4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages
;
53 static int least_priority
;
54 static atomic_t highest_priority_index
= ATOMIC_INIT(-1);
56 static const char Bad_file
[] = "Bad swap file entry ";
57 static const char Unused_file
[] = "Unused swap file entry ";
58 static const char Bad_offset
[] = "Bad swap offset entry ";
59 static const char Unused_offset
[] = "Unused swap offset entry ";
61 struct swap_list_t swap_list
= {-1, -1};
63 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
65 static DEFINE_MUTEX(swapon_mutex
);
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
71 static inline unsigned char swap_count(unsigned char ent
)
73 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
76 /* returns 1 if swap entry is freed */
78 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
80 swp_entry_t entry
= swp_entry(si
->type
, offset
);
84 page
= find_get_page(swap_address_space(entry
), entry
.val
);
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
94 if (trylock_page(page
)) {
95 ret
= try_to_free_swap(page
);
98 page_cache_release(page
);
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
106 static int discard_swap(struct swap_info_struct
*si
)
108 struct swap_extent
*se
;
109 sector_t start_block
;
113 /* Do not discard the swap header page! */
114 se
= &si
->first_swap_extent
;
115 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
116 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
118 err
= blkdev_issue_discard(si
->bdev
, start_block
,
119 nr_blocks
, GFP_KERNEL
, 0);
125 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
126 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
127 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
129 err
= blkdev_issue_discard(si
->bdev
, start_block
,
130 nr_blocks
, GFP_KERNEL
, 0);
136 return err
; /* That will often be -EOPNOTSUPP */
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
143 static void discard_swap_cluster(struct swap_info_struct
*si
,
144 pgoff_t start_page
, pgoff_t nr_pages
)
146 struct swap_extent
*se
= si
->curr_swap_extent
;
147 int found_extent
= 0;
150 struct list_head
*lh
;
152 if (se
->start_page
<= start_page
&&
153 start_page
< se
->start_page
+ se
->nr_pages
) {
154 pgoff_t offset
= start_page
- se
->start_page
;
155 sector_t start_block
= se
->start_block
+ offset
;
156 sector_t nr_blocks
= se
->nr_pages
- offset
;
158 if (nr_blocks
> nr_pages
)
159 nr_blocks
= nr_pages
;
160 start_page
+= nr_blocks
;
161 nr_pages
-= nr_blocks
;
164 si
->curr_swap_extent
= se
;
166 start_block
<<= PAGE_SHIFT
- 9;
167 nr_blocks
<<= PAGE_SHIFT
- 9;
168 if (blkdev_issue_discard(si
->bdev
, start_block
,
169 nr_blocks
, GFP_NOIO
, 0))
174 se
= list_entry(lh
, struct swap_extent
, list
);
178 static int wait_for_discard(void *word
)
184 #define SWAPFILE_CLUSTER 256
185 #define LATENCY_LIMIT 256
187 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
190 unsigned long offset
;
191 unsigned long scan_base
;
192 unsigned long last_in_cluster
= 0;
193 int latency_ration
= LATENCY_LIMIT
;
194 int found_free_cluster
= 0;
197 * We try to cluster swap pages by allocating them sequentially
198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
199 * way, however, we resort to first-free allocation, starting
200 * a new cluster. This prevents us from scattering swap pages
201 * all over the entire swap partition, so that we reduce
202 * overall disk seek times between swap pages. -- sct
203 * But we do now try to find an empty cluster. -Andrea
204 * And we let swap pages go all over an SSD partition. Hugh
207 si
->flags
+= SWP_SCANNING
;
208 scan_base
= offset
= si
->cluster_next
;
210 if (unlikely(!si
->cluster_nr
--)) {
211 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
212 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
215 if (si
->flags
& SWP_PAGE_DISCARD
) {
217 * Start range check on racing allocations, in case
218 * they overlap the cluster we eventually decide on
219 * (we scan without swap_lock to allow preemption).
220 * It's hardly conceivable that cluster_nr could be
221 * wrapped during our scan, but don't depend on it.
223 if (si
->lowest_alloc
)
225 si
->lowest_alloc
= si
->max
;
226 si
->highest_alloc
= 0;
228 spin_unlock(&si
->lock
);
231 * If seek is expensive, start searching for new cluster from
232 * start of partition, to minimize the span of allocated swap.
233 * But if seek is cheap, search from our current position, so
234 * that swap is allocated from all over the partition: if the
235 * Flash Translation Layer only remaps within limited zones,
236 * we don't want to wear out the first zone too quickly.
238 if (!(si
->flags
& SWP_SOLIDSTATE
))
239 scan_base
= offset
= si
->lowest_bit
;
240 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
242 /* Locate the first empty (unaligned) cluster */
243 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
244 if (si
->swap_map
[offset
])
245 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
246 else if (offset
== last_in_cluster
) {
247 spin_lock(&si
->lock
);
248 offset
-= SWAPFILE_CLUSTER
- 1;
249 si
->cluster_next
= offset
;
250 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
251 found_free_cluster
= 1;
254 if (unlikely(--latency_ration
< 0)) {
256 latency_ration
= LATENCY_LIMIT
;
260 offset
= si
->lowest_bit
;
261 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster
< scan_base
; offset
++) {
265 if (si
->swap_map
[offset
])
266 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
267 else if (offset
== last_in_cluster
) {
268 spin_lock(&si
->lock
);
269 offset
-= SWAPFILE_CLUSTER
- 1;
270 si
->cluster_next
= offset
;
271 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
272 found_free_cluster
= 1;
275 if (unlikely(--latency_ration
< 0)) {
277 latency_ration
= LATENCY_LIMIT
;
282 spin_lock(&si
->lock
);
283 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
284 si
->lowest_alloc
= 0;
288 if (!(si
->flags
& SWP_WRITEOK
))
290 if (!si
->highest_bit
)
292 if (offset
> si
->highest_bit
)
293 scan_base
= offset
= si
->lowest_bit
;
295 /* reuse swap entry of cache-only swap if not busy. */
296 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
298 spin_unlock(&si
->lock
);
299 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
300 spin_lock(&si
->lock
);
301 /* entry was freed successfully, try to use this again */
304 goto scan
; /* check next one */
307 if (si
->swap_map
[offset
])
310 if (offset
== si
->lowest_bit
)
312 if (offset
== si
->highest_bit
)
315 if (si
->inuse_pages
== si
->pages
) {
316 si
->lowest_bit
= si
->max
;
319 si
->swap_map
[offset
] = usage
;
320 si
->cluster_next
= offset
+ 1;
321 si
->flags
-= SWP_SCANNING
;
323 if (si
->lowest_alloc
) {
325 * Only set when SWP_PAGE_DISCARD, and there's a scan
326 * for a free cluster in progress or just completed.
328 if (found_free_cluster
) {
330 * To optimize wear-levelling, discard the
331 * old data of the cluster, taking care not to
332 * discard any of its pages that have already
333 * been allocated by racing tasks (offset has
334 * already stepped over any at the beginning).
336 if (offset
< si
->highest_alloc
&&
337 si
->lowest_alloc
<= last_in_cluster
)
338 last_in_cluster
= si
->lowest_alloc
- 1;
339 si
->flags
|= SWP_DISCARDING
;
340 spin_unlock(&si
->lock
);
342 if (offset
< last_in_cluster
)
343 discard_swap_cluster(si
, offset
,
344 last_in_cluster
- offset
+ 1);
346 spin_lock(&si
->lock
);
347 si
->lowest_alloc
= 0;
348 si
->flags
&= ~SWP_DISCARDING
;
350 smp_mb(); /* wake_up_bit advises this */
351 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
353 } else if (si
->flags
& SWP_DISCARDING
) {
355 * Delay using pages allocated by racing tasks
356 * until the whole discard has been issued. We
357 * could defer that delay until swap_writepage,
358 * but it's easier to keep this self-contained.
