1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
55 #define HAS_BROKEN_FIRMWARE
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
65 * Define this if using the driver with the zero-copy patch
69 #if IS_ENABLED(CONFIG_VLAN_8021Q)
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency
;
78 static int small_frames
;
80 static int debug
= 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work
= 20;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit
= 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum
= 1;
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak
= PKT_BUF_SZ
;
107 static int rx_copybreak
/* = 0 */;
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
112 #define DMA_BURST_SIZE 64
114 #define DMA_BURST_SIZE 128
117 /* Operational parameters that are set at compile time. */
119 /* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
122 #define RX_RING_SIZE 256
123 #define TX_RING_SIZE 32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE 1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN 256
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
132 #define RX_Q_ENTRIES Rx256QEntries
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT (2 * HZ)
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
165 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
168 /* These identify the driver base version and may not be removed. */
169 static const char version
[] =
170 KERN_INFO
"starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION
", " DRV_RELDATE
")\n";
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION
);
177 MODULE_FIRMWARE(FIRMWARE_RX
);
178 MODULE_FIRMWARE(FIRMWARE_TX
);
180 module_param(max_interrupt_work
, int, 0);
181 module_param(mtu
, int, 0);
182 module_param(debug
, int, 0);
183 module_param(rx_copybreak
, int, 0);
184 module_param(intr_latency
, int, 0);
185 module_param(small_frames
, int, 0);
186 module_param(enable_hw_cksum
, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work
, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu
, "MTU (all boards)");
189 MODULE_PARM_DESC(debug
, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak
, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency
, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames
, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum
, "Enable/disable hardware cksum support (0/1)");
198 I. Board Compatibility
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
202 II. Board-specific settings
204 III. Driver operation
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue. When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
219 IIIb/c. Transmit/Receive Structure
221 See the Adaptec manual for the many possible structures, and options for
222 each structure. There are far too many to document all of them here.
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding. It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
229 For receive this driver uses type 2/3 receive descriptors. The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor. The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff. When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
247 IIId. Synchronization
249 The driver runs as two independent, single-threaded flows of control. One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag. The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
282 enum chip_capability_flags
{CanHaveMII
=1, };
288 static const struct pci_device_id starfire_pci_tbl
[] = {
289 { PCI_VDEVICE(ADAPTEC
, 0x6915), CH_6915
},
292 MODULE_DEVICE_TABLE(pci
, starfire_pci_tbl
);
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info
{
299 { "Adaptec Starfire 6915", CanHaveMII
},
303 /* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
311 enum register_offsets
{
312 PCIDeviceConfig
=0x50040, GenCtrl
=0x50070, IntrTimerCtrl
=0x50074,
313 IntrClear
=0x50080, IntrStatus
=0x50084, IntrEnable
=0x50088,
314 MIICtrl
=0x52000, TxStationAddr
=0x50120, EEPROMCtrl
=0x51000,
315 GPIOCtrl
=0x5008C, TxDescCtrl
=0x50090,
316 TxRingPtr
