V4L/DVB (10345): gspca - jpeg subdrivers: One quantization table per subdriver.
[linux/fpc-iii.git] / fs / isofs / compress.c
blobdefb932eee9a9f45836ac2f62ee9dcf5f3838152
1 /* -*- linux-c -*- ------------------------------------------------------- *
2 *
3 * Copyright 2001 H. Peter Anvin - All Rights Reserved
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
8 * USA; either version 2 of the License, or (at your option) any later
9 * version; incorporated herein by reference.
11 * ----------------------------------------------------------------------- */
14 * linux/fs/isofs/compress.c
16 * Transparent decompression of files on an iso9660 filesystem
19 #include <linux/module.h>
20 #include <linux/init.h>
22 #include <linux/vmalloc.h>
23 #include <linux/zlib.h>
25 #include "isofs.h"
26 #include "zisofs.h"
28 /* This should probably be global. */
29 static char zisofs_sink_page[PAGE_CACHE_SIZE];
32 * This contains the zlib memory allocation and the mutex for the
33 * allocation; this avoids failures at block-decompression time.
35 static void *zisofs_zlib_workspace;
36 static DEFINE_MUTEX(zisofs_zlib_lock);
39 * When decompressing, we typically obtain more than one page
40 * per reference. We inject the additional pages into the page
41 * cache as a form of readahead.
43 static int zisofs_readpage(struct file *file, struct page *page)
45 struct inode *inode = file->f_path.dentry->d_inode;
46 struct address_space *mapping = inode->i_mapping;
47 unsigned int maxpage, xpage, fpage, blockindex;
48 unsigned long offset;
49 unsigned long blockptr, blockendptr, cstart, cend, csize;
50 struct buffer_head *bh, *ptrbh[2];
51 unsigned long bufsize = ISOFS_BUFFER_SIZE(inode);
52 unsigned int bufshift = ISOFS_BUFFER_BITS(inode);
53 unsigned long bufmask = bufsize - 1;
54 int err = -EIO;
55 int i;
56 unsigned int header_size = ISOFS_I(inode)->i_format_parm[0];
57 unsigned int zisofs_block_shift = ISOFS_I(inode)->i_format_parm[1];
58 /* unsigned long zisofs_block_size = 1UL << zisofs_block_shift; */
59 unsigned int zisofs_block_page_shift = zisofs_block_shift-PAGE_CACHE_SHIFT;
60 unsigned long zisofs_block_pages = 1UL << zisofs_block_page_shift;
61 unsigned long zisofs_block_page_mask = zisofs_block_pages-1;
62 struct page *pages[zisofs_block_pages];
63 unsigned long index = page->index;
64 int indexblocks;
66 /* We have already been given one page, this is the one
67 we must do. */
68 xpage = index & zisofs_block_page_mask;
69 pages[xpage] = page;
71 /* The remaining pages need to be allocated and inserted */
72 offset = index & ~zisofs_block_page_mask;
73 blockindex = offset >> zisofs_block_page_shift;
74 maxpage = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
77 * If this page is wholly outside i_size we just return zero;
78 * do_generic_file_read() will handle this for us
80 if (page->index >= maxpage) {
81 SetPageUptodate(page);
82 unlock_page(page);
83 return 0;
86 maxpage = min(zisofs_block_pages, maxpage-offset);
88 for ( i = 0 ; i < maxpage ; i++, offset++ ) {
89 if ( i != xpage ) {
90 pages[i] = grab_cache_page_nowait(mapping, offset);
