pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / arch / arm64 / kernel / cpufeature.c
blob3a129d48674e0edac3897e3f8bdf4679857ca55d
1 /*
2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/mmu_context.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
32 #include <asm/virt.h>
34 unsigned long elf_hwcap __read_mostly;
35 EXPORT_SYMBOL_GPL(elf_hwcap);
37 #ifdef CONFIG_COMPAT
38 #define COMPAT_ELF_HWCAP_DEFAULT \
39 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
40 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
41 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
42 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
43 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
44 COMPAT_HWCAP_LPAE)
45 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
46 unsigned int compat_elf_hwcap2 __read_mostly;
47 #endif
49 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
51 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcap_keys);
54 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
55 { \
56 .sign = SIGNED, \
57 .strict = STRICT, \
58 .type = TYPE, \
59 .shift = SHIFT, \
60 .width = WIDTH, \
61 .safe_val = SAFE_VAL, \
64 /* Define a feature with unsigned values */
65 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
66 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68 /* Define a feature with a signed value */
69 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
72 #define ARM64_FTR_END \
73 { \
74 .width = 0, \
77 /* meta feature for alternatives */
78 static bool __maybe_unused
79 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
82 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
83 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
88 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
89 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
90 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
92 ARM64_FTR_END,
95 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
96 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
97 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
99 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
100 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
101 /* Linux doesn't care about the EL3 */
102 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
103 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
104 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
106 ARM64_FTR_END,
109 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
110 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
111 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
112 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
114 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
115 /* Linux shouldn't care about secure memory */
116 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
117 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
118 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
120 * Differing PARange is fine as long as all peripherals and memory are mapped
121 * within the minimum PARange of all CPUs
123 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
124 ARM64_FTR_END,
127 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
135 ARM64_FTR_END,
138 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
139 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
140 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
144 ARM64_FTR_END,
147 static const struct arm64_ftr_bits ftr_ctr[] = {
148 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
149 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
150 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
151 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
152 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
154 * Linux can handle differing I-cache policies. Userspace JITs will
155 * make use of *minLine.
156 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT), /* L1Ip */
159 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
160 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
161 ARM64_FTR_END,
164 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
165 .name = "SYS_CTR_EL0",
166 .ftr_bits = ftr_ctr
169 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
170 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
172 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
173 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
175 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
178 ARM64_FTR_END,
181 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
182 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
183 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
186 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
189 ARM64_FTR_END,
192 static const struct arm64_ftr_bits ftr_mvfr2[] = {
193 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
195 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
196 ARM64_FTR_END,
199 static const struct arm64_ftr_bits ftr_dczid[] = {
200 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
202 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
203 ARM64_FTR_END,
207 static const struct arm64_ftr_bits ftr_id_isar5[] = {
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
215 ARM64_FTR_END,
218 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
219 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
220 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
221 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
222 ARM64_FTR_END,
225 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
226 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
227 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
228 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
229 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
230 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
231 ARM64_FTR_END,
234 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
235 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
236 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
237 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
238 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
240 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
241 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
242 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
243 ARM64_FTR_END,
247 * Common ftr bits for a 32bit register with all hidden, strict
248 * attributes, with 4bit feature fields and a default safe value of
249 * 0. Covers the following 32bit registers:
250 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
252 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
253 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
254 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
255 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
256 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
257 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
258 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
259 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
260 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
261 ARM64_FTR_END,
264 static const struct arm64_ftr_bits ftr_generic[] = {
265 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
266 ARM64_FTR_END,
269 static const struct arm64_ftr_bits ftr_generic32[] = {
270 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
271 ARM64_FTR_END,
274 static const struct arm64_ftr_bits ftr_aa64raz[] = {
275 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
276 ARM64_FTR_END,
279 #define ARM64_FTR_REG(id, table) { \
280 .sys_id = id, \
281 .reg = &(struct arm64_ftr_reg){ \
282 .name = #id, \
283 .ftr_bits = &((table)[0]), \
286 static const struct __ftr_reg_entry {
287 u32 sys_id;
288 struct arm64_ftr_reg *reg;
289 } arm64_ftr_regs[] = {
291 /* Op1 = 0, CRn = 0, CRm = 1 */
292 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
300 /* Op1 = 0, CRn = 0, CRm = 2 */
301 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
309 /* Op1 = 0, CRn = 0, CRm = 3 */
310 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
314 /* Op1 = 0, CRn = 0, CRm = 4 */
315 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
318 /* Op1 = 0, CRn = 0, CRm = 5 */
319 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
322 /* Op1 = 0, CRn = 0, CRm = 6 */
323 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
326 /* Op1 = 0, CRn = 0, CRm = 7 */
327 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
331 /* Op1 = 3, CRn = 0, CRm = 0 */
332 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
335 /* Op1 = 3, CRn = 14, CRm = 0 */
336 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
339 static int search_cmp_ftr_reg(const void *id, const void *regp)
341 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
345 * get_arm64_ftr_reg - Lookup a feature register entry using its
346 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347 * ascending order of sys_id , we use binary search to find a matching
348 * entry.
