driver core: bus: use to_subsys_private and to_device_private_bus
[linux/fpc-iii.git] / sound / soc / intel / skylake / skl-messages.c
blobde6dac496a0d8b611d4662864597e58ee20330f3
1 /*
2 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3 * configurations
5 * Copyright (C) 2015 Intel Corp
6 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7 * Jeeja KP <jeeja.kp@intel.com>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
32 static int skl_alloc_dma_buf(struct device *dev,
33 struct snd_dma_buffer *dmab, size_t size)
35 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 struct hdac_bus *bus = ebus_to_hbus(ebus);
38 if (!bus)
39 return -ENODEV;
41 return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 struct hdac_bus *bus = ebus_to_hbus(ebus);
49 if (!bus)
50 return -ENODEV;
52 bus->io_ops->dma_free_pages(bus, dmab);
54 return 0;
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
63 struct notification_mask mask;
64 struct skl_ipc_large_config_msg msg = {0};
66 mask.notify = NOTIFICATION_MASK;
67 mask.enable = enable;
69 msg.large_param_id = NOTIFICATION_PARAM_ID;
70 msg.param_data_size = sizeof(mask);
72 skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
75 int skl_init_dsp(struct skl *skl)
77 void __iomem *mmio_base;
78 struct hdac_ext_bus *ebus = &skl->ebus;
79 struct hdac_bus *bus = ebus_to_hbus(ebus);
80 int irq = bus->irq;
81 struct skl_dsp_loader_ops loader_ops;
82 int ret;
84 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
85 loader_ops.free_dma_buf = skl_free_dma_buf;
87 /* enable ppcap interrupt */
88 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
89 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
91 /* read the BAR of the ADSP MMIO */
92 mmio_base = pci_ioremap_bar(skl->pci, 4);
93 if (mmio_base == NULL) {
94 dev_err(bus->dev, "ioremap error\n");
95 return -ENXIO;
98 ret = skl_sst_dsp_init(bus->dev, mmio_base, irq,
99 skl->fw_name, loader_ops, &skl->skl_sst);
100 if (ret < 0)
101 return ret;
103 skl_dsp_enable_notification(skl->skl_sst, false);
104 dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
106 return ret;
109 void skl_free_dsp(struct skl *skl)
111 struct hdac_ext_bus *ebus = &skl->ebus;
112 struct hdac_bus *bus = ebus_to_hbus(ebus);
113 struct skl_sst *ctx = skl->skl_sst;
115 /* disable ppcap interrupt */
116 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
118 skl_sst_dsp_cleanup(bus->dev, ctx);
119 if (ctx->dsp->addr.lpe)
120 iounmap(ctx->dsp->addr.lpe);
123 int skl_suspend_dsp(struct skl *skl)
125 struct skl_sst *ctx = skl->skl_sst;
126 int ret;
128 /* if ppcap is not supported return 0 */
129 if (!skl->ebus.ppcap)
130 return 0;
132 ret = skl_dsp_sleep(ctx->dsp);
133 if (ret < 0)
134 return ret;
136 /* disable ppcap interrupt */
137 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
138 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
140 return 0;
143 int skl_resume_dsp(struct skl *skl)
145 struct skl_sst *ctx = skl->skl_sst;
146 int ret;
148 /* if ppcap is not supported return 0 */
149 if (!skl->ebus.ppcap)
150 return 0;
152 /* enable ppcap interrupt */
153 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
154 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
156 ret = skl_dsp_wake(ctx->dsp);
157 if (ret < 0)
158 return ret;
160 skl_dsp_enable_notification(skl->skl_sst, false);
161 return ret;
164 enum skl_bitdepth skl_get_bit_depth(int params)
166 switch (params) {
167 case 8:
168 return SKL_DEPTH_8BIT;
170 case 16:
171 return SKL_DEPTH_16BIT;
173 case 24:
174 return SKL_DEPTH_24BIT;
176 case 32:
177 return SKL_DEPTH_32BIT;
179 default:
180 return SKL_DEPTH_INVALID;
186 * Each module in DSP expects a base module configuration, which consists of
187 * PCM format information, which we calculate in driver and resource values
188 * which are read from widget information passed through topology binary
189 * This is send when we create a module with INIT_INSTANCE IPC msg
191 static void skl_set_base_module_format(struct skl_sst *ctx,
192 struct skl_module_cfg *mconfig,
193 struct skl_base_cfg *base_cfg)
195 struct skl_module_fmt *format = &mconfig->in_fmt[0];
197 base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
199 base_cfg->audio_fmt.s_freq = format->s_freq;
200 base_cfg->audio_fmt.bit_depth = format->bit_depth;
201 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
202 base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
204 dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
205 format->bit_depth, format->valid_bit_depth,
206 format->ch_cfg);
208 base_cfg->audio_fmt.channel_map = format->ch_map;
210 base_cfg->audio_fmt.interleaving = format->interleaving_style;
212 base_cfg->cps = mconfig->mcps;
213 base_cfg->ibs = mconfig->ibs;
214 base_cfg->obs = mconfig->obs;
215 base_cfg->is_pages = mconfig->mem_pages;
219 * Copies copier capabilities into copier module and updates copier module
220 * config size.
