dmaengine: imx-dma: fix slow path issue in prep_dma_cyclic
[linux/fpc-iii.git] / fs / ceph / caps.c
blob25442b40c25a71761596e071612140f01279fb69
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
17 * Capability management
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
44 * Generate readable cap strings for debugging output.
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
51 static char *gcap_string(char *s, int c)
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
70 const char *ceph_cap_string(int caps)
72 int i;
73 char *s;
74 int c;
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
82 s = cap_str[i];
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 struct ceph_cap *cap;
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
150 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
159 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 /* first reserve any caps that are already allocated */
162 spin_lock(&mdsc->caps_list_lock);
163 if (mdsc->caps_avail_count >= need)
164 have = need;
165 else
166 have = mdsc->caps_avail_count;
167 mdsc->caps_avail_count -= have;
168 mdsc->caps_reserve_count += have;
169 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
170 mdsc->caps_reserve_count +
171 mdsc->caps_avail_count);
172 spin_unlock(&mdsc->caps_list_lock);
174 for (i = have; i < need; i++) {
175 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
176 if (!cap)
177 break;
178 list_add(&cap->caps_item, &newcaps);
179 alloc++;
181 /* we didn't manage to reserve as much as we needed */
182 if (have + alloc != need)
183 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
184 ctx, need, have + alloc);
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
202 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
203 struct ceph_cap_reservation *ctx)
205 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
206 if (ctx->count) {
207 spin_lock(&mdsc->caps_list_lock);
208 BUG_ON(mdsc->caps_reserve_count < ctx->count);
209 mdsc->caps_reserve_count -= ctx->count;
210 mdsc->caps_avail_count += ctx->count;
211 ctx->count = 0;
212 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
213 mdsc->caps_total_count, mdsc->caps_use_count,
214 mdsc->caps_reserve_count, mdsc->caps_avail_count);
215 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
216 mdsc->caps_reserve_count +
217 mdsc->caps_avail_count);
218 spin_unlock(&mdsc->caps_list_lock);
220 return 0;
223 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
224 struct ceph_cap_reservation *ctx)
226 struct ceph_cap *cap = NULL;
228 /* temporary, until we do something about cap import/export */
229 if (!ctx) {
230 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
231 if (cap) {
232 spin_lock(&mdsc->caps_list_lock);
233 mdsc->caps_use_count++;
234 mdsc->caps_total_count++;
235 spin_unlock(&mdsc->caps_list_lock);
237 return cap;
240 spin_lock(&mdsc->caps_list_lock);
241 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
242 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
243 mdsc->caps_reserve_count, mdsc->caps_avail_count);
244 BUG_ON(!ctx->count);
245 BUG_ON(ctx->count > mdsc->caps_reserve_count);
246 BUG_ON(list_empty(&mdsc->caps_list));
248 ctx->count--;
249 mdsc->caps_reserve_count--;
250 mdsc->caps_use_count++;
252 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
253 list_del(&cap->caps_item);
255 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
256 mdsc->caps_reserve_count + mdsc->caps_avail_count);
257 spin_unlock(&mdsc->caps_list_lock);
258 return cap;
261 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 spin_lock(&mdsc->caps_list_lock);
264 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
265 cap, mdsc->caps_total_count, mdsc->caps_use_count,
266 mdsc->caps_reserve_count, mdsc->caps_avail_count);
267 mdsc->caps_use_count--;
269 * Keep some preallocated caps around (ceph_min_count), to
270 * avoid lots of free/alloc churn.
272 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
273 mdsc->caps_min_count) {
274 mdsc->caps_total_count--;
275 kmem_cache_free(ceph_cap_cachep, cap);
276 } else {
277 mdsc->caps_avail_count++;
278 list_add(&cap->caps_item, &mdsc->caps_list);
281 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
282 mdsc->caps_reserve_count + mdsc->caps_avail_count);
283 spin_unlock(&mdsc->caps_list_lock);
286 void ceph_reservation_status(struct ceph_fs_client *fsc,
287 int *total, int *avail, int *used, int *reserved,
288 int *min)
290 struct ceph_mds_client *mdsc = fsc->mdsc;
292 if (total)
293 *total = mdsc->caps_total_count;
294 if (avail)
295 *avail = mdsc->caps_avail_count;
296 if (used)
297 *used = mdsc->caps_use_count;
298 if (reserved)
299 *reserved = mdsc->caps_reserve_count;
300 if (min)
301 *min = mdsc->caps_min_count;
305 * Find ceph_cap for given mds, if any.
307 * Called with i_ceph_lock held.
309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 struct ceph_cap *cap;
312 struct rb_node *n = ci->i_caps.rb_node;
314 while (n) {
315 cap = rb_entry(n, struct ceph_cap, ci_node);
316 if (mds < cap->mds)
317 n = n->rb_left;
318 else if (mds > cap->mds)
319 n = n->rb_right;
320 else
321 return cap;
323 return NULL;
326 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 struct ceph_cap *cap;
330 spin_lock(&ci->i_ceph_lock);
331 cap = __get_cap_for_mds(ci, mds);
332 spin_unlock(&ci->i_ceph_lock);
333 return cap;
337 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 struct ceph_cap *cap;
342 int mds = -1;
343 struct rb_node *p;
345 /* prefer mds with WR|BUFFER|EXCL caps */
346 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
347 cap = rb_entry(p, struct ceph_cap, ci_node);
348 mds = cap->mds;
349 if (cap->issued & (CEPH_CAP_FILE_WR |
350 CEPH_CAP_FILE_BUFFER |
351 CEPH_CAP_FILE_EXCL))
352 break;
354 return mds;
357 int ceph_get_cap_mds(struct inode *inode)
359 struct ceph_inode_info *ci = ceph_inode(inode);
360 int mds;
361 spin_lock(&ci->i_ceph_lock);
362 mds = __ceph_get_cap_mds(ceph_inode(inode));
363 spin_unlock(&ci->i_ceph_lock);
364 return mds;
368 * Called under i_ceph_lock.
370 static void __insert_cap_node(struct ceph_inode_info *ci,
371 struct ceph_cap *new)
373 struct rb_node **p = &ci->i_caps.rb_node;
374 struct rb_node *parent = NULL;
375 struct ceph_cap *cap = NULL;
377 while (*p) {
378 parent = *p;
379 cap = rb_entry(parent, struct ceph_cap, ci_node);
380 if (new->mds < cap->mds)
381 p = &(*p)->rb_left;
382 else if (new->mds > cap->mds)
383 p = &(*p)->rb_right;
384 else
385 BUG();
388 rb_link_node(&new->ci_node, parent, p);
389 rb_insert_color(&new->ci_node, &ci->i_caps);
393 * (re)set cap hold timeouts, which control the delayed release
394 * of unused caps back to the MDS. Should be called on cap use.
396 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
397 struct ceph_inode_info *ci)
399 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401 ci->i_hold_caps_min = round_jiffies(jiffies +
402 ma->caps_wanted_delay_min * HZ);
403 ci->i_hold_caps_max = round_jiffies(jiffies +
404 ma->caps_wanted_delay_max * HZ);
405 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
406 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
410 * (Re)queue cap at the end of the delayed cap release list.
412 * If I_FLUSH is set, leave the inode at the front of the list.
414 * Caller holds i_ceph_lock
415 * -> we take mdsc->cap_delay_lock
417 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
418 struct ceph_inode_info *ci)
420 __cap_set_timeouts(mdsc, ci);
421 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
422 ci->i_ceph_flags, ci->i_hold_caps_max);
423 if (!mdsc->stopping) {
424 spin_lock(&mdsc->cap_delay_lock);
425 if (!list_empty(&ci->i_cap_delay_list)) {
426 if (ci->i_ceph_flags & CEPH_I_FLUSH)
427 goto no_change;
428 list_del_init(&ci->i_cap_delay_list);
430 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
431 no_change:
432 spin_unlock(&mdsc->cap_delay_lock);
437 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
438 * indicating we should send a cap message to flush dirty metadata
439 * asap, and move to the front of the delayed cap list.
441 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
442 struct ceph_inode_info *ci)
444 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
445 spin_lock(&mdsc->cap_delay_lock);
446 ci->i_ceph_flags |= CEPH_I_FLUSH;
447 if (!list_empty(&ci->i_cap_delay_list))
448 list_del_init(&ci->i_cap_delay_list);
449 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
450 spin_unlock(&mdsc->cap_delay_lock);
454 * Cancel delayed work on cap.
456 * Caller must hold i_ceph_lock.
458 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
459 struct ceph_inode_info *ci)
461 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
462 if (list_empty(&ci->i_cap_delay_list))
463 return;
464 spin_lock(&mdsc->cap_delay_lock);
465 list_del_init(&ci->i_cap_delay_list);
466 spin_unlock(&mdsc->cap_delay_lock);
470 * Common issue checks for add_cap, handle_cap_grant.
472 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
473 unsigned issued)
475 unsigned had = __ceph_caps_issued(ci, NULL);
478 * Each time we receive FILE_CACHE anew, we increment
479 * i_rdcache_gen.
481 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
482 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
483 ci->i_rdcache_gen++;
486 * if we are newly issued FILE_SHARED, mark dir not complete; we
487 * don't know what happened to this directory while we didn't
488 * have the cap.
490 if ((issued & CEPH_CAP_FILE_SHARED) &&
491 (had & CEPH_CAP_FILE_SHARED) == 0) {
492 ci->i_shared_gen++;
493 if (S_ISDIR(ci->vfs_inode.i_mode)) {
494 dout(" marking %p NOT complete\n", &ci->vfs_inode);
495 __ceph_dir_clear_complete(ci);
501 * Add a capability under the given MDS session.
503 * Caller should hold session snap_rwsem (read) and s_mutex.
505 * @fmode is the open file mode, if we are opening a file, otherwise
506 * it is < 0. (This is so we can atomically add the cap and add an
507 * open file reference to it.)
509 int ceph_add_cap(struct inode *inode,
510 struct ceph_mds_session *session, u64 cap_id,
511 int fmode, unsigned issued, unsigned wanted,
512 unsigned seq, unsigned mseq, u64 realmino, int flags,
513 struct ceph_cap_reservation *caps_reservation)
515 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
516 struct ceph_inode_info *ci = ceph_inode(inode);
517 struct ceph_cap *new_cap = NULL;
518 struct ceph_cap *cap;
519 int mds = session->s_mds;
520 int actual_wanted;
522 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
523 session->s_mds, cap_id, ceph_cap_string(issued), seq);
526 * If we are opening the file, include file mode wanted bits
527 * in wanted.
529 if (fmode >= 0)
530 wanted |= ceph_caps_for_mode(fmode);
532 retry:
533 spin_lock(&ci->i_ceph_lock);
534 cap = __get_cap_for_mds(ci, mds);
535 if (!cap) {
536 if (new_cap) {
537 cap = new_cap;
538 new_cap = NULL;
539 } else {
540 spin_unlock(&ci->i_ceph_lock);
541 new_cap = get_cap(mdsc, caps_reservation);
542 if (new_cap == NULL)
543 return -ENOMEM;
544 goto retry;
547 cap->issued = 0;
548 cap->implemented = 0;
549 cap->mds = mds;
550 cap->mds_wanted = 0;
551 cap->mseq = 0;
553 cap->ci = ci;
554 __insert_cap_node(ci, cap);
556 /* clear out old exporting info? (i.e. on cap import) */
557 if (ci->i_cap_exporting_mds == mds) {
558 ci->i_cap_exporting_issued = 0;
559 ci->i_cap_exporting_mseq = 0;
560 ci->i_cap_exporting_mds = -1;
563 /* add to session cap list */
564 cap->session = session;
565 spin_lock(&session->s_cap_lock);
566 list_add_tail(&cap->session_caps, &session->s_caps);
567 session->s_nr_caps++;
568 spin_unlock(&session->s_cap_lock);
569 } else if (new_cap)
570 ceph_put_cap(mdsc, new_cap);
572 if (!ci->i_snap_realm) {
574 * add this inode to the appropriate snap realm
576 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
577 realmino);
578 if (realm) {
579 ceph_get_snap_realm(mdsc, realm);
580 spin_lock(&realm->inodes_with_caps_lock);
581 ci->i_snap_realm = realm;
582 list_add(&ci->i_snap_realm_item,
583 &realm->inodes_with_caps);
584 spin_unlock(&realm->inodes_with_caps_lock);
585 } else {
586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
587 realmino);
588 WARN_ON(!realm);
592 __check_cap_issue(ci, cap, issued);
595 * If we are issued caps we don't want, or the mds' wanted
596 * value appears to be off, queue a check so we'll release
597 * later and/or update the mds wanted value.