=0x50098, HiPriTxRingPtr
=0x50094, /* Low and High priority. */
317 TxRingHiAddr
=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx
=0x500A0, TxConsumerIdx
=0x500A4,
320 CompletionHiAddr
=0x500B4, TxCompletionAddr
=0x500B8,
321 RxCompletionAddr
=0x500BC, RxCompletionQ2Addr
=0x500C0,
322 CompletionQConsumerIdx
=0x500C4, RxDMACtrl
=0x500D0,
323 RxDescQCtrl
=0x500D4, RxDescQHiAddr
=0x500DC, RxDescQAddr
=0x500E0,
324 RxDescQIdx
=0x500E8, RxDMAStatus
=0x500F0, RxFilterMode
=0x500F4,
325 TxMode
=0x55000, VlanType
=0x55064,
326 PerfFilterTable
=0x56000, HashTable
=0x56100,
327 TxGfpMem
=0x58000, RxGfpMem
=0x5a000,
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
335 enum intr_status_bits
{
336 IntrLinkChange
=0xf0000000, IntrStatsMax
=0x08000000,
337 IntrAbnormalSummary
=0x02000000, IntrGeneralTimer
=0x01000000,
338 IntrSoftware
=0x800000, IntrRxComplQ1Low
=0x400000,
339 IntrTxComplQLow
=0x200000, IntrPCI
=0x100000,
340 IntrDMAErr
=0x080000, IntrTxDataLow
=0x040000,
341 IntrRxComplQ2Low
=0x020000, IntrRxDescQ1Low
=0x010000,
342 IntrNormalSummary
=0x8000, IntrTxDone
=0x4000,
343 IntrTxDMADone
=0x2000, IntrTxEmpty
=0x1000,
344 IntrEarlyRxQ2
=0x0800, IntrEarlyRxQ1
=0x0400,
345 IntrRxQ2Done
=0x0200, IntrRxQ1Done
=0x0100,
346 IntrRxGFPDead
=0x80, IntrRxDescQ2Low
=0x40,
347 IntrNoTxCsum
=0x20, IntrTxBadID
=0x10,
348 IntrHiPriTxBadID
=0x08, IntrRxGfp
=0x04,
349 IntrTxGfp
=0x02, IntrPCIPad
=0x01,
351 IntrRxDone
=IntrRxQ2Done
| IntrRxQ1Done
,
352 IntrRxEmpty
=IntrRxDescQ1Low
| IntrRxDescQ2Low
,
353 IntrNormalMask
=0xff00, IntrAbnormalMask
=0x3ff00fe,
356 /* Bits in the RxFilterMode register. */
358 AcceptBroadcast
=0x04, AcceptAllMulticast
=0x02, AcceptAll
=0x01,
359 AcceptMulticast
=0x10, PerfectFilter
=0x40, HashFilter
=0x30,
360 PerfectFilterVlan
=0x80, MinVLANPrio
=0xE000, VlanMode
=0x0200,
364 /* Bits in the TxMode register */
366 MiiSoftReset
=0x8000, MIILoopback
=0x4000,
367 TxFlowEnable
=0x0800, RxFlowEnable
=0x0400,
368 PadEnable
=0x04, FullDuplex
=0x02, HugeFrame
=0x01,
371 /* Bits in the TxDescCtrl register. */
373 TxDescSpaceUnlim
=0x00, TxDescSpace32
=0x10, TxDescSpace64
=0x20,
374 TxDescSpace128
=0x30, TxDescSpace256
=0x40,
375 TxDescType0
=0x00, TxDescType1
=0x01, TxDescType2
=0x02,
376 TxDescType3
=0x03, TxDescType4
=0x04,
377 TxNoDMACompletion
=0x08,
378 TxDescQAddr64bit
=0x80, TxDescQAddr32bit
=0,
379 TxHiPriFIFOThreshShift
=24, TxPadLenShift
=16,
380 TxDMABurstSizeShift
=8,
383 /* Bits in the RxDescQCtrl register. */
385 RxBufferLenShift
=16, RxMinDescrThreshShift
=0,
386 RxPrefetchMode
=0x8000, RxVariableQ
=0x2000,
387 Rx2048QEntries
=0x4000, Rx256QEntries
=0,
388 RxDescAddr64bit
=0x1000, RxDescAddr32bit
=0,
389 RxDescQAddr64bit
=0x0100, RxDescQAddr32bit
=0,
390 RxDescSpace4
=0x000, RxDescSpace8
=0x100,
391 RxDescSpace16
=0x200, RxDescSpace32
=0x300,
392 RxDescSpace64
=0x400, RxDescSpace128
=0x500,
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits
{
398 RxReportBadFrames
=0x80000000, RxDMAShortFrames
=0x40000000,
399 RxDMABadFrames
=0x20000000, RxDMACrcErrorFrames
=0x10000000,
400 RxDMAControlFrame
=0x08000000, RxDMAPauseFrame
=0x04000000,
401 RxChecksumIgnore
=0, RxChecksumRejectTCPUDP
=0x02000000,
402 RxChecksumRejectTCPOnly
=0x01000000,
403 RxCompletionQ2Enable
=0x800000,
404 RxDMAQ2Disable
=0, RxDMAQ2FPOnly
=0x100000,
405 RxDMAQ2SmallPkt
=0x200000, RxDMAQ2HighPrio
=0x300000,
406 RxDMAQ2NonIP
=0x400000,
407 RxUseBackupQueue
=0x080000, RxDMACRC
=0x040000,
408 RxEarlyIntThreshShift
=12, RxHighPrioThreshShift
=8,
412 /* Bits in the RxCompletionAddr register */
414 RxComplQAddr64bit
=0x80, RxComplQAddr32bit
=0,
415 RxComplProducerWrEn
=0x40,
416 RxComplType0
=0x00, RxComplType1
=0x10,
417 RxComplType2
=0x20, RxComplType3
=0x30,
418 RxComplThreshShift
=0,
421 /* Bits in the TxCompletionAddr register */
423 TxComplQAddr64bit
=0x80, TxComplQAddr32bit
=0,
424 TxComplProducerWrEn
=0x40,
425 TxComplIntrStatus
=0x20,
426 CommonQueueMode
=0x10,
427 TxComplThreshShift
=0,
430 /* Bits in the GenCtrl register */
432 RxEnable
=0x05, TxEnable
=0x0a,
433 RxGFPEnable
=0x10, TxGFPEnable
=0x20,
