mtd: nand: print out the cell information for nand chip
[linux/fpc-iii.git] / drivers / mtd / nand / nand_base.c
blob55c80efb30816b93f14a3daddfa393ae348cfad3
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 * Credits:
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
20 * TODO:
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/leds.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51 .eccbytes = 3,
52 .eccpos = {0, 1, 2},
53 .oobfree = {
54 {.offset = 3,
55 .length = 2},
56 {.offset = 6,
57 .length = 2} }
60 static struct nand_ecclayout nand_oob_16 = {
61 .eccbytes = 6,
62 .eccpos = {0, 1, 2, 3, 6, 7},
63 .oobfree = {
64 {.offset = 8,
65 . length = 8} }
68 static struct nand_ecclayout nand_oob_64 = {
69 .eccbytes = 24,
70 .eccpos = {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
74 .oobfree = {
75 {.offset = 2,
76 .length = 38} }
79 static struct nand_ecclayout nand_oob_128 = {
80 .eccbytes = 48,
81 .eccpos = {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
88 .oobfree = {
89 {.offset = 2,
90 .length = 78} }
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 struct mtd_oob_ops *ops);
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
102 DEFINE_LED_TRIGGER(nand_led_trigger);
104 static int check_offs_len(struct mtd_info *mtd,
105 loff_t ofs, uint64_t len)
107 struct nand_chip *chip = mtd->priv;
108 int ret = 0;
110 /* Start address must align on block boundary */
111 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__);
113 ret = -EINVAL;
116 /* Length must align on block boundary */
117 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__);
119 ret = -EINVAL;
122 return ret;
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
129 * Release chip lock and wake up anyone waiting on the device.
131 static void nand_release_device(struct mtd_info *mtd)
133 struct nand_chip *chip = mtd->priv;
135 /* Release the controller and the chip */
136 spin_lock(&chip->controller->lock);
137 chip->controller->active = NULL;
138 chip->state = FL_READY;
139 wake_up(&chip->controller->wq);
140 spin_unlock(&chip->controller->lock);
144 * nand_read_byte - [DEFAULT] read one byte from the chip
145 * @mtd: MTD device structure
147 * Default read function for 8bit buswidth
149 static uint8_t nand_read_byte(struct mtd_info *mtd)
151 struct nand_chip *chip = mtd->priv;
152 return readb(chip->IO_ADDR_R);
156 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
157 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
158 * @mtd: MTD device structure
160 * Default read function for 16bit buswidth with endianness conversion.
163 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 struct nand_chip *chip = mtd->priv;
166 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 * nand_read_word - [DEFAULT] read one word from the chip
171 * @mtd: MTD device structure
173 * Default read function for 16bit buswidth without endianness conversion.
175 static u16 nand_read_word(struct mtd_info *mtd)
177 struct nand_chip *chip = mtd->priv;
178 return readw(chip->IO_ADDR_R);
182 * nand_select_chip - [DEFAULT] control CE line
183 * @mtd: MTD device structure
184 * @chipnr: chipnumber to select, -1 for deselect
186 * Default select function for 1 chip devices.
188 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 struct nand_chip *chip = mtd->priv;
192 switch (chipnr) {
193 case -1:
194 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
195 break;
196 case 0:
197 break;
199 default:
200 BUG();
205 * nand_write_buf - [DEFAULT] write buffer to chip
206 * @mtd: MTD device structure
207 * @buf: data buffer
208 * @len: number of bytes to write
210 * Default write function for 8bit buswidth.
212 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
214 struct nand_chip *chip = mtd->priv;
216 iowrite8_rep(chip->IO_ADDR_W, buf, len);
220 * nand_read_buf - [DEFAULT] read chip data into buffer
221 * @mtd: MTD device structure
222 * @buf: buffer to store date
223 * @len: number of bytes to read
225 * Default read function for 8bit buswidth.
227 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
229 struct nand_chip *chip = mtd->priv;
231 ioread8_rep(chip->IO_ADDR_R, buf, len);
235 * nand_write_buf16 - [DEFAULT] write buffer to chip
236 * @mtd: MTD device structure
237 * @buf: data buffer
238 * @len: number of bytes to write
240 * Default write function for 16bit buswidth.
242 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
244 struct nand_chip *chip = mtd->priv;
245 u16 *p = (u16 *) buf;
247 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
251 * nand_read_buf16 - [DEFAULT] read chip data into buffer
252 * @mtd: MTD device structure
253 * @buf: buffer to store date
254 * @len: number of bytes to read
256 * Default read function for 16bit buswidth.
258 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 struct nand_chip *chip = mtd->priv;
261 u16 *p = (u16 *) buf;
263 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
267 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
268 * @mtd: MTD device structure
269 * @ofs: offset from device start
270 * @getchip: 0, if the chip is already selected
272 * Check, if the block is bad.
274 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
276 int page, chipnr, res = 0, i = 0;
277 struct nand_chip *chip = mtd->priv;
278 u16 bad;
280 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
281 ofs += mtd->erasesize - mtd->writesize;
283 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
285 if (getchip) {
286 chipnr = (int)(ofs >> chip->chip_shift);
288 nand_get_device(mtd, FL_READING);
290 /* Select the NAND device */
291 chip->select_chip(mtd, chipnr);
294 do {
295 if (chip->options & NAND_BUSWIDTH_16) {
296 chip->cmdfunc(mtd, NAND_CMD_READOOB,
297 chip->badblockpos & 0xFE, page);
298 bad = cpu_to_le16(chip->read_word(mtd));
299 if (chip->badblockpos & 0x1)
300 bad >>= 8;
301 else
302 bad &= 0xFF;
303 } else {
304 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
305 page);
306 bad = chip->read_byte(mtd);
309 if (likely(chip->badblockbits == 8))
310 res = bad != 0xFF;
311 else
312 res = hweight8(bad) < chip->badblockbits;
313 ofs += mtd->writesize;
314 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
315 i++;
316 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
318 if (getchip) {
319 chip->select_chip(mtd, -1);
320 nand_release_device(mtd);
323 return res;
327 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
328 * @mtd: MTD device structure
329 * @ofs: offset from device start
331 * This is the default implementation, which can be overridden by a hardware
332 * specific driver. It provides the details for writing a bad block marker to a
333 * block.
335 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
337 struct nand_chip *chip = mtd->priv;
338 struct mtd_oob_ops ops;
339 uint8_t buf[2] = { 0, 0 };
340 int ret = 0, res, i = 0;
342 ops.datbuf = NULL;
343 ops.oobbuf = buf;
344 ops.ooboffs = chip->badblockpos;
345 if (chip->options & NAND_BUSWIDTH_16) {
346 ops.ooboffs &= ~0x01;
347 ops.len = ops.ooblen = 2;
348 } else {
349 ops.len = ops.ooblen = 1;
351 ops.mode = MTD_OPS_PLACE_OOB;
353 /* Write to first/last page(s) if necessary */
354 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
355 ofs += mtd->erasesize - mtd->writesize;
356 do {
357 res = nand_do_write_oob(mtd, ofs, &ops);
358 if (!ret)
359 ret = res;
361 i++;
362 ofs += mtd->writesize;
363 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
365 return ret;
369 * nand_block_markbad_lowlevel - mark a block bad
370 * @mtd: MTD device structure
371 * @ofs: offset from device start
373 * This function performs the generic NAND bad block marking steps (i.e., bad
374 * block table(s) and/or marker(s)). We only allow the hardware driver to
375 * specify how to write bad block markers to OOB (chip->block_markbad).
377 * We try operations in the following order:
378 * (1) erase the affected block, to allow OOB marker to be written cleanly
379 * (2) write bad block marker to OOB area of affected block (unless flag
380 * NAND_BBT_NO_OOB_BBM is present)
381 * (3) update the BBT
382 * Note that we retain the first error encountered in (2) or (3), finish the
383 * procedures, and dump the error in the end.
385 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
387 struct nand_chip *chip = mtd->priv;
388 int res, ret = 0;
390 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
391 struct erase_info einfo;
393 /* Attempt erase before marking OOB */
394 memset(&einfo, 0, sizeof(einfo));
395 einfo.mtd = mtd;
396 einfo.addr = ofs;
397 einfo.len = 1ULL << chip->phys_erase_shift;
398 nand_erase_nand(mtd, &einfo, 0);
400 /* Write bad block marker to OOB */
401 nand_get_device(mtd, FL_WRITING);
402 ret = chip->block_markbad(mtd, ofs);
403 nand_release_device(mtd);
406 /* Mark block bad in BBT */
407 if (chip->bbt) {
408 res = nand_markbad_bbt(mtd, ofs);
409 if (!ret)
410 ret = res;
413 if (!ret)
414 mtd->ecc_stats.badblocks++;
416 return ret;
420 * nand_check_wp - [GENERIC] check if the chip is write protected
421 * @mtd: MTD device structure
423 * Check, if the device is write protected. The function expects, that the
424 * device is already selected.
426 static int nand_check_wp(struct mtd_info *mtd)
428 struct nand_chip *chip = mtd->priv;
430 /* Broken xD cards report WP despite being writable */
431 if (chip->options & NAND_BROKEN_XD)
432 return 0;
434 /* Check the WP bit */
435 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
436 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
440 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
441 * @mtd: MTD device structure
442 * @ofs: offset from device start
443 * @getchip: 0, if the chip is already selected
444 * @allowbbt: 1, if its allowed to access the bbt area
446 * Check, if the block is bad. Either by reading the bad block table or
447 * calling of the scan function.
449 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
450 int allowbbt)
452 struct nand_chip *chip = mtd->priv;
454 if (!chip->bbt)
455 return chip->block_bad(mtd, ofs, getchip);
457 /* Return info from the table */
458 return nand_isbad_bbt(mtd, ofs, allowbbt);
462 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
463 * @mtd: MTD device structure
464 * @timeo: Timeout
466 * Helper function for nand_wait_ready used when needing to wait in interrupt
467 * context.
469 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
471 struct nand_chip *chip = mtd->priv;
472 int i;
474 /* Wait for the device to get ready */
475 for (i = 0; i < timeo; i++) {
476 if (chip->dev_ready(mtd))
477 break;
478 touch_softlockup_watchdog();
479 mdelay(1);
483 /* Wait for the ready pin, after a command. The timeout is caught later. */
484 void nand_wait_ready(struct mtd_info *mtd)
486 struct nand_chip *chip = mtd->priv;
487 unsigned long timeo = jiffies + msecs_to_jiffies(20);
489 /* 400ms timeout */
490 if (in_interrupt() || oops_in_progress)
491 return panic_nand_wait_ready(mtd, 400);
493 led_trigger_event(nand_led_trigger, LED_FULL);
494 /* Wait until command is processed or timeout occurs */
495 do {
496 if (chip->dev_ready(mtd))
497 break;
498 touch_softlockup_watchdog();
499 } while (time_before(jiffies, timeo));
500 led_trigger_event(nand_led_trigger, LED_OFF);
502 EXPORT_SYMBOL_GPL(nand_wait_ready);
505 * nand_command - [DEFAULT] Send command to NAND device
506 * @mtd: MTD device structure
507 * @command: the command to be sent
508 * @column: the column address for this command, -1 if none
509 * @page_addr: the page address for this command, -1 if none
511 * Send command to NAND device. This function is used for small page devices
512 * (512 Bytes per page).
514 static void nand_command(struct mtd_info *mtd, unsigned int command,
515 int column, int page_addr)
517 register struct nand_chip *chip = mtd->priv;
518 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
520 /* Write out the command to the device */
521 if (command == NAND_CMD_SEQIN) {
522 int readcmd;
524 if (column >= mtd->writesize) {
525 /* OOB area */
526 column -= mtd->writesize;
527 readcmd = NAND_CMD_READOOB;
528 } else if (column < 256) {
529 /* First 256 bytes --> READ0 */
530 readcmd = NAND_CMD_READ0;
531 } else {
532 column -= 256;
533 readcmd = NAND_CMD_READ1;
535 chip->cmd_ctrl(mtd, readcmd, ctrl);
536 ctrl &= ~NAND_CTRL_CHANGE;
538 chip->cmd_ctrl(mtd, command, ctrl);
540 /* Address cycle, when necessary */
541 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
542 /* Serially input address */
543 if (column != -1) {
544 /* Adjust columns for 16 bit buswidth */
545 if (chip->options & NAND_BUSWIDTH_16)
546 column >>= 1;
547 chip->cmd_ctrl(mtd, column, ctrl);
548 ctrl &= ~NAND_CTRL_CHANGE;
550 if (page_addr != -1) {
551 chip->cmd_ctrl(mtd, page_addr, ctrl);
552 ctrl &= ~NAND_CTRL_CHANGE;
553 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
554 /* One more address cycle for devices > 32MiB */
555 if (chip->chipsize > (32 << 20))
556 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
558 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
561 * Program and erase have their own busy handlers status and sequential
562 * in needs no delay
564 switch (command) {
566 case NAND_CMD_PAGEPROG:
567 case NAND_CMD_ERASE1:
568 case NAND_CMD_ERASE2:
569 case NAND_CMD_SEQIN:
570 case NAND_CMD_STATUS:
571 return;
573 case NAND_CMD_RESET:
574 if (chip->dev_ready)
575 break;
576 udelay(chip->chip_delay);
577 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
578 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
579 chip->cmd_ctrl(mtd,
580 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
581 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
583 return;
585 /* This applies to read commands */
586 default:
588 * If we don't have access to the busy pin, we apply the given
589 * command delay
591 if (!chip->dev_ready) {
592 udelay(chip->chip_delay);
593 return;
597 * Apply this short delay always to ensure that we do wait tWB in
598 * any case on any machine.
