)) {
2173 err
= PTR_ERR(trans
);
2177 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
2180 trans
->block_rsv
= rsv
;
2182 while (cur_offset
< lockend
) {
2183 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2184 cur_offset
, lockend
+ 1,
2189 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2191 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2197 cur_offset
= drop_end
;
2199 ret
= btrfs_update_inode(trans
, root
, inode
);
2205 btrfs_end_transaction(trans
, root
);
2206 btrfs_btree_balance_dirty(root
);
2208 trans
= btrfs_start_transaction(root
, 3);
2209 if (IS_ERR(trans
)) {
2210 ret
= PTR_ERR(trans
);
2215 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
2217 BUG_ON(ret
); /* shouldn't happen */
2218 trans
->block_rsv
= rsv
;
2226 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2227 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2237 inode_inc_iversion(inode
);
2238 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2240 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2241 ret
= btrfs_update_inode(trans
, root
, inode
);
2242 btrfs_end_transaction(trans
, root
);
2243 btrfs_btree_balance_dirty(root
);
2245 btrfs_free_path(path
);
2246 btrfs_free_block_rsv(root
, rsv
);
2248 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2249 &cached_state
, GFP_NOFS
);
2250 mutex_unlock(&inode
->i_mutex
);
2256 static long btrfs_fallocate(struct file
*file
, int mode
,
2257 loff_t offset
, loff_t len
)
2259 struct inode
*inode
= file_inode(file
);
2260 struct extent_state
*cached_state
= NULL
;
2261 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2268 struct extent_map
*em
;
2269 int blocksize
= BTRFS_I(inode
)->root
->sectorsize
;
2272 alloc_start
= round_down(offset
, blocksize
);
2273 alloc_end
= round_up(offset
+ len
, blocksize
);
2275 /* Make sure we aren't being give some crap mode */
2276 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2279 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2280 return btrfs_punch_hole(inode
, offset
, len
);
2283 * Make sure we have enough space before we do the
2286 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
2289 if (root
->fs_info
->quota_enabled
) {
2290 ret
= btrfs_qgroup_reserve(root
, alloc_end
- alloc_start
);
2292 goto out_reserve_fail
;
2295 mutex_lock(&inode
->i_mutex
);
2296 ret
= inode_newsize_ok(inode
, alloc_end
);
2300 if (alloc_start
> inode
->i_size
) {
2301 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2307 * If we are fallocating from the end of the file onward we
2308 * need to zero out the end of the page if i_size lands in the
2311 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
2317 * wait for ordered IO before we have any locks. We'll loop again
2318 * below with the locks held.
2320 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
2322 locked_end
= alloc_end
- 1;
2324 struct btrfs_ordered_extent
*ordered
;
2326 /* the extent lock is ordered inside the running
2329 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2330 locked_end
, 0, &cached_state
);
2331 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2334 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2335 ordered
->file_offset
< alloc_end
) {
2336 btrfs_put_ordered_extent(ordered
);
2337 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2338 alloc_start
, locked_end
,
2339 &cached_state
, GFP_NOFS
);
2341 * we can't wait on the range with the transaction
2342 * running or with the extent lock held
2344 btrfs_wait_ordered_range(inode
, alloc_start
,
2345 alloc_end
- alloc_start
);
2348 btrfs_put_ordered_extent(ordered
);
2353 cur_offset
= alloc_start
;
2357 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2358 alloc_end
- cur_offset
, 0);
2359 if (IS_ERR_OR_NULL(em
)) {
2366 last_byte
= min(extent_map_end(em
), alloc_end
);
2367 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2368 last_byte
= ALIGN(last_byte
, blocksize
);
2370 if (em
->block_start
== EXTENT_MAP_HOLE
||
2371 (cur_offset
>= inode
->i_size
&&
2372 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2373 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
2374 last_byte
- cur_offset
,
2375 1 << inode
->i_blkbits
,
2380 free_extent_map(em
);
2383 } else if (actual_end
> inode
->i_size
&&
2384 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2386 * We didn't need to allocate any more space, but we
2387 * still extended the size of the file so we need to