360 spin_unlock(&si
->lock
);
361 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
362 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
363 spin_lock(&si
->lock
);
366 * Note pages allocated by racing tasks while
367 * scan for a free cluster is in progress, so
368 * that its final discard can exclude them.
370 if (offset
< si
->lowest_alloc
)
371 si
->lowest_alloc
= offset
;
372 if (offset
> si
->highest_alloc
)
373 si
->highest_alloc
= offset
;
379 spin_unlock(&si
->lock
);
380 while (++offset
<= si
->highest_bit
) {
381 if (!si
->swap_map
[offset
]) {
382 spin_lock(&si
->lock
);
385 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
386 spin_lock(&si
->lock
);
389 if (unlikely(--latency_ration
< 0)) {
391 latency_ration
= LATENCY_LIMIT
;
394 offset
= si
->lowest_bit
;
395 while (++offset
< scan_base
) {
396 if (!si
->swap_map
[offset
]) {
397 spin_lock(&si
->lock
);
400 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
401 spin_lock(&si
->lock
);
404 if (unlikely(--latency_ration
< 0)) {
406 latency_ration
= LATENCY_LIMIT
;
409 spin_lock(&si
->lock
);
412 si
->flags
-= SWP_SCANNING
;
416 swp_entry_t
get_swap_page(void)
418 struct swap_info_struct
*si
;
424 spin_lock(&swap_lock
);
425 if (atomic_long_read(&nr_swap_pages
) <= 0)
427 atomic_long_dec(&nr_swap_pages
);
429 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
430 hp_index
= atomic_xchg(&highest_priority_index
, -1);
432 * highest_priority_index records current highest priority swap
433 * type which just frees swap entries. If its priority is
434 * higher than that of swap_list.next swap type, we use it. It
435 * isn't protected by swap_lock, so it can be an invalid value
436 * if the corresponding swap type is swapoff. We double check
437 * the flags here. It's even possible the swap type is swapoff
438 * and swapon again and its priority is changed. In such rare
439 * case, low prority swap type might be used, but eventually
440 * high priority swap will be used after several rounds of
443 if (hp_index
!= -1 && hp_index
!= type
&&
444 swap_info
[type
]->prio
< swap_info
[hp_index
]->prio
&&
445 (swap_info
[hp_index
]->flags
& SWP_WRITEOK
)) {
447 swap_list
.next
= type
;
450 si
= swap_info
[type
];
453 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
454 next
= swap_list
.head
;
458 spin_lock(&si
->lock
);
459 if (!si
->highest_bit
) {
460 spin_unlock(&si
->lock
);
463 if (!(si
->flags
& SWP_WRITEOK
)) {
464 spin_unlock(&si
->lock
);
468 swap_list
.next
= next
;
470 spin_unlock(&swap_lock
);
471 /* This is called for allocating swap entry for cache */
472 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
473 spin_unlock(&si
->lock
);
475 return swp_entry(type
, offset
);
476 spin_lock(&swap_lock
);
477 next
= swap_list
.next
;
480 atomic_long_inc(&nr_swap_pages
);
482 spin_unlock(&swap_lock
);
483 return (swp_entry_t
) {0};
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t
get_swap_page_of_type(int type
)
489 struct swap_info_struct
*si
;
492 si
= swap_info
[type
];
493 spin_lock(&si
->lock
);
494 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
495 atomic_long_dec(&nr_swap_pages
);
496 /* This is called for allocating swap entry, not cache */
497 offset
= scan_swap_map(si
, 1);
499 spin_unlock(&si
->lock
);
500 return swp_entry(type
, offset
);
502 atomic_long_inc(&nr_swap_pages
);
504 spin_unlock(&si
->lock
);
505 return (swp_entry_t
) {0};
508 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
510 struct swap_info_struct
*p
;
511 unsigned long offset
, type
;
515 type
= swp_type(entry
);
516 if (type
>= nr_swapfiles
)
519 if (!(p
->flags
& SWP_USED
))
521 offset
= swp_offset(entry
);
522 if (offset
>= p
->max
)
524 if (!p
->swap_map
[offset
])
530 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
533 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
536 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
539 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
545 * This swap type frees swap entry, check if it is the highest priority swap
546 * type which just frees swap entry. get_swap_page() uses
547 * highest_priority_index to search highest priority swap type. The
548 * swap_info_struct.lock can't protect us if there are multiple swap types
549 * active, so we use atomic_cmpxchg.
551 static void set_highest_priority_index(int type
)
553 int old_hp_index
, new_hp_index
;
556 old_hp_index
= atomic_read(&highest_priority_index
);
557 if (old_hp_index
!= -1 &&
558 swap_info
[old_hp_index
]->prio
>= swap_info
[type
]->prio
)
561 } while (atomic_cmpxchg(&highest_priority_index
,
562 old_hp_index
, new_hp_index
) != old_hp_index
);
565 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
566 swp_entry_t entry
, unsigned char usage
)
568 unsigned long offset
= swp_offset(entry
);
570 unsigned char has_cache
;
572 count
= p
->swap_map
[offset
];
573 has_cache
= count
& SWAP_HAS_CACHE
;
574 count
&= ~SWAP_HAS_CACHE
;
576 if (usage
== SWAP_HAS_CACHE
) {
577 VM_BUG_ON(!has_cache
);
579 } else if (count
== SWAP_MAP_SHMEM
) {
581 * Or we could insist on shmem.c using a special
582 * swap_shmem_free() and free_shmem_swap_and_cache()...
585 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
586 if (count
== COUNT_CONTINUED
) {
587 if (swap_count_continued(p
, offset
, count
))
588 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
590 count
= SWAP_MAP_MAX
;
596 mem_cgroup_uncharge_swap(entry
);
598 usage
= count
| has_cache
;
599 p
->swap_map
[offset
] = usage
;
601 /* free if no reference */
603 if (offset
< p
->lowest_bit
)
604 p
->lowest_bit
= offset
;
605 if (offset
> p
->highest_bit
)
606 p
->highest_bit
= offset
;
607 set_highest_priority_index(p
->type
);
608 atomic_long_inc(&nr_swap_pages
);
610 frontswap_invalidate_page(p
->type
, offset
);
611 if (p
->flags
& SWP_BLKDEV
) {
612 struct gendisk
*disk
= p
->bdev
->bd_disk
;
613 if (disk
->fops
->swap_slot_free_notify
)
614 disk
->fops
->swap_slot_free_notify(p
->bdev
,
623 * Caller has made sure that the swapdevice corresponding to entry
624 * is still around or has not been recycled.
626 void swap_free(swp_entry_t entry
)
628 struct swap_info_struct
*p
;
630 p
= swap_info_get(entry
);
632 swap_entry_free(p
, entry
, 1);
633 spin_unlock(&p
->lock
);
638 * Called after dropping swapcache to decrease refcnt to swap entries.
640 void swapcache_free(swp_entry_t entry
, struct page
*page
)
642 struct swap_info_struct
*p
;
645 p
= swap_info_get(entry
);
647 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
649 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
650 spin_unlock(&p
->lock
);
655 * How many references to page are currently swapped out?