599 actual_wanted = __ceph_caps_wanted(ci);
600 if ((wanted & ~actual_wanted) ||
601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
602 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
603 ceph_cap_string(issued), ceph_cap_string(wanted),
604 ceph_cap_string(actual_wanted));
605 __cap_delay_requeue(mdsc, ci);
608 if (flags & CEPH_CAP_FLAG_AUTH) {
609 if (ci->i_auth_cap == NULL ||
610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
611 ci->i_auth_cap = cap;
612 } else if (ci->i_auth_cap == cap) {
613 ci->i_auth_cap = NULL;
614 spin_lock(&mdsc->cap_dirty_lock);
615 if (!list_empty(&ci->i_dirty_item)) {
616 dout(" moving %p to cap_dirty_migrating\n", inode);
617 list_move(&ci->i_dirty_item,
618 &mdsc->cap_dirty_migrating);
620 spin_unlock(&mdsc->cap_dirty_lock);
623 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
624 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
625 ceph_cap_string(issued|cap->issued), seq, mds);
626 cap->cap_id = cap_id;
627 cap->issued = issued;
628 cap->implemented |= issued;
629 if (mseq > cap->mseq)
630 cap->mds_wanted = wanted;
631 else
632 cap->mds_wanted |= wanted;
633 cap->seq = seq;
634 cap->issue_seq = seq;
635 cap->mseq = mseq;
636 cap->cap_gen = session->s_cap_gen;
638 if (fmode >= 0)
639 __ceph_get_fmode(ci, fmode);
640 spin_unlock(&ci->i_ceph_lock);
641 wake_up_all(&ci->i_cap_wq);
642 return 0;
646 * Return true if cap has not timed out and belongs to the current
647 * generation of the MDS session (i.e. has not gone 'stale' due to
648 * us losing touch with the mds).
650 static int __cap_is_valid(struct ceph_cap *cap)
652 unsigned long ttl;
653 u32 gen;
655 spin_lock(&cap->session->s_gen_ttl_lock);
656 gen = cap->session->s_cap_gen;
657 ttl = cap->session->s_cap_ttl;
658 spin_unlock(&cap->session->s_gen_ttl_lock);
660 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
661 dout("__cap_is_valid %p cap %p issued %s "
662 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
663 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
664 return 0;
667 return 1;
671 * Return set of valid cap bits issued to us. Note that caps time
672 * out, and may be invalidated in bulk if the client session times out
673 * and session->s_cap_gen is bumped.
675 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
677 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
678 struct ceph_cap *cap;
679 struct rb_node *p;
681 if (implemented)
682 *implemented = 0;
683 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
684 cap = rb_entry(p, struct ceph_cap, ci_node);
685 if (!__cap_is_valid(cap))
686 continue;
687 dout("__ceph_caps_issued %p cap %p issued %s\n",
688 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
689 have |= cap->issued;
690 if (implemented)
691 *implemented |= cap->implemented;
694 * exclude caps issued by non-auth MDS, but are been revoking
695 * by the auth MDS. The non-auth MDS should be revoking/exporting
696 * these caps, but the message is delayed.
698 if (ci->i_auth_cap) {
699 cap = ci->i_auth_cap;
700 have &= ~cap->implemented | cap->issued;
702 return have;
706 * Get cap bits issued by caps other than @ocap
708 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
710 int have = ci->i_snap_caps;
711 struct ceph_cap *cap;
712 struct rb_node *p;
714 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
715 cap = rb_entry(p, struct ceph_cap, ci_node);
716 if (cap == ocap)
717 continue;
718 if (!__cap_is_valid(cap))
719 continue;
720 have |= cap->issued;
722 return have;
726 * Move a cap to the end of the LRU (oldest caps at list head, newest
727 * at list tail).
729 static void __touch_cap(struct ceph_cap *cap)
731 struct ceph_mds_session *s = cap->session;
733 spin_lock(&s->s_cap_lock);
734 if (s->s_cap_iterator == NULL) {
735 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
736 s->s_mds);
737 list_move_tail(&cap->session_caps, &s->s_caps);
738 } else {
739 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
740 &cap->ci->vfs_inode, cap, s->s_mds);
742 spin_unlock(&s->s_cap_lock);
746 * Check if we hold the given mask. If so, move the cap(s) to the
747 * front of their respective LRUs. (This is the preferred way for
748 * callers to check for caps they want.)
750 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
752 struct ceph_cap *cap;
753 struct rb_node *p;
754 int have = ci->i_snap_caps;
756 if ((have & mask) == mask) {
757 dout("__ceph_caps_issued_mask %p snap issued %s"
758 " (mask %s)\n", &ci->vfs_inode,
759 ceph_cap_string(have),
760 ceph_cap_string(mask));
761 return 1;
764 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
765 cap = rb_entry(p, struct ceph_cap, ci_node);
766 if (!__cap_is_valid(cap))
767 continue;
768 if ((cap->issued & mask) == mask) {
769 dout("__ceph_caps_issued_mask %p cap %p issued %s"
770 " (mask %s)\n", &ci->vfs_inode, cap,
771 ceph_cap_string(cap->issued),
772 ceph_cap_string(mask));
773 if (touch)
774 __touch_cap(cap);
775 return 1;
778 /* does a combination of caps satisfy mask? */
779 have |= cap->issued;
780 if ((have & mask) == mask) {
781 dout("__ceph_caps_issued_mask %p combo issued %s"
782 " (mask %s)\n", &ci->vfs_inode,
783 ceph_cap_string(cap->issued),
784 ceph_cap_string(mask));
785 if (touch) {
786 struct rb_node *q;
788 /* touch this + preceding caps */
789 __touch_cap(cap);
790 for (q = rb_first(&ci->i_caps); q != p;
791 q = rb_next(q)) {
792 cap = rb_entry(q, struct ceph_cap,
793 ci_node);
794 if (!__cap_is_valid(cap))
795 continue;
796 __touch_cap(cap);
799 return 1;
803 return 0;
807 * Return true if mask caps are currently being revoked by an MDS.
809 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
810 struct ceph_cap *ocap, int mask)
812 struct ceph_cap *cap;
813 struct rb_node *p;
815 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
816 cap = rb_entry(p, struct ceph_cap, ci_node);
817 if (cap != ocap && __cap_is_valid(cap) &&
818 (cap->implemented & ~cap->issued & mask))
819 return 1;
821 return 0;
824 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
826 struct inode *inode = &ci->vfs_inode;
827 int ret;
829 spin_lock(&ci->i_ceph_lock);
830 ret = __ceph_caps_revoking_other(ci, NULL, mask);
831 spin_unlock(&ci->i_ceph_lock);
832 dout("ceph_caps_revoking %p %s = %d\n", inode,
833 ceph_cap_string(mask), ret);
834 return ret;
837 int __ceph_caps_used(struct ceph_inode_info *ci)
839 int used = 0;
840 if (ci->i_pin_ref)
841 used |= CEPH_CAP_PIN;
842 if (ci->i_rd_ref)
843 used |= CEPH_CAP_FILE_RD;
844 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
845 used |= CEPH_CAP_FILE_CACHE;
846 if (ci->i_wr_ref)
847 used |= CEPH_CAP_FILE_WR;
848 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
849 used |= CEPH_CAP_FILE_BUFFER;
850 return used;
854 * wanted, by virtue of open file modes
856 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
858 int want = 0;
859 int mode;
860 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
861 if (ci->i_nr_by_mode[mode])
862 want |= ceph_caps_for_mode(mode);
863 return want;
867 * Return caps we have registered with the MDS(s) as 'wanted'.
869 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
871 struct ceph_cap *cap;
872 struct rb_node *p;
873 int mds_wanted = 0;
875 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
876 cap = rb_entry(p, struct ceph_cap, ci_node);
877 if (!__cap_is_valid(cap))
878 continue;
879 mds_wanted |= cap->mds_wanted;
881 return mds_wanted;
885 * called under i_ceph_lock
887 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
889 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
893 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
895 * caller should hold i_ceph_lock.
896 * caller will not hold session s_mutex if called from destroy_inode.
898 void __ceph_remove_cap(struct ceph_cap *cap)
900 struct ceph_mds_session *session = cap->session;
901 struct ceph_inode_info *ci = cap->ci;
902 struct ceph_mds_client *mdsc =
903 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
904 int removed = 0;
906 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
908 /* remove from session list */
909 spin_lock(&session->s_cap_lock);
910 if (session->s_cap_iterator == cap) {
911 /* not yet, we are iterating over this very cap */
912 dout("__ceph_remove_cap delaying %p removal from session %p\n",
913 cap, cap->session);
914 } else {
915 list_del_init(&cap->session_caps);
916 session->s_nr_caps--;
917 cap->session = NULL;
918 removed = 1;
920 /* protect backpointer with s_cap_lock: see iterate_session_caps */
921 cap->ci = NULL;
922 spin_unlock(&session->s_cap_lock);
924 /* remove from inode list */
925 rb_erase(&cap->ci_node, &ci->i_caps);
926 if (ci->i_auth_cap == cap)
927 ci->i_auth_cap = NULL;
929 if (removed)
930 ceph_put_cap(mdsc, cap);
932 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
933 struct ceph_snap_realm *realm = ci->i_snap_realm;
934 spin_lock(&realm->inodes_with_caps_lock);
935 list_del_init(&ci->i_snap_realm_item);
936 ci->i_snap_realm_counter++;
937 ci->i_snap_realm = NULL;
938 spin_unlock(&realm->inodes_with_caps_lock);
939 ceph_put_snap_realm(mdsc, realm);
941 if (!__ceph_is_any_real_caps(ci))
942 __cap_delay_cancel(mdsc, ci);
946 * Build and send a cap message to the given MDS.
948 * Caller should be holding s_mutex.