222 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
223 struct skl_cpr_cfg *cpr_mconfig)
225 if (mconfig->formats_config.caps_size == 0)
226 return;
228 memcpy(cpr_mconfig->gtw_cfg.config_data,
229 mconfig->formats_config.caps,
230 mconfig->formats_config.caps_size);
232 cpr_mconfig->gtw_cfg.config_length =
233 (mconfig->formats_config.caps_size) / 4;
236 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
238 * Calculate the gatewat settings required for copier module, type of
239 * gateway and index of gateway to use
241 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
242 struct skl_module_cfg *mconfig,
243 struct skl_cpr_cfg *cpr_mconfig)
245 union skl_connector_node_id node_id = {0};
246 union skl_ssp_dma_node ssp_node = {0};
247 struct skl_pipe_params *params = mconfig->pipe->p_params;
249 switch (mconfig->dev_type) {
250 case SKL_DEVICE_BT:
251 node_id.node.dma_type =
252 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
253 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
254 SKL_DMA_I2S_LINK_INPUT_CLASS;
255 node_id.node.vindex = params->host_dma_id +
256 (mconfig->vbus_id << 3);
257 break;
259 case SKL_DEVICE_I2S:
260 node_id.node.dma_type =
261 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
262 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
263 SKL_DMA_I2S_LINK_INPUT_CLASS;
264 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
265 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
266 node_id.node.vindex = ssp_node.val;
267 break;
269 case SKL_DEVICE_DMIC:
270 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
271 node_id.node.vindex = mconfig->vbus_id +
272 (mconfig->time_slot);
273 break;
275 case SKL_DEVICE_HDALINK:
276 node_id.node.dma_type =
277 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
278 SKL_DMA_HDA_LINK_OUTPUT_CLASS :
279 SKL_DMA_HDA_LINK_INPUT_CLASS;
280 node_id.node.vindex = params->link_dma_id;
281 break;
283 case SKL_DEVICE_HDAHOST:
284 node_id.node.dma_type =
285 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
286 SKL_DMA_HDA_HOST_OUTPUT_CLASS :
287 SKL_DMA_HDA_HOST_INPUT_CLASS;
288 node_id.node.vindex = params->host_dma_id;
289 break;
291 default:
292 cpr_mconfig->gtw_cfg.node_id = SKL_NON_GATEWAY_CPR_NODE_ID;
293 cpr_mconfig->cpr_feature_mask = 0;
294 return;
297 cpr_mconfig->gtw_cfg.node_id = node_id.val;
299 if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
300 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
301 else
302 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
304 cpr_mconfig->cpr_feature_mask = 0;
305 cpr_mconfig->gtw_cfg.config_length = 0;
307 skl_copy_copier_caps(mconfig, cpr_mconfig);
310 static void skl_setup_out_format(struct skl_sst *ctx,
311 struct skl_module_cfg *mconfig,
312 struct skl_audio_data_format *out_fmt)
314 struct skl_module_fmt *format = &mconfig->out_fmt[0];
316 out_fmt->number_of_channels = (u8)format->channels;
317 out_fmt->s_freq = format->s_freq;
318 out_fmt->bit_depth = format->bit_depth;
319 out_fmt->valid_bit_depth = format->valid_bit_depth;
320 out_fmt->ch_cfg = format->ch_cfg;
322 out_fmt->channel_map = format->ch_map;
323 out_fmt->interleaving = format->interleaving_style;
324 out_fmt->sample_type = format->sample_type;
326 dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
327 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
331 * DSP needs SRC module for frequency conversion, SRC takes base module
332 * configuration and the target frequency as extra parameter passed as src
333 * config
335 static void skl_set_src_format(struct skl_sst *ctx,
336 struct skl_module_cfg *mconfig,
337 struct skl_src_module_cfg *src_mconfig)
