2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/mmu_context.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
34 unsigned long elf_hwcap __read_mostly
;
35 EXPORT_SYMBOL_GPL(elf_hwcap
);
38 #define COMPAT_ELF_HWCAP_DEFAULT \
39 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
40 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
41 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
42 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
43 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
45 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
46 unsigned int compat_elf_hwcap2 __read_mostly
;
49 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
51 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
52 EXPORT_SYMBOL(cpu_hwcap_keys
);
54 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61 .safe_val = SAFE_VAL, \
64 /* Define a feature with unsigned values */
65 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
66 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68 /* Define a feature with a signed value */
69 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
72 #define ARM64_FTR_END \
77 /* meta feature for alternatives */
78 static bool __maybe_unused
79 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
82 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
83 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
84 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 24, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
88 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
89 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
90 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* RAZ */
95 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
96 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
97 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
99 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
100 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
101 /* Linux doesn't care about the EL3 */
102 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
103 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
104 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
105 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
109 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
110 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
111 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
112 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
113 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
114 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
115 /* Linux shouldn't care about secure memory */
116 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
117 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
118 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
120 * Differing PARange is fine as long as all peripherals and memory are mapped
121 * within the minimum PARange of all CPUs
123 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
127 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
128 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
129 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
130 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
138 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
139 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
140 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
141 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
142 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
147 static const struct arm64_ftr_bits ftr_ctr
[] = {
148 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RAO */
149 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 3, 0),
150 ARM64_FTR_BITS(FTR_STRICT
, FTR_HIGHER_SAFE
, 24, 4, 0), /* CWG */
151 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* ERG */
152 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 1), /* DminLine */
154 * Linux can handle differing I-cache policies. Userspace JITs will
155 * make use of *minLine.
156 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_AIVIVT
), /* L1Ip */
159 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 10, 0), /* RAZ */
160 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* IminLine */
164 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
165 .name
= "SYS_CTR_EL0",
169 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
170 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 28, 4, 0xf), /* InnerShr */
171 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 24, 4, 0), /* FCSE */
172 ARM64_FTR_BITS(FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
173 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 16, 4, 0), /* TCM */
174 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* ShareLvl */
175 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 4, 0xf), /* OuterShr */
176 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* PMSA */
177 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* VMSA */
181 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
182 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 32, 32, 0),
183 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
184 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
186 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
187 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
188 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
192 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
193 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 24, 0), /* RAZ */
194 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* FPMisc */
195 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* SIMDMisc */
199 static const struct arm64_ftr_bits ftr_dczid
[] = {
200 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 5, 27, 0), /* RAZ */
201 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
202 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
207 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
208 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_RDM_SHIFT
, 4, 0),
209 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 20, 4, 0), /* RAZ */
210 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
211 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
212 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
213 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_AES_SHIFT
, 4, 0),
214 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
218 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
219 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 24, 0), /* RAZ */
220 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* ac2 */
221 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* RAZ */
225 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
226 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 16, 16, 0), /* RAZ */
227 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 12, 4, 0), /* State3 */
228 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 8, 4, 0), /* State2 */
229 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 4, 4, 0), /* State1 */
230 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 4, 0), /* State0 */
234 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
235 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
236 S_ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
237 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
238 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
240 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
241 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
242 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
247 * Common ftr bits for a 32bit register with all hidden, strict
248 * attributes, with 4bit feature fields and a default safe value of
249 * 0. Covers the following 32bit registers:
250 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
252 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
253 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
254 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
255 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