600 ndelay(100);
602 nand_wait_ready(mtd);
606 * nand_command_lp - [DEFAULT] Send command to NAND large page device
607 * @mtd: MTD device structure
608 * @command: the command to be sent
609 * @column: the column address for this command, -1 if none
610 * @page_addr: the page address for this command, -1 if none
612 * Send command to NAND device. This is the version for the new large page
613 * devices. We don't have the separate regions as we have in the small page
614 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
616 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
617 int column, int page_addr)
619 register struct nand_chip *chip = mtd->priv;
621 /* Emulate NAND_CMD_READOOB */
622 if (command == NAND_CMD_READOOB) {
623 column += mtd->writesize;
624 command = NAND_CMD_READ0;
627 /* Command latch cycle */
628 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
630 if (column != -1 || page_addr != -1) {
631 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
633 /* Serially input address */
634 if (column != -1) {
635 /* Adjust columns for 16 bit buswidth */
636 if (chip->options & NAND_BUSWIDTH_16)
637 column >>= 1;
638 chip->cmd_ctrl(mtd, column, ctrl);
639 ctrl &= ~NAND_CTRL_CHANGE;
640 chip->cmd_ctrl(mtd, column >> 8, ctrl);
642 if (page_addr != -1) {
643 chip->cmd_ctrl(mtd, page_addr, ctrl);
644 chip->cmd_ctrl(mtd, page_addr >> 8,
645 NAND_NCE | NAND_ALE);
646 /* One more address cycle for devices > 128MiB */
647 if (chip->chipsize > (128 << 20))
648 chip->cmd_ctrl(mtd, page_addr >> 16,
649 NAND_NCE | NAND_ALE);
652 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
655 * Program and erase have their own busy handlers status, sequential
656 * in, and deplete1 need no delay.
658 switch (command) {
660 case NAND_CMD_CACHEDPROG:
661 case NAND_CMD_PAGEPROG:
662 case NAND_CMD_ERASE1:
663 case NAND_CMD_ERASE2:
664 case NAND_CMD_SEQIN:
665 case NAND_CMD_RNDIN:
666 case NAND_CMD_STATUS:
667 return;
669 case NAND_CMD_RESET:
670 if (chip->dev_ready)
671 break;
672 udelay(chip->chip_delay);
673 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
674 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
675 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
676 NAND_NCE | NAND_CTRL_CHANGE);
677 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
679 return;
681 case NAND_CMD_RNDOUT:
682 /* No ready / busy check necessary */
683 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
684 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
685 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
686 NAND_NCE | NAND_CTRL_CHANGE);
687 return;
689 case NAND_CMD_READ0:
690 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
691 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693 NAND_NCE | NAND_CTRL_CHANGE);
695 /* This applies to read commands */
696 default:
698 * If we don't have access to the busy pin, we apply the given
699 * command delay.
701 if (!chip->dev_ready) {
702 udelay(chip->chip_delay);
703 return;
708 * Apply this short delay always to ensure that we do wait tWB in
709 * any case on any machine.
711 ndelay(100);
713 nand_wait_ready(mtd);
717 * panic_nand_get_device - [GENERIC] Get chip for selected access
718 * @chip: the nand chip descriptor
719 * @mtd: MTD device structure
720 * @new_state: the state which is requested
722 * Used when in panic, no locks are taken.
724 static void panic_nand_get_device(struct nand_chip *chip,
725 struct mtd_info *mtd, int new_state)
727 /* Hardware controller shared among independent devices */
728 chip->controller->active = chip;
729 chip->state = new_state;
733 * nand_get_device - [GENERIC] Get chip for selected access
734 * @mtd: MTD device structure
735 * @new_state: the state which is requested
737 * Get the device and lock it for exclusive access
739 static int
740 nand_get_device(struct mtd_info *mtd, int new_state)
742 struct nand_chip *chip = mtd->priv;
743 spinlock_t *lock = &chip->controller->lock;
744 wait_queue_head_t *wq = &chip->controller->wq;
745 DECLARE_WAITQUEUE(wait, current);
746 retry:
747 spin_lock(lock);
749 /* Hardware controller shared among independent devices */
750 if (!chip->controller->active)
751 chip->controller->active = chip;
753 if (chip->controller->active == chip && chip->state == FL_READY) {
754 chip->state = new_state;
755 spin_unlock(lock);
756 return 0;
758 if (new_state == FL_PM_SUSPENDED) {
759 if (chip->controller->active->state == FL_PM_SUSPENDED) {
760 chip->state = FL_PM_SUSPENDED;
761 spin_unlock(lock);
762 return 0;
765 set_current_state(TASK_UNINTERRUPTIBLE);
766 add_wait_queue(wq, &wait);
767 spin_unlock(lock);
768 schedule();
769 remove_wait_queue(wq, &wait);
770 goto retry;
774 * panic_nand_wait - [GENERIC] wait until the command is done
775 * @mtd: MTD device structure
776 * @chip: NAND chip structure
777 * @timeo: timeout
779 * Wait for command done. This is a helper function for nand_wait used when
780 * we are in interrupt context. May happen when in panic and trying to write
781 * an oops through mtdoops.
783 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
784 unsigned long timeo)
786 int i;
787 for (i = 0; i < timeo; i++) {
788 if (chip->dev_ready) {
789 if (chip->dev_ready(mtd))
790 break;
791 } else {
792 if (chip->read_byte(mtd) & NAND_STATUS_READY)
793 break;
795 mdelay(1);
800 * nand_wait - [DEFAULT] wait until the command is done
801 * @mtd: MTD device structure
802 * @chip: NAND chip structure
804 * Wait for command done. This applies to erase and program only. Erase can
805 * take up to 400ms and program up to 20ms according to general NAND and
806 * SmartMedia specs.
808 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
811 int status, state = chip->state;
812 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
814 led_trigger_event(nand_led_trigger, LED_FULL);
817 * Apply this short delay always to ensure that we do wait tWB in any
818 * case on any machine.
820 ndelay(100);
822 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
824 if (in_interrupt() || oops_in_progress)
825 panic_nand_wait(mtd, chip, timeo);
826 else {
827 timeo = jiffies + msecs_to_jiffies(timeo);
828 while (time_before(jiffies, timeo)) {
829 if (chip->dev_ready) {
830 if (chip->dev_ready(mtd))
831 break;
832 } else {
833 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834 break;
836 cond_resched();
839 led_trigger_event(nand_led_trigger, LED_OFF);
841 status = (int)chip->read_byte(mtd);
842 /* This can happen if in case of timeout or buggy dev_ready */
843 WARN_ON(!(status & NAND_STATUS_READY));
844 return status;
848 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
849 * @mtd: mtd info
850 * @ofs: offset to start unlock from
851 * @len: length to unlock
852 * @invert: when = 0, unlock the range of blocks within the lower and
853 * upper boundary address
854 * when = 1, unlock the range of blocks outside the boundaries
855 * of the lower and upper boundary address
857 * Returs unlock status.
859 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
860 uint64_t len, int invert)
862 int ret = 0;
863 int status, page;
864 struct nand_chip *chip = mtd->priv;
866 /* Submit address of first page to unlock */
867 page = ofs >> chip->page_shift;
868 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
870 /* Submit address of last page to unlock */
871 page = (ofs + len) >> chip->page_shift;
872 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
873 (page | invert) & chip->pagemask);
875 /* Call wait ready function */
876 status = chip->waitfunc(mtd, chip);
877 /* See if device thinks it succeeded */
878 if (status & NAND_STATUS_FAIL) {
879 pr_debug("%s: error status = 0x%08x\n",
880 __func__, status);
881 ret = -EIO;
884 return ret;
888 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
889 * @mtd: mtd info
890 * @ofs: offset to start unlock from
891 * @len: length to unlock
893 * Returns unlock status.
895 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
897 int ret = 0;
898 int chipnr;
899 struct nand_chip *chip = mtd->priv;
901 pr_debug("%s: start = 0x%012llx, len = %llu\n",
902 __func__, (unsigned long long)ofs, len);
904 if (check_offs_len(mtd, ofs, len))
905 ret = -EINVAL;
907 /* Align to last block address if size addresses end of the device */
908 if (ofs + len == mtd->size)
909 len -= mtd->erasesize;
911 nand_get_device(mtd, FL_UNLOCKING);
913 /* Shift to get chip number */
914 chipnr = ofs >> chip->chip_shift;
916 chip->select_chip(mtd, chipnr);
918 /* Check, if it is write protected */
919 if (nand_check_wp(mtd)) {
920 pr_debug("%s: device is write protected!\n",
921 __func__);
922 ret = -EIO;
923 goto out;
926 ret = __nand_unlock(mtd, ofs, len, 0);
928 out:
929 chip->select_chip(mtd, -1);
930 nand_release_device(mtd);
932 return ret;
934 EXPORT_SYMBOL(nand_unlock);
937 * nand_lock - [REPLACEABLE] locks all blocks present in the device
938 * @mtd: mtd info
939 * @ofs: offset to start unlock from
940 * @len: length to unlock
942 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
943 * have this feature, but it allows only to lock all blocks, not for specified
944 * range for block. Implementing 'lock' feature by making use of 'unlock', for
945 * now.
947 * Returns lock status.
949 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
951 int ret = 0;
952 int chipnr, status, page;
953 struct nand_chip *chip = mtd->priv;
955 pr_debug("%s: start = 0x%012llx, len = %llu\n",
956 __func__, (unsigned long long)ofs, len);
958 if (check_offs_len(mtd, ofs, len))
959 ret = -EINVAL;
961 nand_get_device(mtd, FL_LOCKING);
963 /* Shift to get chip number */
964 chipnr = ofs >> chip->chip_shift;
966 chip->select_chip(mtd, chipnr);
968 /* Check, if it is write protected */
969 if (nand_check_wp(mtd)) {
970 pr_debug("%s: device is write protected!\n",
971 __func__);
972 status = MTD_ERASE_FAILED;
973 ret = -EIO;
974 goto out;
977 /* Submit address of first page to lock */
978 page = ofs >> chip->page_shift;
979 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
981 /* Call wait ready function */
982 status = chip->waitfunc(mtd, chip);
983 /* See if device thinks it succeeded */
984 if (status & NAND_STATUS_FAIL) {
985 pr_debug("%s: error status = 0x%08x\n",
986 __func__, status);
987 ret = -EIO;
988 goto out;
991 ret = __nand_unlock(mtd, ofs, len, 0x1);
993 out:
994 chip->select_chip(mtd, -1);
995 nand_release_device(mtd);
997 return ret;
999 EXPORT_SYMBOL(nand_lock);
1002 * nand_read_page_raw - [INTERN] read raw page data without ecc
1003 * @mtd: mtd info structure
1004 * @chip: nand chip info structure
1005 * @buf: buffer to store read data
1006 * @oob_required: caller requires OOB data read to chip->oob_poi
1007 * @page: page number to read
1009 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1011 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1012 uint8_t *buf, int oob_required, int page)
1014 chip->read_buf(mtd, buf, mtd->writesize);
1015 if (oob_required)
1016 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1017 return 0;
1021 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1022 * @mtd: mtd info structure
1023 * @chip: nand chip info structure
1024 * @buf: buffer to store read data
1025 * @oob_required: caller requires OOB data read to chip->oob_poi
1026 * @page: page number to read
1028 * We need a special oob layout and handling even when OOB isn't used.