950 static int send_cap_msg(struct ceph_mds_session *session,
951 u64 ino, u64 cid, int op,
952 int caps, int wanted, int dirty,
953 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
954 u64 size, u64 max_size,
955 struct timespec *mtime, struct timespec *atime,
956 u64 time_warp_seq,
957 kuid_t uid, kgid_t gid, umode_t mode,
958 u64 xattr_version,
959 struct ceph_buffer *xattrs_buf,
960 u64 follows)
962 struct ceph_mds_caps *fc;
963 struct ceph_msg *msg;
965 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
966 " seq %u/%u mseq %u follows %lld size %llu/%llu"
967 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
968 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
969 ceph_cap_string(dirty),
970 seq, issue_seq, mseq, follows, size, max_size,
971 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
973 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
974 if (!msg)
975 return -ENOMEM;
977 msg->hdr.tid = cpu_to_le64(flush_tid);
979 fc = msg->front.iov_base;
980 memset(fc, 0, sizeof(*fc));
982 fc->cap_id = cpu_to_le64(cid);
983 fc->op = cpu_to_le32(op);
984 fc->seq = cpu_to_le32(seq);
985 fc->issue_seq = cpu_to_le32(issue_seq);
986 fc->migrate_seq = cpu_to_le32(mseq);
987 fc->caps = cpu_to_le32(caps);
988 fc->wanted = cpu_to_le32(wanted);
989 fc->dirty = cpu_to_le32(dirty);
990 fc->ino = cpu_to_le64(ino);
991 fc->snap_follows = cpu_to_le64(follows);
993 fc->size = cpu_to_le64(size);
994 fc->max_size = cpu_to_le64(max_size);
995 if (mtime)
996 ceph_encode_timespec(&fc->mtime, mtime);
997 if (atime)
998 ceph_encode_timespec(&fc->atime, atime);
999 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1001 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1002 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1003 fc->mode = cpu_to_le32(mode);
1005 fc->xattr_version = cpu_to_le64(xattr_version);
1006 if (xattrs_buf) {
1007 msg->middle = ceph_buffer_get(xattrs_buf);
1008 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1009 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1012 ceph_con_send(&session->s_con, msg);
1013 return 0;
1016 void __queue_cap_release(struct ceph_mds_session *session,
1017 u64 ino, u64 cap_id, u32 migrate_seq,
1018 u32 issue_seq)
1020 struct ceph_msg *msg;
1021 struct ceph_mds_cap_release *head;
1022 struct ceph_mds_cap_item *item;
1024 spin_lock(&session->s_cap_lock);
1025 BUG_ON(!session->s_num_cap_releases);
1026 msg = list_first_entry(&session->s_cap_releases,
1027 struct ceph_msg, list_head);
1029 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1030 ino, session->s_mds, msg, session->s_num_cap_releases);
1032 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1033 head = msg->front.iov_base;
1034 le32_add_cpu(&head->num, 1);
1035 item = msg->front.iov_base + msg->front.iov_len;
1036 item->ino = cpu_to_le64(ino);
1037 item->cap_id = cpu_to_le64(cap_id);
1038 item->migrate_seq = cpu_to_le32(migrate_seq);
1039 item->seq = cpu_to_le32(issue_seq);
1041 session->s_num_cap_releases--;
1043 msg->front.iov_len += sizeof(*item);
1044 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1045 dout(" release msg %p full\n", msg);
1046 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1047 } else {
1048 dout(" release msg %p at %d/%d (%d)\n", msg,
1049 (int)le32_to_cpu(head->num),
1050 (int)CEPH_CAPS_PER_RELEASE,
1051 (int)msg->front.iov_len);
1053 spin_unlock(&session->s_cap_lock);
1057 * Queue cap releases when an inode is dropped from our cache. Since
1058 * inode is about to be destroyed, there is no need for i_ceph_lock.
1060 void ceph_queue_caps_release(struct inode *inode)
1062 struct ceph_inode_info *ci = ceph_inode(inode);
1063 struct rb_node *p;
1065 p = rb_first(&ci->i_caps);
1066 while (p) {
1067 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1068 struct ceph_mds_session *session = cap->session;
1070 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1071 cap->mseq, cap->issue_seq);
1072 p = rb_next(p);
1073 __ceph_remove_cap(cap);
1078 * Send a cap msg on the given inode. Update our caps state, then
1079 * drop i_ceph_lock and send the message.
1081 * Make note of max_size reported/requested from mds, revoked caps
1082 * that have now been implemented.
1084 * Make half-hearted attempt ot to invalidate page cache if we are
1085 * dropping RDCACHE. Note that this will leave behind locked pages
1086 * that we'll then need to deal with elsewhere.
1088 * Return non-zero if delayed release, or we experienced an error
1089 * such that the caller should requeue + retry later.
1091 * called with i_ceph_lock, then drops it.
1092 * caller should hold snap_rwsem (read), s_mutex.
1094 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1095 int op, int used, int want, int retain, int flushing,
1096 unsigned *pflush_tid)
1097 __releases(cap->ci->i_ceph_lock)
1099 struct ceph_inode_info *ci = cap->ci;
1100 struct inode *inode = &ci->vfs_inode;
1101 u64 cap_id = cap->cap_id;
1102 int held, revoking, dropping, keep;
1103 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1104 u64 size, max_size;
1105 struct timespec mtime, atime;
1106 int wake = 0;
1107 umode_t mode;
1108 kuid_t uid;
1109 kgid_t gid;
1110 struct ceph_mds_session *session;
1111 u64 xattr_version = 0;
1112 struct ceph_buffer *xattr_blob = NULL;
1113 int delayed = 0;
1114 u64 flush_tid = 0;
1115 int i;
1116 int ret;
1118 held = cap->issued | cap->implemented;
1119 revoking = cap->implemented & ~cap->issued;
1120 retain &= ~revoking;
1121 dropping = cap->issued & ~retain;
1123 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1124 inode, cap, cap->session,
1125 ceph_cap_string(held), ceph_cap_string(held & retain),
1126 ceph_cap_string(revoking));
1127 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1129 session = cap->session;
1131 /* don't release wanted unless we've waited a bit. */
1132 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1133 time_before(jiffies, ci->i_hold_caps_min)) {
1134 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1135 ceph_cap_string(cap->issued),
1136 ceph_cap_string(cap->issued & retain),
1137 ceph_cap_string(cap->mds_wanted),
1138 ceph_cap_string(want));
1139 want |= cap->mds_wanted;
1140 retain |= cap->issued;
1141 delayed = 1;
1143 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1145 cap->issued &= retain; /* drop bits we don't want */
1146 if (cap->implemented & ~cap->issued) {
1148 * Wake up any waiters on wanted -> needed transition.
1149 * This is due to the weird transition from buffered
1150 * to sync IO... we need to flush dirty pages _before_
1151 * allowing sync writes to avoid reordering.
1153 wake = 1;
1155 cap->implemented &= cap->issued | used;
1156 cap->mds_wanted = want;
1158 if (flushing) {
1160 * assign a tid for flush operations so we can avoid
1161 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1162 * clean type races. track latest tid for every bit
1163 * so we can handle flush AxFw, flush Fw, and have the
1164 * first ack clean Ax.
1166 flush_tid = ++ci->i_cap_flush_last_tid;
1167 if (pflush_tid)
1168 *pflush_tid = flush_tid;
1169 dout(" cap_flush_tid %d\n", (int)flush_tid);
1170 for (i = 0; i < CEPH_CAP_BITS; i++)
1171 if (flushing & (1 << i))
1172 ci->i_cap_flush_tid[i] = flush_tid;
1174 follows = ci->i_head_snapc->seq;
1175 } else {
1176 follows = 0;
1179 keep = cap->implemented;
1180 seq = cap->seq;
1181 issue_seq = cap->issue_seq;
1182 mseq = cap->mseq;
1183 size = inode->i_size;
1184 ci->i_reported_size = size;
1185 max_size = ci->i_wanted_max_size;
1186 ci->i_requested_max_size = max_size;
1187 mtime = inode->i_mtime;
1188 atime = inode->i_atime;
1189 time_warp_seq = ci->i_time_warp_seq;
1190 uid = inode->i_uid;
1191 gid = inode->i_gid;
1192 mode = inode->i_mode;
1194 if (flushing & CEPH_CAP_XATTR_EXCL) {
1195 __ceph_build_xattrs_blob(ci);
1196 xattr_blob = ci->i_xattrs.blob;
1197 xattr_version = ci->i_xattrs.version;
1200 spin_unlock(&ci->i_ceph_lock);
1202 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1203 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1204 size, max_size, &mtime, &atime, time_warp_seq,
1205 uid, gid, mode, xattr_version, xattr_blob,
1206 follows);
1207 if (ret < 0) {
1208 dout("error sending cap msg, must requeue %p\n", inode);
1209 delayed = 1;
1212 if (wake)
1213 wake_up_all(&ci->i_cap_wq);
1215 return delayed;
1219 * When a snapshot is taken, clients accumulate dirty metadata on
1220 * inodes with capabilities in ceph_cap_snaps to describe the file
1221 * state at the time the snapshot was taken. This must be flushed
1222 * asynchronously back to the MDS once sync writes complete and dirty
1223 * data is written out.
1225 * Unless @again is true, skip cap_snaps that were already sent to
1226 * the MDS (i.e., during this session).
1228 * Called under i_ceph_lock. Takes s_mutex as needed.
1230 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1231 struct ceph_mds_session **psession,
1232 int again)
1233 __releases(ci->i_ceph_lock)
1234 __acquires(ci->i_ceph_lock)
1236 struct inode *inode = &ci->vfs_inode;
1237 int mds;
1238 struct ceph_cap_snap *capsnap;
1239 u32 mseq;
1240 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1241 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1242 session->s_mutex */
1243 u64 next_follows = 0; /* keep track of how far we've gotten through the
1244 i_cap_snaps list, and skip these entries next time
1245 around to avoid an infinite loop */
1247 if (psession)
1248 session = *psession;
1250 dout("__flush_snaps %p\n", inode);
1251 retry:
1252 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1253 /* avoid an infiniute loop after retry */
1254 if (capsnap->follows < next_follows)
1255 continue;
1257 * we need to wait for sync writes to complete and for dirty
1258 * pages to be written out.
1260 if (capsnap->dirty_pages || capsnap->writing)
1261 break;
1264 * if cap writeback already occurred, we should have dropped
1265 * the capsnap in ceph_put_wrbuffer_cap_refs.
1267 BUG_ON(capsnap->dirty == 0);
1269 /* pick mds, take s_mutex */
1270 if (ci->i_auth_cap == NULL) {
1271 dout("no auth cap (migrating?), doing nothing\n");
1272 goto out;
1275 /* only flush each capsnap once */
1276 if (!again && !list_empty(&capsnap->flushing_item)) {
1277 dout("already flushed %p, skipping\n", capsnap);
1278 continue;
1281 mds = ci->i_auth_cap->session->s_mds;
1282 mseq = ci->i_auth_cap->mseq;
1284 if (session && session->s_mds != mds) {
1285 dout("oops, wrong session %p mutex\n", session);
1286 mutex_unlock(&session->s_mutex);
1287 ceph_put_mds_session(session);
1288 session = NULL;
1290 if (!session) {
1291 spin_unlock(&ci->i_ceph_lock);
1292 mutex_lock(&mdsc->mutex);
1293 session = __ceph_lookup_mds_session(mdsc, mds);
1294 mutex_unlock(&mdsc->mutex);
1295 if (session) {
1296 dout("inverting session/ino locks on %p\n",
1297 session);
1298 mutex_lock(&session->s_mutex);
1301 * if session == NULL, we raced against a cap
1302 * deletion or migration. retry, and we'll
1303 * get a better @mds value next time.