92 page = pages[i];
93 if ( page ) {
94 ClearPageError(page);
95 kmap(page);
99 /* This is the last page filled, plus one; used in case of abort. */
100 fpage = 0;
102 /* Find the pointer to this specific chunk */
103 /* Note: we're not using isonum_731() here because the data is known aligned */
104 /* Note: header_size is in 32-bit words (4 bytes) */
105 blockptr = (header_size + blockindex) << 2;
106 blockendptr = blockptr + 4;
108 indexblocks = ((blockptr^blockendptr) >> bufshift) ? 2 : 1;
109 ptrbh[0] = ptrbh[1] = NULL;
111 if ( isofs_get_blocks(inode, blockptr >> bufshift, ptrbh, indexblocks) != indexblocks ) {
112 if ( ptrbh[0] ) brelse(ptrbh[0]);
113 printk(KERN_DEBUG "zisofs: Null buffer on reading block table, inode = %lu, block = %lu\n",
114 inode->i_ino, blockptr >> bufshift);
115 goto eio;
117 ll_rw_block(READ, indexblocks, ptrbh);
119 bh = ptrbh[0];
120 if ( !bh || (wait_on_buffer(bh), !buffer_uptodate(bh)) ) {
121 printk(KERN_DEBUG "zisofs: Failed to read block table, inode = %lu, block = %lu\n",
122 inode->i_ino, blockptr >> bufshift);
123 if ( ptrbh[1] )
124 brelse(ptrbh[1]);
125 goto eio;
127 cstart = le32_to_cpu(*(__le32 *)(bh->b_data + (blockptr & bufmask)));
129 if ( indexblocks == 2 ) {
130 /* We just crossed a block boundary. Switch to the next block */
131 brelse(bh);
132 bh = ptrbh[1];
133 if ( !bh || (wait_on_buffer(bh), !buffer_uptodate(bh)) ) {
134 printk(KERN_DEBUG "zisofs: Failed to read block table, inode = %lu, block = %lu\n",
135 inode->i_ino, blockendptr >> bufshift);
136 goto eio;
139 cend = le32_to_cpu(*(__le32 *)(bh->b_data + (blockendptr & bufmask)));
140 brelse(bh);
142 if (cstart > cend)
143 goto eio;
145 csize = cend-cstart;
147 if (csize > deflateBound(1UL << zisofs_block_shift))
148 goto eio;
150 /* Now page[] contains an array of pages, any of which can be NULL,
151 and the locks on which we hold. We should now read the data and
152 release the pages. If the pages are NULL the decompressed data
153 for that particular page should be discarded. */
155 if ( csize == 0 ) {
156 /* This data block is empty. */
158 for ( fpage = 0 ; fpage < maxpage ; fpage++ ) {
159 if ( (page = pages[fpage]) != NULL ) {
160 memset(page_address(page), 0, PAGE_CACHE_SIZE);
162 flush_dcache_page(page);
163 SetPageUptodate(page);
164 kunmap(page);
165 unlock_page(page);
166 if ( fpage == xpage )
167 err = 0; /* The critical page */
168 else
169 page_cache_release(page);
172 } else {
173 /* This data block is compressed. */
174 z_stream stream;
175 int bail = 0, left_out = -1;
176 int zerr;
177 int needblocks = (csize + (cstart & bufmask) + bufmask) >> bufshift;
178 int haveblocks;
179 struct buffer_head *bhs[needblocks+1];
180 struct buffer_head **bhptr;
182 /* Because zlib is not thread-safe, do all the I/O at the top. */
184 blockptr = cstart >> bufshift;
185 memset(bhs, 0, (needblocks+1)*sizeof(struct buffer_head *));
186 haveblocks = isofs_get_blocks(inode, blockptr, bhs, needblocks);
187 ll_rw_block(READ, haveblocks, bhs);
189 bhptr = &bhs[0];
190 bh = *bhptr++;
192 /* First block is special since it may be fractional.