1030 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1031 struct nand_chip *chip, uint8_t *buf,
1032 int oob_required, int page)
1034 int eccsize = chip->ecc.size;
1035 int eccbytes = chip->ecc.bytes;
1036 uint8_t *oob = chip->oob_poi;
1037 int steps, size;
1039 for (steps = chip->ecc.steps; steps > 0; steps--) {
1040 chip->read_buf(mtd, buf, eccsize);
1041 buf += eccsize;
1043 if (chip->ecc.prepad) {
1044 chip->read_buf(mtd, oob, chip->ecc.prepad);
1045 oob += chip->ecc.prepad;
1048 chip->read_buf(mtd, oob, eccbytes);
1049 oob += eccbytes;
1051 if (chip->ecc.postpad) {
1052 chip->read_buf(mtd, oob, chip->ecc.postpad);
1053 oob += chip->ecc.postpad;
1057 size = mtd->oobsize - (oob - chip->oob_poi);
1058 if (size)
1059 chip->read_buf(mtd, oob, size);
1061 return 0;
1065 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1066 * @mtd: mtd info structure
1067 * @chip: nand chip info structure
1068 * @buf: buffer to store read data
1069 * @oob_required: caller requires OOB data read to chip->oob_poi
1070 * @page: page number to read
1072 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1073 uint8_t *buf, int oob_required, int page)
1075 int i, eccsize = chip->ecc.size;
1076 int eccbytes = chip->ecc.bytes;
1077 int eccsteps = chip->ecc.steps;
1078 uint8_t *p = buf;
1079 uint8_t *ecc_calc = chip->buffers->ecccalc;
1080 uint8_t *ecc_code = chip->buffers->ecccode;
1081 uint32_t *eccpos = chip->ecc.layout->eccpos;
1082 unsigned int max_bitflips = 0;
1084 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1086 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1087 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1089 for (i = 0; i < chip->ecc.total; i++)
1090 ecc_code[i] = chip->oob_poi[eccpos[i]];
1092 eccsteps = chip->ecc.steps;
1093 p = buf;
1095 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1096 int stat;
1098 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1099 if (stat < 0) {
1100 mtd->ecc_stats.failed++;
1101 } else {
1102 mtd->ecc_stats.corrected += stat;
1103 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1106 return max_bitflips;
1110 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1111 * @mtd: mtd info structure
1112 * @chip: nand chip info structure
1113 * @data_offs: offset of requested data within the page
1114 * @readlen: data length
1115 * @bufpoi: buffer to store read data
1117 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1118 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1120 int start_step, end_step, num_steps;
1121 uint32_t *eccpos = chip->ecc.layout->eccpos;
1122 uint8_t *p;
1123 int data_col_addr, i, gaps = 0;
1124 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1125 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1126 int index = 0;
1127 unsigned int max_bitflips = 0;
1129 /* Column address within the page aligned to ECC size (256bytes) */
1130 start_step = data_offs / chip->ecc.size;
1131 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1132 num_steps = end_step - start_step + 1;
1134 /* Data size aligned to ECC ecc.size */
1135 datafrag_len = num_steps * chip->ecc.size;
1136 eccfrag_len = num_steps * chip->ecc.bytes;
1138 data_col_addr = start_step * chip->ecc.size;
1139 /* If we read not a page aligned data */
1140 if (data_col_addr != 0)
1141 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1143 p = bufpoi + data_col_addr;
1144 chip->read_buf(mtd, p, datafrag_len);
1146 /* Calculate ECC */
1147 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1148 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1151 * The performance is faster if we position offsets according to
1152 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1154 for (i = 0; i < eccfrag_len - 1; i++) {
1155 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1156 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1157 gaps = 1;
1158 break;
1161 if (gaps) {
1162 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1163 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1164 } else {
1166 * Send the command to read the particular ECC bytes take care
1167 * about buswidth alignment in read_buf.
1169 index = start_step * chip->ecc.bytes;
1171 aligned_pos = eccpos[index] & ~(busw - 1);
1172 aligned_len = eccfrag_len;
1173 if (eccpos[index] & (busw - 1))
1174 aligned_len++;
1175 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1176 aligned_len++;
1178 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1179 mtd->writesize + aligned_pos, -1);
1180 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1183 for (i = 0; i < eccfrag_len; i++)
1184 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1186 p = bufpoi + data_col_addr;
1187 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1188 int stat;
1190 stat = chip->ecc.correct(mtd, p,
1191 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1192 if (stat < 0) {
1193 mtd->ecc_stats.failed++;
1194 } else {
1195 mtd->ecc_stats.corrected += stat;
1196 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1199 return max_bitflips;
1203 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1204 * @mtd: mtd info structure
1205 * @chip: nand chip info structure
1206 * @buf: buffer to store read data
1207 * @oob_required: caller requires OOB data read to chip->oob_poi
1208 * @page: page number to read
1210 * Not for syndrome calculating ECC controllers which need a special oob layout.
1212 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1213 uint8_t *buf, int oob_required, int page)
1215 int i, eccsize = chip->ecc.size;
1216 int eccbytes = chip->ecc.bytes;
1217 int eccsteps = chip->ecc.steps;
1218 uint8_t *p = buf;
1219 uint8_t *ecc_calc = chip->buffers->ecccalc;
1220 uint8_t *ecc_code = chip->buffers->ecccode;
1221 uint32_t *eccpos = chip->ecc.layout->eccpos;
1222 unsigned int max_bitflips = 0;
1224 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1225 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1226 chip->read_buf(mtd, p, eccsize);
1227 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1229 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1231 for (i = 0; i < chip->ecc.total; i++)
1232 ecc_code[i] = chip->oob_poi[eccpos[i]];
1234 eccsteps = chip->ecc.steps;
1235 p = buf;
1237 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1238 int stat;
1240 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1241 if (stat < 0) {
1242 mtd->ecc_stats.failed++;
1243 } else {
1244 mtd->ecc_stats.corrected += stat;
1245 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1248 return max_bitflips;
1252 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1253 * @mtd: mtd info structure
1254 * @chip: nand chip info structure
1255 * @buf: buffer to store read data
1256 * @oob_required: caller requires OOB data read to chip->oob_poi
1257 * @page: page number to read
1259 * Hardware ECC for large page chips, require OOB to be read first. For this
1260 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1261 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1262 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1263 * the data area, by overwriting the NAND manufacturer bad block markings.
1265 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1266 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1268 int i, eccsize = chip->ecc.size;
1269 int eccbytes = chip->ecc.bytes;
1270 int eccsteps = chip->ecc.steps;
1271 uint8_t *p = buf;
1272 uint8_t *ecc_code = chip->buffers->ecccode;
1273 uint32_t *eccpos = chip->ecc.layout->eccpos;
1274 uint8_t *ecc_calc = chip->buffers->ecccalc;
1275 unsigned int max_bitflips = 0;
1277 /* Read the OOB area first */
1278 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1279 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1280 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1282 for (i = 0; i < chip->ecc.total; i++)
1283 ecc_code[i] = chip->oob_poi[eccpos[i]];
1285 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1286 int stat;
1288 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1289 chip->read_buf(mtd, p, eccsize);
1290 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1292 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1293 if (stat < 0) {
1294 mtd->ecc_stats.failed++;
1295 } else {
1296 mtd->ecc_stats.corrected += stat;
1297 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1300 return max_bitflips;
1304 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1305 * @mtd: mtd info structure
1306 * @chip: nand chip info structure
1307 * @buf: buffer to store read data
1308 * @oob_required: caller requires OOB data read to chip->oob_poi
1309 * @page: page number to read
1311 * The hw generator calculates the error syndrome automatically. Therefore we
1312 * need a special oob layout and handling.
1314 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1315 uint8_t *buf, int oob_required, int page)
1317 int i, eccsize = chip->ecc.size;
1318 int eccbytes = chip->ecc.bytes;
1319 int eccsteps = chip->ecc.steps;
1320 uint8_t *p = buf;
1321 uint8_t *oob = chip->oob_poi;
1322 unsigned int max_bitflips = 0;
1324 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1325 int stat;
1327 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328 chip->read_buf(mtd, p, eccsize);
1330 if (chip->ecc.prepad) {
1331 chip->read_buf(mtd, oob, chip->ecc.prepad);
1332 oob += chip->ecc.prepad;
1335 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1336 chip->read_buf(mtd, oob, eccbytes);
1337 stat = chip->ecc.correct(mtd, p, oob, NULL);
1339 if (stat < 0) {
1340 mtd->ecc_stats.failed++;
1341 } else {
1342 mtd->ecc_stats.corrected += stat;
1343 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1346 oob += eccbytes;
1348 if (chip->ecc.postpad) {
1349 chip->read_buf(mtd, oob, chip->ecc.postpad);
1350 oob += chip->ecc.postpad;
1354 /* Calculate remaining oob bytes */
1355 i = mtd->oobsize - (oob - chip->oob_poi);
1356 if (i)
1357 chip->read_buf(mtd, oob, i);
1359 return max_bitflips;
1363 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1364 * @chip: nand chip structure
1365 * @oob: oob destination address
1366 * @ops: oob ops structure
1367 * @len: size of oob to transfer
1369 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1370 struct mtd_oob_ops *ops, size_t len)
1372 switch (ops->mode) {
1374 case MTD_OPS_PLACE_OOB:
1375 case MTD_OPS_RAW:
1376 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1377 return oob + len;
1379 case MTD_OPS_AUTO_OOB: {
1380 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1381 uint32_t boffs = 0, roffs = ops->ooboffs;
1382 size_t bytes = 0;
1384 for (; free->length && len; free++, len -= bytes) {
1385 /* Read request not from offset 0? */
1386 if (unlikely(roffs)) {
1387 if (roffs >= free->length) {
1388 roffs -= free->length;
1389 continue;
1391 boffs = free->offset + roffs;
1392 bytes = min_t(size_t, len,
1393 (free->length - roffs));
1394 roffs = 0;
1395 } else {
1396 bytes = min_t(size_t, len, free->length);
1397 boffs = free->offset;
1399 memcpy(oob, chip->oob_poi + boffs, bytes);
1400 oob += bytes;
1402 return oob;
1404 default:
1405 BUG();
1407 return NULL;
1411 * nand_do_read_ops - [INTERN] Read data with ECC
1412 * @mtd: MTD device structure
1413 * @from: offset to read from
1414 * @ops: oob ops structure
1416 * Internal function. Called with chip held.
1418 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1419 struct mtd_oob_ops *ops)
1421 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1422 struct nand_chip *chip = mtd->priv;
1423 struct mtd_ecc_stats stats;
1424 int ret = 0;
1425 uint32_t readlen = ops->len;
1426 uint32_t oobreadlen = ops->ooblen;
1427 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1428 mtd->oobavail : mtd->oobsize;
1430 uint8_t *bufpoi, *oob, *buf;
1431 unsigned int max_bitflips = 0;
1433 stats = mtd->ecc_stats;
1435 chipnr = (int)(from >> chip->chip_shift);
1436 chip->select_chip(mtd, chipnr);
1438 realpage = (int)(from >> chip->page_shift);
1439 page = realpage & chip->pagemask;
1441 col = (int)(from & (mtd->writesize - 1));
1443 buf = ops->datbuf;
1444 oob = ops->oobbuf;
1445 oob_required = oob ? 1 : 0;
1447 while (1) {
1448 bytes = min(mtd->writesize - col, readlen);
1449 aligned = (bytes == mtd->writesize);
1451 /* Is the current page in the buffer? */
1452 if (realpage != chip->pagebuf || oob) {
1453 bufpoi = aligned ? buf : chip->buffers->databuf;
1455 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1458 * Now read the page into the buffer. Absent an error,
1459 * the read methods return max bitflips per ecc step.
1461 if (unlikely(ops->mode == MTD_OPS_RAW))
1462 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1463 oob_required,
1464 page);
1465 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1466 !oob)
1467 ret = chip->ecc.read_subpage(mtd, chip,
1468 col, bytes, bufpoi);
1469 else
1470 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1471 oob_required, page);
1472 if (ret < 0) {
1473 if (!aligned)
1474 /* Invalidate page cache */
1475 chip->pagebuf = -1;
1476 break;
1479 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1481 /* Transfer not aligned data */
1482 if (!aligned) {
1483 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1484 !(mtd->ecc_stats.failed - stats.failed) &&
1485 (ops->mode != MTD_OPS_RAW)) {
1486 chip->pagebuf = realpage;
1487 chip->pagebuf_bitflips = ret;
1488 } else {
1489 /* Invalidate page cache */
1490 chip->pagebuf = -1;
1492 memcpy(buf, chip->buffers->databuf + col, bytes);
1495 buf += bytes;
1497 if (unlikely(oob)) {
1498 int toread = min(oobreadlen, max_oobsize);
1500 if (toread) {
1501 oob = nand_transfer_oob(chip,
1502 oob, ops, toread);
1503 oobreadlen -= toread;
1507 if (chip->options & NAND_NEED_READRDY) {
1508 /* Apply delay or wait for ready/busy pin */
1509 if (!chip->dev_ready)
1510 udelay(chip->chip_delay);
1511 else
1512 nand_wait_ready(mtd);
1514 } else {
1515 memcpy(buf, chip->buffers->databuf + col, bytes);
1516 buf += bytes;
1517 max_bitflips = max_t(unsigned int, max_bitflips,
1518 chip->pagebuf_bitflips);
1521 readlen -= bytes;
1523 if (!readlen)
1524 break;
1526 /* For subsequent reads align to page boundary */
1527 col = 0;
1528 /* Increment page address */
1529 realpage++;
1531 page = realpage & chip->pagemask;
1532 /* Check, if we cross a chip boundary */
1533 if (!page) {
1534 chipnr++;
1535 chip->select_chip(mtd, -1);
1536 chip->select_chip(mtd, chipnr);
1539 chip->select_chip(mtd, -1);
1541 ops->retlen = ops->len - (size_t) readlen;
1542 if (oob)
1543 ops->oobretlen = ops->ooblen - oobreadlen;
1545 if (ret < 0)
1546 return ret;
1548 if (mtd->ecc_stats.failed - stats.failed)
1549 return -EBADMSG;
1551 return max_bitflips;
1555 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1556 * @mtd: MTD device structure
1557 * @from: offset to read from
1558 * @len: number of bytes to read
1559 * @retlen: pointer to variable to store the number of read bytes
1560 * @buf: the databuffer to put data
1562 * Get hold of the chip and call nand_do_read.