339 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
341 skl_set_base_module_format(ctx, mconfig,
342 (struct skl_base_cfg *)src_mconfig);
344 src_mconfig->src_cfg = fmt->s_freq;
348 * DSP needs updown module to do channel conversion. updown module take base
349 * module configuration and channel configuration
350 * It also take coefficients and now we have defaults applied here
352 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
353 struct skl_module_cfg *mconfig,
354 struct skl_up_down_mixer_cfg *mixer_mconfig)
356 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
357 int i = 0;
359 skl_set_base_module_format(ctx, mconfig,
360 (struct skl_base_cfg *)mixer_mconfig);
361 mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
363 /* Select F/W default coefficient */
364 mixer_mconfig->coeff_sel = 0x0;
366 /* User coeff, don't care since we are selecting F/W defaults */
367 for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
368 mixer_mconfig->coeff[i] = 0xDEADBEEF;
372 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
373 * dma) or link (hda link, SSP, PDM)
374 * Here we calculate the copier module parameters, like PCM format, output
375 * format, gateway settings
376 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
378 static void skl_set_copier_format(struct skl_sst *ctx,
379 struct skl_module_cfg *mconfig,
380 struct skl_cpr_cfg *cpr_mconfig)
382 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
383 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
385 skl_set_base_module_format(ctx, mconfig, base_cfg);
387 skl_setup_out_format(ctx, mconfig, out_fmt);
388 skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
392 * Algo module are DSP pre processing modules. Algo module take base module
393 * configuration and params
396 static void skl_set_algo_format(struct skl_sst *ctx,
397 struct skl_module_cfg *mconfig,
398 struct skl_algo_cfg *algo_mcfg)
400 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
402 skl_set_base_module_format(ctx, mconfig, base_cfg);
404 if (mconfig->formats_config.caps_size == 0)
405 return;
407 memcpy(algo_mcfg->params,
408 mconfig->formats_config.caps,
409 mconfig->formats_config.caps_size);
414 * Mic select module allows selecting one or many input channels, thus
415 * acting as a demux.
417 * Mic select module take base module configuration and out-format
418 * configuration
420 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
421 struct skl_module_cfg *mconfig,
422 struct skl_base_outfmt_cfg *base_outfmt_mcfg)
424 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
425 struct skl_base_cfg *base_cfg =
426 (struct skl_base_cfg *)base_outfmt_mcfg;
428 skl_set_base_module_format(ctx, mconfig, base_cfg);
429 skl_setup_out_format(ctx, mconfig, out_fmt);
432 static u16 skl_get_module_param_size(struct skl_sst *ctx,
433 struct skl_module_cfg *mconfig)
435 u16 param_size;
437 switch (mconfig->m_type) {
438 case SKL_MODULE_TYPE_COPIER:
439 param_size = sizeof(struct skl_cpr_cfg);
440 param_size += mconfig->formats_config.caps_size;
441 return param_size;
443 case SKL_MODULE_TYPE_SRCINT:
444 return sizeof(struct skl_src_module_cfg);
446 case SKL_MODULE_TYPE_UPDWMIX:
447 return sizeof(struct skl_up_down_mixer_cfg);
449 case SKL_MODULE_TYPE_ALGO:
450 param_size = sizeof(struct skl_base_cfg);
451 param_size += mconfig->formats_config.caps_size;
452 return param_size;
454 case SKL_MODULE_TYPE_BASE_OUTFMT:
455 return sizeof(struct skl_base_outfmt_cfg);
457 default:
459 * return only base cfg when no specific module type is
460 * specified
462 return sizeof(struct skl_base_cfg);
465 return 0;
469 * DSP firmware supports various modules like copier, SRC, updown etc.