193 We also wait for it before grabbing the zlib
194 mutex; odds are that the subsequent blocks are
195 going to come in in short order so we don't hold
196 the zlib mutex longer than necessary. */
198 if ( !bh || (wait_on_buffer(bh), !buffer_uptodate(bh)) ) {
199 printk(KERN_DEBUG "zisofs: Hit null buffer, fpage = %d, xpage = %d, csize = %ld\n",
200 fpage, xpage, csize);
201 goto b_eio;
203 stream.next_in = bh->b_data + (cstart & bufmask);
204 stream.avail_in = min(bufsize-(cstart & bufmask), csize);
205 csize -= stream.avail_in;
207 stream.workspace = zisofs_zlib_workspace;
208 mutex_lock(&zisofs_zlib_lock);
210 zerr = zlib_inflateInit(&stream);
211 if ( zerr != Z_OK ) {
212 if ( err && zerr == Z_MEM_ERROR )
213 err = -ENOMEM;
214 printk(KERN_DEBUG "zisofs: zisofs_inflateInit returned %d\n",
215 zerr);
216 goto z_eio;
219 while ( !bail && fpage < maxpage ) {
220 page = pages[fpage];
221 if ( page )
222 stream.next_out = page_address(page);
223 else
224 stream.next_out = (void *)&zisofs_sink_page;
225 stream.avail_out = PAGE_CACHE_SIZE;
227 while ( stream.avail_out ) {
228 int ao, ai;
229 if ( stream.avail_in == 0 && left_out ) {
230 if ( !csize ) {
231 printk(KERN_WARNING "zisofs: ZF read beyond end of input\n");
232 bail = 1;
233 break;
234 } else {
235 bh = *bhptr++;
236 if ( !bh ||
237 (wait_on_buffer(bh), !buffer_uptodate(bh)) ) {
238 /* Reached an EIO */
239 printk(KERN_DEBUG "zisofs: Hit null buffer, fpage = %d, xpage = %d, csize = %ld\n",
240 fpage, xpage, csize);
242 bail = 1;
243 break;
245 stream.next_in = bh->b_data;
246 stream.avail_in = min(csize,bufsize);
247 csize -= stream.avail_in;
250 ao = stream.avail_out; ai = stream.avail_in;
251 zerr = zlib_inflate(&stream, Z_SYNC_FLUSH);
252 left_out = stream.avail_out;
253 if ( zerr == Z_BUF_ERROR && stream.avail_in == 0 )
254 continue;
255 if ( zerr != Z_OK ) {
256 /* EOF, error, or trying to read beyond end of input */
257 if ( err && zerr == Z_MEM_ERROR )
258 err = -ENOMEM;
259 if ( zerr != Z_STREAM_END )
260 printk(KERN_DEBUG "zisofs: zisofs_inflate returned %d, inode = %lu, index = %lu, fpage = %d, xpage = %d, avail_in = %d, avail_out = %d, ai = %d, ao = %d\n",
261 zerr, inode->i_ino, index,
262 fpage, xpage,
263 stream.avail_in, stream.avail_out,
264 ai, ao);
265 bail = 1;
266 break;
270 if ( stream.avail_out && zerr == Z_STREAM_END ) {
271 /* Fractional page written before EOF. This may
272 be the last page in the file. */
273 memset(stream.next_out, 0, stream.avail_out);
274 stream.avail_out = 0;
277 if ( !stream.avail_out ) {
278 /* This page completed */
279 if ( page ) {
280 flush_dcache_page(page);
281 SetPageUptodate(page);
282 kunmap(page);
283 unlock_page(page);
284 if ( fpage == xpage )
285 err = 0; /* The critical page */
286 else
287 page_cache_release(page);
289 fpage++;
292 zlib_inflateEnd(&stream);
294 z_eio:
295 mutex_unlock(&zisofs_zlib_lock);
297 b_eio:
298 for ( i = 0 ; i < haveblocks ; i++ ) {
299 if ( bhs[i] )
300 brelse(bhs[i]);
304 eio:
306 /* Release any residual pages, do not SetPageUptodate */
307 while ( fpage < maxpage ) {
308 page = pages[fpage];
309 if ( page ) {
310 flush_dcache_page(page);
311 if ( fpage == xpage )
312 SetPageError(page);
313 kunmap(page);
314 unlock_page(page);
315 if ( fpage != xpage )
316 page_cache_release(page);
318 fpage++;
321 /* At this point, err contains 0 or -EIO depending on the "critical" page */
322 return err;
325 const struct address_space_operations zisofs_aops = {
326 .readpage = zisofs_readpage,
327 /* No sync_page operation supported? */
328 /* No bmap operation supported */
331 int __init zisofs_init(void)
333 zisofs_zlib_workspace = vmalloc(zlib_inflate_workspacesize());
334 if ( !zisofs_zlib_workspace )
335 return -ENOMEM;
337 return 0;
340 void zisofs_cleanup(void)
342 vfree(zisofs_zlib_workspace);