1564 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1565 size_t *retlen, uint8_t *buf)
1567 struct mtd_oob_ops ops;
1568 int ret;
1570 nand_get_device(mtd, FL_READING);
1571 ops.len = len;
1572 ops.datbuf = buf;
1573 ops.oobbuf = NULL;
1574 ops.mode = MTD_OPS_PLACE_OOB;
1575 ret = nand_do_read_ops(mtd, from, &ops);
1576 *retlen = ops.retlen;
1577 nand_release_device(mtd);
1578 return ret;
1582 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1583 * @mtd: mtd info structure
1584 * @chip: nand chip info structure
1585 * @page: page number to read
1587 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1588 int page)
1590 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1591 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1592 return 0;
1596 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1597 * with syndromes
1598 * @mtd: mtd info structure
1599 * @chip: nand chip info structure
1600 * @page: page number to read
1602 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1603 int page)
1605 uint8_t *buf = chip->oob_poi;
1606 int length = mtd->oobsize;
1607 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1608 int eccsize = chip->ecc.size;
1609 uint8_t *bufpoi = buf;
1610 int i, toread, sndrnd = 0, pos;
1612 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1613 for (i = 0; i < chip->ecc.steps; i++) {
1614 if (sndrnd) {
1615 pos = eccsize + i * (eccsize + chunk);
1616 if (mtd->writesize > 512)
1617 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1618 else
1619 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1620 } else
1621 sndrnd = 1;
1622 toread = min_t(int, length, chunk);
1623 chip->read_buf(mtd, bufpoi, toread);
1624 bufpoi += toread;
1625 length -= toread;
1627 if (length > 0)
1628 chip->read_buf(mtd, bufpoi, length);
1630 return 0;
1634 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1635 * @mtd: mtd info structure
1636 * @chip: nand chip info structure
1637 * @page: page number to write
1639 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1640 int page)
1642 int status = 0;
1643 const uint8_t *buf = chip->oob_poi;
1644 int length = mtd->oobsize;
1646 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1647 chip->write_buf(mtd, buf, length);
1648 /* Send command to program the OOB data */
1649 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1651 status = chip->waitfunc(mtd, chip);
1653 return status & NAND_STATUS_FAIL ? -EIO : 0;
1657 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1658 * with syndrome - only for large page flash
1659 * @mtd: mtd info structure
1660 * @chip: nand chip info structure
1661 * @page: page number to write
1663 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1664 struct nand_chip *chip, int page)
1666 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1667 int eccsize = chip->ecc.size, length = mtd->oobsize;
1668 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1669 const uint8_t *bufpoi = chip->oob_poi;
1672 * data-ecc-data-ecc ... ecc-oob
1673 * or
1674 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1676 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1677 pos = steps * (eccsize + chunk);
1678 steps = 0;
1679 } else
1680 pos = eccsize;
1682 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1683 for (i = 0; i < steps; i++) {
1684 if (sndcmd) {
1685 if (mtd->writesize <= 512) {
1686 uint32_t fill = 0xFFFFFFFF;
1688 len = eccsize;
1689 while (len > 0) {
1690 int num = min_t(int, len, 4);
1691 chip->write_buf(mtd, (uint8_t *)&fill,
1692 num);
1693 len -= num;
1695 } else {
1696 pos = eccsize + i * (eccsize + chunk);
1697 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1699 } else
1700 sndcmd = 1;
1701 len = min_t(int, length, chunk);
1702 chip->write_buf(mtd, bufpoi, len);
1703 bufpoi += len;
1704 length -= len;
1706 if (length > 0)
1707 chip->write_buf(mtd, bufpoi, length);
1709 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1710 status = chip->waitfunc(mtd, chip);
1712 return status & NAND_STATUS_FAIL ? -EIO : 0;
1716 * nand_do_read_oob - [INTERN] NAND read out-of-band
1717 * @mtd: MTD device structure
1718 * @from: offset to read from
1719 * @ops: oob operations description structure
1721 * NAND read out-of-band data from the spare area.
1723 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1724 struct mtd_oob_ops *ops)
1726 int page, realpage, chipnr;
1727 struct nand_chip *chip = mtd->priv;
1728 struct mtd_ecc_stats stats;
1729 int readlen = ops->ooblen;
1730 int len;
1731 uint8_t *buf = ops->oobbuf;
1732 int ret = 0;
1734 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1735 __func__, (unsigned long long)from, readlen);
1737 stats = mtd->ecc_stats;
1739 if (ops->mode == MTD_OPS_AUTO_OOB)
1740 len = chip->ecc.layout->oobavail;
1741 else
1742 len = mtd->oobsize;
1744 if (unlikely(ops->ooboffs >= len)) {
1745 pr_debug("%s: attempt to start read outside oob\n",
1746 __func__);
1747 return -EINVAL;
1750 /* Do not allow reads past end of device */
1751 if (unlikely(from >= mtd->size ||
1752 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1753 (from >> chip->page_shift)) * len)) {
1754 pr_debug("%s: attempt to read beyond end of device\n",
1755 __func__);
1756 return -EINVAL;
1759 chipnr = (int)(from >> chip->chip_shift);
1760 chip->select_chip(mtd, chipnr);
1762 /* Shift to get page */
1763 realpage = (int)(from >> chip->page_shift);
1764 page = realpage & chip->pagemask;
1766 while (1) {
1767 if (ops->mode == MTD_OPS_RAW)
1768 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1769 else
1770 ret = chip->ecc.read_oob(mtd, chip, page);
1772 if (ret < 0)
1773 break;
1775 len = min(len, readlen);
1776 buf = nand_transfer_oob(chip, buf, ops, len);
1778 if (chip->options & NAND_NEED_READRDY) {
1779 /* Apply delay or wait for ready/busy pin */
1780 if (!chip->dev_ready)
1781 udelay(chip->chip_delay);
1782 else
1783 nand_wait_ready(mtd);
1786 readlen -= len;
1787 if (!readlen)
1788 break;
1790 /* Increment page address */
1791 realpage++;
1793 page = realpage & chip->pagemask;
1794 /* Check, if we cross a chip boundary */
1795 if (!page) {
1796 chipnr++;
1797 chip->select_chip(mtd, -1);
1798 chip->select_chip(mtd, chipnr);
1801 chip->select_chip(mtd, -1);
1803 ops->oobretlen = ops->ooblen - readlen;
1805 if (ret < 0)
1806 return ret;
1808 if (mtd->ecc_stats.failed - stats.failed)
1809 return -EBADMSG;
1811 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1815 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1816 * @mtd: MTD device structure
1817 * @from: offset to read from
1818 * @ops: oob operation description structure
1820 * NAND read data and/or out-of-band data.
1822 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1823 struct mtd_oob_ops *ops)
1825 int ret = -ENOTSUPP;
1827 ops->retlen = 0;
1829 /* Do not allow reads past end of device */
1830 if (ops->datbuf && (from + ops->len) > mtd->size) {
1831 pr_debug("%s: attempt to read beyond end of device\n",
1832 __func__);
1833 return -EINVAL;
1836 nand_get_device(mtd, FL_READING);
1838 switch (ops->mode) {
1839 case MTD_OPS_PLACE_OOB:
1840 case MTD_OPS_AUTO_OOB:
1841 case MTD_OPS_RAW:
1842 break;
1844 default:
1845 goto out;
1848 if (!ops->datbuf)
1849 ret = nand_do_read_oob(mtd, from, ops);
1850 else
1851 ret = nand_do_read_ops(mtd, from, ops);
1853 out:
1854 nand_release_device(mtd);
1855 return ret;
1860 * nand_write_page_raw - [INTERN] raw page write function
1861 * @mtd: mtd info structure
1862 * @chip: nand chip info structure
1863 * @buf: data buffer
1864 * @oob_required: must write chip->oob_poi to OOB
1866 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1868 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1869 const uint8_t *buf, int oob_required)
1871 chip->write_buf(mtd, buf, mtd->writesize);
1872 if (oob_required)
1873 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1875 return 0;
1879 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1880 * @mtd: mtd info structure
1881 * @chip: nand chip info structure
1882 * @buf: data buffer
1883 * @oob_required: must write chip->oob_poi to OOB
1885 * We need a special oob layout and handling even when ECC isn't checked.
1887 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1888 struct nand_chip *chip,
1889 const uint8_t *buf, int oob_required)
1891 int eccsize = chip->ecc.size;
1892 int eccbytes = chip->ecc.bytes;
1893 uint8_t *oob = chip->oob_poi;
1894 int steps, size;
1896 for (steps = chip->ecc.steps; steps > 0; steps--) {
1897 chip->write_buf(mtd, buf, eccsize);
1898 buf += eccsize;
1900 if (chip->ecc.prepad) {
1901 chip->write_buf(mtd, oob, chip->ecc.prepad);
1902 oob += chip->ecc.prepad;
1905 chip->read_buf(mtd, oob, eccbytes);
1906 oob += eccbytes;
1908 if (chip->ecc.postpad) {
1909 chip->write_buf(mtd, oob, chip->ecc.postpad);
1910 oob += chip->ecc.postpad;
1914 size = mtd->oobsize - (oob - chip->oob_poi);
1915 if (size)
1916 chip->write_buf(mtd, oob, size);
1918 return 0;
1921 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1922 * @mtd: mtd info structure
1923 * @chip: nand chip info structure
1924 * @buf: data buffer
1925 * @oob_required: must write chip->oob_poi to OOB
1927 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1928 const uint8_t *buf, int oob_required)
1930 int i, eccsize = chip->ecc.size;
1931 int eccbytes = chip->ecc.bytes;
1932 int eccsteps = chip->ecc.steps;
1933 uint8_t *ecc_calc = chip->buffers->ecccalc;
1934 const uint8_t *p = buf;
1935 uint32_t *eccpos = chip->ecc.layout->eccpos;
1937 /* Software ECC calculation */
1938 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1939 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1941 for (i = 0; i < chip->ecc.total; i++)
1942 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1944 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1948 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1949 * @mtd: mtd info structure
1950 * @chip: nand chip info structure
1951 * @buf: data buffer
1952 * @oob_required: must write chip->oob_poi to OOB
1954 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1955 const uint8_t *buf, int oob_required)
1957 int i, eccsize = chip->ecc.size;
1958 int eccbytes = chip->ecc.bytes;
1959 int eccsteps = chip->ecc.steps;
1960 uint8_t *ecc_calc = chip->buffers->ecccalc;
1961 const uint8_t *p = buf;
1962 uint32_t *eccpos = chip->ecc.layout->eccpos;
1964 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1965 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1966 chip->write_buf(mtd, p, eccsize);
1967 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1970 for (i = 0; i < chip->ecc.total; i++)
1971 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1973 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1975 return 0;
1980 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1981 * @mtd: mtd info structure
1982 * @chip: nand chip info structure
1983 * @offset: column address of subpage within the page
1984 * @data_len: data length
1985 * @buf: data buffer
1986 * @oob_required: must write chip->oob_poi to OOB
1988 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1989 struct nand_chip *chip, uint32_t offset,
1990 uint32_t data_len, const uint8_t *buf,
1991 int oob_required)
1993 uint8_t *oob_buf = chip->oob_poi;
1994 uint8_t *ecc_calc = chip->buffers->ecccalc;
1995 int ecc_size = chip->ecc.size;
1996 int ecc_bytes = chip->ecc.bytes;
1997 int ecc_steps = chip->ecc.steps;
1998 uint32_t *eccpos = chip->ecc.layout->eccpos;
1999 uint32_t start_step = offset / ecc_size;
2000 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2001 int oob_bytes = mtd->oobsize / ecc_steps;
2002 int step, i;
2004 for (step = 0; step < ecc_steps; step++) {
2005 /* configure controller for WRITE access */
2006 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2008 /* write data (untouched subpages already masked by 0xFF) */
2009 chip->write_buf(mtd, buf, ecc_size);
2011 /* mask ECC of un-touched subpages by padding 0xFF */
2012 if ((step < start_step) || (step > end_step))
2013 memset(ecc_calc, 0xff, ecc_bytes);
2014 else
2015 chip->ecc.calculate(mtd, buf, ecc_calc);
2017 /* mask OOB of un-touched subpages by padding 0xFF */
2018 /* if oob_required, preserve OOB metadata of written subpage */
2019 if (!oob_required || (step < start_step) || (step > end_step))
2020 memset(oob_buf, 0xff, oob_bytes);
2022 buf += ecc_size;
2023 ecc_calc += ecc_bytes;
2024 oob_buf += oob_bytes;
2027 /* copy calculated ECC for whole page to chip->buffer->oob */
2028 /* this include masked-value(0xFF) for unwritten subpages */
2029 ecc_calc = chip->buffers->ecccalc;
2030 for (i = 0; i < chip->ecc.total; i++)
2031 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2033 /* write OOB buffer to NAND device */
2034 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2036 return 0;
2041 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2042 * @mtd: mtd info structure
2043 * @chip: nand chip info structure
2044 * @buf: data buffer
2045 * @oob_required: must write chip->oob_poi to OOB
2047 * The hw generator calculates the error syndrome automatically. Therefore we
2048 * need a special oob layout and handling.