656 * This does not give an exact answer when swap count is continued,
657 * but does include the high COUNT_CONTINUED flag to allow for that.
659 int page_swapcount(struct page
*page
)
662 struct swap_info_struct
*p
;
665 entry
.val
= page_private(page
);
666 p
= swap_info_get(entry
);
668 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
669 spin_unlock(&p
->lock
);
675 * We can write to an anon page without COW if there are no other references
676 * to it. And as a side-effect, free up its swap: because the old content
677 * on disk will never be read, and seeking back there to write new content
678 * later would only waste time away from clustering.
680 int reuse_swap_page(struct page
*page
)
684 VM_BUG_ON(!PageLocked(page
));
685 if (unlikely(PageKsm(page
)))
687 count
= page_mapcount(page
);
688 if (count
<= 1 && PageSwapCache(page
)) {
689 count
+= page_swapcount(page
);
690 if (count
== 1 && !PageWriteback(page
)) {
691 delete_from_swap_cache(page
);
699 * If swap is getting full, or if there are no more mappings of this page,
700 * then try_to_free_swap is called to free its swap space.
702 int try_to_free_swap(struct page
*page
)
704 VM_BUG_ON(!PageLocked(page
));
706 if (!PageSwapCache(page
))
708 if (PageWriteback(page
))
710 if (page_swapcount(page
))
714 * Once hibernation has begun to create its image of memory,
715 * there's a danger that one of the calls to try_to_free_swap()
716 * - most probably a call from __try_to_reclaim_swap() while
717 * hibernation is allocating its own swap pages for the image,
718 * but conceivably even a call from memory reclaim - will free
719 * the swap from a page which has already been recorded in the
720 * image as a clean swapcache page, and then reuse its swap for
721 * another page of the image. On waking from hibernation, the
722 * original page might be freed under memory pressure, then
723 * later read back in from swap, now with the wrong data.
725 * Hibration suspends storage while it is writing the image
726 * to disk so check that here.
728 if (pm_suspended_storage())
731 delete_from_swap_cache(page
);
737 * Free the swap entry like above, but also try to
738 * free the page cache entry if it is the last user.
740 int free_swap_and_cache(swp_entry_t entry
)
742 struct swap_info_struct
*p
;
743 struct page
*page
= NULL
;
745 if (non_swap_entry(entry
))
748 p
= swap_info_get(entry
);
750 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
751 page
= find_get_page(swap_address_space(entry
),
753 if (page
&& !trylock_page(page
)) {
754 page_cache_release(page
);
758 spin_unlock(&p
->lock
);
762 * Not mapped elsewhere, or swap space full? Free it!
763 * Also recheck PageSwapCache now page is locked (above).
765 if (PageSwapCache(page
) && !PageWriteback(page
) &&
766 (!page_mapped(page
) || vm_swap_full())) {
767 delete_from_swap_cache(page
);
771 page_cache_release(page
);
776 #ifdef CONFIG_HIBERNATION
778 * Find the swap type that corresponds to given device (if any).
780 * @offset - number of the PAGE_SIZE-sized block of the device, starting
781 * from 0, in which the swap header is expected to be located.
783 * This is needed for the suspend to disk (aka swsusp).
785 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
787 struct block_device
*bdev
= NULL
;
791 bdev
= bdget(device
);
793 spin_lock(&swap_lock
);
794 for (type
= 0; type
< nr_swapfiles
; type
++) {
795 struct swap_info_struct
*sis
= swap_info
[type
];
797 if (!(sis
->flags
& SWP_WRITEOK
))
802 *bdev_p
= bdgrab(sis
->bdev
);
804 spin_unlock(&swap_lock
);
807 if (bdev
== sis
->bdev
) {
808 struct swap_extent
*se
= &sis
->first_swap_extent
;
810 if (se
->start_block
== offset
) {
812 *bdev_p
= bdgrab(sis
->bdev
);
814 spin_unlock(&swap_lock
);
820 spin_unlock(&swap_lock
);
828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829 * corresponding to given index in swap_info (swap type).
831 sector_t
swapdev_block(int type
, pgoff_t offset
)
833 struct block_device
*bdev
;
835 if ((unsigned int)type
>= nr_swapfiles
)
837 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
839 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
843 * Return either the total number of swap pages of given type, or the number
844 * of free pages of that type (depending on @free)
846 * This is needed for software suspend
848 unsigned int count_swap_pages(int type
, int free
)
852 spin_lock(&swap_lock
);
853 if ((unsigned int)type
< nr_swapfiles
) {
854 struct swap_info_struct
*sis
= swap_info
[type
];
856 spin_lock(&sis
->lock
);
857 if (sis
->flags
& SWP_WRITEOK
) {
860 n
-= sis
->inuse_pages
;
862 spin_unlock(&sis
->lock
);
864 spin_unlock(&swap_lock
);
867 #endif /* CONFIG_HIBERNATION */
869 static inline int maybe_same_pte(pte_t pte
, pte_t swp_pte
)
871 #ifdef CONFIG_MEM_SOFT_DIRTY
873 * When pte keeps soft dirty bit the pte generated
874 * from swap entry does not has it, still it's same
875 * pte from logical point of view.
877 pte_t swp_pte_dirty
= pte_swp_mksoft_dirty(swp_pte
);
878 return pte_same(pte
, swp_pte
) || pte_same(pte
, swp_pte_dirty
);
880 return pte_same(pte
, swp_pte
);
885 * No need to decide whether this PTE shares the swap entry with others,
886 * just let do_wp_page work it out if a write is requested later - to
887 * force COW, vm_page_prot omits write permission from any private vma.
889 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
890 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
892 struct page
*swapcache
;
893 struct mem_cgroup
*memcg
;
899 page
= ksm_might_need_to_copy(page
, vma
, addr
);
903 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
,
904 GFP_KERNEL
, &memcg
)) {
909 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
910 if (unlikely(!maybe_same_pte(*pte
, swp_entry_to_pte(entry
)))) {
911 mem_cgroup_cancel_charge_swapin(memcg
);
916 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
917 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
919 set_pte_at(vma
->vm_mm
, addr
, pte
,
920 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
921 if (page
== swapcache
)
922 page_add_anon_rmap(page
, vma
, addr
);
923 else /* ksm created a completely new copy */
924 page_add_new_anon_rmap(page
, vma
, addr
);
925 mem_cgroup_commit_charge_swapin(page
, memcg
);
928 * Move the page to the active list so it is not
929 * immediately swapped out again after swapon.
933 pte_unmap_unlock(pte
, ptl
);
935 if (page
!= swapcache
) {
942 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
943 unsigned long addr
, unsigned long end
,
944 swp_entry_t entry
, struct page
*page
)
946 pte_t swp_pte
= swp_entry_to_pte(entry
);
951 * We don't actually need pte lock while scanning for swp_pte: since
952 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
953 * page table while we're scanning; though it could get zapped, and on
954 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
955 * of unmatched parts which look like swp_pte, so unuse_pte must
956 * recheck under pte lock. Scanning without pte lock lets it be
957 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
959 pte
= pte_offset_map(pmd
, addr
);
962 * swapoff spends a _lot_ of time in this loop!
963 * Test inline before going to call unuse_pte.