256 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
257 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
258 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
259 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
260 ARM64_FTR_BITS(FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
264 static const struct arm64_ftr_bits ftr_generic
[] = {
265 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 64, 0),
269 static const struct arm64_ftr_bits ftr_generic32
[] = {
270 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
274 static const struct arm64_ftr_bits ftr_aa64raz
[] = {
275 ARM64_FTR_BITS(FTR_STRICT
, FTR_EXACT
, 0, 64, 0),
279 #define ARM64_FTR_REG(id, table) { \
281 .reg = &(struct arm64_ftr_reg){ \
283 .ftr_bits = &((table)[0]), \
286 static const struct __ftr_reg_entry
{
288 struct arm64_ftr_reg
*reg
;
289 } arm64_ftr_regs
[] = {
291 /* Op1 = 0, CRn = 0, CRm = 1 */
292 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
293 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
294 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
295 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
296 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
297 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
298 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
300 /* Op1 = 0, CRn = 0, CRm = 2 */
301 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
302 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
303 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
304 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
305 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
306 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
307 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
309 /* Op1 = 0, CRn = 0, CRm = 3 */
310 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
311 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
312 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
314 /* Op1 = 0, CRn = 0, CRm = 4 */
315 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
316 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_aa64raz
),
318 /* Op1 = 0, CRn = 0, CRm = 5 */
319 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
320 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_generic
),
322 /* Op1 = 0, CRn = 0, CRm = 6 */
323 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
324 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_aa64raz
),
326 /* Op1 = 0, CRn = 0, CRm = 7 */
327 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
328 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
329 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
331 /* Op1 = 3, CRn = 0, CRm = 0 */
332 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
333 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
335 /* Op1 = 3, CRn = 14, CRm = 0 */
336 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_generic32
),
339 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
341 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
345 * get_arm64_ftr_reg - Lookup a feature register entry using its
346 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347 * ascending order of sys_id , we use binary search to find a matching
350 * returns - Upon success, matching ftr_reg entry for id.
351 * - NULL on failure. It is upto the caller to decide
352 * the impact of a failure.
354 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
356 const struct __ftr_reg_entry
*ret
;
358 ret
= bsearch((const void *)(unsigned long)sys_id
,
360 ARRAY_SIZE(arm64_ftr_regs
),
361 sizeof(arm64_ftr_regs
[0]),
368 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
371 u64 mask
= arm64_ftr_mask(ftrp
);
374 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
378 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
383 switch (ftrp
->type
) {
385 ret
= ftrp
->safe_val
;
388 ret
= new < cur
? new : cur
;
390 case FTR_HIGHER_SAFE
:
391 ret
= new > cur
? new : cur
;
400 static void __init
sort_ftr_regs(void)
404 /* Check that the array is sorted so that we can do the binary search */
405 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
406 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
410 * Initialise the CPU feature register from Boot CPU values.
411 * Also initiliases the strict_mask for the register.
413 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
416 u64 strict_mask
= ~0x0ULL
;
417 const struct arm64_ftr_bits
*ftrp
;
418 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
422 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
423 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
425 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
427 strict_mask
&= ~arm64_ftr_mask(ftrp
);
430 reg
->strict_mask
= strict_mask
;
433 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
435 /* Before we start using the tables, make sure it is sorted */
438 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
439 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
440 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
441 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
442 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
443 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
444 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
445 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
446 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
447 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
448 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
449 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
451 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
452 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
453 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
454 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
455 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
456 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
457 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
458 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
459 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
460 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
461 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
462 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
463 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
464 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
465 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
466 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
467 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
472 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
474 const struct arm64_ftr_bits
*ftrp
;
476 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
477 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
478 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
480 if (ftr_cur
== ftr_new
)
482 /* Find a safe value */
483 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
484 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
489 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
491 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
494 update_cpu_ftr_reg(regp
, val
);
495 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
497 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
498 regp
->name
, boot
, cpu
, val
);
503 * Update system wide CPU feature registers with the values from a
504 * non-boot CPU. Also performs SANITY checks to make sure that there
505 * aren't any insane variations from that of the boot CPU.
507 void update_cpu_features(int cpu
,
508 struct cpuinfo_arm64
*info
,
509 struct cpuinfo_arm64
*boot
)
514 * The kernel can handle differing I-cache policies, but otherwise
515 * caches should look identical. Userspace JITs will make use of
518 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
519 info
->reg_ctr
, boot
->reg_ctr
);
522 * Userspace may perform DC ZVA instructions. Mismatched block sizes
523 * could result in too much or too little memory being zeroed if a
524 * process is preempted and migrated between CPUs.