2050 static int nand_write_page_syndrome(struct mtd_info *mtd,
2051 struct nand_chip *chip,
2052 const uint8_t *buf, int oob_required)
2054 int i, eccsize = chip->ecc.size;
2055 int eccbytes = chip->ecc.bytes;
2056 int eccsteps = chip->ecc.steps;
2057 const uint8_t *p = buf;
2058 uint8_t *oob = chip->oob_poi;
2060 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2062 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2063 chip->write_buf(mtd, p, eccsize);
2065 if (chip->ecc.prepad) {
2066 chip->write_buf(mtd, oob, chip->ecc.prepad);
2067 oob += chip->ecc.prepad;
2070 chip->ecc.calculate(mtd, p, oob);
2071 chip->write_buf(mtd, oob, eccbytes);
2072 oob += eccbytes;
2074 if (chip->ecc.postpad) {
2075 chip->write_buf(mtd, oob, chip->ecc.postpad);
2076 oob += chip->ecc.postpad;
2080 /* Calculate remaining oob bytes */
2081 i = mtd->oobsize - (oob - chip->oob_poi);
2082 if (i)
2083 chip->write_buf(mtd, oob, i);
2085 return 0;
2089 * nand_write_page - [REPLACEABLE] write one page
2090 * @mtd: MTD device structure
2091 * @chip: NAND chip descriptor
2092 * @offset: address offset within the page
2093 * @data_len: length of actual data to be written
2094 * @buf: the data to write
2095 * @oob_required: must write chip->oob_poi to OOB
2096 * @page: page number to write
2097 * @cached: cached programming
2098 * @raw: use _raw version of write_page
2100 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2101 uint32_t offset, int data_len, const uint8_t *buf,
2102 int oob_required, int page, int cached, int raw)
2104 int status, subpage;
2106 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2107 chip->ecc.write_subpage)
2108 subpage = offset || (data_len < mtd->writesize);
2109 else
2110 subpage = 0;
2112 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2114 if (unlikely(raw))
2115 status = chip->ecc.write_page_raw(mtd, chip, buf,
2116 oob_required);
2117 else if (subpage)
2118 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2119 buf, oob_required);
2120 else
2121 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2123 if (status < 0)
2124 return status;
2127 * Cached progamming disabled for now. Not sure if it's worth the
2128 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2130 cached = 0;
2132 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2134 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2135 status = chip->waitfunc(mtd, chip);
2137 * See if operation failed and additional status checks are
2138 * available.
2140 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2141 status = chip->errstat(mtd, chip, FL_WRITING, status,
2142 page);
2144 if (status & NAND_STATUS_FAIL)
2145 return -EIO;
2146 } else {
2147 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2148 status = chip->waitfunc(mtd, chip);
2151 return 0;
2155 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2156 * @mtd: MTD device structure
2157 * @oob: oob data buffer
2158 * @len: oob data write length
2159 * @ops: oob ops structure
2161 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2162 struct mtd_oob_ops *ops)
2164 struct nand_chip *chip = mtd->priv;
2167 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2168 * data from a previous OOB read.
2170 memset(chip->oob_poi, 0xff, mtd->oobsize);
2172 switch (ops->mode) {
2174 case MTD_OPS_PLACE_OOB:
2175 case MTD_OPS_RAW:
2176 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2177 return oob + len;
2179 case MTD_OPS_AUTO_OOB: {
2180 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2181 uint32_t boffs = 0, woffs = ops->ooboffs;
2182 size_t bytes = 0;
2184 for (; free->length && len; free++, len -= bytes) {
2185 /* Write request not from offset 0? */
2186 if (unlikely(woffs)) {
2187 if (woffs >= free->length) {
2188 woffs -= free->length;
2189 continue;
2191 boffs = free->offset + woffs;
2192 bytes = min_t(size_t, len,
2193 (free->length - woffs));
2194 woffs = 0;
2195 } else {
2196 bytes = min_t(size_t, len, free->length);
2197 boffs = free->offset;
2199 memcpy(chip->oob_poi + boffs, oob, bytes);
2200 oob += bytes;
2202 return oob;
2204 default:
2205 BUG();
2207 return NULL;
2210 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2213 * nand_do_write_ops - [INTERN] NAND write with ECC
2214 * @mtd: MTD device structure
2215 * @to: offset to write to
2216 * @ops: oob operations description structure
2218 * NAND write with ECC.
2220 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2221 struct mtd_oob_ops *ops)
2223 int chipnr, realpage, page, blockmask, column;
2224 struct nand_chip *chip = mtd->priv;
2225 uint32_t writelen = ops->len;
2227 uint32_t oobwritelen = ops->ooblen;
2228 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2229 mtd->oobavail : mtd->oobsize;
2231 uint8_t *oob = ops->oobbuf;
2232 uint8_t *buf = ops->datbuf;
2233 int ret;
2234 int oob_required = oob ? 1 : 0;
2236 ops->retlen = 0;
2237 if (!writelen)
2238 return 0;
2240 /* Reject writes, which are not page aligned */
2241 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2242 pr_notice("%s: attempt to write non page aligned data\n",
2243 __func__);
2244 return -EINVAL;
2247 column = to & (mtd->writesize - 1);
2249 chipnr = (int)(to >> chip->chip_shift);
2250 chip->select_chip(mtd, chipnr);
2252 /* Check, if it is write protected */
2253 if (nand_check_wp(mtd)) {
2254 ret = -EIO;
2255 goto err_out;
2258 realpage = (int)(to >> chip->page_shift);
2259 page = realpage & chip->pagemask;
2260 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2262 /* Invalidate the page cache, when we write to the cached page */
2263 if (to <= (chip->pagebuf << chip->page_shift) &&
2264 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2265 chip->pagebuf = -1;
2267 /* Don't allow multipage oob writes with offset */
2268 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2269 ret = -EINVAL;
2270 goto err_out;
2273 while (1) {
2274 int bytes = mtd->writesize;
2275 int cached = writelen > bytes && page != blockmask;
2276 uint8_t *wbuf = buf;
2278 /* Partial page write? */
2279 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2280 cached = 0;
2281 bytes = min_t(int, bytes - column, (int) writelen);
2282 chip->pagebuf = -1;
2283 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2284 memcpy(&chip->buffers->databuf[column], buf, bytes);
2285 wbuf = chip->buffers->databuf;
2288 if (unlikely(oob)) {
2289 size_t len = min(oobwritelen, oobmaxlen);
2290 oob = nand_fill_oob(mtd, oob, len, ops);
2291 oobwritelen -= len;
2292 } else {
2293 /* We still need to erase leftover OOB data */
2294 memset(chip->oob_poi, 0xff, mtd->oobsize);
2296 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2297 oob_required, page, cached,
2298 (ops->mode == MTD_OPS_RAW));
2299 if (ret)
2300 break;
2302 writelen -= bytes;
2303 if (!writelen)
2304 break;
2306 column = 0;
2307 buf += bytes;
2308 realpage++;
2310 page = realpage & chip->pagemask;
2311 /* Check, if we cross a chip boundary */
2312 if (!page) {
2313 chipnr++;
2314 chip->select_chip(mtd, -1);
2315 chip->select_chip(mtd, chipnr);
2319 ops->retlen = ops->len - writelen;
2320 if (unlikely(oob))
2321 ops->oobretlen = ops->ooblen;
2323 err_out:
2324 chip->select_chip(mtd, -1);
2325 return ret;
2329 * panic_nand_write - [MTD Interface] NAND write with ECC
2330 * @mtd: MTD device structure
2331 * @to: offset to write to
2332 * @len: number of bytes to write
2333 * @retlen: pointer to variable to store the number of written bytes
2334 * @buf: the data to write
2336 * NAND write with ECC. Used when performing writes in interrupt context, this
2337 * may for example be called by mtdoops when writing an oops while in panic.
2339 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2340 size_t *retlen, const uint8_t *buf)
2342 struct nand_chip *chip = mtd->priv;
2343 struct mtd_oob_ops ops;
2344 int ret;
2346 /* Wait for the device to get ready */
2347 panic_nand_wait(mtd, chip, 400);
2349 /* Grab the device */
2350 panic_nand_get_device(chip, mtd, FL_WRITING);
2352 ops.len = len;
2353 ops.datbuf = (uint8_t *)buf;
2354 ops.oobbuf = NULL;
2355 ops.mode = MTD_OPS_PLACE_OOB;
2357 ret = nand_do_write_ops(mtd, to, &ops);
2359 *retlen = ops.retlen;
2360 return ret;
2364 * nand_write - [MTD Interface] NAND write with ECC
2365 * @mtd: MTD device structure
2366 * @to: offset to write to
2367 * @len: number of bytes to write
2368 * @retlen: pointer to variable to store the number of written bytes
2369 * @buf: the data to write
2371 * NAND write with ECC.
2373 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2374 size_t *retlen, const uint8_t *buf)
2376 struct mtd_oob_ops ops;
2377 int ret;
2379 nand_get_device(mtd, FL_WRITING);
2380 ops.len = len;
2381 ops.datbuf = (uint8_t *)buf;
2382 ops.oobbuf = NULL;
2383 ops.mode = MTD_OPS_PLACE_OOB;
2384 ret = nand_do_write_ops(mtd, to, &ops);
2385 *retlen = ops.retlen;
2386 nand_release_device(mtd);
2387 return ret;
2391 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2392 * @mtd: MTD device structure
2393 * @to: offset to write to
2394 * @ops: oob operation description structure
2396 * NAND write out-of-band.
2398 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2399 struct mtd_oob_ops *ops)
2401 int chipnr, page, status, len;
2402 struct nand_chip *chip = mtd->priv;
2404 pr_debug("%s: to = 0x%08x, len = %i\n",
2405 __func__, (unsigned int)to, (int)ops->ooblen);
2407 if (ops->mode == MTD_OPS_AUTO_OOB)
2408 len = chip->ecc.layout->oobavail;
2409 else
2410 len = mtd->oobsize;
2412 /* Do not allow write past end of page */
2413 if ((ops->ooboffs + ops->ooblen) > len) {
2414 pr_debug("%s: attempt to write past end of page\n",
2415 __func__);
2416 return -EINVAL;
2419 if (unlikely(ops->ooboffs >= len)) {
2420 pr_debug("%s: attempt to start write outside oob\n",
2421 __func__);
2422 return -EINVAL;
2425 /* Do not allow write past end of device */
2426 if (unlikely(to >= mtd->size ||
2427 ops->ooboffs + ops->ooblen >
2428 ((mtd->size >> chip->page_shift) -
2429 (to >> chip->page_shift)) * len)) {
2430 pr_debug("%s: attempt to write beyond end of device\n",
2431 __func__);
2432 return -EINVAL;
2435 chipnr = (int)(to >> chip->chip_shift);
2436 chip->select_chip(mtd, chipnr);
2438 /* Shift to get page */
2439 page = (int)(to >> chip->page_shift);
2442 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2443 * of my DiskOnChip 2000 test units) will clear the whole data page too
2444 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2445 * it in the doc2000 driver in August 1999. dwmw2.
2447 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2449 /* Check, if it is write protected */
2450 if (nand_check_wp(mtd)) {
2451 chip->select_chip(mtd, -1);
2452 return -EROFS;
2455 /* Invalidate the page cache, if we write to the cached page */
2456 if (page == chip->pagebuf)
2457 chip->pagebuf = -1;
2459 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2461 if (ops->mode == MTD_OPS_RAW)
2462 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2463 else
2464 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2466 chip->select_chip(mtd, -1);
2468 if (status)
2469 return status;
2471 ops->oobretlen = ops->ooblen;
2473 return 0;
2477 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2478 * @mtd: MTD device structure
2479 * @to: offset to write to
2480 * @ops: oob operation description structure
2482 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2483 struct mtd_oob_ops *ops)
2485 int ret = -ENOTSUPP;
2487 ops->retlen = 0;
2489 /* Do not allow writes past end of device */
2490 if (ops->datbuf && (to + ops->len) > mtd->size) {
2491 pr_debug("%s: attempt to write beyond end of device\n",
2492 __func__);
2493 return -EINVAL;
2496 nand_get_device(mtd, FL_WRITING);
2498 switch (ops->mode) {
2499 case MTD_OPS_PLACE_OOB:
2500 case MTD_OPS_AUTO_OOB:
2501 case MTD_OPS_RAW:
2502 break;
2504 default:
2505 goto out;
2508 if (!ops->datbuf)
2509 ret = nand_do_write_oob(mtd, to, ops);
2510 else
2511 ret = nand_do_write_ops(mtd, to, ops);
2513 out:
2514 nand_release_device(mtd);
2515 return ret;
2519 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2520 * @mtd: MTD device structure
2521 * @page: the page address of the block which will be erased
2523 * Standard erase command for NAND chips.
2525 static void single_erase_cmd(struct mtd_info *mtd, int page)
2527 struct nand_chip *chip = mtd->priv;
2528 /* Send commands to erase a block */
2529 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2530 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2534 * nand_erase - [MTD Interface] erase block(s)
2535 * @mtd: MTD device structure
2536 * @instr: erase instruction
2538 * Erase one ore more blocks.
2540 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2542 return nand_erase_nand(mtd, instr, 0);
2546 * nand_erase_nand - [INTERN] erase block(s)
2547 * @mtd: MTD device structure
2548 * @instr: erase instruction
2549 * @allowbbt: allow erasing the bbt area
2551 * Erase one ore more blocks.
