mfd: intel_soc_pmic_crc: Add "cht_crystal_cove_pmic" cell to CHT cells
[linux/fpc-iii.git] / crypto / aegis128-neon-inner.c
blobf05310ca22aa8bee8403355edeb72e4afcafb8a3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
4 */
6 #ifdef CONFIG_ARM64
7 #include <asm/neon-intrinsics.h>
9 #define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
10 #else
11 #include <arm_neon.h>
13 #define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
14 #endif
16 #define AEGIS_BLOCK_SIZE 16
18 #include <stddef.h>
20 extern int aegis128_have_aes_insn;
22 void *memcpy(void *dest, const void *src, size_t n);
23 void *memset(void *s, int c, size_t n);
25 struct aegis128_state {
26 uint8x16_t v[5];
29 extern const uint8_t crypto_aes_sbox[];
31 static struct aegis128_state aegis128_load_state_neon(const void *state)
33 return (struct aegis128_state){ {
34 vld1q_u8(state),
35 vld1q_u8(state + 16),
36 vld1q_u8(state + 32),
37 vld1q_u8(state + 48),
38 vld1q_u8(state + 64)
39 } };
42 static void aegis128_save_state_neon(struct aegis128_state st, void *state)
44 vst1q_u8(state, st.v[0]);
45 vst1q_u8(state + 16, st.v[1]);
46 vst1q_u8(state + 32, st.v[2]);
47 vst1q_u8(state + 48, st.v[3]);
48 vst1q_u8(state + 64, st.v[4]);
51 static inline __attribute__((always_inline))
52 uint8x16_t aegis_aes_round(uint8x16_t w)
54 uint8x16_t z = {};
56 #ifdef CONFIG_ARM64
57 if (!__builtin_expect(aegis128_have_aes_insn, 1)) {
58 static const uint8_t shift_rows[] = {
59 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
60 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
62 static const uint8_t ror32by8[] = {
63 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
64 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
66 uint8x16_t v;
68 // shift rows
69 w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
71 // sub bytes
72 #ifndef CONFIG_CC_IS_GCC
73 v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
74 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
75 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
76 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
77 #else
78 asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w));
79 w -= 0x40;
80 asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w));
81 w -= 0x40;
82 asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w));
83 w -= 0x40;
84 asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w));
85 #endif
87 // mix columns
88 w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
89 w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
90 w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
92 return w;
94 #endif
97 * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
98 * to force the compiler to issue the aese/aesmc instructions in pairs.
99 * This is much faster on many cores, where the instruction pair can
100 * execute in a single cycle.
102 asm(AES_ROUND : "+w"(w) : "w"(z));
103 return w;
106 static inline __attribute__((always_inline))
107 struct aegis128_state aegis128_update_neon(struct aegis128_state st,
108 uint8x16_t m)
110 m ^= aegis_aes_round(st.v[4]);
111 st.v[4] ^= aegis_aes_round(st.v[3]);
112 st.v[3] ^= aegis_aes_round(st.v[2]);
113 st.v[2] ^= aegis_aes_round(st.v[1]);
114 st.v[1] ^= aegis_aes_round(st.v[0]);
115 st.v[0] ^= m;
117 return st;
120 static inline __attribute__((always_inline))
121 void preload_sbox(void)
123 if (!IS_ENABLED(CONFIG_ARM64) ||
124 !IS_ENABLED(CONFIG_CC_IS_GCC) ||
125 __builtin_expect(aegis128_have_aes_insn, 1))
126 return;
128 asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t"
129 "ld1 {v20.16b-v23.16b}, [%0], #64 \n\t"
130 "ld1 {v24.16b-v27.16b}, [%0], #64 \n\t"
131 "ld1 {v28.16b-v31.16b}, [%0] \n\t"
132 :: "r"(crypto_aes_sbox));
135 void crypto_aegis128_update_neon(void *state, const void *msg)
137 struct aegis128_state st = aegis128_load_state_neon(state);
139 preload_sbox();
141 st = aegis128_update_neon(st, vld1q_u8(msg));
143 aegis128_save_state_neon(st, state);
146 void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
147 unsigned int size)
149 struct aegis128_state st = aegis128_load_state_neon(state);
150 uint8x16_t msg;
152 preload_sbox();
154 while (size >= AEGIS_BLOCK_SIZE) {
155 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
157 msg = vld1q_u8(src);
158 st = aegis128_update_neon(st, msg);
159 vst1q_u8(dst, msg ^ s);
161 size -= AEGIS_BLOCK_SIZE;
162 src += AEGIS_BLOCK_SIZE;
163 dst += AEGIS_BLOCK_SIZE;
166 if (size > 0) {
167 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
168 uint8_t buf[AEGIS_BLOCK_SIZE] = {};
170 memcpy(buf, src, size);
171 msg = vld1q_u8(buf);
172 st = aegis128_update_neon(st, msg);
173 vst1q_u8(buf, msg ^ s);
174 memcpy(dst, buf, size);
177 aegis128_save_state_neon(st, state);
180 void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
181 unsigned int size)
183 struct aegis128_state st = aegis128_load_state_neon(state);
184 uint8x16_t msg;
186 preload_sbox();
188 while (size >= AEGIS_BLOCK_SIZE) {
189 msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
190 st = aegis128_update_neon(st, msg);
191 vst1q_u8(dst, msg);
193 size -= AEGIS_BLOCK_SIZE;
194 src += AEGIS_BLOCK_SIZE;
195 dst += AEGIS_BLOCK_SIZE;
198 if (size > 0) {
199 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
200 uint8_t buf[AEGIS_BLOCK_SIZE];
202 vst1q_u8(buf, s);
203 memcpy(buf, src, size);
204 msg = vld1q_u8(buf) ^ s;
205 vst1q_u8(buf, msg);
206 memcpy(dst, buf, size);
208 st = aegis128_update_neon(st, msg);
211 aegis128_save_state_neon(st, state);