1305 spin_lock(&ci->i_ceph_lock);
1306 goto retry;
1309 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1310 atomic_inc(&capsnap->nref);
1311 if (!list_empty(&capsnap->flushing_item))
1312 list_del_init(&capsnap->flushing_item);
1313 list_add_tail(&capsnap->flushing_item,
1314 &session->s_cap_snaps_flushing);
1315 spin_unlock(&ci->i_ceph_lock);
1317 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1318 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1319 send_cap_msg(session, ceph_vino(inode).ino, 0,
1320 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1321 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1322 capsnap->size, 0,
1323 &capsnap->mtime, &capsnap->atime,
1324 capsnap->time_warp_seq,
1325 capsnap->uid, capsnap->gid, capsnap->mode,
1326 capsnap->xattr_version, capsnap->xattr_blob,
1327 capsnap->follows);
1329 next_follows = capsnap->follows + 1;
1330 ceph_put_cap_snap(capsnap);
1332 spin_lock(&ci->i_ceph_lock);
1333 goto retry;
1336 /* we flushed them all; remove this inode from the queue */
1337 spin_lock(&mdsc->snap_flush_lock);
1338 list_del_init(&ci->i_snap_flush_item);
1339 spin_unlock(&mdsc->snap_flush_lock);
1341 out:
1342 if (psession)
1343 *psession = session;
1344 else if (session) {
1345 mutex_unlock(&session->s_mutex);
1346 ceph_put_mds_session(session);
1350 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1352 spin_lock(&ci->i_ceph_lock);
1353 __ceph_flush_snaps(ci, NULL, 0);
1354 spin_unlock(&ci->i_ceph_lock);
1358 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1359 * Caller is then responsible for calling __mark_inode_dirty with the
1360 * returned flags value.
1362 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1364 struct ceph_mds_client *mdsc =
1365 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1366 struct inode *inode = &ci->vfs_inode;
1367 int was = ci->i_dirty_caps;
1368 int dirty = 0;
1370 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1371 ceph_cap_string(mask), ceph_cap_string(was),
1372 ceph_cap_string(was | mask));
1373 ci->i_dirty_caps |= mask;
1374 if (was == 0) {
1375 if (!ci->i_head_snapc)
1376 ci->i_head_snapc = ceph_get_snap_context(
1377 ci->i_snap_realm->cached_context);
1378 dout(" inode %p now dirty snapc %p auth cap %p\n",
1379 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1380 BUG_ON(!list_empty(&ci->i_dirty_item));
1381 spin_lock(&mdsc->cap_dirty_lock);
1382 if (ci->i_auth_cap)
1383 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1384 else
1385 list_add(&ci->i_dirty_item,
1386 &mdsc->cap_dirty_migrating);
1387 spin_unlock(&mdsc->cap_dirty_lock);
1388 if (ci->i_flushing_caps == 0) {
1389 ihold(inode);
1390 dirty |= I_DIRTY_SYNC;
1393 BUG_ON(list_empty(&ci->i_dirty_item));
1394 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1395 (mask & CEPH_CAP_FILE_BUFFER))
1396 dirty |= I_DIRTY_DATASYNC;
1397 __cap_delay_requeue(mdsc, ci);
1398 return dirty;
1402 * Add dirty inode to the flushing list. Assigned a seq number so we
1403 * can wait for caps to flush without starving.
1405 * Called under i_ceph_lock.
1407 static int __mark_caps_flushing(struct inode *inode,
1408 struct ceph_mds_session *session)
1410 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1411 struct ceph_inode_info *ci = ceph_inode(inode);
1412 int flushing;
1414 BUG_ON(ci->i_dirty_caps == 0);
1415 BUG_ON(list_empty(&ci->i_dirty_item));
1417 flushing = ci->i_dirty_caps;
1418 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1419 ceph_cap_string(flushing),
1420 ceph_cap_string(ci->i_flushing_caps),
1421 ceph_cap_string(ci->i_flushing_caps | flushing));
1422 ci->i_flushing_caps |= flushing;
1423 ci->i_dirty_caps = 0;
1424 dout(" inode %p now !dirty\n", inode);
1426 spin_lock(&mdsc->cap_dirty_lock);
1427 list_del_init(&ci->i_dirty_item);
1429 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1430 if (list_empty(&ci->i_flushing_item)) {
1431 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1432 mdsc->num_cap_flushing++;
1433 dout(" inode %p now flushing seq %lld\n", inode,
1434 ci->i_cap_flush_seq);
1435 } else {
1436 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1437 dout(" inode %p now flushing (more) seq %lld\n", inode,
1438 ci->i_cap_flush_seq);
1440 spin_unlock(&mdsc->cap_dirty_lock);
1442 return flushing;
1446 * try to invalidate mapping pages without blocking.
1448 static int try_nonblocking_invalidate(struct inode *inode)
1450 struct ceph_inode_info *ci = ceph_inode(inode);
1451 u32 invalidating_gen = ci->i_rdcache_gen;
1453 spin_unlock(&ci->i_ceph_lock);
1454 invalidate_mapping_pages(&inode->i_data, 0, -1);
1455 spin_lock(&ci->i_ceph_lock);
1457 if (inode->i_data.nrpages == 0 &&
1458 invalidating_gen == ci->i_rdcache_gen) {
1459 /* success. */
1460 dout("try_nonblocking_invalidate %p success\n", inode);
1461 /* save any racing async invalidate some trouble */
1462 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1463 return 0;
1465 dout("try_nonblocking_invalidate %p failed\n", inode);
1466 return -1;
1470 * Swiss army knife function to examine currently used and wanted
1471 * versus held caps. Release, flush, ack revoked caps to mds as
1472 * appropriate.
1474 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1475 * cap release further.
1476 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1477 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1478 * further delay.
1480 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1481 struct ceph_mds_session *session)
1483 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1484 struct ceph_mds_client *mdsc = fsc->mdsc;
1485 struct inode *inode = &ci->vfs_inode;
1486 struct ceph_cap *cap;
1487 int file_wanted, used, cap_used;
1488 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1489 int issued, implemented, want, retain, revoking, flushing = 0;
1490 int mds = -1; /* keep track of how far we've gone through i_caps list
1491 to avoid an infinite loop on retry */
1492 struct rb_node *p;
1493 int tried_invalidate = 0;
1494 int delayed = 0, sent = 0, force_requeue = 0, num;
1495 int queue_invalidate = 0;
1496 int is_delayed = flags & CHECK_CAPS_NODELAY;
1498 /* if we are unmounting, flush any unused caps immediately. */
1499 if (mdsc->stopping)
1500 is_delayed = 1;
1502 spin_lock(&ci->i_ceph_lock);
1504 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1505 flags |= CHECK_CAPS_FLUSH;
1507 /* flush snaps first time around only */
1508 if (!list_empty(&ci->i_cap_snaps))
1509 __ceph_flush_snaps(ci, &session, 0);
1510 goto retry_locked;
1511 retry:
1512 spin_lock(&ci->i_ceph_lock);
1513 retry_locked:
1514 file_wanted = __ceph_caps_file_wanted(ci);
1515 used = __ceph_caps_used(ci);
1516 want = file_wanted | used;
1517 issued = __ceph_caps_issued(ci, &implemented);
1518 revoking = implemented & ~issued;
1520 retain = want | CEPH_CAP_PIN;
1521 if (!mdsc->stopping && inode->i_nlink > 0) {
1522 if (want) {
1523 retain |= CEPH_CAP_ANY; /* be greedy */
1524 } else {
1525 retain |= CEPH_CAP_ANY_SHARED;
1527 * keep RD only if we didn't have the file open RW,
1528 * because then the mds would revoke it anyway to
1529 * journal max_size=0.
1531 if (ci->i_max_size == 0)
1532 retain |= CEPH_CAP_ANY_RD;
1536 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1537 " issued %s revoking %s retain %s %s%s%s\n", inode,
1538 ceph_cap_string(file_wanted),
1539 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1540 ceph_cap_string(ci->i_flushing_caps),
1541 ceph_cap_string(issued), ceph_cap_string(revoking),
1542 ceph_cap_string(retain),
1543 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1544 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1545 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1548 * If we no longer need to hold onto old our caps, and we may
1549 * have cached pages, but don't want them, then try to invalidate.
1550 * If we fail, it's because pages are locked.... try again later.
1552 if ((!is_delayed || mdsc->stopping) &&
1553 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1554 inode->i_data.nrpages && /* have cached pages */
1555 (file_wanted == 0 || /* no open files */
1556 (revoking & (CEPH_CAP_FILE_CACHE|
1557 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1558 !tried_invalidate) {
1559 dout("check_caps trying to invalidate on %p\n", inode);
1560 if (try_nonblocking_invalidate(inode) < 0) {
1561 if (revoking & (CEPH_CAP_FILE_CACHE|
1562 CEPH_CAP_FILE_LAZYIO)) {
1563 dout("check_caps queuing invalidate\n");
1564 queue_invalidate = 1;
1565 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1566 } else {
1567 dout("check_caps failed to invalidate pages\n");
1568 /* we failed to invalidate pages. check these
1569 caps again later. */
1570 force_requeue = 1;
1571 __cap_set_timeouts(mdsc, ci);
1574 tried_invalidate = 1;
1575 goto retry_locked;
1578 num = 0;
1579 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1580 cap = rb_entry(p, struct ceph_cap, ci_node);
1581 num++;
1583 /* avoid looping forever */
1584 if (mds >= cap->mds ||
1585 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1586 continue;
1588 /* NOTE: no side-effects allowed, until we take s_mutex */
1590 cap_used = used;
1591 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1592 cap_used &= ~ci->i_auth_cap->issued;
1594 revoking = cap->implemented & ~cap->issued;
1595 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1596 cap->mds, cap, ceph_cap_string(cap->issued),
1597 ceph_cap_string(cap_used),
1598 ceph_cap_string(cap->implemented),
1599 ceph_cap_string(revoking));
1601 if (cap == ci->i_auth_cap &&
1602 (cap->issued & CEPH_CAP_FILE_WR)) {
1603 /* request larger max_size from MDS? */
1604 if (ci->i_wanted_max_size > ci->i_max_size &&
1605 ci->i_wanted_max_size > ci->i_requested_max_size) {
1606 dout("requesting new max_size\n");
1607 goto ack;
1610 /* approaching file_max? */
1611 if ((inode->i_size << 1) >= ci->i_max_size &&
1612 (ci->i_reported_size << 1) < ci->i_max_size) {
1613 dout("i_size approaching max_size\n");
1614 goto ack;
1617 /* flush anything dirty? */
1618 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1619 ci->i_dirty_caps) {
1620 dout("flushing dirty caps\n");
1621 goto ack;
1624 /* completed revocation? going down and there are no caps? */
1625 if (revoking && (revoking & cap_used) == 0) {
1626 dout("completed revocation of %s\n",
1627 ceph_cap_string(cap->implemented & ~cap->issued));
1628 goto ack;
1631 /* want more caps from mds? */
1632 if (want & ~(cap->mds_wanted | cap->issued))
1633 goto ack;
1635 /* things we might delay */
1636 if ((cap->issued & ~retain) == 0 &&
1637 cap->mds_wanted == want)
1638 continue; /* nope, all good */
1640 if (is_delayed)
1641 goto ack;
1643 /* delay? */
1644 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1645 time_before(jiffies, ci->i_hold_caps_max)) {
1646 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1647 ceph_cap_string(cap->issued),
1648 ceph_cap_string(cap->issued & retain),
1649 ceph_cap_string(cap->mds_wanted),
1650 ceph_cap_string(want));
1651 delayed++;
1652 continue;
1655 ack:
1656 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1657 dout(" skipping %p I_NOFLUSH set\n", inode);
1658 continue;
1661 if (session && session != cap->session) {
1662 dout("oops, wrong session %p mutex\n", session);
1663 mutex_unlock(&session->s_mutex);
1664 session = NULL;
1666 if (!session) {
1667 session = cap->session;
1668 if (mutex_trylock(&session->s_mutex) == 0) {
1669 dout("inverting session/ino locks on %p\n",
1670 session);
1671 spin_unlock(&ci->i_ceph_lock);
1672 if (took_snap_rwsem) {
1673 up_read(&mdsc->snap_rwsem);
1674 took_snap_rwsem = 0;
1676 mutex_lock(&session->s_mutex);
1677 goto retry;
1680 /* take snap_rwsem after session mutex */
1681 if (!took_snap_rwsem) {
1682 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1683 dout("inverting snap/in locks on %p\n",
1684 inode);
1685 spin_unlock(&ci->i_ceph_lock);
1686 down_read(&mdsc->snap_rwsem);
1687 took_snap_rwsem = 1;
1688 goto retry;
1690 took_snap_rwsem = 1;
1693 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1694 flushing = __mark_caps_flushing(inode, session);
1695 else
1696 flushing = 0;
1698 mds = cap->mds; /* remember mds, so we don't repeat */
1699 sent++;
1701 /* __send_cap drops i_ceph_lock */
1702 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1703 want, retain, flushing, NULL);
1704 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1708 * Reschedule delayed caps release if we delayed anything,
1709 * otherwise cancel.