350 * returns - Upon success, matching ftr_reg entry for id.
351 * - NULL on failure. It is upto the caller to decide
352 * the impact of a failure.
354 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
356 const struct __ftr_reg_entry *ret;
358 ret = bsearch((const void *)(unsigned long)sys_id,
359 arm64_ftr_regs,
360 ARRAY_SIZE(arm64_ftr_regs),
361 sizeof(arm64_ftr_regs[0]),
362 search_cmp_ftr_reg);
363 if (ret)
364 return ret->reg;
365 return NULL;
368 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369 s64 ftr_val)
371 u64 mask = arm64_ftr_mask(ftrp);
373 reg &= ~mask;
374 reg |= (ftr_val << ftrp->shift) & mask;
375 return reg;
378 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379 s64 cur)
381 s64 ret = 0;
383 switch (ftrp->type) {
384 case FTR_EXACT:
385 ret = ftrp->safe_val;
386 break;
387 case FTR_LOWER_SAFE:
388 ret = new < cur ? new : cur;
389 break;
390 case FTR_HIGHER_SAFE:
391 ret = new > cur ? new : cur;
392 break;
393 default:
394 BUG();
397 return ret;
400 static void __init sort_ftr_regs(void)
402 int i;
404 /* Check that the array is sorted so that we can do the binary search */
405 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
410 * Initialise the CPU feature register from Boot CPU values.
411 * Also initiliases the strict_mask for the register.
413 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
415 u64 val = 0;
416 u64 strict_mask = ~0x0ULL;
417 const struct arm64_ftr_bits *ftrp;
418 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
420 BUG_ON(!reg);
422 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
423 s64 ftr_new = arm64_ftr_value(ftrp, new);
425 val = arm64_ftr_set_value(ftrp, val, ftr_new);
426 if (!ftrp->strict)
427 strict_mask &= ~arm64_ftr_mask(ftrp);
429 reg->sys_val = val;
430 reg->strict_mask = strict_mask;
433 void __init init_cpu_features(struct cpuinfo_arm64 *info)
435 /* Before we start using the tables, make sure it is sorted */
436 sort_ftr_regs();
438 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
439 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
440 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
441 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
442 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
443 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
444 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
445 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
446 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
447 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
448 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
449 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
451 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
452 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
453 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
454 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
455 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
456 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
457 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
458 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
459 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
460 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
461 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
462 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
463 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
464 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
465 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
466 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
467 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
472 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
474 const struct arm64_ftr_bits *ftrp;
476 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
477 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
478 s64 ftr_new = arm64_ftr_value(ftrp, new);
480 if (ftr_cur == ftr_new)
481 continue;
482 /* Find a safe value */
483 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
484 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
489 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
491 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
493 BUG_ON(!regp);
494 update_cpu_ftr_reg(regp, val);
495 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
496 return 0;
497 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
498 regp->name, boot, cpu, val);
499 return 1;
503 * Update system wide CPU feature registers with the values from a
504 * non-boot CPU. Also performs SANITY checks to make sure that there
505 * aren't any insane variations from that of the boot CPU.
507 void update_cpu_features(int cpu,
508 struct cpuinfo_arm64 *info,
509 struct cpuinfo_arm64 *boot)
511 int taint = 0;
514 * The kernel can handle differing I-cache policies, but otherwise
515 * caches should look identical. Userspace JITs will make use of
516 * *minLine.
518 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
519 info->reg_ctr, boot->reg_ctr);
522 * Userspace may perform DC ZVA instructions. Mismatched block sizes
523 * could result in too much or too little memory being zeroed if a
524 * process is preempted and migrated between CPUs.
526 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
527 info->reg_dczid, boot->reg_dczid);
529 /* If different, timekeeping will be broken (especially with KVM) */
530 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
531 info->reg_cntfrq, boot->reg_cntfrq);
534 * The kernel uses self-hosted debug features and expects CPUs to
535 * support identical debug features. We presently need CTX_CMPs, WRPs,
536 * and BRPs to be identical.
537 * ID_AA64DFR1 is currently RES0.