965 if (unlikely(maybe_same_pte(*pte
, swp_pte
))) {
967 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
970 pte
= pte_offset_map(pmd
, addr
);
972 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
978 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
979 unsigned long addr
, unsigned long end
,
980 swp_entry_t entry
, struct page
*page
)
986 pmd
= pmd_offset(pud
, addr
);
988 next
= pmd_addr_end(addr
, end
);
989 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
991 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
994 } while (pmd
++, addr
= next
, addr
!= end
);
998 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
999 unsigned long addr
, unsigned long end
,
1000 swp_entry_t entry
, struct page
*page
)
1006 pud
= pud_offset(pgd
, addr
);
1008 next
= pud_addr_end(addr
, end
);
1009 if (pud_none_or_clear_bad(pud
))
1011 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1014 } while (pud
++, addr
= next
, addr
!= end
);
1018 static int unuse_vma(struct vm_area_struct
*vma
,
1019 swp_entry_t entry
, struct page
*page
)
1022 unsigned long addr
, end
, next
;
1025 if (page_anon_vma(page
)) {
1026 addr
= page_address_in_vma(page
, vma
);
1027 if (addr
== -EFAULT
)
1030 end
= addr
+ PAGE_SIZE
;
1032 addr
= vma
->vm_start
;
1036 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1038 next
= pgd_addr_end(addr
, end
);
1039 if (pgd_none_or_clear_bad(pgd
))
1041 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1044 } while (pgd
++, addr
= next
, addr
!= end
);
1048 static int unuse_mm(struct mm_struct
*mm
,
1049 swp_entry_t entry
, struct page
*page
)
1051 struct vm_area_struct
*vma
;
1054 if (!down_read_trylock(&mm
->mmap_sem
)) {
1056 * Activate page so shrink_inactive_list is unlikely to unmap
1057 * its ptes while lock is dropped, so swapoff can make progress.
1059 activate_page(page
);
1061 down_read(&mm
->mmap_sem
);
1064 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1065 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1068 up_read(&mm
->mmap_sem
);
1069 return (ret
< 0)? ret
: 0;
1073 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1074 * from current position to next entry still in use.
1075 * Recycle to start on reaching the end, returning 0 when empty.
1077 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1078 unsigned int prev
, bool frontswap
)
1080 unsigned int max
= si
->max
;
1081 unsigned int i
= prev
;
1082 unsigned char count
;
1085 * No need for swap_lock here: we're just looking
1086 * for whether an entry is in use, not modifying it; false
1087 * hits are okay, and sys_swapoff() has already prevented new
1088 * allocations from this area (while holding swap_lock).
1097 * No entries in use at top of swap_map,
1098 * loop back to start and recheck there.
1105 if (frontswap_test(si
, i
))
1110 count
= si
->swap_map
[i
];
1111 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1118 * We completely avoid races by reading each swap page in advance,
1119 * and then search for the process using it. All the necessary
1120 * page table adjustments can then be made atomically.
1122 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1123 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1125 int try_to_unuse(unsigned int type
, bool frontswap
,
1126 unsigned long pages_to_unuse
)
1128 struct swap_info_struct
*si
= swap_info
[type
];
1129 struct mm_struct
*start_mm
;
1130 unsigned char *swap_map
;
1131 unsigned char swcount
;
1138 * When searching mms for an entry, a good strategy is to
1139 * start at the first mm we freed the previous entry from
1140 * (though actually we don't notice whether we or coincidence
1141 * freed the entry). Initialize this start_mm with a hold.
1143 * A simpler strategy would be to start at the last mm we
1144 * freed the previous entry from; but that would take less
1145 * advantage of mmlist ordering, which clusters forked mms
1146 * together, child after parent. If we race with dup_mmap(), we
1147 * prefer to resolve parent before child, lest we miss entries
1148 * duplicated after we scanned child: using last mm would invert
1151 start_mm
= &init_mm
;
1152 atomic_inc(&init_mm
.mm_users
);
1155 * Keep on scanning until all entries have gone. Usually,
1156 * one pass through swap_map is enough, but not necessarily:
1157 * there are races when an instance of an entry might be missed.
1159 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1160 if (signal_pending(current
)) {
1166 * Get a page for the entry, using the existing swap
1167 * cache page if there is one. Otherwise, get a clean
1168 * page and read the swap into it.
1170 swap_map
= &si
->swap_map
[i
];
1171 entry
= swp_entry(type
, i
);
1172 page
= read_swap_cache_async(entry
,
1173 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1176 * Either swap_duplicate() failed because entry
1177 * has been freed independently, and will not be
1178 * reused since sys_swapoff() already disabled
1179 * allocation from here, or alloc_page() failed.
1188 * Don't hold on to start_mm if it looks like exiting.
1190 if (atomic_read(&start_mm
->mm_users
) == 1) {
1192 start_mm
= &init_mm
;
1193 atomic_inc(&init_mm
.mm_users
);
1197 * Wait for and lock page. When do_swap_page races with
1198 * try_to_unuse, do_swap_page can handle the fault much
1199 * faster than try_to_unuse can locate the entry. This
1200 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1201 * defer to do_swap_page in such a case - in some tests,
1202 * do_swap_page and try_to_unuse repeatedly compete.
1204 wait_on_page_locked(page
);
1205 wait_on_page_writeback(page
);
1207 wait_on_page_writeback(page
);
1210 * Remove all references to entry.
1212 swcount
= *swap_map
;
1213 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1214 retval
= shmem_unuse(entry
, page
);
1215 /* page has already been unlocked and released */
1220 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1221 retval
= unuse_mm(start_mm
, entry
, page
);
1223 if (swap_count(*swap_map
)) {
1224 int set_start_mm
= (*swap_map
>= swcount
);
1225 struct list_head
*p
= &start_mm
->mmlist
;
1226 struct mm_struct
*new_start_mm
= start_mm
;
1227 struct mm_struct
*prev_mm
= start_mm
;
1228 struct mm_struct
*mm
;
1230 atomic_inc(&new_start_mm
->mm_users
);
1231 atomic_inc(&prev_mm
->mm_users
);
1232 spin_lock(&mmlist_lock
);
1233 while (swap_count(*swap_map
) && !retval
&&
1234 (p
= p
->next
) != &start_mm
->mmlist
) {
1235 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1236 if (!atomic_inc_not_zero(&mm
->mm_users
))
1238 spin_unlock(&mmlist_lock
);
1244 swcount
= *swap_map
;
1245 if (!swap_count(swcount
)) /* any usage ? */
1247 else if (mm
== &init_mm
)
1250 retval
= unuse_mm(mm
, entry
, page
);
1252 if (set_start_mm
&& *swap_map
< swcount
) {
1253 mmput(new_start_mm
);
1254 atomic_inc(&mm
->mm_users
);
1258 spin_lock(&mmlist_lock
);
1260 spin_unlock(&mmlist_lock
);
1263 start_mm
= new_start_mm
;
1267 page_cache_release(page
);
1272 * If a reference remains (rare), we would like to leave
1273 * the page in the swap cache; but try_to_unmap could
1274 * then re-duplicate the entry once we drop page lock,
1275 * so we might loop indefinitely; also, that page could
1276 * not be swapped out to other storage meanwhile. So:
1277 * delete from cache even if there's another reference,
1278 * after ensuring that the data has been saved to disk -
1279 * since if the reference remains (rarer), it will be
1280 * read from disk into another page. Splitting into two
1281 * pages would be incorrect if swap supported "shared
1282 * private" pages, but they are handled by tmpfs files.
1284 * Given how unuse_vma() targets one particular offset
1285 * in an anon_vma, once the anon_vma has been determined,
1286 * this splitting happens to be just what is needed to
1287 * handle where KSM pages have been swapped out: re-reading
1288 * is unnecessarily slow, but we can fix that later on.