1711 if (delayed && is_delayed)
1712 force_requeue = 1; /* __send_cap delayed release; requeue */
1713 if (!delayed && !is_delayed)
1714 __cap_delay_cancel(mdsc, ci);
1715 else if (!is_delayed || force_requeue)
1716 __cap_delay_requeue(mdsc, ci);
1718 spin_unlock(&ci->i_ceph_lock);
1720 if (queue_invalidate)
1721 ceph_queue_invalidate(inode);
1723 if (session)
1724 mutex_unlock(&session->s_mutex);
1725 if (took_snap_rwsem)
1726 up_read(&mdsc->snap_rwsem);
1730 * Try to flush dirty caps back to the auth mds.
1732 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1733 unsigned *flush_tid)
1735 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1736 struct ceph_inode_info *ci = ceph_inode(inode);
1737 int unlock_session = session ? 0 : 1;
1738 int flushing = 0;
1740 retry:
1741 spin_lock(&ci->i_ceph_lock);
1742 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1743 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1744 goto out;
1746 if (ci->i_dirty_caps && ci->i_auth_cap) {
1747 struct ceph_cap *cap = ci->i_auth_cap;
1748 int used = __ceph_caps_used(ci);
1749 int want = __ceph_caps_wanted(ci);
1750 int delayed;
1752 if (!session) {
1753 spin_unlock(&ci->i_ceph_lock);
1754 session = cap->session;
1755 mutex_lock(&session->s_mutex);
1756 goto retry;
1758 BUG_ON(session != cap->session);
1759 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1760 goto out;
1762 flushing = __mark_caps_flushing(inode, session);
1764 /* __send_cap drops i_ceph_lock */
1765 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1766 cap->issued | cap->implemented, flushing,
1767 flush_tid);
1768 if (!delayed)
1769 goto out_unlocked;
1771 spin_lock(&ci->i_ceph_lock);
1772 __cap_delay_requeue(mdsc, ci);
1774 out:
1775 spin_unlock(&ci->i_ceph_lock);
1776 out_unlocked:
1777 if (session && unlock_session)
1778 mutex_unlock(&session->s_mutex);
1779 return flushing;
1783 * Return true if we've flushed caps through the given flush_tid.
1785 static int caps_are_flushed(struct inode *inode, unsigned tid)
1787 struct ceph_inode_info *ci = ceph_inode(inode);
1788 int i, ret = 1;
1790 spin_lock(&ci->i_ceph_lock);
1791 for (i = 0; i < CEPH_CAP_BITS; i++)
1792 if ((ci->i_flushing_caps & (1 << i)) &&
1793 ci->i_cap_flush_tid[i] <= tid) {
1794 /* still flushing this bit */
1795 ret = 0;
1796 break;
1798 spin_unlock(&ci->i_ceph_lock);
1799 return ret;
1803 * Wait on any unsafe replies for the given inode. First wait on the
1804 * newest request, and make that the upper bound. Then, if there are
1805 * more requests, keep waiting on the oldest as long as it is still older
1806 * than the original request.
1808 static void sync_write_wait(struct inode *inode)
1810 struct ceph_inode_info *ci = ceph_inode(inode);
1811 struct list_head *head = &ci->i_unsafe_writes;
1812 struct ceph_osd_request *req;
1813 u64 last_tid;
1815 spin_lock(&ci->i_unsafe_lock);
1816 if (list_empty(head))
1817 goto out;
1819 /* set upper bound as _last_ entry in chain */
1820 req = list_entry(head->prev, struct ceph_osd_request,
1821 r_unsafe_item);
1822 last_tid = req->r_tid;
1824 do {
1825 ceph_osdc_get_request(req);
1826 spin_unlock(&ci->i_unsafe_lock);
1827 dout("sync_write_wait on tid %llu (until %llu)\n",
1828 req->r_tid, last_tid);
1829 wait_for_completion(&req->r_safe_completion);
1830 spin_lock(&ci->i_unsafe_lock);
1831 ceph_osdc_put_request(req);
1834 * from here on look at first entry in chain, since we
1835 * only want to wait for anything older than last_tid
1837 if (list_empty(head))
1838 break;
1839 req = list_entry(head->next, struct ceph_osd_request,
1840 r_unsafe_item);
1841 } while (req->r_tid < last_tid);
1842 out:
1843 spin_unlock(&ci->i_unsafe_lock);
1846 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1848 struct inode *inode = file->f_mapping->host;
1849 struct ceph_inode_info *ci = ceph_inode(inode);
1850 unsigned flush_tid;
1851 int ret;
1852 int dirty;
1854 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1855 sync_write_wait(inode);
1857 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1858 if (ret < 0)
1859 return ret;
1860 mutex_lock(&inode->i_mutex);
1862 dirty = try_flush_caps(inode, NULL, &flush_tid);
1863 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1866 * only wait on non-file metadata writeback (the mds
1867 * can recover size and mtime, so we don't need to
1868 * wait for that)
1870 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1871 dout("fsync waiting for flush_tid %u\n", flush_tid);
1872 ret = wait_event_interruptible(ci->i_cap_wq,
1873 caps_are_flushed(inode, flush_tid));
1876 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1877 mutex_unlock(&inode->i_mutex);
1878 return ret;
1882 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1883 * queue inode for flush but don't do so immediately, because we can
1884 * get by with fewer MDS messages if we wait for data writeback to
1885 * complete first.
1887 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1889 struct ceph_inode_info *ci = ceph_inode(inode);
1890 unsigned flush_tid;
1891 int err = 0;
1892 int dirty;
1893 int wait = wbc->sync_mode == WB_SYNC_ALL;
1895 dout("write_inode %p wait=%d\n", inode, wait);
1896 if (wait) {
1897 dirty = try_flush_caps(inode, NULL, &flush_tid);
1898 if (dirty)
1899 err = wait_event_interruptible(ci->i_cap_wq,
1900 caps_are_flushed(inode, flush_tid));
1901 } else {
1902 struct ceph_mds_client *mdsc =
1903 ceph_sb_to_client(inode->i_sb)->mdsc;
1905 spin_lock(&ci->i_ceph_lock);
1906 if (__ceph_caps_dirty(ci))
1907 __cap_delay_requeue_front(mdsc, ci);
1908 spin_unlock(&ci->i_ceph_lock);
1910 return err;
1914 * After a recovering MDS goes active, we need to resend any caps
1915 * we were flushing.
1917 * Caller holds session->s_mutex.
1919 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1920 struct ceph_mds_session *session)
1922 struct ceph_cap_snap *capsnap;
1924 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1925 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1926 flushing_item) {
1927 struct ceph_inode_info *ci = capsnap->ci;
1928 struct inode *inode = &ci->vfs_inode;
1929 struct ceph_cap *cap;
1931 spin_lock(&ci->i_ceph_lock);
1932 cap = ci->i_auth_cap;
1933 if (cap && cap->session == session) {
1934 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1935 cap, capsnap);
1936 __ceph_flush_snaps(ci, &session, 1);
1937 } else {
1938 pr_err("%p auth cap %p not mds%d ???\n", inode,
1939 cap, session->s_mds);
1941 spin_unlock(&ci->i_ceph_lock);
1945 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1946 struct ceph_mds_session *session)
1948 struct ceph_inode_info *ci;
1950 kick_flushing_capsnaps(mdsc, session);
1952 dout("kick_flushing_caps mds%d\n", session->s_mds);
1953 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1954 struct inode *inode = &ci->vfs_inode;
1955 struct ceph_cap *cap;
1956 int delayed = 0;
1958 spin_lock(&ci->i_ceph_lock);
1959 cap = ci->i_auth_cap;
1960 if (cap && cap->session == session) {
1961 dout("kick_flushing_caps %p cap %p %s\n", inode,
1962 cap, ceph_cap_string(ci->i_flushing_caps));
1963 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1964 __ceph_caps_used(ci),
1965 __ceph_caps_wanted(ci),
1966 cap->issued | cap->implemented,
1967 ci->i_flushing_caps, NULL);
1968 if (delayed) {
1969 spin_lock(&ci->i_ceph_lock);
1970 __cap_delay_requeue(mdsc, ci);
1971 spin_unlock(&ci->i_ceph_lock);
1973 } else {
1974 pr_err("%p auth cap %p not mds%d ???\n", inode,
1975 cap, session->s_mds);
1976 spin_unlock(&ci->i_ceph_lock);
1981 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1982 struct ceph_mds_session *session,
1983 struct inode *inode)
1985 struct ceph_inode_info *ci = ceph_inode(inode);
1986 struct ceph_cap *cap;
1987 int delayed = 0;
1989 spin_lock(&ci->i_ceph_lock);
1990 cap = ci->i_auth_cap;
1991 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1992 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1994 __ceph_flush_snaps(ci, &session, 1);
1996 if (ci->i_flushing_caps) {
1997 spin_lock(&mdsc->cap_dirty_lock);
1998 list_move_tail(&ci->i_flushing_item,
1999 &cap->session->s_cap_flushing);
2000 spin_unlock(&mdsc->cap_dirty_lock);
2002 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2003 __ceph_caps_used(ci),
2004 __ceph_caps_wanted(ci),
2005 cap->issued | cap->implemented,
2006 ci->i_flushing_caps, NULL);
2007 if (delayed) {
2008 spin_lock(&ci->i_ceph_lock);
2009 __cap_delay_requeue(mdsc, ci);
2010 spin_unlock(&ci->i_ceph_lock);
2012 } else {
2013 spin_unlock(&ci->i_ceph_lock);
2019 * Take references to capabilities we hold, so that we don't release
2020 * them to the MDS prematurely.
2022 * Protected by i_ceph_lock.
2024 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2026 if (got & CEPH_CAP_PIN)
2027 ci->i_pin_ref++;
2028 if (got & CEPH_CAP_FILE_RD)
2029 ci->i_rd_ref++;
2030 if (got & CEPH_CAP_FILE_CACHE)
2031 ci->i_rdcache_ref++;
2032 if (got & CEPH_CAP_FILE_WR)
2033 ci->i_wr_ref++;
2034 if (got & CEPH_CAP_FILE_BUFFER) {
2035 if (ci->i_wb_ref == 0)
2036 ihold(&ci->vfs_inode);
2037 ci->i_wb_ref++;
2038 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2039 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2044 * Try to grab cap references. Specify those refs we @want, and the
2045 * minimal set we @need. Also include the larger offset we are writing
2046 * to (when applicable), and check against max_size here as well.
2047 * Note that caller is responsible for ensuring max_size increases are
2048 * requested from the MDS.