526 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
527 info
->reg_dczid
, boot
->reg_dczid
);
529 /* If different, timekeeping will be broken (especially with KVM) */
530 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
531 info
->reg_cntfrq
, boot
->reg_cntfrq
);
534 * The kernel uses self-hosted debug features and expects CPUs to
535 * support identical debug features. We presently need CTX_CMPs, WRPs,
536 * and BRPs to be identical.
537 * ID_AA64DFR1 is currently RES0.
539 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
540 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
541 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
542 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
544 * Even in big.LITTLE, processors should be identical instruction-set
547 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
548 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
549 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
550 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
553 * Differing PARange support is fine as long as all peripherals and
554 * memory are mapped within the minimum PARange of all CPUs.
555 * Linux should not care about secure memory.
557 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
558 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
559 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
560 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
561 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
562 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
565 * EL3 is not our concern.
566 * ID_AA64PFR1 is currently RES0.
568 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
569 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
570 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
571 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
574 * If we have AArch32, we care about 32-bit features for compat.
575 * If the system doesn't support AArch32, don't update them.
577 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1
)) &&
578 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
580 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
581 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
582 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
583 info
->reg_id_isar0
, boot
->reg_id_isar0
);
584 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
585 info
->reg_id_isar1
, boot
->reg_id_isar1
);
586 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
587 info
->reg_id_isar2
, boot
->reg_id_isar2
);
588 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
589 info
->reg_id_isar3
, boot
->reg_id_isar3
);
590 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
591 info
->reg_id_isar4
, boot
->reg_id_isar4
);
592 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
593 info
->reg_id_isar5
, boot
->reg_id_isar5
);
596 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
597 * ACTLR formats could differ across CPUs and therefore would have to
598 * be trapped for virtualization anyway.
600 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
601 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
602 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
603 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
604 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
605 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
606 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
607 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
608 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
609 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
610 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
611 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
612 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
613 info
->reg_mvfr0
, boot
->reg_mvfr0