539 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
540 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
541 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
542 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
544 * Even in big.LITTLE, processors should be identical instruction-set
545 * wise.
547 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
548 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
549 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
550 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
553 * Differing PARange support is fine as long as all peripherals and
554 * memory are mapped within the minimum PARange of all CPUs.
555 * Linux should not care about secure memory.
557 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
558 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
559 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
560 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
561 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
562 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
565 * EL3 is not our concern.
566 * ID_AA64PFR1 is currently RES0.
568 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
569 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
570 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
571 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
574 * If we have AArch32, we care about 32-bit features for compat.
575 * If the system doesn't support AArch32, don't update them.
577 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
578 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
580 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
581 info->reg_id_dfr0, boot->reg_id_dfr0);
582 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
583 info->reg_id_isar0, boot->reg_id_isar0);
584 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
585 info->reg_id_isar1, boot->reg_id_isar1);
586 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
587 info->reg_id_isar2, boot->reg_id_isar2);
588 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
589 info->reg_id_isar3, boot->reg_id_isar3);
590 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
591 info->reg_id_isar4, boot->reg_id_isar4);
592 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
593 info->reg_id_isar5, boot->reg_id_isar5);
596 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
597 * ACTLR formats could differ across CPUs and therefore would have to
598 * be trapped for virtualization anyway.
600 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
601 info->reg_id_mmfr0, boot->reg_id_mmfr0);
602 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
603 info->reg_id_mmfr1, boot->reg_id_mmfr1);
604 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
605 info->reg_id_mmfr2, boot->reg_id_mmfr2);
606 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
607 info->reg_id_mmfr3, boot->reg_id_mmfr3);
608 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
609 info->reg_id_pfr0, boot->reg_id_pfr0);
610 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
611 info->reg_id_pfr1, boot->reg_id_pfr1);
612 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
613 info->reg_mvfr0, boot->reg_mvfr0);
614 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
615 info->reg_mvfr1, boot->reg_mvfr1);
616 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
617 info->reg_mvfr2, boot->reg_mvfr2);
621 * Mismatched CPU features are a recipe for disaster. Don't even
622 * pretend to support them.
624 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
625 "Unsupported CPU feature variation.\n");
628 u64 read_system_reg(u32 id)
630 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
632 /* We shouldn't get a request for an unsupported register */
633 BUG_ON(!regp);
634 return regp->sys_val;
638 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
639 * Read the system register on the current CPU
641 static u64 __raw_read_system_reg(u32 sys_id)
643 switch (sys_id) {
644 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
645 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
646 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
647 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
648 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
649 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
650 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
651 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
652 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
653 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
654 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
655 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
656 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR5_EL1);
657 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
658 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
659 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
661 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
662 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR1_EL1);
663 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
664 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR1_EL1);
665 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
666 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
667 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
668 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
669 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
671 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
672 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
673 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
674 default:
675 BUG();
676 return 0;
680 #include <linux/irqchip/arm-gic-v3.h>
682 static bool
683 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
685 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
687 return val >= entry->min_field_value;
690 static bool
691 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
693 u64 val;
695 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
696 if (scope == SCOPE_SYSTEM)
697 val = read_system_reg(entry->sys_reg);
698 else
699 val = __raw_read_system_reg(entry->sys_reg);
701 return feature_matches(val, entry);
704 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
706 bool has_sre;
708 if (!has_cpuid_feature(entry, scope))
709 return false;
711 has_sre = gic_enable_sre();
712 if (!has_sre)
713 pr_warn_once("%s present but disabled by higher exception level\n",
714 entry->desc);
716 return has_sre;
719 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
721 u32 midr = read_cpuid_id();
722 u32 rv_min, rv_max;
724 /* Cavium ThunderX pass 1.x and 2.x */
725 rv_min = 0;
726 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
728 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
731 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
733 return is_kernel_in_hyp_mode();
736 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
737 int __unused)
739 phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
742 * Activate the lower HYP offset only if:
743 * - the idmap doesn't clash with it,
744 * - the kernel is not running at EL2.