2050 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2051 int *got, loff_t endoff, int *check_max, int *err)
2053 struct inode *inode = &ci->vfs_inode;
2054 int ret = 0;
2055 int have, implemented;
2056 int file_wanted;
2058 dout("get_cap_refs %p need %s want %s\n", inode,
2059 ceph_cap_string(need), ceph_cap_string(want));
2060 spin_lock(&ci->i_ceph_lock);
2062 /* make sure file is actually open */
2063 file_wanted = __ceph_caps_file_wanted(ci);
2064 if ((file_wanted & need) == 0) {
2065 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2066 ceph_cap_string(need), ceph_cap_string(file_wanted));
2067 *err = -EBADF;
2068 ret = 1;
2069 goto out;
2072 /* finish pending truncate */
2073 while (ci->i_truncate_pending) {
2074 spin_unlock(&ci->i_ceph_lock);
2075 if (!(need & CEPH_CAP_FILE_WR))
2076 mutex_lock(&inode->i_mutex);
2077 __ceph_do_pending_vmtruncate(inode);
2078 if (!(need & CEPH_CAP_FILE_WR))
2079 mutex_unlock(&inode->i_mutex);
2080 spin_lock(&ci->i_ceph_lock);
2083 if (need & CEPH_CAP_FILE_WR) {
2084 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2085 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2086 inode, endoff, ci->i_max_size);
2087 if (endoff > ci->i_wanted_max_size) {
2088 *check_max = 1;
2089 ret = 1;
2091 goto out;
2094 * If a sync write is in progress, we must wait, so that we
2095 * can get a final snapshot value for size+mtime.
2097 if (__ceph_have_pending_cap_snap(ci)) {
2098 dout("get_cap_refs %p cap_snap_pending\n", inode);
2099 goto out;
2102 have = __ceph_caps_issued(ci, &implemented);
2104 if ((have & need) == need) {
2106 * Look at (implemented & ~have & not) so that we keep waiting
2107 * on transition from wanted -> needed caps. This is needed
2108 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2109 * going before a prior buffered writeback happens.
2111 int not = want & ~(have & need);
2112 int revoking = implemented & ~have;
2113 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2114 inode, ceph_cap_string(have), ceph_cap_string(not),
2115 ceph_cap_string(revoking));
2116 if ((revoking & not) == 0) {
2117 *got = need | (have & want);
2118 __take_cap_refs(ci, *got);
2119 ret = 1;
2121 } else {
2122 dout("get_cap_refs %p have %s needed %s\n", inode,
2123 ceph_cap_string(have), ceph_cap_string(need));
2125 out:
2126 spin_unlock(&ci->i_ceph_lock);
2127 dout("get_cap_refs %p ret %d got %s\n", inode,
2128 ret, ceph_cap_string(*got));
2129 return ret;
2133 * Check the offset we are writing up to against our current
2134 * max_size. If necessary, tell the MDS we want to write to
2135 * a larger offset.
2137 static void check_max_size(struct inode *inode, loff_t endoff)
2139 struct ceph_inode_info *ci = ceph_inode(inode);
2140 int check = 0;
2142 /* do we need to explicitly request a larger max_size? */
2143 spin_lock(&ci->i_ceph_lock);
2144 if ((endoff >= ci->i_max_size ||
2145 endoff > (inode->i_size << 1)) &&
2146 endoff > ci->i_wanted_max_size) {
2147 dout("write %p at large endoff %llu, req max_size\n",
2148 inode, endoff);
2149 ci->i_wanted_max_size = endoff;
2150 check = 1;
2152 spin_unlock(&ci->i_ceph_lock);
2153 if (check)
2154 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2158 * Wait for caps, and take cap references. If we can't get a WR cap
2159 * due to a small max_size, make sure we check_max_size (and possibly
2160 * ask the mds) so we don't get hung up indefinitely.
2162 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2163 loff_t endoff)
2165 int check_max, ret, err;
2167 retry:
2168 if (endoff > 0)
2169 check_max_size(&ci->vfs_inode, endoff);
2170 check_max = 0;
2171 err = 0;
2172 ret = wait_event_interruptible(ci->i_cap_wq,
2173 try_get_cap_refs(ci, need, want,
2174 got, endoff,
2175 &check_max, &err));
2176 if (err)
2177 ret = err;
2178 if (check_max)
2179 goto retry;
2180 return ret;
2184 * Take cap refs. Caller must already know we hold at least one ref
2185 * on the caps in question or we don't know this is safe.
2187 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2189 spin_lock(&ci->i_ceph_lock);
2190 __take_cap_refs(ci, caps);
2191 spin_unlock(&ci->i_ceph_lock);
2195 * Release cap refs.
2197 * If we released the last ref on any given cap, call ceph_check_caps
2198 * to release (or schedule a release).
2200 * If we are releasing a WR cap (from a sync write), finalize any affected
2201 * cap_snap, and wake up any waiters.
2203 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2205 struct inode *inode = &ci->vfs_inode;
2206 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2207 struct ceph_cap_snap *capsnap;
2209 spin_lock(&ci->i_ceph_lock);
2210 if (had & CEPH_CAP_PIN)
2211 --ci->i_pin_ref;
2212 if (had & CEPH_CAP_FILE_RD)
2213 if (--ci->i_rd_ref == 0)
2214 last++;
2215 if (had & CEPH_CAP_FILE_CACHE)
2216 if (--ci->i_rdcache_ref == 0)
2217 last++;
2218 if (had & CEPH_CAP_FILE_BUFFER) {
2219 if (--ci->i_wb_ref == 0) {
2220 last++;
2221 put++;
2223 dout("put_cap_refs %p wb %d -> %d (?)\n",
2224 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2226 if (had & CEPH_CAP_FILE_WR)
2227 if (--ci->i_wr_ref == 0) {
2228 last++;
2229 if (!list_empty(&ci->i_cap_snaps)) {
2230 capsnap = list_first_entry(&ci->i_cap_snaps,
2231 struct ceph_cap_snap,
2232 ci_item);
2233 if (capsnap->writing) {
2234 capsnap->writing = 0;
2235 flushsnaps =
2236 __ceph_finish_cap_snap(ci,
2237 capsnap);
2238 wake = 1;
2242 spin_unlock(&ci->i_ceph_lock);
2244 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2245 last ? " last" : "", put ? " put" : "");
2247 if (last && !flushsnaps)
2248 ceph_check_caps(ci, 0, NULL);
2249 else if (flushsnaps)
2250 ceph_flush_snaps(ci);
2251 if (wake)
2252 wake_up_all(&ci->i_cap_wq);
2253 if (put)
2254 iput(inode);
2258 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2259 * context. Adjust per-snap dirty page accounting as appropriate.
2260 * Once all dirty data for a cap_snap is flushed, flush snapped file
2261 * metadata back to the MDS. If we dropped the last ref, call
2262 * ceph_check_caps.
2264 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2265 struct ceph_snap_context *snapc)
2267 struct inode *inode = &ci->vfs_inode;
2268 int last = 0;
2269 int complete_capsnap = 0;
2270 int drop_capsnap = 0;
2271 int found = 0;
2272 struct ceph_cap_snap *capsnap = NULL;
2274 spin_lock(&ci->i_ceph_lock);
2275 ci->i_wrbuffer_ref -= nr;
2276 last = !ci->i_wrbuffer_ref;
2278 if (ci->i_head_snapc == snapc) {
2279 ci->i_wrbuffer_ref_head -= nr;
2280 if (ci->i_wrbuffer_ref_head == 0 &&
2281 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2282 BUG_ON(!ci->i_head_snapc);
2283 ceph_put_snap_context(ci->i_head_snapc);
2284 ci->i_head_snapc = NULL;
2286 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2287 inode,
2288 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2289 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2290 last ? " LAST" : "");
2291 } else {
2292 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2293 if (capsnap->context == snapc) {
2294 found = 1;
2295 break;
2298 BUG_ON(!found);
2299 capsnap->dirty_pages -= nr;
2300 if (capsnap->dirty_pages == 0) {
2301 complete_capsnap = 1;
2302 if (capsnap->dirty == 0)
2303 /* cap writeback completed before we created
2304 * the cap_snap; no FLUSHSNAP is needed */
2305 drop_capsnap = 1;
2307 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2308 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2309 inode, capsnap, capsnap->context->seq,
2310 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2311 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2312 last ? " (wrbuffer last)" : "",
2313 complete_capsnap ? " (complete capsnap)" : "",
2314 drop_capsnap ? " (drop capsnap)" : "");
2315 if (drop_capsnap) {
2316 ceph_put_snap_context(capsnap->context);
2317 list_del(&capsnap->ci_item);
2318 list_del(&capsnap->flushing_item);
2319 ceph_put_cap_snap(capsnap);
2323 spin_unlock(&ci->i_ceph_lock);
2325 if (last) {
2326 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2327 iput(inode);
2328 } else if (complete_capsnap) {
2329 ceph_flush_snaps(ci);
2330 wake_up_all(&ci->i_cap_wq);
2332 if (drop_capsnap)
2333 iput(inode);
2337 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2338 * actually be a revocation if it specifies a smaller cap set.)
2340 * caller holds s_mutex and i_ceph_lock, we drop both.
2342 * return value:
2343 * 0 - ok
2344 * 1 - check_caps on auth cap only (writeback)
2345 * 2 - check_caps (ack revoke)
2347 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2348 struct ceph_mds_session *session,
2349 struct ceph_cap *cap,
2350 struct ceph_buffer *xattr_buf)
2351 __releases(ci->i_ceph_lock)
2353 struct ceph_inode_info *ci = ceph_inode(inode);
2354 int mds = session->s_mds;
2355 int seq = le32_to_cpu(grant->seq);
2356 int newcaps = le32_to_cpu(grant->caps);
2357 int issued, implemented, used, wanted, dirty;
2358 u64 size = le64_to_cpu(grant->size);
2359 u64 max_size = le64_to_cpu(grant->max_size);
2360 struct timespec mtime, atime, ctime;
2361 int check_caps = 0;
2362 int wake = 0;
2363 int writeback = 0;
2364 int revoked_rdcache = 0;
2365 int queue_invalidate = 0;
2367 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2368 inode, cap, mds, seq, ceph_cap_string(newcaps));
2369 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2370 inode->i_size);
2373 * If CACHE is being revoked, and we have no dirty buffers,
2374 * try to invalidate (once). (If there are dirty buffers, we
2375 * will invalidate _after_ writeback.)