470 * These modules required various parameters to be calculated and sent for
471 * the module initialization to DSP. By default a generic module needs only
472 * base module format configuration
475 static int skl_set_module_format(struct skl_sst *ctx,
476 struct skl_module_cfg *module_config,
477 u16 *module_config_size,
478 void **param_data)
480 u16 param_size;
482 param_size = skl_get_module_param_size(ctx, module_config);
484 *param_data = kzalloc(param_size, GFP_KERNEL);
485 if (NULL == *param_data)
486 return -ENOMEM;
488 *module_config_size = param_size;
490 switch (module_config->m_type) {
491 case SKL_MODULE_TYPE_COPIER:
492 skl_set_copier_format(ctx, module_config, *param_data);
493 break;
495 case SKL_MODULE_TYPE_SRCINT:
496 skl_set_src_format(ctx, module_config, *param_data);
497 break;
499 case SKL_MODULE_TYPE_UPDWMIX:
500 skl_set_updown_mixer_format(ctx, module_config, *param_data);
501 break;
503 case SKL_MODULE_TYPE_ALGO:
504 skl_set_algo_format(ctx, module_config, *param_data);
505 break;
507 case SKL_MODULE_TYPE_BASE_OUTFMT:
508 skl_set_base_outfmt_format(ctx, module_config, *param_data);
509 break;
511 default:
512 skl_set_base_module_format(ctx, module_config, *param_data);
513 break;
517 dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
518 module_config->id.module_id, param_size);
519 print_hex_dump(KERN_DEBUG, "Module params:", DUMP_PREFIX_OFFSET, 8, 4,
520 *param_data, param_size, false);
521 return 0;
524 static int skl_get_queue_index(struct skl_module_pin *mpin,
525 struct skl_module_inst_id id, int max)
527 int i;
529 for (i = 0; i < max; i++) {
530 if (mpin[i].id.module_id == id.module_id &&
531 mpin[i].id.instance_id == id.instance_id)
532 return i;
535 return -EINVAL;
539 * Allocates queue for each module.
540 * if dynamic, the pin_index is allocated 0 to max_pin.
541 * In static, the pin_index is fixed based on module_id and instance id
543 static int skl_alloc_queue(struct skl_module_pin *mpin,
544 struct skl_module_cfg *tgt_cfg, int max)
546 int i;
547 struct skl_module_inst_id id = tgt_cfg->id;
549 * if pin in dynamic, find first free pin
550 * otherwise find match module and instance id pin as topology will
551 * ensure a unique pin is assigned to this so no need to
552 * allocate/free
554 for (i = 0; i < max; i++) {
555 if (mpin[i].is_dynamic) {
556 if (!mpin[i].in_use &&
557 mpin[i].pin_state == SKL_PIN_UNBIND) {
559 mpin[i].in_use = true;
560 mpin[i].id.module_id = id.module_id;
561 mpin[i].id.instance_id = id.instance_id;
562 mpin[i].tgt_mcfg = tgt_cfg;
563 return i;
565 } else {
566 if (mpin[i].id.module_id == id.module_id &&
567 mpin[i].id.instance_id == id.instance_id &&
568 mpin[i].pin_state == SKL_PIN_UNBIND) {
570 mpin[i].tgt_mcfg = tgt_cfg;
571 return i;
576 return -EINVAL;
579 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
581 if (mpin[q_index].is_dynamic) {
582 mpin[q_index].in_use = false;
583 mpin[q_index].id.module_id = 0;
584 mpin[q_index].id.instance_id = 0;
586 mpin[q_index].pin_state = SKL_PIN_UNBIND;
587 mpin[q_index].tgt_mcfg = NULL;
590 /* Module state will be set to unint, if all the out pin state is UNBIND */
592 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
593 struct skl_module_cfg *mcfg)
595 int i;
596 bool found = false;
598 for (i = 0; i < max; i++) {
599 if (mpin[i].pin_state == SKL_PIN_UNBIND)
600 continue;
601 found = true;
602 break;
605 if (!found)
606 mcfg->m_state = SKL_MODULE_UNINIT;
607 return;
611 * A module needs to be instanataited in DSP. A mdoule is present in a
612 * collection of module referred as a PIPE.