1290 if (swap_count(*swap_map
) &&
1291 PageDirty(page
) && PageSwapCache(page
)) {
1292 struct writeback_control wbc
= {
1293 .sync_mode
= WB_SYNC_NONE
,
1296 swap_writepage(page
, &wbc
);
1298 wait_on_page_writeback(page
);
1302 * It is conceivable that a racing task removed this page from
1303 * swap cache just before we acquired the page lock at the top,
1304 * or while we dropped it in unuse_mm(). The page might even
1305 * be back in swap cache on another swap area: that we must not
1306 * delete, since it may not have been written out to swap yet.
1308 if (PageSwapCache(page
) &&
1309 likely(page_private(page
) == entry
.val
))
1310 delete_from_swap_cache(page
);
1313 * So we could skip searching mms once swap count went
1314 * to 1, we did not mark any present ptes as dirty: must
1315 * mark page dirty so shrink_page_list will preserve it.
1319 page_cache_release(page
);
1322 * Make sure that we aren't completely killing
1323 * interactive performance.
1326 if (frontswap
&& pages_to_unuse
> 0) {
1327 if (!--pages_to_unuse
)
1337 * After a successful try_to_unuse, if no swap is now in use, we know
1338 * we can empty the mmlist. swap_lock must be held on entry and exit.
1339 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1340 * added to the mmlist just after page_duplicate - before would be racy.
1342 static void drain_mmlist(void)
1344 struct list_head
*p
, *next
;
1347 for (type
= 0; type
< nr_swapfiles
; type
++)
1348 if (swap_info
[type
]->inuse_pages
)
1350 spin_lock(&mmlist_lock
);
1351 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1353 spin_unlock(&mmlist_lock
);
1357 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1358 * corresponds to page offset for the specified swap entry.
1359 * Note that the type of this function is sector_t, but it returns page offset
1360 * into the bdev, not sector offset.
1362 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1364 struct swap_info_struct
*sis
;
1365 struct swap_extent
*start_se
;
1366 struct swap_extent
*se
;
1369 sis
= swap_info
[swp_type(entry
)];
1372 offset
= swp_offset(entry
);
1373 start_se
= sis
->curr_swap_extent
;
1377 struct list_head
*lh
;
1379 if (se
->start_page
<= offset
&&
1380 offset
< (se
->start_page
+ se
->nr_pages
)) {
1381 return se
->start_block
+ (offset
- se
->start_page
);
1384 se
= list_entry(lh
, struct swap_extent
, list
);
1385 sis
->curr_swap_extent
= se
;
1386 BUG_ON(se
== start_se
); /* It *must* be present */
1391 * Returns the page offset into bdev for the specified page's swap entry.
1393 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1396 entry
.val
= page_private(page
);
1397 return map_swap_entry(entry
, bdev
);
1401 * Free all of a swapdev's extent information
1403 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1405 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1406 struct swap_extent
*se
;
1408 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1409 struct swap_extent
, list
);
1410 list_del(&se
->list
);
1414 if (sis
->flags
& SWP_FILE
) {
1415 struct file
*swap_file
= sis
->swap_file
;
1416 struct address_space
*mapping
= swap_file
->f_mapping
;
1418 sis
->flags
&= ~SWP_FILE
;
1419 mapping
->a_ops
->swap_deactivate(swap_file
);
1424 * Add a block range (and the corresponding page range) into this swapdev's
1425 * extent list. The extent list is kept sorted in page order.
1427 * This function rather assumes that it is called in ascending page order.
1430 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1431 unsigned long nr_pages
, sector_t start_block
)
1433 struct swap_extent
*se
;
1434 struct swap_extent
*new_se
;
1435 struct list_head
*lh
;
1437 if (start_page
== 0) {
1438 se
= &sis
->first_swap_extent
;
1439 sis
->curr_swap_extent
= se
;
1441 se
->nr_pages
= nr_pages
;
1442 se
->start_block
= start_block
;
1445 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1446 se
= list_entry(lh
, struct swap_extent
, list
);
1447 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1448 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1450 se
->nr_pages
+= nr_pages
;
1456 * No merge. Insert a new extent, preserving ordering.
1458 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1461 new_se
->start_page
= start_page
;
1462 new_se
->nr_pages
= nr_pages
;
1463 new_se
->start_block
= start_block
;
1465 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1470 * A `swap extent' is a simple thing which maps a contiguous range of pages
1471 * onto a contiguous range of disk blocks. An ordered list of swap extents
1472 * is built at swapon time and is then used at swap_writepage/swap_readpage
1473 * time for locating where on disk a page belongs.
1475 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1476 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1477 * swap files identically.
1479 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1480 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1481 * swapfiles are handled *identically* after swapon time.
1483 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1484 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1485 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1486 * requirements, they are simply tossed out - we will never use those blocks
1489 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1490 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1491 * which will scribble on the fs.
1493 * The amount of disk space which a single swap extent represents varies.
1494 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1495 * extents in the list. To avoid much list walking, we cache the previous
1496 * search location in `curr_swap_extent', and start new searches from there.
1497 * This is extremely effective. The average number of iterations in
1498 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1500 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1502 struct file
*swap_file
= sis
->swap_file
;
1503 struct address_space
*mapping
= swap_file
->f_mapping
;
1504 struct inode
*inode
= mapping
->host
;
1507 if (S_ISBLK(inode
->i_mode
)) {
1508 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1513 if (mapping
->a_ops
->swap_activate
) {
1514 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1516 sis
->flags
|= SWP_FILE
;
1517 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1523 return generic_swapfile_activate(sis
, swap_file
, span
);
1526 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1527 unsigned char *swap_map
)
1534 p
->prio
= --least_priority
;
1535 p
->swap_map
= swap_map
;
1536 p
->flags
|= SWP_WRITEOK
;
1537 atomic_long_add(p
->pages
, &nr_swap_pages
);
1538 total_swap_pages
+= p
->pages
;
1540 /* insert swap space into swap_list: */
1542 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1543 if (p
->prio
>= swap_info
[i
]->prio
)
1549 swap_list
.head
= swap_list
.next
= p
->type
;
1551 swap_info
[prev
]->next
= p
->type
;