2377 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2378 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2379 !ci->i_wrbuffer_ref) {
2380 if (try_nonblocking_invalidate(inode) == 0) {
2381 revoked_rdcache = 1;
2382 } else {
2383 /* there were locked pages.. invalidate later
2384 in a separate thread. */
2385 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2386 queue_invalidate = 1;
2387 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2392 /* side effects now are allowed */
2394 issued = __ceph_caps_issued(ci, &implemented);
2395 issued |= implemented | __ceph_caps_dirty(ci);
2397 cap->cap_gen = session->s_cap_gen;
2399 __check_cap_issue(ci, cap, newcaps);
2401 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2402 inode->i_mode = le32_to_cpu(grant->mode);
2403 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2404 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2405 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2406 from_kuid(&init_user_ns, inode->i_uid),
2407 from_kgid(&init_user_ns, inode->i_gid));
2410 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2411 set_nlink(inode, le32_to_cpu(grant->nlink));
2413 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2414 int len = le32_to_cpu(grant->xattr_len);
2415 u64 version = le64_to_cpu(grant->xattr_version);
2417 if (version > ci->i_xattrs.version) {
2418 dout(" got new xattrs v%llu on %p len %d\n",
2419 version, inode, len);
2420 if (ci->i_xattrs.blob)
2421 ceph_buffer_put(ci->i_xattrs.blob);
2422 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2423 ci->i_xattrs.version = version;
2427 /* size/ctime/mtime/atime? */
2428 ceph_fill_file_size(inode, issued,
2429 le32_to_cpu(grant->truncate_seq),
2430 le64_to_cpu(grant->truncate_size), size);
2431 ceph_decode_timespec(&mtime, &grant->mtime);
2432 ceph_decode_timespec(&atime, &grant->atime);
2433 ceph_decode_timespec(&ctime, &grant->ctime);
2434 ceph_fill_file_time(inode, issued,
2435 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2436 &atime);
2438 /* max size increase? */
2439 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2440 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2441 ci->i_max_size = max_size;
2442 if (max_size >= ci->i_wanted_max_size) {
2443 ci->i_wanted_max_size = 0; /* reset */
2444 ci->i_requested_max_size = 0;
2446 wake = 1;
2449 /* check cap bits */
2450 wanted = __ceph_caps_wanted(ci);
2451 used = __ceph_caps_used(ci);
2452 dirty = __ceph_caps_dirty(ci);
2453 dout(" my wanted = %s, used = %s, dirty %s\n",
2454 ceph_cap_string(wanted),
2455 ceph_cap_string(used),
2456 ceph_cap_string(dirty));
2457 if (wanted != le32_to_cpu(grant->wanted)) {
2458 dout("mds wanted %s -> %s\n",
2459 ceph_cap_string(le32_to_cpu(grant->wanted)),
2460 ceph_cap_string(wanted));
2461 /* imported cap may not have correct mds_wanted */
2462 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2463 check_caps = 1;
2466 cap->seq = seq;
2468 /* file layout may have changed */
2469 ci->i_layout = grant->layout;
2471 /* revocation, grant, or no-op? */
2472 if (cap->issued & ~newcaps) {
2473 int revoking = cap->issued & ~newcaps;
2475 dout("revocation: %s -> %s (revoking %s)\n",
2476 ceph_cap_string(cap->issued),
2477 ceph_cap_string(newcaps),
2478 ceph_cap_string(revoking));
2479 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2480 writeback = 1; /* initiate writeback; will delay ack */
2481 else if (revoking == CEPH_CAP_FILE_CACHE &&
2482 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2483 queue_invalidate)
2484 ; /* do nothing yet, invalidation will be queued */
2485 else if (cap == ci->i_auth_cap)
2486 check_caps = 1; /* check auth cap only */
2487 else
2488 check_caps = 2; /* check all caps */
2489 cap->issued = newcaps;
2490 cap->implemented |= newcaps;
2491 } else if (cap->issued == newcaps) {
2492 dout("caps unchanged: %s -> %s\n",
2493 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2494 } else {
2495 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2496 ceph_cap_string(newcaps));
2497 /* non-auth MDS is revoking the newly grant caps ? */
2498 if (cap == ci->i_auth_cap &&
2499 __ceph_caps_revoking_other(ci, cap, newcaps))
2500 check_caps = 2;
2502 cap->issued = newcaps;
2503 cap->implemented |= newcaps; /* add bits only, to
2504 * avoid stepping on a
2505 * pending revocation */
2506 wake = 1;
2508 BUG_ON(cap->issued & ~cap->implemented);
2510 spin_unlock(&ci->i_ceph_lock);
2511 if (writeback)
2513 * queue inode for writeback: we can't actually call
2514 * filemap_write_and_wait, etc. from message handler
2515 * context.
2517 ceph_queue_writeback(inode);
2518 if (queue_invalidate)
2519 ceph_queue_invalidate(inode);
2520 if (wake)
2521 wake_up_all(&ci->i_cap_wq);
2523 if (check_caps == 1)
2524 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2525 session);
2526 else if (check_caps == 2)
2527 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2528 else
2529 mutex_unlock(&session->s_mutex);
2533 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2534 * MDS has been safely committed.
2536 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2537 struct ceph_mds_caps *m,
2538 struct ceph_mds_session *session,
2539 struct ceph_cap *cap)
2540 __releases(ci->i_ceph_lock)
2542 struct ceph_inode_info *ci = ceph_inode(inode);
2543 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2544 unsigned seq = le32_to_cpu(m->seq);
2545 int dirty = le32_to_cpu(m->dirty);
2546 int cleaned = 0;
2547 int drop = 0;
2548 int i;
2550 for (i = 0; i < CEPH_CAP_BITS; i++)
2551 if ((dirty & (1 << i)) &&
2552 flush_tid == ci->i_cap_flush_tid[i])
2553 cleaned |= 1 << i;
2555 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2556 " flushing %s -> %s\n",
2557 inode, session->s_mds, seq, ceph_cap_string(dirty),
2558 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2559 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2561 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2562 goto out;
2564 ci->i_flushing_caps &= ~cleaned;
2566 spin_lock(&mdsc->cap_dirty_lock);
2567 if (ci->i_flushing_caps == 0) {
2568 list_del_init(&ci->i_flushing_item);
2569 if (!list_empty(&session->s_cap_flushing))
2570 dout(" mds%d still flushing cap on %p\n",
2571 session->s_mds,
2572 &list_entry(session->s_cap_flushing.next,
2573 struct ceph_inode_info,
2574 i_flushing_item)->vfs_inode);
2575 mdsc->num_cap_flushing--;
2576 wake_up_all(&mdsc->cap_flushing_wq);
2577 dout(" inode %p now !flushing\n", inode);
2579 if (ci->i_dirty_caps == 0) {
2580 dout(" inode %p now clean\n", inode);
2581 BUG_ON(!list_empty(&ci->i_dirty_item));
2582 drop = 1;
2583 if (ci->i_wrbuffer_ref_head == 0) {
2584 BUG_ON(!ci->i_head_snapc);
2585 ceph_put_snap_context(ci->i_head_snapc);
2586 ci->i_head_snapc = NULL;
2588 } else {
2589 BUG_ON(list_empty(&ci->i_dirty_item));
2592 spin_unlock(&mdsc->cap_dirty_lock);
2593 wake_up_all(&ci->i_cap_wq);
2595 out:
2596 spin_unlock(&ci->i_ceph_lock);
2597 if (drop)
2598 iput(inode);
2602 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2603 * throw away our cap_snap.
2605 * Caller hold s_mutex.
2607 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2608 struct ceph_mds_caps *m,
2609 struct ceph_mds_session *session)
2611 struct ceph_inode_info *ci = ceph_inode(inode);
2612 u64 follows = le64_to_cpu(m->snap_follows);
2613 struct ceph_cap_snap *capsnap;
2614 int drop = 0;
2616 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2617 inode, ci, session->s_mds, follows);
2619 spin_lock(&ci->i_ceph_lock);
2620 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2621 if (capsnap->follows == follows) {
2622 if (capsnap->flush_tid != flush_tid) {
2623 dout(" cap_snap %p follows %lld tid %lld !="
2624 " %lld\n", capsnap, follows,
2625 flush_tid, capsnap->flush_tid);
2626 break;
2628 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2629 dout(" removing %p cap_snap %p follows %lld\n",
2630 inode, capsnap, follows);
2631 ceph_put_snap_context(capsnap->context);
2632 list_del(&capsnap->ci_item);
2633 list_del(&capsnap->flushing_item);
2634 ceph_put_cap_snap(capsnap);
2635 drop = 1;
2636 break;
2637 } else {
2638 dout(" skipping cap_snap %p follows %lld\n",
2639 capsnap, capsnap->follows);
2642 spin_unlock(&ci->i_ceph_lock);
2643 if (drop)
2644 iput(inode);
2648 * Handle TRUNC from MDS, indicating file truncation.
2650 * caller hold s_mutex.
2652 static void handle_cap_trunc(struct inode *inode,
2653 struct ceph_mds_caps *trunc,
2654 struct ceph_mds_session *session)
2655 __releases(ci->i_ceph_lock)
2657 struct ceph_inode_info *ci = ceph_inode(inode);
2658 int mds = session->s_mds;
2659 int seq = le32_to_cpu(trunc->seq);
2660 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2661 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2662 u64 size = le64_to_cpu(trunc->size);
2663 int implemented = 0;
2664 int dirty = __ceph_caps_dirty(ci);
2665 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2666 int queue_trunc = 0;
2668 issued |= implemented | dirty;
2670 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2671 inode, mds, seq, truncate_size, truncate_seq);
2672 queue_trunc = ceph_fill_file_size(inode, issued,
2673 truncate_seq, truncate_size, size);
2674 spin_unlock(&ci->i_ceph_lock);
2676 if (queue_trunc)
2677 ceph_queue_vmtruncate(inode);
2681 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2682 * different one. If we are the most recent migration we've seen (as
2683 * indicated by mseq), make note of the migrating cap bits for the
2684 * duration (until we see the corresponding IMPORT).
2686 * caller holds s_mutex
2688 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2689 struct ceph_mds_session *session,
2690 int *open_target_sessions)
2692 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2693 struct ceph_inode_info *ci = ceph_inode(inode);
2694 int mds = session->s_mds;
2695 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2696 struct ceph_cap *cap = NULL, *t;
2697 struct rb_node *p;
2698 int remember = 1;
2700 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2701 inode, ci, mds, mseq);
2703 spin_lock(&ci->i_ceph_lock);
2705 /* make sure we haven't seen a higher mseq */
2706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2707 t = rb_entry(p, struct ceph_cap, ci_node);
2708 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2709 dout(" higher mseq on cap from mds%d\n",
2710 t->session->s_mds);
2711 remember = 0;
2713 if (t->session->s_mds == mds)
2714 cap = t;
2717 if (cap) {
2718 if (remember) {
2719 /* make note */
2720 ci->i_cap_exporting_mds = mds;
2721 ci->i_cap_exporting_mseq = mseq;
2722 ci->i_cap_exporting_issued = cap->issued;
2725 * make sure we have open sessions with all possible
2726 * export targets, so that we get the matching IMPORT
2728 *open_target_sessions = 1;
2731 * we can't flush dirty caps that we've seen the
2732 * EXPORT but no IMPORT for
2734 spin_lock(&mdsc->cap_dirty_lock);
2735 if (!list_empty(&ci->i_dirty_item)) {
2736 dout(" moving %p to cap_dirty_migrating\n",
2737 inode);
2738 list_move(&ci->i_dirty_item,
2739 &mdsc->cap_dirty_migrating);
2741 spin_unlock(&mdsc->cap_dirty_lock);
2743 __ceph_remove_cap(cap);
2745 /* else, we already released it */
2747 spin_unlock(&ci->i_ceph_lock);
2751 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2752 * clean them up.
2754 * caller holds s_mutex.
2756 static void handle_cap_import(struct ceph_mds_client *mdsc,
2757 struct inode *inode, struct ceph_mds_caps *im,
2758 struct ceph_mds_session *session,
2759 void *snaptrace, int snaptrace_len)
2761 struct ceph_inode_info *ci = ceph_inode(inode);
2762 int mds = session->s_mds;
2763 unsigned issued = le32_to_cpu(im->caps);
2764 unsigned wanted = le32_to_cpu(im->wanted);
2765 unsigned seq = le32_to_cpu(im->seq);
2766 unsigned mseq = le32_to_cpu(im->migrate_seq);
2767 u64 realmino = le64_to_cpu(im->realm);
2768 u64 cap_id = le64_to_cpu(im->cap_id);
2770 if (ci->i_cap_exporting_mds >= 0 &&
2771 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2772 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2773 " - cleared exporting from mds%d\n",
2774 inode, ci, mds, mseq,
2775 ci->i_cap_exporting_mds);
2776 ci->i_cap_exporting_issued = 0;
2777 ci->i_cap_exporting_mseq = 0;
2778 ci->i_cap_exporting_mds = -1;
2780 spin_lock(&mdsc->cap_dirty_lock);
2781 if (!list_empty(&ci->i_dirty_item)) {
2782 dout(" moving %p back to cap_dirty\n", inode);
2783 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2785 spin_unlock(&mdsc->cap_dirty_lock);
2786 } else {
2787 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2788 inode, ci, mds, mseq);
2791 down_write(&mdsc->snap_rwsem);
2792 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2793 false);
2794 downgrade_write(&mdsc->snap_rwsem);
2795 ceph_add_cap(inode, session, cap_id, -1,
2796 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2797 NULL /* no caps context */);
2798 kick_flushing_inode_caps(mdsc, session, inode);
2799 up_read(&mdsc->snap_rwsem);
2801 /* make sure we re-request max_size, if necessary */
2802 spin_lock(&ci->i_ceph_lock);
2803 ci->i_wanted_max_size = 0; /* reset */
2804 ci->i_requested_max_size = 0;
2805 spin_unlock(&ci->i_ceph_lock);
2809 * Handle a caps message from the MDS.