613 * We first calculate the module format, based on module type and then
614 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
616 int skl_init_module(struct skl_sst *ctx,
617 struct skl_module_cfg *mconfig)
619 u16 module_config_size = 0;
620 void *param_data = NULL;
621 int ret;
622 struct skl_ipc_init_instance_msg msg;
624 dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
625 mconfig->id.module_id, mconfig->id.instance_id);
627 if (mconfig->pipe->state != SKL_PIPE_CREATED) {
628 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
629 mconfig->pipe->state, mconfig->pipe->ppl_id);
630 return -EIO;
633 ret = skl_set_module_format(ctx, mconfig,
634 &module_config_size, &param_data);
635 if (ret < 0) {
636 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
637 return ret;
640 msg.module_id = mconfig->id.module_id;
641 msg.instance_id = mconfig->id.instance_id;
642 msg.ppl_instance_id = mconfig->pipe->ppl_id;
643 msg.param_data_size = module_config_size;
644 msg.core_id = mconfig->core_id;
646 ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
647 if (ret < 0) {
648 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
649 kfree(param_data);
650 return ret;
652 mconfig->m_state = SKL_MODULE_INIT_DONE;
654 return ret;
657 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
658 *src_module, struct skl_module_cfg *dst_module)
660 dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n",
661 __func__, src_module->id.module_id, src_module->id.instance_id);
662 dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
663 dst_module->id.module_id, dst_module->id.instance_id);
665 dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
666 src_module->m_state, dst_module->m_state);
670 * On module freeup, we need to unbind the module with modules
671 * it is already bind.
672 * Find the pin allocated and unbind then using bind_unbind IPC
674 int skl_unbind_modules(struct skl_sst *ctx,
675 struct skl_module_cfg *src_mcfg,
676 struct skl_module_cfg *dst_mcfg)
678 int ret;
679 struct skl_ipc_bind_unbind_msg msg;
680 struct skl_module_inst_id src_id = src_mcfg->id;
681 struct skl_module_inst_id dst_id = dst_mcfg->id;
682 int in_max = dst_mcfg->max_in_queue;
683 int out_max = src_mcfg->max_out_queue;
684 int src_index, dst_index, src_pin_state, dst_pin_state;
686 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
688 /* get src queue index */
689 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
690 if (src_index < 0)
691 return -EINVAL;
693 msg.src_queue = src_index;
695 /* get dst queue index */
696 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
697 if (dst_index < 0)
698 return -EINVAL;
700 msg.dst_queue = dst_index;
702 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
703 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
705 if (src_pin_state != SKL_PIN_BIND_DONE ||
706 dst_pin_state != SKL_PIN_BIND_DONE)
707 return 0;
709 msg.module_id = src_mcfg->id.module_id;
710 msg.instance_id = src_mcfg->id.instance_id;
711 msg.dst_module_id = dst_mcfg->id.module_id;
712 msg.dst_instance_id = dst_mcfg->id.instance_id;
713 msg.bind = false;
715 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
716 if (!ret) {
717 /* free queue only if unbind is success */
718 skl_free_queue(src_mcfg->m_out_pin, src_index);
719 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
722 * check only if src module bind state, bind is
723 * always from src -> sink
725 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
728 return ret;
732 * Once a module is instantiated it need to be 'bind' with other modules in
733 * the pipeline. For binding we need to find the module pins which are bind
734 * together
735 * This function finds the pins and then sends bund_unbind IPC message to
736 * DSP using IPC helper
738 int skl_bind_modules(struct skl_sst *ctx,
739 struct skl_module_cfg *src_mcfg,
740 struct skl_module_cfg *dst_mcfg)
742 int ret;
743 struct skl_ipc_bind_unbind_msg msg;
744 int in_max = dst_mcfg->max_in_queue;
745 int out_max = src_mcfg->max_out_queue;
746 int src_index, dst_index;
748 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
750 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE &&
751 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
752 return 0;
754 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
755 if (src_index < 0)
756 return -EINVAL;
758 msg.src_queue = src_index;
759 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
760 if (dst_index < 0) {
761 skl_free_queue(src_mcfg->m_out_pin, src_index);
762 return -EINVAL;
765 msg.dst_queue = dst_index;
767 dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
768 msg.src_queue, msg.dst_queue);
770 msg.module_id = src_mcfg->id.module_id;
771 msg.instance_id = src_mcfg->id.instance_id;
772 msg.dst_module_id = dst_mcfg->id.module_id;
773 msg.dst_instance_id = dst_mcfg->id.instance_id;
774 msg.bind = true;
776 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
778 if (!ret) {
779 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
780 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
781 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
782 } else {
783 /* error case , if IPC fails, clear the queue index */
784 skl_free_queue(src_mcfg->m_out_pin, src_index);
785 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
788 return ret;
791 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
792 enum skl_ipc_pipeline_state state)
794 dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
796 return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
800 * A pipeline is a collection of modules. Before a module in instantiated a
801 * pipeline needs to be created for it.