1554 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1555 unsigned char *swap_map
,
1556 unsigned long *frontswap_map
)
1558 frontswap_init(p
->type
, frontswap_map
);
1559 spin_lock(&swap_lock
);
1560 spin_lock(&p
->lock
);
1561 _enable_swap_info(p
, prio
, swap_map
);
1562 spin_unlock(&p
->lock
);
1563 spin_unlock(&swap_lock
);
1566 static void reinsert_swap_info(struct swap_info_struct
*p
)
1568 spin_lock(&swap_lock
);
1569 spin_lock(&p
->lock
);
1570 _enable_swap_info(p
, p
->prio
, p
->swap_map
);
1571 spin_unlock(&p
->lock
);
1572 spin_unlock(&swap_lock
);
1575 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1577 struct swap_info_struct
*p
= NULL
;
1578 unsigned char *swap_map
;
1579 unsigned long *frontswap_map
;
1580 struct file
*swap_file
, *victim
;
1581 struct address_space
*mapping
;
1582 struct inode
*inode
;
1583 struct filename
*pathname
;
1587 if (!capable(CAP_SYS_ADMIN
))
1590 BUG_ON(!current
->mm
);
1592 pathname
= getname(specialfile
);
1593 if (IS_ERR(pathname
))
1594 return PTR_ERR(pathname
);
1596 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1597 err
= PTR_ERR(victim
);
1601 mapping
= victim
->f_mapping
;
1603 spin_lock(&swap_lock
);
1604 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1605 p
= swap_info
[type
];
1606 if (p
->flags
& SWP_WRITEOK
) {
1607 if (p
->swap_file
->f_mapping
== mapping
)
1614 spin_unlock(&swap_lock
);
1617 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1618 vm_unacct_memory(p
->pages
);
1621 spin_unlock(&swap_lock
);
1625 swap_list
.head
= p
->next
;
1627 swap_info
[prev
]->next
= p
->next
;
1628 if (type
== swap_list
.next
) {
1629 /* just pick something that's safe... */
1630 swap_list
.next
= swap_list
.head
;
1632 spin_lock(&p
->lock
);
1634 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1635 swap_info
[i
]->prio
= p
->prio
--;
1638 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1639 total_swap_pages
-= p
->pages
;
1640 p
->flags
&= ~SWP_WRITEOK
;
1641 spin_unlock(&p
->lock
);
1642 spin_unlock(&swap_lock
);
1644 set_current_oom_origin();
1645 err
= try_to_unuse(type
, false, 0); /* force all pages to be unused */
1646 clear_current_oom_origin();
1649 /* re-insert swap space back into swap_list */
1650 reinsert_swap_info(p
);
1654 destroy_swap_extents(p
);
1655 if (p
->flags
& SWP_CONTINUED
)
1656 free_swap_count_continuations(p
);
1658 mutex_lock(&swapon_mutex
);
1659 spin_lock(&swap_lock
);
1660 spin_lock(&p
->lock
);
1663 /* wait for anyone still in scan_swap_map */
1664 p
->highest_bit
= 0; /* cuts scans short */
1665 while (p
->flags
>= SWP_SCANNING
) {
1666 spin_unlock(&p
->lock
);
1667 spin_unlock(&swap_lock
);
1668 schedule_timeout_uninterruptible(1);
1669 spin_lock(&swap_lock
);
1670 spin_lock(&p
->lock
);
1673 swap_file
= p
->swap_file
;
1674 p
->swap_file
= NULL
;
1676 swap_map
= p
->swap_map
;
1679 frontswap_map
= frontswap_map_get(p
);
1680 frontswap_map_set(p
, NULL
);
1681 spin_unlock(&p
->lock
);
1682 spin_unlock(&swap_lock
);
1683 frontswap_invalidate_area(type
);
1684 mutex_unlock(&swapon_mutex
);
1686 vfree(frontswap_map
);
1687 /* Destroy swap account informatin */
1688 swap_cgroup_swapoff(type
);
1690 inode
= mapping
->host
;
1691 if (S_ISBLK(inode
->i_mode
)) {
1692 struct block_device
*bdev
= I_BDEV(inode
);
1693 set_blocksize(bdev
, p
->old_block_size
);
1694 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1696 mutex_lock(&inode
->i_mutex
);
1697 inode
->i_flags
&= ~S_SWAPFILE
;
1698 mutex_unlock(&inode
->i_mutex
);
1700 filp_close(swap_file
, NULL
);
1702 atomic_inc(&proc_poll_event
);
1703 wake_up_interruptible(&proc_poll_wait
);
1706 filp_close(victim
, NULL
);
1712 #ifdef CONFIG_PROC_FS
1713 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1715 struct seq_file
*seq
= file
->private_data
;
1717 poll_wait(file
, &proc_poll_wait
, wait
);
1719 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1720 seq
->poll_event
= atomic_read(&proc_poll_event
);
1721 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1724 return POLLIN
| POLLRDNORM
;
1728 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1730 struct swap_info_struct
*si
;
1734 mutex_lock(&swapon_mutex
);
1737 return SEQ_START_TOKEN
;
1739 for (type
= 0; type
< nr_swapfiles
; type
++) {
1740 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1741 si
= swap_info
[type
];
1742 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1751 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1753 struct swap_info_struct
*si
= v
;
1756 if (v
== SEQ_START_TOKEN
)
1759 type
= si
->type
+ 1;
1761 for (; type
< nr_swapfiles
; type
++) {
1762 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1763 si
= swap_info
[type
];
1764 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1773 static void swap_stop(struct seq_file
*swap
, void *v
)
1775 mutex_unlock(&swapon_mutex
);
1778 static int swap_show(struct seq_file
*swap
, void *v
)
1780 struct swap_info_struct
*si
= v
;
1784 if (si
== SEQ_START_TOKEN
) {
1785 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1789 file
= si
->swap_file
;
1790 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1791 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1792 len
< 40 ? 40 - len
: 1, " ",
1793 S_ISBLK(file_inode(file
)->i_mode
) ?
1794 "partition" : "file\t",
1795 si
->pages
<< (PAGE_SHIFT
- 10),
1796 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1801 static const struct seq_operations swaps_op
= {
1802 .start
= swap_start
,
1808 static int swaps_open(struct inode
*inode
, struct file
*file
)
1810 struct seq_file
*seq
;
1813 ret
= seq_open(file
, &swaps_op
);
1817 seq
= file
->private_data
;
1818 seq
->poll_event
= atomic_read(&proc_poll_event
);
1822 static const struct file_operations proc_swaps_operations
= {
1825 .llseek
= seq_lseek
,
1826 .release
= seq_release
,
1830 static int __init
procswaps_init(void)
1832 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1835 __initcall(procswaps_init
);
1836 #endif /* CONFIG_PROC_FS */
1838 #ifdef MAX_SWAPFILES_CHECK
1839 static int __init
max_swapfiles_check(void)
1841 MAX_SWAPFILES_CHECK();
1844 late_initcall(max_swapfiles_check
);
1847 static struct swap_info_struct
*alloc_swap_info(void)
1849 struct swap_info_struct
*p
;
1852 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1854 return ERR_PTR(-ENOMEM
);
1856 spin_lock(&swap_lock
);
1857 for (type
= 0; type
< nr_swapfiles
; type
++) {
1858 if (!(swap_info
[type
]->flags
& SWP_USED
))
1861 if (type
>= MAX_SWAPFILES
) {
1862 spin_unlock(&swap_lock
);
1864 return ERR_PTR(-EPERM
);
1866 if (type
>= nr_swapfiles
) {
1868 swap_info
[type
] = p
;
1870 * Write swap_info[type] before nr_swapfiles, in case a
1871 * racing procfs swap_start() or swap_next() is reading them.
1872 * (We never shrink nr_swapfiles, we never free this entry.)
1878 p
= swap_info
[type
];
1880 * Do not memset this entry: a racing procfs swap_next()
1881 * would be relying on p->type to remain valid.
