pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / arch / arm64 / mm / context.c
blobefcf1f7ef1e4c27b4c0c40546dc542122f824933
1 /*
2 * Based on arch/arm/mm/context.c
4 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/bitops.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
25 #include <asm/cpufeature.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/tlbflush.h>
30 static u32 asid_bits;
31 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
33 static atomic64_t asid_generation;
34 static unsigned long *asid_map;
36 static DEFINE_PER_CPU(atomic64_t, active_asids);
37 static DEFINE_PER_CPU(u64, reserved_asids);
38 static cpumask_t tlb_flush_pending;
40 #define ASID_MASK (~GENMASK(asid_bits - 1, 0))
41 #define ASID_FIRST_VERSION (1UL << asid_bits)
42 #define NUM_USER_ASIDS ASID_FIRST_VERSION
44 /* Get the ASIDBits supported by the current CPU */
45 static u32 get_cpu_asid_bits(void)
47 u32 asid;
48 int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
49 ID_AA64MMFR0_ASID_SHIFT);
51 switch (fld) {
52 default:
53 pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
54 smp_processor_id(), fld);
55 /* Fallthrough */
56 case 0:
57 asid = 8;
58 break;
59 case 2:
60 asid = 16;
63 return asid;
66 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
67 void verify_cpu_asid_bits(void)
69 u32 asid = get_cpu_asid_bits();
71 if (asid < asid_bits) {
73 * We cannot decrease the ASID size at runtime, so panic if we support
74 * fewer ASID bits than the boot CPU.
76 pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
77 smp_processor_id(), asid, asid_bits);
78 cpu_panic_kernel();
82 static void flush_context(unsigned int cpu)
84 int i;
85 u64 asid;
87 /* Update the list of reserved ASIDs and the ASID bitmap. */
88 bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
91 * Ensure the generation bump is observed before we xchg the
92 * active_asids.
94 smp_wmb();
96 for_each_possible_cpu(i) {
97 asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
99 * If this CPU has already been through a
100 * rollover, but hasn't run another task in
101 * the meantime, we must preserve its reserved
102 * ASID, as this is the only trace we have of
103 * the process it is still running.
105 if (asid == 0)
106 asid = per_cpu(reserved_asids, i);
107 __set_bit(asid & ~ASID_MASK, asid_map);
108 per_cpu(reserved_asids, i) = asid;
111 /* Queue a TLB invalidate and flush the I-cache if necessary. */
112 cpumask_setall(&tlb_flush_pending);
114 if (icache_is_aivivt())
115 __flush_icache_all();
118 static bool check_update_reserved_asid(u64 asid, u64 newasid)
120 int cpu;
121 bool hit = false;
124 * Iterate over the set of reserved ASIDs looking for a match.
125 * If we find one, then we can update our mm to use newasid
126 * (i.e. the same ASID in the current generation) but we can't
127 * exit the loop early, since we need to ensure that all copies
128 * of the old ASID are updated to reflect the mm. Failure to do
129 * so could result in us missing the reserved ASID in a future
130 * generation.
132 for_each_possible_cpu(cpu) {
133 if (per_cpu(reserved_asids, cpu) == asid) {
134 hit = true;
135 per_cpu(reserved_asids, cpu) = newasid;
139 return hit;
142 static u64 new_context(struct mm_struct *mm, unsigned int cpu)
144 static u32 cur_idx = 1;
145 u64 asid = atomic64_read(&mm->context.id);
146 u64 generation = atomic64_read(&asid_generation);
148 if (asid != 0) {
149 u64 newasid = generation | (asid & ~ASID_MASK);
152 * If our current ASID was active during a rollover, we
153 * can continue to use it and this was just a false alarm.
155 if (check_update_reserved_asid(asid, newasid))
156 return newasid;
159 * We had a valid ASID in a previous life, so try to re-use
160 * it if possible.
162 asid &= ~ASID_MASK;
163 if (!__test_and_set_bit(asid, asid_map))
164 return newasid;
168 * Allocate a free ASID. If we can't find one, take a note of the
169 * currently active ASIDs and mark the TLBs as requiring flushes.
170 * We always count from ASID #1, as we use ASID #0 when setting a
171 * reserved TTBR0 for the init_mm.
173 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
174 if (asid != NUM_USER_ASIDS)
175 goto set_asid;
177 /* We're out of ASIDs, so increment the global generation count */
178 generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
179 &asid_generation);
180 flush_context(cpu);
182 /* We have more ASIDs than CPUs, so this will always succeed */
183 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
185 set_asid:
186 __set_bit(asid, asid_map);
187 cur_idx = asid;
188 return asid | generation;
191 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
193 unsigned long flags;
194 u64 asid;
196 asid = atomic64_read(&mm->context.id);
199 * The memory ordering here is subtle. We rely on the control
200 * dependency between the generation read and the update of
201 * active_asids to ensure that we are synchronised with a
202 * parallel rollover (i.e. this pairs with the smp_wmb() in
203 * flush_context).
205 if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits)
206 && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid))
207 goto switch_mm_fastpath;
209 raw_spin_lock_irqsave(&cpu_asid_lock, flags);
210 /* Check that our ASID belongs to the current generation. */
211 asid = atomic64_read(&mm->context.id);
212 if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
213 asid = new_context(mm, cpu);
214 atomic64_set(&mm->context.id, asid);
217 if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
218 local_flush_tlb_all();
220 atomic64_set(&per_cpu(active_asids, cpu), asid);
221 raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
223 switch_mm_fastpath:
224 cpu_switch_mm(mm->pgd, mm);
227 static int asids_init(void)
229 asid_bits = get_cpu_asid_bits();
231 * Expect allocation after rollover to fail if we don't have at least
232 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
234 WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
235 atomic64_set(&asid_generation, ASID_FIRST_VERSION);
236 asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map),
237 GFP_KERNEL);
238 if (!asid_map)
239 panic("Failed to allocate bitmap for %lu ASIDs\n",
240 NUM_USER_ASIDS);
242 pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
243 return 0;
245 early_initcall(asids_init);