2553 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2554 int allowbbt)
2556 int page, status, pages_per_block, ret, chipnr;
2557 struct nand_chip *chip = mtd->priv;
2558 loff_t len;
2560 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2561 __func__, (unsigned long long)instr->addr,
2562 (unsigned long long)instr->len);
2564 if (check_offs_len(mtd, instr->addr, instr->len))
2565 return -EINVAL;
2567 /* Grab the lock and see if the device is available */
2568 nand_get_device(mtd, FL_ERASING);
2570 /* Shift to get first page */
2571 page = (int)(instr->addr >> chip->page_shift);
2572 chipnr = (int)(instr->addr >> chip->chip_shift);
2574 /* Calculate pages in each block */
2575 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2577 /* Select the NAND device */
2578 chip->select_chip(mtd, chipnr);
2580 /* Check, if it is write protected */
2581 if (nand_check_wp(mtd)) {
2582 pr_debug("%s: device is write protected!\n",
2583 __func__);
2584 instr->state = MTD_ERASE_FAILED;
2585 goto erase_exit;
2588 /* Loop through the pages */
2589 len = instr->len;
2591 instr->state = MTD_ERASING;
2593 while (len) {
2594 /* Check if we have a bad block, we do not erase bad blocks! */
2595 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2596 chip->page_shift, 0, allowbbt)) {
2597 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2598 __func__, page);
2599 instr->state = MTD_ERASE_FAILED;
2600 goto erase_exit;
2604 * Invalidate the page cache, if we erase the block which
2605 * contains the current cached page.
2607 if (page <= chip->pagebuf && chip->pagebuf <
2608 (page + pages_per_block))
2609 chip->pagebuf = -1;
2611 chip->erase_cmd(mtd, page & chip->pagemask);
2613 status = chip->waitfunc(mtd, chip);
2616 * See if operation failed and additional status checks are
2617 * available
2619 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2620 status = chip->errstat(mtd, chip, FL_ERASING,
2621 status, page);
2623 /* See if block erase succeeded */
2624 if (status & NAND_STATUS_FAIL) {
2625 pr_debug("%s: failed erase, page 0x%08x\n",
2626 __func__, page);
2627 instr->state = MTD_ERASE_FAILED;
2628 instr->fail_addr =
2629 ((loff_t)page << chip->page_shift);
2630 goto erase_exit;
2633 /* Increment page address and decrement length */
2634 len -= (1ULL << chip->phys_erase_shift);
2635 page += pages_per_block;
2637 /* Check, if we cross a chip boundary */
2638 if (len && !(page & chip->pagemask)) {
2639 chipnr++;
2640 chip->select_chip(mtd, -1);
2641 chip->select_chip(mtd, chipnr);
2644 instr->state = MTD_ERASE_DONE;
2646 erase_exit:
2648 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2650 /* Deselect and wake up anyone waiting on the device */
2651 chip->select_chip(mtd, -1);
2652 nand_release_device(mtd);
2654 /* Do call back function */
2655 if (!ret)
2656 mtd_erase_callback(instr);
2658 /* Return more or less happy */
2659 return ret;
2663 * nand_sync - [MTD Interface] sync
2664 * @mtd: MTD device structure
2666 * Sync is actually a wait for chip ready function.
2668 static void nand_sync(struct mtd_info *mtd)
2670 pr_debug("%s: called\n", __func__);
2672 /* Grab the lock and see if the device is available */
2673 nand_get_device(mtd, FL_SYNCING);
2674 /* Release it and go back */
2675 nand_release_device(mtd);
2679 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2680 * @mtd: MTD device structure
2681 * @offs: offset relative to mtd start
2683 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2685 return nand_block_checkbad(mtd, offs, 1, 0);
2689 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2690 * @mtd: MTD device structure
2691 * @ofs: offset relative to mtd start
2693 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2695 int ret;
2697 ret = nand_block_isbad(mtd, ofs);
2698 if (ret) {
2699 /* If it was bad already, return success and do nothing */
2700 if (ret > 0)
2701 return 0;
2702 return ret;
2705 return nand_block_markbad_lowlevel(mtd, ofs);
2709 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2710 * @mtd: MTD device structure
2711 * @chip: nand chip info structure
2712 * @addr: feature address.
2713 * @subfeature_param: the subfeature parameters, a four bytes array.
2715 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2716 int addr, uint8_t *subfeature_param)
2718 int status;
2720 if (!chip->onfi_version ||
2721 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2722 & ONFI_OPT_CMD_SET_GET_FEATURES))
2723 return -EINVAL;
2725 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2726 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2727 status = chip->waitfunc(mtd, chip);
2728 if (status & NAND_STATUS_FAIL)
2729 return -EIO;
2730 return 0;
2734 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2735 * @mtd: MTD device structure
2736 * @chip: nand chip info structure
2737 * @addr: feature address.
2738 * @subfeature_param: the subfeature parameters, a four bytes array.
2740 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2741 int addr, uint8_t *subfeature_param)
2743 if (!chip->onfi_version ||
2744 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2745 & ONFI_OPT_CMD_SET_GET_FEATURES))
2746 return -EINVAL;
2748 /* clear the sub feature parameters */
2749 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2751 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2752 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2753 return 0;
2757 * nand_suspend - [MTD Interface] Suspend the NAND flash
2758 * @mtd: MTD device structure
2760 static int nand_suspend(struct mtd_info *mtd)
2762 return nand_get_device(mtd, FL_PM_SUSPENDED);
2766 * nand_resume - [MTD Interface] Resume the NAND flash
2767 * @mtd: MTD device structure
2769 static void nand_resume(struct mtd_info *mtd)
2771 struct nand_chip *chip = mtd->priv;
2773 if (chip->state == FL_PM_SUSPENDED)
2774 nand_release_device(mtd);
2775 else
2776 pr_err("%s called for a chip which is not in suspended state\n",
2777 __func__);
2780 /* Set default functions */
2781 static void nand_set_defaults(struct nand_chip *chip, int busw)
2783 /* check for proper chip_delay setup, set 20us if not */
2784 if (!chip->chip_delay)
2785 chip->chip_delay = 20;
2787 /* check, if a user supplied command function given */
2788 if (chip->cmdfunc == NULL)
2789 chip->cmdfunc = nand_command;
2791 /* check, if a user supplied wait function given */
2792 if (chip->waitfunc == NULL)
2793 chip->waitfunc = nand_wait;
2795 if (!chip->select_chip)
2796 chip->select_chip = nand_select_chip;
2798 /* set for ONFI nand */
2799 if (!chip->onfi_set_features)
2800 chip->onfi_set_features = nand_onfi_set_features;
2801 if (!chip->onfi_get_features)
2802 chip->onfi_get_features = nand_onfi_get_features;
2804 /* If called twice, pointers that depend on busw may need to be reset */
2805 if (!chip->read_byte || chip->read_byte == nand_read_byte)
2806 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2807 if (!chip->read_word)
2808 chip->read_word = nand_read_word;
2809 if (!chip->block_bad)
2810 chip->block_bad = nand_block_bad;
2811 if (!chip->block_markbad)
2812 chip->block_markbad = nand_default_block_markbad;
2813 if (!chip->write_buf || chip->write_buf == nand_write_buf)
2814 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2815 if (!chip->read_buf || chip->read_buf == nand_read_buf)
2816 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2817 if (!chip->scan_bbt)
2818 chip->scan_bbt = nand_default_bbt;
2820 if (!chip->controller) {
2821 chip->controller = &chip->hwcontrol;
2822 spin_lock_init(&chip->controller->lock);
2823 init_waitqueue_head(&chip->controller->wq);
2828 /* Sanitize ONFI strings so we can safely print them */
2829 static void sanitize_string(uint8_t *s, size_t len)
2831 ssize_t i;
2833 /* Null terminate */
2834 s[len - 1] = 0;
2836 /* Remove non printable chars */
2837 for (i = 0; i < len - 1; i++) {
2838 if (s[i] < ' ' || s[i] > 127)
2839 s[i] = '?';
2842 /* Remove trailing spaces */
2843 strim(s);
2846 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2848 int i;
2849 while (len--) {
2850 crc ^= *p++ << 8;
2851 for (i = 0; i < 8; i++)
2852 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2855 return crc;
2858 /* Parse the Extended Parameter Page. */
2859 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2860 struct nand_chip *chip, struct nand_onfi_params *p)
2862 struct onfi_ext_param_page *ep;
2863 struct onfi_ext_section *s;
2864 struct onfi_ext_ecc_info *ecc;
2865 uint8_t *cursor;
2866 int ret = -EINVAL;
2867 int len;
2868 int i;
2870 len = le16_to_cpu(p->ext_param_page_length) * 16;
2871 ep = kmalloc(len, GFP_KERNEL);
2872 if (!ep)
2873 return -ENOMEM;
2875 /* Send our own NAND_CMD_PARAM. */
2876 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2878 /* Use the Change Read Column command to skip the ONFI param pages. */
2879 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2880 sizeof(*p) * p->num_of_param_pages , -1);
2882 /* Read out the Extended Parameter Page. */
2883 chip->read_buf(mtd, (uint8_t *)ep, len);
2884 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2885 != le16_to_cpu(ep->crc))) {
2886 pr_debug("fail in the CRC.\n");
2887 goto ext_out;
2891 * Check the signature.
2892 * Do not strictly follow the ONFI spec, maybe changed in future.
2894 if (strncmp(ep->sig, "EPPS", 4)) {
2895 pr_debug("The signature is invalid.\n");
2896 goto ext_out;
2899 /* find the ECC section. */
2900 cursor = (uint8_t *)(ep + 1);
2901 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2902 s = ep->sections + i;
2903 if (s->type == ONFI_SECTION_TYPE_2)
2904 break;
2905 cursor += s->length * 16;
2907 if (i == ONFI_EXT_SECTION_MAX) {
2908 pr_debug("We can not find the ECC section.\n");
2909 goto ext_out;
2912 /* get the info we want. */
2913 ecc = (struct onfi_ext_ecc_info *)cursor;
2915 if (!ecc->codeword_size) {
2916 pr_debug("Invalid codeword size\n");
2917 goto ext_out;
2920 chip->ecc_strength_ds = ecc->ecc_bits;
2921 chip->ecc_step_ds = 1 << ecc->codeword_size;
2922 ret = 0;
2924 ext_out:
2925 kfree(ep);
2926 return ret;
2930 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2932 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2933 int *busw)
2935 struct nand_onfi_params *p = &chip->onfi_params;
2936 int i;
2937 int val;
2939 /* Try ONFI for unknown chip or LP */
2940 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2941 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2942 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2943 return 0;
2946 * ONFI must be probed in 8-bit mode or with NAND_BUSWIDTH_AUTO, not
2947 * with NAND_BUSWIDTH_16
2949 if (chip->options & NAND_BUSWIDTH_16) {
2950 pr_err("ONFI cannot be probed in 16-bit mode; aborting\n");
2951 return 0;
2954 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2955 for (i = 0; i < 3; i++) {
2956 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2957 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2958 le16_to_cpu(p->crc)) {
2959 break;
2963 if (i == 3) {
2964 pr_err("Could not find valid ONFI parameter page; aborting\n");
2965 return 0;
2968 /* Check version */
2969 val = le16_to_cpu(p->revision);
2970 if (val & (1 << 5))
2971 chip->onfi_version = 23;
2972 else if (val & (1 << 4))
2973 chip->onfi_version = 22;
2974 else if (val & (1 << 3))
2975 chip->onfi_version = 21;
2976 else if (val & (1 << 2))
2977 chip->onfi_version = 20;
2978 else if (val & (1 << 1))
2979 chip->onfi_version = 10;
2981 if (!chip->onfi_version) {
2982 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2983 return 0;
2986 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2987 sanitize_string(p->model, sizeof(p->model));
2988 if (!mtd->name)
2989 mtd->name = p->model;
2990 mtd->writesize = le32_to_cpu(p->byte_per_page);
2991 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2992 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2993 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2994 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2995 chip->bits_per_cell = p->bits_per_cell;
2997 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
2998 *busw = NAND_BUSWIDTH_16;
2999 else
3000 *busw = 0;
3002 if (p->ecc_bits != 0xff) {
3003 chip->ecc_strength_ds = p->ecc_bits;
3004 chip->ecc_step_ds = 512;
3005 } else if (chip->onfi_version >= 21 &&
3006 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3009 * The nand_flash_detect_ext_param_page() uses the
3010 * Change Read Column command which maybe not supported
3011 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3012 * now. We do not replace user supplied command function.
3014 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3015 chip->cmdfunc = nand_command_lp;
3017 /* The Extended Parameter Page is supported since ONFI 2.1. */
3018 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3019 pr_warn("Failed to detect ONFI extended param page\n");
3020 } else {
3021 pr_warn("Could not retrieve ONFI ECC requirements\n");
3024 return 1;
3028 * nand_id_has_period - Check if an ID string has a given wraparound period
3029 * @id_data: the ID string
3030 * @arrlen: the length of the @id_data array
3031 * @period: the period of repitition
3033 * Check if an ID string is repeated within a given sequence of bytes at
3034 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3035 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3036 * if the repetition has a period of @period; otherwise, returns zero.