1884 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1885 p
->flags
= SWP_USED
;
1887 spin_unlock(&swap_lock
);
1888 spin_lock_init(&p
->lock
);
1893 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
1897 if (S_ISBLK(inode
->i_mode
)) {
1898 p
->bdev
= bdgrab(I_BDEV(inode
));
1899 error
= blkdev_get(p
->bdev
,
1900 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
1906 p
->old_block_size
= block_size(p
->bdev
);
1907 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
1910 p
->flags
|= SWP_BLKDEV
;
1911 } else if (S_ISREG(inode
->i_mode
)) {
1912 p
->bdev
= inode
->i_sb
->s_bdev
;
1913 mutex_lock(&inode
->i_mutex
);
1914 if (IS_SWAPFILE(inode
))
1922 static unsigned long read_swap_header(struct swap_info_struct
*p
,
1923 union swap_header
*swap_header
,
1924 struct inode
*inode
)
1927 unsigned long maxpages
;
1928 unsigned long swapfilepages
;
1930 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1931 printk(KERN_ERR
"Unable to find swap-space signature\n");
1935 /* swap partition endianess hack... */
1936 if (swab32(swap_header
->info
.version
) == 1) {
1937 swab32s(&swap_header
->info
.version
);
1938 swab32s(&swap_header
->info
.last_page
);
1939 swab32s(&swap_header
->info
.nr_badpages
);
1940 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1941 swab32s(&swap_header
->info
.badpages
[i
]);
1943 /* Check the swap header's sub-version */
1944 if (swap_header
->info
.version
!= 1) {
1946 "Unable to handle swap header version %d\n",
1947 swap_header
->info
.version
);
1952 p
->cluster_next
= 1;
1956 * Find out how many pages are allowed for a single swap
1957 * device. There are two limiting factors: 1) the number
1958 * of bits for the swap offset in the swp_entry_t type, and
1959 * 2) the number of bits in the swap pte as defined by the
1960 * different architectures. In order to find the
1961 * largest possible bit mask, a swap entry with swap type 0
1962 * and swap offset ~0UL is created, encoded to a swap pte,
1963 * decoded to a swp_entry_t again, and finally the swap
1964 * offset is extracted. This will mask all the bits from
1965 * the initial ~0UL mask that can't be encoded in either
1966 * the swp_entry_t or the architecture definition of a
1969 maxpages
= swp_offset(pte_to_swp_entry(
1970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1971 if (maxpages
> swap_header
->info
.last_page
) {
1972 maxpages
= swap_header
->info
.last_page
+ 1;
1973 /* p->max is an unsigned int: don't overflow it */
1974 if ((unsigned int)maxpages
== 0)
1975 maxpages
= UINT_MAX
;
1977 p
->highest_bit
= maxpages
- 1;
1981 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1982 if (swapfilepages
&& maxpages
> swapfilepages
) {
1984 "Swap area shorter than signature indicates\n");
1987 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1989 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1995 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
1996 union swap_header
*swap_header
,
1997 unsigned char *swap_map
,
1998 unsigned long maxpages
,
2002 unsigned int nr_good_pages
;
2005 nr_good_pages
= maxpages
- 1; /* omit header page */
2007 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2008 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2009 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2011 if (page_nr
< maxpages
) {
2012 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2017 if (nr_good_pages
) {
2018 swap_map
[0] = SWAP_MAP_BAD
;
2020 p
->pages
= nr_good_pages
;
2021 nr_extents
= setup_swap_extents(p
, span
);
2024 nr_good_pages
= p
->pages
;
2026 if (!nr_good_pages
) {
2027 printk(KERN_WARNING
"Empty swap-file\n");
2035 * Helper to sys_swapon determining if a given swap
2036 * backing device queue supports DISCARD operations.
2038 static bool swap_discardable(struct swap_info_struct
*si
)
2040 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2042 if (!q
|| !blk_queue_discard(q
))
2048 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2050 struct swap_info_struct
*p
;
2051 struct filename
*name
;
2052 struct file
*swap_file
= NULL
;
2053 struct address_space
*mapping
;
2057 union swap_header
*swap_header
;
2060 unsigned long maxpages
;
2061 unsigned char *swap_map
= NULL
;
2062 unsigned long *frontswap_map
= NULL
;
2063 struct page
*page
= NULL
;
2064 struct inode
*inode
= NULL
;
2066 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2069 if (!capable(CAP_SYS_ADMIN
))
2072 p
= alloc_swap_info();
2076 name
= getname(specialfile
);
2078 error
= PTR_ERR(name
);
2082 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2083 if (IS_ERR(swap_file
)) {
2084 error
= PTR_ERR(swap_file
);
2089 p
->swap_file
= swap_file
;
2090 mapping
= swap_file
->f_mapping
;
2092 for (i
= 0; i
< nr_swapfiles
; i
++) {
2093 struct swap_info_struct
*q
= swap_info
[i
];
2095 if (q
== p
|| !q
->swap_file
)
2097 if (mapping
== q
->swap_file
->f_mapping
) {
2103 inode
= mapping
->host
;
2104 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2105 error
= claim_swapfile(p
, inode
);
2106 if (unlikely(error
))
2110 * Read the swap header.
2112 if (!mapping
->a_ops
->readpage
) {
2116 page
= read_mapping_page(mapping
, 0, swap_file
);
2118 error
= PTR_ERR(page
);
2121 swap_header
= kmap(page
);
2123 maxpages
= read_swap_header(p
, swap_header
, inode
);
2124 if (unlikely(!maxpages
)) {
2129 /* OK, set up the swap map and apply the bad block list */
2130 swap_map
= vzalloc(maxpages
);
2136 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2140 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2142 if (unlikely(nr_extents
< 0)) {
2146 /* frontswap enabled? set up bit-per-page map for frontswap */
2147 if (frontswap_enabled
)
2148 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2151 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2152 p
->flags
|= SWP_SOLIDSTATE
;
2153 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2156 if ((swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2158 * When discard is enabled for swap with no particular
2159 * policy flagged, we set all swap discard flags here in
2160 * order to sustain backward compatibility with older
2161 * swapon(8) releases.
2163 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2167 * By flagging sys_swapon, a sysadmin can tell us to
2168 * either do single-time area discards only, or to just
2169 * perform discards for released swap page-clusters.
2170 * Now it's time to adjust the p->flags accordingly.
2172 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2173 p
->flags
&= ~SWP_PAGE_DISCARD
;
2174 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2175 p
->flags
&= ~SWP_AREA_DISCARD
;
2177 /* issue a swapon-time discard if it's still required */
2178 if (p
->flags
& SWP_AREA_DISCARD
) {
2179 int err
= discard_swap(p
);
2182 "swapon: discard_swap(%p): %d\n",
2188 mutex_lock(&swapon_mutex
);
2190 if (swap_flags
& SWAP_FLAG_PREFER
)
2192 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2193 enable_swap_info(p
, prio
, swap_map
, frontswap_map
);
2195 printk(KERN_INFO
"Adding %uk swap on %s. "
2196 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2197 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2198 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2199 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2200 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2201 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2202 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2203 (frontswap_map
) ? "FS" : "");
2205 mutex_unlock(&swapon_mutex
);
2206 atomic_inc(&proc_poll_event
);
2207 wake_up_interruptible(&proc_poll_wait
);
2209 if (S_ISREG(inode
->i_mode
))
2210 inode
->i_flags
|= S_SWAPFILE
;
2214 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2215 set_blocksize(p
->bdev
, p
->old_block_size
);
2216 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2218 destroy_swap_extents(p
);
2219 swap_cgroup_swapoff(p
->type
);
2220 spin_lock(&swap_lock
);
2221 p
->swap_file
= NULL
;
2223 spin_unlock(&swap_lock
);
2226 if (inode
&& S_ISREG(inode
->i_mode
)) {
2227 mutex_unlock(&inode
->i_mutex
);
2230 filp_close(swap_file
, NULL
);
2233 if (page
&& !IS_ERR(page
)) {
2235 page_cache_release(page
);
2239 if (inode
&& S_ISREG(inode
->i_mode
))
2240 mutex_unlock(&inode
->i_mutex
);
2244 void si_swapinfo(struct sysinfo
*val
)
2247 unsigned long nr_to_be_unused
= 0;
2249 spin_lock(&swap_lock
);
2250 for (type
= 0; type
< nr_swapfiles
; type
++) {
2251 struct swap_info_struct
*si
= swap_info
[type
];
2253 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2254 nr_to_be_unused
+= si
->inuse_pages
;
2256 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2257 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2258 spin_unlock(&swap_lock
);
2262 * Verify that a swap entry is valid and increment its swap map count.