2811 * Identify the appropriate session, inode, and call the right handler
2812 * based on the cap op.
2814 void ceph_handle_caps(struct ceph_mds_session *session,
2815 struct ceph_msg *msg)
2817 struct ceph_mds_client *mdsc = session->s_mdsc;
2818 struct super_block *sb = mdsc->fsc->sb;
2819 struct inode *inode;
2820 struct ceph_inode_info *ci;
2821 struct ceph_cap *cap;
2822 struct ceph_mds_caps *h;
2823 int mds = session->s_mds;
2824 int op;
2825 u32 seq, mseq;
2826 struct ceph_vino vino;
2827 u64 cap_id;
2828 u64 size, max_size;
2829 u64 tid;
2830 void *snaptrace;
2831 size_t snaptrace_len;
2832 void *flock;
2833 u32 flock_len;
2834 int open_target_sessions = 0;
2836 dout("handle_caps from mds%d\n", mds);
2838 /* decode */
2839 tid = le64_to_cpu(msg->hdr.tid);
2840 if (msg->front.iov_len < sizeof(*h))
2841 goto bad;
2842 h = msg->front.iov_base;
2843 op = le32_to_cpu(h->op);
2844 vino.ino = le64_to_cpu(h->ino);
2845 vino.snap = CEPH_NOSNAP;
2846 cap_id = le64_to_cpu(h->cap_id);
2847 seq = le32_to_cpu(h->seq);
2848 mseq = le32_to_cpu(h->migrate_seq);
2849 size = le64_to_cpu(h->size);
2850 max_size = le64_to_cpu(h->max_size);
2852 snaptrace = h + 1;
2853 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2855 if (le16_to_cpu(msg->hdr.version) >= 2) {
2856 void *p, *end;
2858 p = snaptrace + snaptrace_len;
2859 end = msg->front.iov_base + msg->front.iov_len;
2860 ceph_decode_32_safe(&p, end, flock_len, bad);
2861 flock = p;
2862 } else {
2863 flock = NULL;
2864 flock_len = 0;
2867 mutex_lock(&session->s_mutex);
2868 session->s_seq++;
2869 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2870 (unsigned)seq);
2872 if (op == CEPH_CAP_OP_IMPORT)
2873 ceph_add_cap_releases(mdsc, session);
2875 /* lookup ino */
2876 inode = ceph_find_inode(sb, vino);
2877 ci = ceph_inode(inode);
2878 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2879 vino.snap, inode);
2880 if (!inode) {
2881 dout(" i don't have ino %llx\n", vino.ino);
2883 if (op == CEPH_CAP_OP_IMPORT)
2884 __queue_cap_release(session, vino.ino, cap_id,
2885 mseq, seq);
2886 goto flush_cap_releases;
2889 /* these will work even if we don't have a cap yet */
2890 switch (op) {
2891 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2892 handle_cap_flushsnap_ack(inode, tid, h, session);
2893 goto done;
2895 case CEPH_CAP_OP_EXPORT:
2896 handle_cap_export(inode, h, session, &open_target_sessions);
2897 goto done;
2899 case CEPH_CAP_OP_IMPORT:
2900 handle_cap_import(mdsc, inode, h, session,
2901 snaptrace, snaptrace_len);
2904 /* the rest require a cap */
2905 spin_lock(&ci->i_ceph_lock);
2906 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2907 if (!cap) {
2908 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2909 inode, ceph_ino(inode), ceph_snap(inode), mds);
2910 spin_unlock(&ci->i_ceph_lock);
2911 goto flush_cap_releases;
2914 /* note that each of these drops i_ceph_lock for us */
2915 switch (op) {
2916 case CEPH_CAP_OP_REVOKE:
2917 case CEPH_CAP_OP_GRANT:
2918 case CEPH_CAP_OP_IMPORT:
2919 handle_cap_grant(inode, h, session, cap, msg->middle);
2920 goto done_unlocked;
2922 case CEPH_CAP_OP_FLUSH_ACK:
2923 handle_cap_flush_ack(inode, tid, h, session, cap);
2924 break;
2926 case CEPH_CAP_OP_TRUNC:
2927 handle_cap_trunc(inode, h, session);
2928 break;
2930 default:
2931 spin_unlock(&ci->i_ceph_lock);
2932 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2933 ceph_cap_op_name(op));
2936 goto done;
2938 flush_cap_releases:
2940 * send any full release message to try to move things
2941 * along for the mds (who clearly thinks we still have this
2942 * cap).
2944 ceph_add_cap_releases(mdsc, session);
2945 ceph_send_cap_releases(mdsc, session);
2947 done:
2948 mutex_unlock(&session->s_mutex);
2949 done_unlocked:
2950 if (inode)
2951 iput(inode);
2952 if (open_target_sessions)
2953 ceph_mdsc_open_export_target_sessions(mdsc, session);
2954 return;
2956 bad:
2957 pr_err("ceph_handle_caps: corrupt message\n");
2958 ceph_msg_dump(msg);
2959 return;
2963 * Delayed work handler to process end of delayed cap release LRU list.
2965 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2967 struct ceph_inode_info *ci;
2968 int flags = CHECK_CAPS_NODELAY;
2970 dout("check_delayed_caps\n");
2971 while (1) {
2972 spin_lock(&mdsc->cap_delay_lock);
2973 if (list_empty(&mdsc->cap_delay_list))
2974 break;
2975 ci = list_first_entry(&mdsc->cap_delay_list,
2976 struct ceph_inode_info,
2977 i_cap_delay_list);
2978 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2979 time_before(jiffies, ci->i_hold_caps_max))
2980 break;
2981 list_del_init(&ci->i_cap_delay_list);
2982 spin_unlock(&mdsc->cap_delay_lock);
2983 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2984 ceph_check_caps(ci, flags, NULL);
2986 spin_unlock(&mdsc->cap_delay_lock);
2990 * Flush all dirty caps to the mds
2992 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2994 struct ceph_inode_info *ci;
2995 struct inode *inode;
2997 dout("flush_dirty_caps\n");
2998 spin_lock(&mdsc->cap_dirty_lock);
2999 while (!list_empty(&mdsc->cap_dirty)) {
3000 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3001 i_dirty_item);
3002 inode = &ci->vfs_inode;
3003 ihold(inode);
3004 dout("flush_dirty_caps %p\n", inode);
3005 spin_unlock(&mdsc->cap_dirty_lock);
3006 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3007 iput(inode);
3008 spin_lock(&mdsc->cap_dirty_lock);
3010 spin_unlock(&mdsc->cap_dirty_lock);
3011 dout("flush_dirty_caps done\n");
3015 * Drop open file reference. If we were the last open file,
3016 * we may need to release capabilities to the MDS (or schedule
3017 * their delayed release).
3019 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3021 struct inode *inode = &ci->vfs_inode;
3022 int last = 0;
3024 spin_lock(&ci->i_ceph_lock);
3025 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3026 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3027 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3028 if (--ci->i_nr_by_mode[fmode] == 0)
3029 last++;
3030 spin_unlock(&ci->i_ceph_lock);
3032 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3033 ceph_check_caps(ci, 0, NULL);
3037 * Helpers for embedding cap and dentry lease releases into mds
3038 * requests.
3040 * @force is used by dentry_release (below) to force inclusion of a
3041 * record for the directory inode, even when there aren't any caps to
3042 * drop.
3044 int ceph_encode_inode_release(void **p, struct inode *inode,
3045 int mds, int drop, int unless, int force)
3047 struct ceph_inode_info *ci = ceph_inode(inode);
3048 struct ceph_cap *cap;
3049 struct ceph_mds_request_release *rel = *p;
3050 int used, dirty;
3051 int ret = 0;
3053 spin_lock(&ci->i_ceph_lock);
3054 used = __ceph_caps_used(ci);
3055 dirty = __ceph_caps_dirty(ci);
3057 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3058 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3059 ceph_cap_string(unless));
3061 /* only drop unused, clean caps */
3062 drop &= ~(used | dirty);
3064 cap = __get_cap_for_mds(ci, mds);
3065 if (cap && __cap_is_valid(cap)) {
3066 if (force ||
3067 ((cap->issued & drop) &&
3068 (cap->issued & unless) == 0)) {
3069 if ((cap->issued & drop) &&
3070 (cap->issued & unless) == 0) {
3071 int wanted = __ceph_caps_wanted(ci);
3072 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3073 wanted |= cap->mds_wanted;
3074 dout("encode_inode_release %p cap %p "
3075 "%s -> %s, wanted %s -> %s\n", inode, cap,
3076 ceph_cap_string(cap->issued),
3077 ceph_cap_string(cap->issued & ~drop),
3078 ceph_cap_string(cap->mds_wanted),
3079 ceph_cap_string(wanted));
3081 cap->issued &= ~drop;
3082 cap->implemented &= ~drop;
3083 cap->mds_wanted = wanted;
3084 } else {
3085 dout("encode_inode_release %p cap %p %s"
3086 " (force)\n", inode, cap,
3087 ceph_cap_string(cap->issued));
3090 rel->ino = cpu_to_le64(ceph_ino(inode));
3091 rel->cap_id = cpu_to_le64(cap->cap_id);
3092 rel->seq = cpu_to_le32(cap->seq);
3093 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3094 rel->mseq = cpu_to_le32(cap->mseq);
3095 rel->caps = cpu_to_le32(cap->issued);
3096 rel->wanted = cpu_to_le32(cap->mds_wanted);
3097 rel->dname_len = 0;
3098 rel->dname_seq = 0;
3099 *p += sizeof(*rel);
3100 ret = 1;
3101 } else {
3102 dout("encode_inode_release %p cap %p %s\n",
3103 inode, cap, ceph_cap_string(cap->issued));
3106 spin_unlock(&ci->i_ceph_lock);
3107 return ret;
3110 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3111 int mds, int drop, int unless)
3113 struct inode *dir = dentry->d_parent->d_inode;
3114 struct ceph_mds_request_release *rel = *p;
3115 struct ceph_dentry_info *di = ceph_dentry(dentry);
3116 int force = 0;
3117 int ret;
3120 * force an record for the directory caps if we have a dentry lease.
3121 * this is racy (can't take i_ceph_lock and d_lock together), but it
3122 * doesn't have to be perfect; the mds will revoke anything we don't
3123 * release.
3125 spin_lock(&dentry->d_lock);
3126 if (di->lease_session && di->lease_session->s_mds == mds)
3127 force = 1;
3128 spin_unlock(&dentry->d_lock);
3130 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3132 spin_lock(&dentry->d_lock);
3133 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3134 dout("encode_dentry_release %p mds%d seq %d\n",
3135 dentry, mds, (int)di->lease_seq);
3136 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3137 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3138 *p += dentry->d_name.len;
3139 rel->dname_seq = cpu_to_le32(di->lease_seq);
3140 __ceph_mdsc_drop_dentry_lease(dentry);
3142 spin_unlock(&dentry->d_lock);
3143 return ret;