3038 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3040 int i, j;
3041 for (i = 0; i < period; i++)
3042 for (j = i + period; j < arrlen; j += period)
3043 if (id_data[i] != id_data[j])
3044 return 0;
3045 return 1;
3049 * nand_id_len - Get the length of an ID string returned by CMD_READID
3050 * @id_data: the ID string
3051 * @arrlen: the length of the @id_data array
3053 * Returns the length of the ID string, according to known wraparound/trailing
3054 * zero patterns. If no pattern exists, returns the length of the array.
3056 static int nand_id_len(u8 *id_data, int arrlen)
3058 int last_nonzero, period;
3060 /* Find last non-zero byte */
3061 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3062 if (id_data[last_nonzero])
3063 break;
3065 /* All zeros */
3066 if (last_nonzero < 0)
3067 return 0;
3069 /* Calculate wraparound period */
3070 for (period = 1; period < arrlen; period++)
3071 if (nand_id_has_period(id_data, arrlen, period))
3072 break;
3074 /* There's a repeated pattern */
3075 if (period < arrlen)
3076 return period;
3078 /* There are trailing zeros */
3079 if (last_nonzero < arrlen - 1)
3080 return last_nonzero + 1;
3082 /* No pattern detected */
3083 return arrlen;
3086 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3087 static int nand_get_bits_per_cell(u8 cellinfo)
3089 int bits;
3091 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3092 bits >>= NAND_CI_CELLTYPE_SHIFT;
3093 return bits + 1;
3097 * Many new NAND share similar device ID codes, which represent the size of the
3098 * chip. The rest of the parameters must be decoded according to generic or
3099 * manufacturer-specific "extended ID" decoding patterns.
3101 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3102 u8 id_data[8], int *busw)
3104 int extid, id_len;
3105 /* The 3rd id byte holds MLC / multichip data */
3106 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3107 /* The 4th id byte is the important one */
3108 extid = id_data[3];
3110 id_len = nand_id_len(id_data, 8);
3113 * Field definitions are in the following datasheets:
3114 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3115 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3116 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3118 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3119 * ID to decide what to do.
3121 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3122 !nand_is_slc(chip) && id_data[5] != 0x00) {
3123 /* Calc pagesize */
3124 mtd->writesize = 2048 << (extid & 0x03);
3125 extid >>= 2;
3126 /* Calc oobsize */
3127 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3128 case 1:
3129 mtd->oobsize = 128;
3130 break;
3131 case 2:
3132 mtd->oobsize = 218;
3133 break;
3134 case 3:
3135 mtd->oobsize = 400;
3136 break;
3137 case 4:
3138 mtd->oobsize = 436;
3139 break;
3140 case 5:
3141 mtd->oobsize = 512;
3142 break;
3143 case 6:
3144 default: /* Other cases are "reserved" (unknown) */
3145 mtd->oobsize = 640;
3146 break;
3148 extid >>= 2;
3149 /* Calc blocksize */
3150 mtd->erasesize = (128 * 1024) <<
3151 (((extid >> 1) & 0x04) | (extid & 0x03));
3152 *busw = 0;
3153 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3154 !nand_is_slc(chip)) {
3155 unsigned int tmp;
3157 /* Calc pagesize */
3158 mtd->writesize = 2048 << (extid & 0x03);
3159 extid >>= 2;
3160 /* Calc oobsize */
3161 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3162 case 0:
3163 mtd->oobsize = 128;
3164 break;
3165 case 1:
3166 mtd->oobsize = 224;
3167 break;
3168 case 2:
3169 mtd->oobsize = 448;
3170 break;
3171 case 3:
3172 mtd->oobsize = 64;
3173 break;
3174 case 4:
3175 mtd->oobsize = 32;
3176 break;
3177 case 5:
3178 mtd->oobsize = 16;
3179 break;
3180 default:
3181 mtd->oobsize = 640;
3182 break;
3184 extid >>= 2;
3185 /* Calc blocksize */
3186 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3187 if (tmp < 0x03)
3188 mtd->erasesize = (128 * 1024) << tmp;
3189 else if (tmp == 0x03)
3190 mtd->erasesize = 768 * 1024;
3191 else
3192 mtd->erasesize = (64 * 1024) << tmp;
3193 *busw = 0;
3194 } else {
3195 /* Calc pagesize */
3196 mtd->writesize = 1024 << (extid & 0x03);
3197 extid >>= 2;
3198 /* Calc oobsize */
3199 mtd->oobsize = (8 << (extid & 0x01)) *
3200 (mtd->writesize >> 9);
3201 extid >>= 2;
3202 /* Calc blocksize. Blocksize is multiples of 64KiB */
3203 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3204 extid >>= 2;
3205 /* Get buswidth information */
3206 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3209 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3210 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3211 * follows:
3212 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3213 * 110b -> 24nm
3214 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3216 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3217 nand_is_slc(chip) &&
3218 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3219 !(id_data[4] & 0x80) /* !BENAND */) {
3220 mtd->oobsize = 32 * mtd->writesize >> 9;
3227 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3228 * decodes a matching ID table entry and assigns the MTD size parameters for
3229 * the chip.
3231 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3232 struct nand_flash_dev *type, u8 id_data[8],
3233 int *busw)
3235 int maf_id = id_data[0];
3237 mtd->erasesize = type->erasesize;
3238 mtd->writesize = type->pagesize;
3239 mtd->oobsize = mtd->writesize / 32;
3240 *busw = type->options & NAND_BUSWIDTH_16;
3242 /* All legacy ID NAND are small-page, SLC */
3243 chip->bits_per_cell = 1;
3246 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3247 * some Spansion chips have erasesize that conflicts with size
3248 * listed in nand_ids table.
3249 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3251 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3252 && id_data[6] == 0x00 && id_data[7] == 0x00
3253 && mtd->writesize == 512) {
3254 mtd->erasesize = 128 * 1024;
3255 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3260 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3261 * heuristic patterns using various detected parameters (e.g., manufacturer,
3262 * page size, cell-type information).
3264 static void nand_decode_bbm_options(struct mtd_info *mtd,
3265 struct nand_chip *chip, u8 id_data[8])
3267 int maf_id = id_data[0];
3269 /* Set the bad block position */
3270 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3271 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3272 else
3273 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3276 * Bad block marker is stored in the last page of each block on Samsung
3277 * and Hynix MLC devices; stored in first two pages of each block on
3278 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3279 * AMD/Spansion, and Macronix. All others scan only the first page.
3281 if (!nand_is_slc(chip) &&
3282 (maf_id == NAND_MFR_SAMSUNG ||
3283 maf_id == NAND_MFR_HYNIX))
3284 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3285 else if ((nand_is_slc(chip) &&
3286 (maf_id == NAND_MFR_SAMSUNG ||
3287 maf_id == NAND_MFR_HYNIX ||
3288 maf_id == NAND_MFR_TOSHIBA ||
3289 maf_id == NAND_MFR_AMD ||
3290 maf_id == NAND_MFR_MACRONIX)) ||
3291 (mtd->writesize == 2048 &&
3292 maf_id == NAND_MFR_MICRON))
3293 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3296 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3298 return type->id_len;
3301 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3302 struct nand_flash_dev *type, u8 *id_data, int *busw)
3304 if (!strncmp(type->id, id_data, type->id_len)) {
3305 mtd->writesize = type->pagesize;
3306 mtd->erasesize = type->erasesize;
3307 mtd->oobsize = type->oobsize;
3309 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3310 chip->chipsize = (uint64_t)type->chipsize << 20;
3311 chip->options |= type->options;
3312 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3313 chip->ecc_step_ds = NAND_ECC_STEP(type);
3315 *busw = type->options & NAND_BUSWIDTH_16;
3317 return true;
3319 return false;
3323 * Get the flash and manufacturer id and lookup if the type is supported.
3325 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3326 struct nand_chip *chip,
3327 int busw,
3328 int *maf_id, int *dev_id,
3329 struct nand_flash_dev *type)
3331 int i, maf_idx;
3332 u8 id_data[8];
3334 /* Select the device */
3335 chip->select_chip(mtd, 0);
3338 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3339 * after power-up.
3341 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3343 /* Send the command for reading device ID */
3344 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3346 /* Read manufacturer and device IDs */
3347 *maf_id = chip->read_byte(mtd);
3348 *dev_id = chip->read_byte(mtd);
3351 * Try again to make sure, as some systems the bus-hold or other
3352 * interface concerns can cause random data which looks like a
3353 * possibly credible NAND flash to appear. If the two results do
3354 * not match, ignore the device completely.
3357 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3359 /* Read entire ID string */
3360 for (i = 0; i < 8; i++)
3361 id_data[i] = chip->read_byte(mtd);
3363 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3364 pr_info("%s: second ID read did not match "
3365 "%02x,%02x against %02x,%02x\n", __func__,
3366 *maf_id, *dev_id, id_data[0], id_data[1]);
3367 return ERR_PTR(-ENODEV);
3370 if (!type)
3371 type = nand_flash_ids;
3373 for (; type->name != NULL; type++) {
3374 if (is_full_id_nand(type)) {
3375 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3376 goto ident_done;
3377 } else if (*dev_id == type->dev_id) {
3378 break;
3382 chip->onfi_version = 0;
3383 if (!type->name || !type->pagesize) {
3384 /* Check is chip is ONFI compliant */
3385 if (nand_flash_detect_onfi(mtd, chip, &busw))
3386 goto ident_done;
3389 if (!type->name)
3390 return ERR_PTR(-ENODEV);
3392 if (!mtd->name)
3393 mtd->name = type->name;
3395 chip->chipsize = (uint64_t)type->chipsize << 20;
3397 if (!type->pagesize && chip->init_size) {
3398 /* Set the pagesize, oobsize, erasesize by the driver */
3399 busw = chip->init_size(mtd, chip, id_data);
3400 } else if (!type->pagesize) {
3401 /* Decode parameters from extended ID */
3402 nand_decode_ext_id(mtd, chip, id_data, &busw);
3403 } else {
3404 nand_decode_id(mtd, chip, type, id_data, &busw);
3406 /* Get chip options */
3407 chip->options |= type->options;
3410 * Check if chip is not a Samsung device. Do not clear the
3411 * options for chips which do not have an extended id.
3413 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3414 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3415 ident_done:
3417 /* Try to identify manufacturer */
3418 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3419 if (nand_manuf_ids[maf_idx].id == *maf_id)
3420 break;
3423 if (chip->options & NAND_BUSWIDTH_AUTO) {
3424 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3425 chip->options |= busw;
3426 nand_set_defaults(chip, busw);
3427 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3429 * Check, if buswidth is correct. Hardware drivers should set
3430 * chip correct!
3432 pr_info("NAND device: Manufacturer ID:"
3433 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3434 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3435 pr_warn("NAND bus width %d instead %d bit\n",
3436 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3437 busw ? 16 : 8);
3438 return ERR_PTR(-EINVAL);
3441 nand_decode_bbm_options(mtd, chip, id_data);
3443 /* Calculate the address shift from the page size */
3444 chip->page_shift = ffs(mtd->writesize) - 1;
3445 /* Convert chipsize to number of pages per chip -1 */
3446 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3448 chip->bbt_erase_shift = chip->phys_erase_shift =
3449 ffs(mtd->erasesize) - 1;
3450 if (chip->chipsize & 0xffffffff)
3451 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3452 else {
3453 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3454 chip->chip_shift += 32 - 1;
3457 chip->badblockbits = 8;
3458 chip->erase_cmd = single_erase_cmd;
3460 /* Do not replace user supplied command function! */
3461 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3462 chip->cmdfunc = nand_command_lp;
3464 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s)\n",
3465 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3466 chip->onfi_version ? chip->onfi_params.model : type->name);
3468 pr_info("NAND device: %dMiB, %s, page size: %d, OOB size: %d\n",
3469 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3470 mtd->writesize, mtd->oobsize);
3472 return type;
3476 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3477 * @mtd: MTD device structure
3478 * @maxchips: number of chips to scan for
3479 * @table: alternative NAND ID table
3481 * This is the first phase of the normal nand_scan() function. It reads the
3482 * flash ID and sets up MTD fields accordingly.
3484 * The mtd->owner field must be set to the module of the caller.