);
614 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
615 info
->reg_mvfr1
, boot
->reg_mvfr1
);
616 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
617 info
->reg_mvfr2
, boot
->reg_mvfr2
);
621 * Mismatched CPU features are a recipe for disaster. Don't even
622 * pretend to support them.
624 WARN_TAINT_ONCE(taint
, TAINT_CPU_OUT_OF_SPEC
,
625 "Unsupported CPU feature variation.\n");
628 u64
read_system_reg(u32 id
)
630 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
632 /* We shouldn't get a request for an unsupported register */
634 return regp
->sys_val
;
638 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
639 * Read the system register on the current CPU
641 static u64
__raw_read_system_reg(u32 sys_id
)
644 case SYS_ID_PFR0_EL1
: return read_cpuid(ID_PFR0_EL1
);
645 case SYS_ID_PFR1_EL1
: return read_cpuid(ID_PFR1_EL1
);
646 case SYS_ID_DFR0_EL1
: return read_cpuid(ID_DFR0_EL1
);
647 case SYS_ID_MMFR0_EL1
: return read_cpuid(ID_MMFR0_EL1
);
648 case SYS_ID_MMFR1_EL1
: return read_cpuid(ID_MMFR1_EL1
);
649 case SYS_ID_MMFR2_EL1
: return read_cpuid(ID_MMFR2_EL1
);
650 case SYS_ID_MMFR3_EL1
: return read_cpuid(ID_MMFR3_EL1
);
651 case SYS_ID_ISAR0_EL1
: return read_cpuid(ID_ISAR0_EL1
);
652 case SYS_ID_ISAR1_EL1
: return read_cpuid(ID_ISAR1_EL1
);
653 case SYS_ID_ISAR2_EL1
: return read_cpuid(ID_ISAR2_EL1
);
654 case SYS_ID_ISAR3_EL1
: return read_cpuid(ID_ISAR3_EL1
);
655 case SYS_ID_ISAR4_EL1
: return read_cpuid(ID_ISAR4_EL1
);
656 case SYS_ID_ISAR5_EL1
: return read_cpuid(ID_ISAR5_EL1
);
657 case SYS_MVFR0_EL1
: return read_cpuid(MVFR0_EL1
);
658 case SYS_MVFR1_EL1
: return read_cpuid(MVFR1_EL1
);
659 case SYS_MVFR2_EL1
: return read_cpuid(MVFR2_EL1
);
661 case SYS_ID_AA64PFR0_EL1
: return read_cpuid(ID_AA64PFR0_EL1
);
662 case SYS_ID_AA64PFR1_EL1
: return read_cpuid(ID_AA64PFR1_EL1
);
663 case SYS_ID_AA64DFR0_EL1
: return read_cpuid(ID_AA64DFR0_EL1
);
664 case SYS_ID_AA64DFR1_EL1
: return read_cpuid(ID_AA64DFR1_EL1
);
665 case SYS_ID_AA64MMFR0_EL1
: return read_cpuid(ID_AA64MMFR0_EL1
);
666 case SYS_ID_AA64MMFR1_EL1
: return read_cpuid(ID_AA64MMFR1_EL1
);
667 case SYS_ID_AA64MMFR2_EL1
: return read_cpuid(ID_AA64MMFR2_EL1
);
668 case SYS_ID_AA64ISAR0_EL1
: return read_cpuid(ID_AA64ISAR0_EL1
);
669 case SYS_ID_AA64ISAR1_EL1
: return read_cpuid(ID_AA64ISAR1_EL1
);
671 case SYS_CNTFRQ_EL0
: return read_cpuid(CNTFRQ_EL0
);
672 case SYS_CTR_EL0
: return read_cpuid(CTR_EL0
);
673 case SYS_DCZID_EL0
: return read_cpuid(DCZID_EL0
);
680 #include <linux/irqchip/arm-gic-v3.h>
683 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
685 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
687 return val
>= entry
->min_field_value
;
691 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
695 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
696 if (scope
== SCOPE_SYSTEM
)
697 val
= read_system_reg(entry
->sys_reg
);
699 val
= __raw_read_system_reg(entry
->sys_reg
);
701 return feature_matches(val
, entry
);
704 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
708 if (!has_cpuid_feature(entry
, scope
))
711 has_sre
= gic_enable_sre();
713 pr_warn_once("%s present but disabled by higher exception level\n",
719 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
721 u32 midr
= read_cpuid_id();
724 /* Cavium ThunderX pass 1.x and 2.x */
726 rv_max
= (1 << MIDR_VARIANT_SHIFT
) | MIDR_REVISION_MASK
;
728 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
, rv_min
, rv_max
);
731 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
733 return is_kernel_in_hyp_mode();
736 static bool hyp_offset_low(const struct arm64_cpu_capabilities
*entry
,
739 phys_addr_t idmap_addr
= virt_to_phys(__hyp_idmap_text_start
);
742 * Activate the lower HYP offset only if:
743 * - the idmap doesn't clash with it,
744 * - the kernel is not running at EL2.