2390 inode
->i_ctime
= CURRENT_TIME
;
2391 i_size_write(inode
, actual_end
);
2392 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2394 free_extent_map(em
);
2396 cur_offset
= last_byte
;
2397 if (cur_offset
>= alloc_end
) {
2402 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2403 &cached_state
, GFP_NOFS
);
2405 mutex_unlock(&inode
->i_mutex
);
2406 if (root
->fs_info
->quota_enabled
)
2407 btrfs_qgroup_free(root
, alloc_end
- alloc_start
);
2409 /* Let go of our reservation. */
2410 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
2414 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2416 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2417 struct extent_map
*em
;
2418 struct extent_state
*cached_state
= NULL
;
2419 u64 lockstart
= *offset
;
2420 u64 lockend
= i_size_read(inode
);
2421 u64 start
= *offset
;
2422 u64 orig_start
= *offset
;
2423 u64 len
= i_size_read(inode
);
2427 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
2428 if (lockend
<= lockstart
)
2429 lockend
= lockstart
+ root
->sectorsize
;
2432 len
= lockend
- lockstart
+ 1;
2434 len
= max_t(u64
, len
, root
->sectorsize
);
2435 if (inode
->i_size
== 0)
2438 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
2442 * Delalloc is such a pain. If we have a hole and we have pending
2443 * delalloc for a portion of the hole we will get back a hole that
2444 * exists for the entire range since it hasn't been actually written
2445 * yet. So to take care of this case we need to look for an extent just
2446 * before the position we want in case there is outstanding delalloc
2449 if (whence
== SEEK_HOLE
&& start
!= 0) {
2450 if (start
<= root
->sectorsize
)
2451 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, 0,
2452 root
->sectorsize
, 0);
2454 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0,
2455 start
- root
->sectorsize
,
2456 root
->sectorsize
, 0);
2461 last_end
= em
->start
+ em
->len
;
2462 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2463 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2464 free_extent_map(em
);
2468 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2474 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2475 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2476 if (last_end
<= orig_start
) {
2477 free_extent_map(em
);
2483 if (whence
== SEEK_HOLE
) {
2485 free_extent_map(em
);
2489 if (whence
== SEEK_DATA
) {
2490 if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2491 if (start
>= inode
->i_size
) {
2492 free_extent_map(em
);
2498 if (!test_bit(EXTENT_FLAG_PREALLOC
,
2501 free_extent_map(em
);
2507 start
= em
->start
+ em
->len
;
2508 last_end
= em
->start
+ em
->len
;
2510 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2511 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2513 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2514 free_extent_map(em
);
2518 free_extent_map(em
);
2522 *offset
= min(*offset
, inode
->i_size
);
2524 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2525 &cached_state
, GFP_NOFS
);
2529 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2531 struct inode
*inode
= file
->f_mapping
->host
;
2534 mutex_lock(&inode
->i_mutex
);
2538 offset
= generic_file_llseek(file
, offset
, whence
);
2542 if (offset
>= i_size_read(inode
)) {
2543 mutex_unlock(&inode
->i_mutex
);
2547 ret
= find_desired_extent(inode
, &offset
, whence
);
2549 mutex_unlock(&inode
->i_mutex
);
2554 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2556 mutex_unlock(&inode
->i_mutex
);
2560 const struct file_operations btrfs_file_operations
= {
2561 .llseek
= btrfs_file_llseek
,
2562 .read
= do_sync_read
,
2563 .write
= do_sync_write
,
2564 .aio_read
= generic_file_aio_read
,
2565 .splice_read
= generic_file_splice_read
,
2566 .aio_write
= btrfs_file_aio_write
,
2567 .mmap
= btrfs_file_mmap
,
2568 .open
= generic_file_open
,
2569 .release
= btrfs_release_file
,
2570 .fsync
= btrfs_sync_file
,
2571 .fallocate
= btrfs_fallocate
,
2572 .unlocked_ioctl
= btrfs_ioctl
,
2573 #ifdef CONFIG_COMPAT
2574 .compat_ioctl
= btrfs_ioctl
,
2578 void btrfs_auto_defrag_exit(void)
2580 if (btrfs_inode_defrag_cachep
)
2581 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
2584 int btrfs_auto_defrag_init(void)
2586 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
2587 sizeof(struct inode_defrag
), 0,
2588 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
2590 if (!btrfs_inode_defrag_cachep
)