2264 * Returns error code in following case.
2266 * - swp_entry is invalid -> EINVAL
2267 * - swp_entry is migration entry -> EINVAL
2268 * - swap-cache reference is requested but there is already one. -> EEXIST
2269 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2270 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2272 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2274 struct swap_info_struct
*p
;
2275 unsigned long offset
, type
;
2276 unsigned char count
;
2277 unsigned char has_cache
;
2280 if (non_swap_entry(entry
))
2283 type
= swp_type(entry
);
2284 if (type
>= nr_swapfiles
)
2286 p
= swap_info
[type
];
2287 offset
= swp_offset(entry
);
2289 spin_lock(&p
->lock
);
2290 if (unlikely(offset
>= p
->max
))
2293 count
= p
->swap_map
[offset
];
2294 has_cache
= count
& SWAP_HAS_CACHE
;
2295 count
&= ~SWAP_HAS_CACHE
;
2298 if (usage
== SWAP_HAS_CACHE
) {
2300 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2301 if (!has_cache
&& count
)
2302 has_cache
= SWAP_HAS_CACHE
;
2303 else if (has_cache
) /* someone else added cache */
2305 else /* no users remaining */
2308 } else if (count
|| has_cache
) {
2310 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2312 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2314 else if (swap_count_continued(p
, offset
, count
))
2315 count
= COUNT_CONTINUED
;
2319 err
= -ENOENT
; /* unused swap entry */
2321 p
->swap_map
[offset
] = count
| has_cache
;
2324 spin_unlock(&p
->lock
);
2329 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2334 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2335 * (in which case its reference count is never incremented).
2337 void swap_shmem_alloc(swp_entry_t entry
)
2339 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2343 * Increase reference count of swap entry by 1.
2344 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2345 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2346 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2347 * might occur if a page table entry has got corrupted.
2349 int swap_duplicate(swp_entry_t entry
)
2353 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2354 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2359 * @entry: swap entry for which we allocate swap cache.
2361 * Called when allocating swap cache for existing swap entry,
2362 * This can return error codes. Returns 0 at success.
2363 * -EBUSY means there is a swap cache.
2364 * Note: return code is different from swap_duplicate().
2366 int swapcache_prepare(swp_entry_t entry
)
2368 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2371 struct swap_info_struct
*page_swap_info(struct page
*page
)
2373 swp_entry_t swap
= { .val
= page_private(page
) };
2374 BUG_ON(!PageSwapCache(page
));
2375 return swap_info
[swp_type(swap
)];
2379 * out-of-line __page_file_ methods to avoid include hell.
2381 struct address_space
*__page_file_mapping(struct page
*page
)
2383 VM_BUG_ON(!PageSwapCache(page
));
2384 return page_swap_info(page
)->swap_file
->f_mapping
;
2386 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2388 pgoff_t
__page_file_index(struct page
*page
)
2390 swp_entry_t swap
= { .val
= page_private(page
) };
2391 VM_BUG_ON(!PageSwapCache(page
));
2392 return swp_offset(swap
);
2394 EXPORT_SYMBOL_GPL(__page_file_index
);
2397 * add_swap_count_continuation - called when a swap count is duplicated
2398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2399 * page of the original vmalloc'ed swap_map, to hold the continuation count
2400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2403 * These continuation pages are seldom referenced: the common paths all work
2404 * on the original swap_map, only referring to a continuation page when the
2405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2409 * can be called after dropping locks.
2411 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2413 struct swap_info_struct
*si
;
2416 struct page
*list_page
;
2418 unsigned char count
;
2421 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2422 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2424 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2426 si
= swap_info_get(entry
);
2429 * An acceptable race has occurred since the failing
2430 * __swap_duplicate(): the swap entry has been freed,
2431 * perhaps even the whole swap_map cleared for swapoff.
2436 offset
= swp_offset(entry
);
2437 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2439 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2441 * The higher the swap count, the more likely it is that tasks
2442 * will race to add swap count continuation: we need to avoid
2443 * over-provisioning.
2449 spin_unlock(&si
->lock
);
2454 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2455 * no architecture is using highmem pages for kernel pagetables: so it
2456 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2458 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2459 offset
&= ~PAGE_MASK
;
2462 * Page allocation does not initialize the page's lru field,
2463 * but it does always reset its private field.
2465 if (!page_private(head
)) {
2466 BUG_ON(count
& COUNT_CONTINUED
);
2467 INIT_LIST_HEAD(&head
->lru
);
2468 set_page_private(head
, SWP_CONTINUED
);
2469 si
->flags
|= SWP_CONTINUED
;
2472 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2476 * If the previous map said no continuation, but we've found
2477 * a continuation page, free our allocation and use this one.
2479 if (!(count
& COUNT_CONTINUED
))
2482 map
= kmap_atomic(list_page
) + offset
;
2487 * If this continuation count now has some space in it,
2488 * free our allocation and use this one.
2490 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2494 list_add_tail(&page
->lru
, &head
->lru
);
2495 page
= NULL
; /* now it's attached, don't free it */
2497 spin_unlock(&si
->lock
);
2505 * swap_count_continued - when the original swap_map count is incremented
2506 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2507 * into, carry if so, or else fail until a new continuation page is allocated;
2508 * when the original swap_map count is decremented from 0 with continuation,
2509 * borrow from the continuation and report whether it still holds more.
2510 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2512 static bool swap_count_continued(struct swap_info_struct
*si
,
2513 pgoff_t offset
, unsigned char count
)
2519 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2520 if (page_private(head
) != SWP_CONTINUED
) {
2521 BUG_ON(count
& COUNT_CONTINUED
);
2522 return false; /* need to add count continuation */
2525 offset
&= ~PAGE_MASK
;
2526 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2527 map
= kmap_atomic(page
) + offset
;
2529 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2530 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2532 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2534 * Think of how you add 1 to 999
2536 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2538 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2539 BUG_ON(page
== head
);
2540 map
= kmap_atomic(page
) + offset
;
2542 if (*map
== SWAP_CONT_MAX
) {
2544 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2546 return false; /* add count continuation */
2547 map
= kmap_atomic(page
) + offset
;
2548 init_map
: *map
= 0; /* we didn't zero the page */
2552 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2553 while (page
!= head
) {
2554 map
= kmap_atomic(page
) + offset
;
2555 *map
= COUNT_CONTINUED
;
2557 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2559 return true; /* incremented */
2561 } else { /* decrementing */
2563 * Think of how you subtract 1 from 1000
2565 BUG_ON(count
!= COUNT_CONTINUED
);
2566 while (*map
== COUNT_CONTINUED
) {
2568 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2569 BUG_ON(page
== head
);
2570 map
= kmap_atomic(page
) + offset
;
2577 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2578 while (page
!= head
) {
2579 map
= kmap_atomic(page
) + offset
;
2580 *map
= SWAP_CONT_MAX
| count
;
2581 count
= COUNT_CONTINUED
;
2583 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2585 return count
== COUNT_CONTINUED
;
2590 * free_swap_count_continuations - swapoff free all the continuation pages
2591 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2593 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2597 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2599 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2600 if (page_private(head
)) {
2601 struct list_head
*this, *next
;
2602 list_for_each_safe(this, next
, &head
->lru
) {
2604 page
= list_entry(this, struct page
, lru
);