746 return idmap_addr
> GENMASK(VA_BITS
- 2, 0) && !is_kernel_in_hyp_mode();
749 static const struct arm64_cpu_capabilities arm64_features
[] = {
751 .desc
= "GIC system register CPU interface",
752 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
753 .def_scope
= SCOPE_SYSTEM
,
754 .matches
= has_useable_gicv3_cpuif
,
755 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
756 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
757 .sign
= FTR_UNSIGNED
,
758 .min_field_value
= 1,
760 #ifdef CONFIG_ARM64_PAN
762 .desc
= "Privileged Access Never",
763 .capability
= ARM64_HAS_PAN
,
764 .def_scope
= SCOPE_SYSTEM
,
765 .matches
= has_cpuid_feature
,
766 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
767 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
768 .sign
= FTR_UNSIGNED
,
769 .min_field_value
= 1,
770 .enable
= cpu_enable_pan
,
772 #endif /* CONFIG_ARM64_PAN */
773 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
775 .desc
= "LSE atomic instructions",
776 .capability
= ARM64_HAS_LSE_ATOMICS
,
777 .def_scope
= SCOPE_SYSTEM
,
778 .matches
= has_cpuid_feature
,
779 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
780 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
781 .sign
= FTR_UNSIGNED
,
782 .min_field_value
= 2,
784 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
786 .desc
= "Software prefetching using PRFM",
787 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
788 .def_scope
= SCOPE_SYSTEM
,
789 .matches
= has_no_hw_prefetch
,
791 #ifdef CONFIG_ARM64_UAO
793 .desc
= "User Access Override",
794 .capability
= ARM64_HAS_UAO
,
795 .def_scope
= SCOPE_SYSTEM
,
796 .matches
= has_cpuid_feature
,
797 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
798 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
799 .min_field_value
= 1,
800 .enable
= cpu_enable_uao
,
802 #endif /* CONFIG_ARM64_UAO */
803 #ifdef CONFIG_ARM64_PAN
805 .capability
= ARM64_ALT_PAN_NOT_UAO
,
806 .def_scope
= SCOPE_SYSTEM
,
807 .matches
= cpufeature_pan_not_uao
,
809 #endif /* CONFIG_ARM64_PAN */
811 .desc
= "Virtualization Host Extensions",
812 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
813 .def_scope
= SCOPE_SYSTEM
,
814 .matches
= runs_at_el2
,
817 .desc
= "32-bit EL0 Support",
818 .capability
= ARM64_HAS_32BIT_EL0
,
819 .def_scope
= SCOPE_SYSTEM
,
820 .matches
= has_cpuid_feature
,
821 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
822 .sign
= FTR_UNSIGNED
,
823 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
824 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
827 .desc
= "Reduced HYP mapping offset",
828 .capability
= ARM64_HYP_OFFSET_LOW
,
829 .def_scope
= SCOPE_SYSTEM
,
830 .matches
= hyp_offset_low
,
835 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
838 .def_scope = SCOPE_SYSTEM, \
839 .matches = has_cpuid_feature, \
841 .field_pos = field, \
843 .min_field_value = min_value, \
844 .hwcap_type = type, \
848 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_PMULL
),
850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_AES
),
851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA1
),
852 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA2
),
853 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_CRC32
),
854 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_ATOMICS
),
855 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_FP
),
856 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_FPHP
),
857 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_ASIMD
),
858 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDHP
),
862 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
864 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
865 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
866 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
867 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
868 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
873 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
875 switch (cap
->hwcap_type
) {
877 elf_hwcap
|= cap
->hwcap
;
880 case CAP_COMPAT_HWCAP
:
881 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
883 case CAP_COMPAT_HWCAP2
:
884 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
893 /* Check if we have a particular HWCAP enabled */
894 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
898 switch (cap
->hwcap_type
) {
900 rc
= (elf_hwcap
& cap
->hwcap
) != 0;
903 case CAP_COMPAT_HWCAP
:
904 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
906 case CAP_COMPAT_HWCAP2
:
907 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
918 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
920 for (; hwcaps
->matches
; hwcaps
++)
921 if (hwcaps
->matches(hwcaps
, hwcaps
->def_scope
))
922 cap_set_elf_hwcap(hwcaps
);
925 void update_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
928 for (; caps
->matches
; caps
++) {
929 if (!caps
->matches(caps
, caps
->def_scope
))
932 if (!cpus_have_cap(caps
->capability
) && caps
->desc
)
933 pr_info("%s %s\n", info
, caps
->desc
);
934 cpus_set_cap(caps
->capability
);
939 * Run through the enabled capabilities and enable() it on all active
942 void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
)
944 for (; caps
->matches
; caps
++)
945 if (caps
->enable
&& cpus_have_cap(caps
->capability
))
947 * Use stop_machine() as it schedules the work allowing
948 * us to modify PSTATE, instead of on_each_cpu() which
949 * uses an IPI, giving us a PSTATE that disappears when
952 stop_machine(caps
->enable
, NULL
, cpu_online_mask
);
956 * Flag to indicate if we have computed the system wide
957 * capabilities based on the boot time active CPUs. This
958 * will be used to determine if a new booting CPU should
959 * go through the verification process to make sure that it
960 * supports the system capabilities, without using a hotplug
963 static bool sys_caps_initialised
;
965 static inline void set_sys_caps_initialised(void)
967 sys_caps_initialised
= true;
971 * Check for CPU features that are used in early boot
972 * based on the Boot CPU value.