746 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
749 static const struct arm64_cpu_capabilities arm64_features[] = {
751 .desc = "GIC system register CPU interface",
752 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
753 .def_scope = SCOPE_SYSTEM,
754 .matches = has_useable_gicv3_cpuif,
755 .sys_reg = SYS_ID_AA64PFR0_EL1,
756 .field_pos = ID_AA64PFR0_GIC_SHIFT,
757 .sign = FTR_UNSIGNED,
758 .min_field_value = 1,
760 #ifdef CONFIG_ARM64_PAN
762 .desc = "Privileged Access Never",
763 .capability = ARM64_HAS_PAN,
764 .def_scope = SCOPE_SYSTEM,
765 .matches = has_cpuid_feature,
766 .sys_reg = SYS_ID_AA64MMFR1_EL1,
767 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
768 .sign = FTR_UNSIGNED,
769 .min_field_value = 1,
770 .enable = cpu_enable_pan,
772 #endif /* CONFIG_ARM64_PAN */
773 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
775 .desc = "LSE atomic instructions",
776 .capability = ARM64_HAS_LSE_ATOMICS,
777 .def_scope = SCOPE_SYSTEM,
778 .matches = has_cpuid_feature,
779 .sys_reg = SYS_ID_AA64ISAR0_EL1,
780 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
781 .sign = FTR_UNSIGNED,
782 .min_field_value = 2,
784 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
786 .desc = "Software prefetching using PRFM",
787 .capability = ARM64_HAS_NO_HW_PREFETCH,
788 .def_scope = SCOPE_SYSTEM,
789 .matches = has_no_hw_prefetch,
791 #ifdef CONFIG_ARM64_UAO
793 .desc = "User Access Override",
794 .capability = ARM64_HAS_UAO,
795 .def_scope = SCOPE_SYSTEM,
796 .matches = has_cpuid_feature,
797 .sys_reg = SYS_ID_AA64MMFR2_EL1,
798 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
799 .min_field_value = 1,
800 .enable = cpu_enable_uao,
802 #endif /* CONFIG_ARM64_UAO */
803 #ifdef CONFIG_ARM64_PAN
805 .capability = ARM64_ALT_PAN_NOT_UAO,
806 .def_scope = SCOPE_SYSTEM,
807 .matches = cpufeature_pan_not_uao,
809 #endif /* CONFIG_ARM64_PAN */
811 .desc = "Virtualization Host Extensions",
812 .capability = ARM64_HAS_VIRT_HOST_EXTN,
813 .def_scope = SCOPE_SYSTEM,
814 .matches = runs_at_el2,
817 .desc = "32-bit EL0 Support",
818 .capability = ARM64_HAS_32BIT_EL0,
819 .def_scope = SCOPE_SYSTEM,
820 .matches = has_cpuid_feature,
821 .sys_reg = SYS_ID_AA64PFR0_EL1,
822 .sign = FTR_UNSIGNED,
823 .field_pos = ID_AA64PFR0_EL0_SHIFT,
824 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
827 .desc = "Reduced HYP mapping offset",
828 .capability = ARM64_HYP_OFFSET_LOW,
829 .def_scope = SCOPE_SYSTEM,
830 .matches = hyp_offset_low,
835 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
837 .desc = #cap, \
838 .def_scope = SCOPE_SYSTEM, \
839 .matches = has_cpuid_feature, \
840 .sys_reg = reg, \
841 .field_pos = field, \
842 .sign = s, \
843 .min_field_value = min_value, \
844 .hwcap_type = type, \
845 .hwcap = cap, \
848 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
852 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
853 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
854 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
855 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
856 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
857 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
858 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
862 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
863 #ifdef CONFIG_COMPAT
864 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
865 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
866 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
867 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
868 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
869 #endif
873 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
875 switch (cap->hwcap_type) {
876 case CAP_HWCAP:
877 elf_hwcap |= cap->hwcap;
878 break;
879 #ifdef CONFIG_COMPAT
880 case CAP_COMPAT_HWCAP:
881 compat_elf_hwcap |= (u32)cap->hwcap;
882 break;
883 case CAP_COMPAT_HWCAP2:
884 compat_elf_hwcap2 |= (u32)cap->hwcap;
885 break;
886 #endif
887 default:
888 WARN_ON(1);
889 break;
893 /* Check if we have a particular HWCAP enabled */
894 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
896 bool rc;
898 switch (cap->hwcap_type) {
899 case CAP_HWCAP:
900 rc = (elf_hwcap & cap->hwcap) != 0;
901 break;
902 #ifdef CONFIG_COMPAT
903 case CAP_COMPAT_HWCAP:
904 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
905 break;
906 case CAP_COMPAT_HWCAP2:
907 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
908 break;
909 #endif
910 default:
911 WARN_ON(1);
912 rc = false;
915 return rc;
918 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
920 for (; hwcaps->matches; hwcaps++)
921 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
922 cap_set_elf_hwcap(hwcaps);
925 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
926 const char *info)
928 for (; caps->matches; caps++) {
929 if (!caps->matches(caps, caps->def_scope))
930 continue;
932 if (!cpus_have_cap(caps->capability) && caps->desc)
933 pr_info("%s %s\n", info, caps->desc);
934 cpus_set_cap(caps->capability);
939 * Run through the enabled capabilities and enable() it on all active
940 * CPUs
942 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
944 for (; caps->matches; caps++)
945 if (caps->enable && cpus_have_cap(caps->capability))
947 * Use stop_machine() as it schedules the work allowing
948 * us to modify PSTATE, instead of on_each_cpu() which
949 * uses an IPI, giving us a PSTATE that disappears when
950 * we return.