802 * This function creates pipeline, by sending create pipeline IPC messages
803 * to FW
805 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
807 int ret;
809 dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
811 ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
812 pipe->pipe_priority, pipe->ppl_id);
813 if (ret < 0) {
814 dev_err(ctx->dev, "Failed to create pipeline\n");
815 return ret;
818 pipe->state = SKL_PIPE_CREATED;
820 return 0;
824 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
825 * pause the pipeline first and then delete it
826 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
827 * DMA engines and releases resources
829 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
831 int ret;
833 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
835 /* If pipe is not started, do not try to stop the pipe in FW. */
836 if (pipe->state > SKL_PIPE_STARTED) {
837 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
838 if (ret < 0) {
839 dev_err(ctx->dev, "Failed to stop pipeline\n");
840 return ret;
843 pipe->state = SKL_PIPE_PAUSED;
844 } else {
845 /* If pipe was not created in FW, do not try to delete it */
846 if (pipe->state < SKL_PIPE_CREATED)
847 return 0;
849 ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
850 if (ret < 0)
851 dev_err(ctx->dev, "Failed to delete pipeline\n");
853 pipe->state = SKL_PIPE_INVALID;
856 return ret;
860 * A pipeline is also a scheduling entity in DSP which can be run, stopped
861 * For processing data the pipe need to be run by sending IPC set pipe state
862 * to DSP
864 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
866 int ret;
868 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
870 /* If pipe was not created in FW, do not try to pause or delete */
871 if (pipe->state < SKL_PIPE_CREATED)
872 return 0;
874 /* Pipe has to be paused before it is started */
875 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
876 if (ret < 0) {
877 dev_err(ctx->dev, "Failed to pause pipe\n");
878 return ret;
881 pipe->state = SKL_PIPE_PAUSED;
883 ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
884 if (ret < 0) {
885 dev_err(ctx->dev, "Failed to start pipe\n");
886 return ret;
889 pipe->state = SKL_PIPE_STARTED;
891 return 0;
895 * Stop the pipeline by sending set pipe state IPC
896 * DSP doesnt implement stop so we always send pause message
898 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
900 int ret;
902 dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
904 /* If pipe was not created in FW, do not try to pause or delete */
905 if (pipe->state < SKL_PIPE_PAUSED)
906 return 0;
908 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
909 if (ret < 0) {
910 dev_dbg(ctx->dev, "Failed to stop pipe\n");
911 return ret;
914 pipe->state = SKL_PIPE_CREATED;
916 return 0;
919 /* Algo parameter set helper function */
920 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
921 u32 param_id, struct skl_module_cfg *mcfg)
923 struct skl_ipc_large_config_msg msg;
925 msg.module_id = mcfg->id.module_id;
926 msg.instance_id = mcfg->id.instance_id;
927 msg.param_data_size = size;
928 msg.large_param_id = param_id;
930 return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
933 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
934 u32 param_id, struct skl_module_cfg *mcfg)
936 struct skl_ipc_large_config_msg msg;
938 msg.module_id = mcfg->id.module_id;
939 msg.instance_id = mcfg->id.instance_id;
940 msg.param_data_size = size;
941 msg.large_param_id = param_id;
943 return skl_ipc_get_large_config(&ctx->ipc, &msg, params);