974 static void check_early_cpu_features(void)
977 verify_cpu_asid_bits();
981 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
984 for (; caps
->matches
; caps
++)
985 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
986 pr_crit("CPU%d: missing HWCAP: %s\n",
987 smp_processor_id(), caps
->desc
);
993 verify_local_cpu_features(const struct arm64_cpu_capabilities
*caps
)
995 for (; caps
->matches
; caps
++) {
996 if (!cpus_have_cap(caps
->capability
))
999 * If the new CPU misses an advertised feature, we cannot proceed
1000 * further, park the cpu.
1002 if (!caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1003 pr_crit("CPU%d: missing feature: %s\n",
1004 smp_processor_id(), caps
->desc
);
1013 * Run through the enabled system capabilities and enable() it on this CPU.
1014 * The capabilities were decided based on the available CPUs at the boot time.
1015 * Any new CPU should match the system wide status of the capability. If the
1016 * new CPU doesn't have a capability which the system now has enabled, we
1017 * cannot do anything to fix it up and could cause unexpected failures. So
1020 static void verify_local_cpu_capabilities(void)
1022 verify_local_cpu_errata_workarounds();
1023 verify_local_cpu_features(arm64_features
);
1024 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1025 if (system_supports_32bit_el0())
1026 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1029 void check_local_cpu_capabilities(void)
1032 * All secondary CPUs should conform to the early CPU features
1033 * in use by the kernel based on boot CPU.
1035 check_early_cpu_features();
1038 * If we haven't finalised the system capabilities, this CPU gets
1039 * a chance to update the errata work arounds.
1040 * Otherwise, this CPU should verify that it has all the system
1041 * advertised capabilities.
1043 if (!sys_caps_initialised
)
1044 update_cpu_errata_workarounds();
1046 verify_local_cpu_capabilities();
1049 static void __init
setup_feature_capabilities(void)
1051 update_cpu_capabilities(arm64_features
, "detected feature:");
1052 enable_cpu_capabilities(arm64_features
);
1056 * Check if the current CPU has a given feature capability.
1057 * Should be called from non-preemptible context.
1059 bool this_cpu_has_cap(unsigned int cap
)
1061 const struct arm64_cpu_capabilities
*caps
;
1063 if (WARN_ON(preemptible()))
1066 for (caps
= arm64_features
; caps
->desc
; caps
++)
1067 if (caps
->capability
== cap
&& caps
->matches
)
1068 return caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1073 void __init
setup_cpu_features(void)
1078 /* Set the CPU feature capabilies */
1079 setup_feature_capabilities();
1080 enable_errata_workarounds();
1081 setup_elf_hwcaps(arm64_elf_hwcaps
);
1083 if (system_supports_32bit_el0())
1084 setup_elf_hwcaps(compat_elf_hwcaps
);
1086 /* Advertise that we have computed the system capabilities */
1087 set_sys_caps_initialised();
1090 * Check for sane CTR_EL0.CWG value.
1092 cwg
= cache_type_cwg();
1093 cls
= cache_line_size();
1095 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1097 if (L1_CACHE_BYTES
< cls
)
1098 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1099 L1_CACHE_BYTES
, cls
);
1102 static bool __maybe_unused
1103 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1105 return (cpus_have_cap(ARM64_HAS_PAN
) && !cpus_have_cap(ARM64_HAS_UAO
));