952 stop_machine(caps->enable, NULL, cpu_online_mask);
956 * Flag to indicate if we have computed the system wide
957 * capabilities based on the boot time active CPUs. This
958 * will be used to determine if a new booting CPU should
959 * go through the verification process to make sure that it
960 * supports the system capabilities, without using a hotplug
961 * notifier.
963 static bool sys_caps_initialised;
965 static inline void set_sys_caps_initialised(void)
967 sys_caps_initialised = true;
971 * Check for CPU features that are used in early boot
972 * based on the Boot CPU value.
974 static void check_early_cpu_features(void)
976 verify_cpu_run_el();
977 verify_cpu_asid_bits();
980 static void
981 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
984 for (; caps->matches; caps++)
985 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
986 pr_crit("CPU%d: missing HWCAP: %s\n",
987 smp_processor_id(), caps->desc);
988 cpu_die_early();
992 static void
993 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
995 for (; caps->matches; caps++) {
996 if (!cpus_have_cap(caps->capability))
997 continue;
999 * If the new CPU misses an advertised feature, we cannot proceed
1000 * further, park the cpu.
1002 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1003 pr_crit("CPU%d: missing feature: %s\n",
1004 smp_processor_id(), caps->desc);
1005 cpu_die_early();
1007 if (caps->enable)
1008 caps->enable(NULL);
1013 * Run through the enabled system capabilities and enable() it on this CPU.
1014 * The capabilities were decided based on the available CPUs at the boot time.
1015 * Any new CPU should match the system wide status of the capability. If the
1016 * new CPU doesn't have a capability which the system now has enabled, we
1017 * cannot do anything to fix it up and could cause unexpected failures. So
1018 * we park the CPU.
1020 static void verify_local_cpu_capabilities(void)
1022 verify_local_cpu_errata_workarounds();
1023 verify_local_cpu_features(arm64_features);
1024 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1025 if (system_supports_32bit_el0())
1026 verify_local_elf_hwcaps(compat_elf_hwcaps);
1029 void check_local_cpu_capabilities(void)
1032 * All secondary CPUs should conform to the early CPU features
1033 * in use by the kernel based on boot CPU.
1035 check_early_cpu_features();
1038 * If we haven't finalised the system capabilities, this CPU gets
1039 * a chance to update the errata work arounds.
1040 * Otherwise, this CPU should verify that it has all the system
1041 * advertised capabilities.
1043 if (!sys_caps_initialised)
1044 update_cpu_errata_workarounds();
1045 else
1046 verify_local_cpu_capabilities();
1049 static void __init setup_feature_capabilities(void)
1051 update_cpu_capabilities(arm64_features, "detected feature:");
1052 enable_cpu_capabilities(arm64_features);
1056 * Check if the current CPU has a given feature capability.
1057 * Should be called from non-preemptible context.
1059 bool this_cpu_has_cap(unsigned int cap)
1061 const struct arm64_cpu_capabilities *caps;
1063 if (WARN_ON(preemptible()))
1064 return false;
1066 for (caps = arm64_features; caps->desc; caps++)
1067 if (caps->capability == cap && caps->matches)
1068 return caps->matches(caps, SCOPE_LOCAL_CPU);
1070 return false;
1073 void __init setup_cpu_features(void)
1075 u32 cwg;
1076 int cls;
1078 /* Set the CPU feature capabilies */
1079 setup_feature_capabilities();
1080 enable_errata_workarounds();
1081 setup_elf_hwcaps(arm64_elf_hwcaps);
1083 if (system_supports_32bit_el0())
1084 setup_elf_hwcaps(compat_elf_hwcaps);
1086 /* Advertise that we have computed the system capabilities */
1087 set_sys_caps_initialised();
1090 * Check for sane CTR_EL0.CWG value.
1092 cwg = cache_type_cwg();
1093 cls = cache_line_size();
1094 if (!cwg)
1095 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1096 cls);
1097 if (L1_CACHE_BYTES < cls)
1098 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1099 L1_CACHE_BYTES, cls);
1102 static bool __maybe_unused
1103 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1105 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));