3486 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3487 struct nand_flash_dev *table)
3489 int i, busw, nand_maf_id, nand_dev_id;
3490 struct nand_chip *chip = mtd->priv;
3491 struct nand_flash_dev *type;
3493 /* Get buswidth to select the correct functions */
3494 busw = chip->options & NAND_BUSWIDTH_16;
3495 /* Set the default functions */
3496 nand_set_defaults(chip, busw);
3498 /* Read the flash type */
3499 type = nand_get_flash_type(mtd, chip, busw,
3500 &nand_maf_id, &nand_dev_id, table);
3502 if (IS_ERR(type)) {
3503 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3504 pr_warn("No NAND device found\n");
3505 chip->select_chip(mtd, -1);
3506 return PTR_ERR(type);
3509 chip->select_chip(mtd, -1);
3511 /* Check for a chip array */
3512 for (i = 1; i < maxchips; i++) {
3513 chip->select_chip(mtd, i);
3514 /* See comment in nand_get_flash_type for reset */
3515 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3516 /* Send the command for reading device ID */
3517 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3518 /* Read manufacturer and device IDs */
3519 if (nand_maf_id != chip->read_byte(mtd) ||
3520 nand_dev_id != chip->read_byte(mtd)) {
3521 chip->select_chip(mtd, -1);
3522 break;
3524 chip->select_chip(mtd, -1);
3526 if (i > 1)
3527 pr_info("%d NAND chips detected\n", i);
3529 /* Store the number of chips and calc total size for mtd */
3530 chip->numchips = i;
3531 mtd->size = i * chip->chipsize;
3533 return 0;
3535 EXPORT_SYMBOL(nand_scan_ident);
3539 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3540 * @mtd: MTD device structure
3542 * This is the second phase of the normal nand_scan() function. It fills out
3543 * all the uninitialized function pointers with the defaults and scans for a
3544 * bad block table if appropriate.
3546 int nand_scan_tail(struct mtd_info *mtd)
3548 int i;
3549 struct nand_chip *chip = mtd->priv;
3551 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3552 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3553 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3555 if (!(chip->options & NAND_OWN_BUFFERS))
3556 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3557 if (!chip->buffers)
3558 return -ENOMEM;
3560 /* Set the internal oob buffer location, just after the page data */
3561 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3564 * If no default placement scheme is given, select an appropriate one.
3566 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3567 switch (mtd->oobsize) {
3568 case 8:
3569 chip->ecc.layout = &nand_oob_8;
3570 break;
3571 case 16:
3572 chip->ecc.layout = &nand_oob_16;
3573 break;
3574 case 64:
3575 chip->ecc.layout = &nand_oob_64;
3576 break;
3577 case 128:
3578 chip->ecc.layout = &nand_oob_128;
3579 break;
3580 default:
3581 pr_warn("No oob scheme defined for oobsize %d\n",
3582 mtd->oobsize);
3583 BUG();
3587 if (!chip->write_page)
3588 chip->write_page = nand_write_page;
3591 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3592 * selected and we have 256 byte pagesize fallback to software ECC
3595 switch (chip->ecc.mode) {
3596 case NAND_ECC_HW_OOB_FIRST:
3597 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3598 if (!chip->ecc.calculate || !chip->ecc.correct ||
3599 !chip->ecc.hwctl) {
3600 pr_warn("No ECC functions supplied; "
3601 "hardware ECC not possible\n");
3602 BUG();
3604 if (!chip->ecc.read_page)
3605 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3607 case NAND_ECC_HW:
3608 /* Use standard hwecc read page function? */
3609 if (!chip->ecc.read_page)
3610 chip->ecc.read_page = nand_read_page_hwecc;
3611 if (!chip->ecc.write_page)
3612 chip->ecc.write_page = nand_write_page_hwecc;
3613 if (!chip->ecc.read_page_raw)
3614 chip->ecc.read_page_raw = nand_read_page_raw;
3615 if (!chip->ecc.write_page_raw)
3616 chip->ecc.write_page_raw = nand_write_page_raw;
3617 if (!chip->ecc.read_oob)
3618 chip->ecc.read_oob = nand_read_oob_std;
3619 if (!chip->ecc.write_oob)
3620 chip->ecc.write_oob = nand_write_oob_std;
3621 if (!chip->ecc.read_subpage)
3622 chip->ecc.read_subpage = nand_read_subpage;
3623 if (!chip->ecc.write_subpage)
3624 chip->ecc.write_subpage = nand_write_subpage_hwecc;
3626 case NAND_ECC_HW_SYNDROME:
3627 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3628 !chip->ecc.hwctl) &&
3629 (!chip->ecc.read_page ||
3630 chip->ecc.read_page == nand_read_page_hwecc ||
3631 !chip->ecc.write_page ||
3632 chip->ecc.write_page == nand_write_page_hwecc)) {
3633 pr_warn("No ECC functions supplied; "
3634 "hardware ECC not possible\n");
3635 BUG();
3637 /* Use standard syndrome read/write page function? */
3638 if (!chip->ecc.read_page)
3639 chip->ecc.read_page = nand_read_page_syndrome;
3640 if (!chip->ecc.write_page)
3641 chip->ecc.write_page = nand_write_page_syndrome;
3642 if (!chip->ecc.read_page_raw)
3643 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3644 if (!chip->ecc.write_page_raw)
3645 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3646 if (!chip->ecc.read_oob)
3647 chip->ecc.read_oob = nand_read_oob_syndrome;
3648 if (!chip->ecc.write_oob)
3649 chip->ecc.write_oob = nand_write_oob_syndrome;
3651 if (mtd->writesize >= chip->ecc.size) {
3652 if (!chip->ecc.strength) {
3653 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3654 BUG();
3656 break;
3658 pr_warn("%d byte HW ECC not possible on "
3659 "%d byte page size, fallback to SW ECC\n",
3660 chip->ecc.size, mtd->writesize);
3661 chip->ecc.mode = NAND_ECC_SOFT;
3663 case NAND_ECC_SOFT:
3664 chip->ecc.calculate = nand_calculate_ecc;
3665 chip->ecc.correct = nand_correct_data;
3666 chip->ecc.read_page = nand_read_page_swecc;
3667 chip->ecc.read_subpage = nand_read_subpage;
3668 chip->ecc.write_page = nand_write_page_swecc;
3669 chip->ecc.read_page_raw = nand_read_page_raw;
3670 chip->ecc.write_page_raw = nand_write_page_raw;
3671 chip->ecc.read_oob = nand_read_oob_std;
3672 chip->ecc.write_oob = nand_write_oob_std;
3673 if (!chip->ecc.size)
3674 chip->ecc.size = 256;
3675 chip->ecc.bytes = 3;
3676 chip->ecc.strength = 1;
3677 break;
3679 case NAND_ECC_SOFT_BCH:
3680 if (!mtd_nand_has_bch()) {
3681 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3682 BUG();
3684 chip->ecc.calculate = nand_bch_calculate_ecc;
3685 chip->ecc.correct = nand_bch_correct_data;
3686 chip->ecc.read_page = nand_read_page_swecc;
3687 chip->ecc.read_subpage = nand_read_subpage;
3688 chip->ecc.write_page = nand_write_page_swecc;
3689 chip->ecc.read_page_raw = nand_read_page_raw;
3690 chip->ecc.write_page_raw = nand_write_page_raw;
3691 chip->ecc.read_oob = nand_read_oob_std;
3692 chip->ecc.write_oob = nand_write_oob_std;
3694 * Board driver should supply ecc.size and ecc.bytes values to
3695 * select how many bits are correctable; see nand_bch_init()
3696 * for details. Otherwise, default to 4 bits for large page
3697 * devices.
3699 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3700 chip->ecc.size = 512;
3701 chip->ecc.bytes = 7;
3703 chip->ecc.priv = nand_bch_init(mtd,
3704 chip->ecc.size,
3705 chip->ecc.bytes,
3706 &chip->ecc.layout);
3707 if (!chip->ecc.priv) {
3708 pr_warn("BCH ECC initialization failed!\n");
3709 BUG();
3711 chip->ecc.strength =
3712 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3713 break;
3715 case NAND_ECC_NONE:
3716 pr_warn("NAND_ECC_NONE selected by board driver. "
3717 "This is not recommended!\n");
3718 chip->ecc.read_page = nand_read_page_raw;
3719 chip->ecc.write_page = nand_write_page_raw;
3720 chip->ecc.read_oob = nand_read_oob_std;
3721 chip->ecc.read_page_raw = nand_read_page_raw;
3722 chip->ecc.write_page_raw = nand_write_page_raw;
3723 chip->ecc.write_oob = nand_write_oob_std;
3724 chip->ecc.size = mtd->writesize;
3725 chip->ecc.bytes = 0;
3726 chip->ecc.strength = 0;
3727 break;
3729 default:
3730 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3731 BUG();
3734 /* For many systems, the standard OOB write also works for raw */
3735 if (!chip->ecc.read_oob_raw)
3736 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3737 if (!chip->ecc.write_oob_raw)
3738 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3741 * The number of bytes available for a client to place data into
3742 * the out of band area.
3744 chip->ecc.layout->oobavail = 0;
3745 for (i = 0; chip->ecc.layout->oobfree[i].length
3746 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3747 chip->ecc.layout->oobavail +=
3748 chip->ecc.layout->oobfree[i].length;
3749 mtd->oobavail = chip->ecc.layout->oobavail;
3752 * Set the number of read / write steps for one page depending on ECC
3753 * mode.
3755 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3756 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3757 pr_warn("Invalid ECC parameters\n");
3758 BUG();
3760 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3762 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3763 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
3764 switch (chip->ecc.steps) {
3765 case 2:
3766 mtd->subpage_sft = 1;
3767 break;
3768 case 4:
3769 case 8:
3770 case 16:
3771 mtd->subpage_sft = 2;
3772 break;
3775 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3777 /* Initialize state */
3778 chip->state = FL_READY;
3780 /* Invalidate the pagebuffer reference */
3781 chip->pagebuf = -1;
3783 /* Large page NAND with SOFT_ECC should support subpage reads */
3784 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3785 chip->options |= NAND_SUBPAGE_READ;
3787 /* Fill in remaining MTD driver data */
3788 mtd->type = MTD_NANDFLASH;
3789 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3790 MTD_CAP_NANDFLASH;
3791 mtd->_erase = nand_erase;
3792 mtd->_point = NULL;
3793 mtd->_unpoint = NULL;
3794 mtd->_read = nand_read;
3795 mtd->_write = nand_write;
3796 mtd->_panic_write = panic_nand_write;
3797 mtd->_read_oob = nand_read_oob;
3798 mtd->_write_oob = nand_write_oob;
3799 mtd->_sync = nand_sync;
3800 mtd->_lock = NULL;
3801 mtd->_unlock = NULL;
3802 mtd->_suspend = nand_suspend;
3803 mtd->_resume = nand_resume;
3804 mtd->_block_isbad = nand_block_isbad;
3805 mtd->_block_markbad = nand_block_markbad;
3806 mtd->writebufsize = mtd->writesize;
3808 /* propagate ecc info to mtd_info */
3809 mtd->ecclayout = chip->ecc.layout;
3810 mtd->ecc_strength = chip->ecc.strength;
3811 mtd->ecc_step_size = chip->ecc.size;
3813 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3814 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3815 * properly set.
3817 if (!mtd->bitflip_threshold)
3818 mtd->bitflip_threshold = mtd->ecc_strength;
3820 /* Check, if we should skip the bad block table scan */
3821 if (chip->options & NAND_SKIP_BBTSCAN)
3822 return 0;
3824 /* Build bad block table */
3825 return chip->scan_bbt(mtd);
3827 EXPORT_SYMBOL(nand_scan_tail);
3830 * is_module_text_address() isn't exported, and it's mostly a pointless
3831 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3832 * to call us from in-kernel code if the core NAND support is modular.
3834 #ifdef MODULE
3835 #define caller_is_module() (1)
3836 #else
3837 #define caller_is_module() \
3838 is_module_text_address((unsigned long)__builtin_return_address(0))
3839 #endif
3842 * nand_scan - [NAND Interface] Scan for the NAND device
3843 * @mtd: MTD device structure
3844 * @maxchips: number of chips to scan for
3846 * This fills out all the uninitialized function pointers with the defaults.
3847 * The flash ID is read and the mtd/chip structures are filled with the
3848 * appropriate values. The mtd->owner field must be set to the module of the
3849 * caller.
3851 int nand_scan(struct mtd_info *mtd, int maxchips)
3853 int ret;
3855 /* Many callers got this wrong, so check for it for a while... */
3856 if (!mtd->owner && caller_is_module()) {
3857 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3858 BUG();
3861 ret = nand_scan_ident(mtd, maxchips, NULL);
3862 if (!ret)
3863 ret = nand_scan_tail(mtd);
3864 return ret;
3866 EXPORT_SYMBOL(nand_scan);
3869 * nand_release - [NAND Interface] Free resources held by the NAND device
3870 * @mtd: MTD device structure
3872 void nand_release(struct mtd_info *mtd)
3874 struct nand_chip *chip = mtd->priv;
3876 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3877 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3879 mtd_device_unregister(mtd);
3881 /* Free bad block table memory */
3882 kfree(chip->bbt);
3883 if (!(chip->options & NAND_OWN_BUFFERS))
3884 kfree(chip->buffers);
3886 /* Free bad block descriptor memory */
3887 if (chip->badblock_pattern && chip->badblock_pattern->options
3888 & NAND_BBT_DYNAMICSTRUCT)
3889 kfree(chip->badblock_pattern);
3891 EXPORT_SYMBOL_GPL(nand_release);
3893 static int __init nand_base_init(void)
3895 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3896 return 0;
3899 static void __exit nand_base_exit(void)
3901 led_trigger_unregister_simple(nand_led_trigger);
3904 module_init(nand_base_init);
3905 module_exit(nand_base_exit);
3907 MODULE_LICENSE("GPL");
3908 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3909 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3910 MODULE_DESCRIPTION("Generic NAND flash driver code");