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits
{
438 Timer10X
=0x800, EnableIntrMasking
=0x60, SmallFrameBypass
=0x100,
439 SmallFrame64
=0, SmallFrame128
=0x200, SmallFrame256
=0x400, SmallFrame512
=0x600,
440 IntrLatencyMask
=0x1f,
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc
{
445 netdrv_addr_t rxaddr
;
448 RxDescValid
=1, RxDescEndRing
=2,
451 /* Completion queue entry. */
452 struct short_rx_done_desc
{
453 __le32 status
; /* Low 16 bits is length. */
455 struct basic_rx_done_desc
{
456 __le32 status
; /* Low 16 bits is length. */
460 struct csum_rx_done_desc
{
461 __le32 status
; /* Low 16 bits is length. */
462 __le16 csum
; /* Partial checksum */
465 struct full_rx_done_desc
{
466 __le32 status
; /* Low 16 bits is length. */
470 __le16 csum
; /* partial checksum */
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
475 typedef struct full_rx_done_desc rx_done_desc
;
476 #define RxComplType RxComplType3
477 #else /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc
;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
483 RxOK
=0x20000000, RxFIFOErr
=0x10000000, RxBufQ2
=0x08000000,
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1
{
488 __le32 status
; /* Upper bits are status, lower 16 length. */
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2
{
494 __le32 status
; /* Upper bits are status, lower 16 length. */
500 typedef struct starfire_tx_desc_2 starfire_tx_desc
;
501 #define TX_DESC_TYPE TxDescType2
502 #else /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc
;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
510 TxCRCEn
=0x01000000, TxDescIntr
=0x08000000,
511 TxRingWrap
=0x04000000, TxCalTCP
=0x02000000,
513 struct tx_done_desc
{
514 __le32 status
; /* timestamp, index. */
516 __le32 intrstatus
; /* interrupt status */
520 struct rx_ring_info
{
524 struct tx_ring_info
{
527 unsigned int used_slots
;
531 struct netdev_private
{
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc
*rx_ring
;
534 starfire_tx_desc
*tx_ring
;
535 dma_addr_t rx_ring_dma
;
536 dma_addr_t tx_ring_dma
;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info
[RX_RING_SIZE
];
539 struct tx_ring_info tx_info
[TX_RING_SIZE
];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc
*rx_done_q
;
542 dma_addr_t rx_done_q_dma
;
543 unsigned int rx_done
;
544 struct tx_done_desc
*tx_done_q
;
545 dma_addr_t tx_done_q_dma
;
546 unsigned int tx_done
;
547 struct napi_struct napi
;
548 struct net_device
*dev
;
549 struct pci_dev
*pci_dev
;
551 unsigned long active_vlans
[BITS_TO_LONGS(VLAN_N_VID
)];
554 dma_addr_t queue_mem_dma
;
555 size_t queue_mem_size
;
557 /* Frequently used values: keep some adjacent for cache effect. */
559 unsigned int cur_rx
, dirty_rx
; /* Producer/consumer ring indices */
560 unsigned int cur_tx
, dirty_tx
, reap_tx
;
561 unsigned int rx_buf_sz
; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100
; /* Set if speed == 100MBit. */
567 /* MII transceiver section. */
568 struct mii_if_info mii_if
; /* MII lib hooks/info */
569 int phy_cnt
; /* MII device addresses. */
570 unsigned char phys
[PHY_CNT
]; /* MII device addresses. */
575 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
);
576 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
, int value
);
577 static int netdev_open(struct net_device
*dev
);
578 static void check_duplex(struct net_device
*dev
);
579 static void tx_timeout(struct net_device
*dev
);
580 static void init_ring(struct net_device
*dev
);
581 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
582 static irqreturn_t
intr_handler(int irq
, void *dev_instance
);
583 static void netdev_error(struct net_device
*dev
, int intr_status
);
584 static int __netdev_rx(struct net_device
*dev
, int *quota
);
585 static int netdev_poll(struct napi_struct
*napi
, int budget
);
586 static void refill_rx_ring(struct net_device
*dev
);
587 static void netdev_error(struct net_device
*dev
, int intr_status
);
588 static void set_rx_mode(struct net_device
*dev
);
589 static struct net_device_stats
*get_stats(struct net_device
*dev
);
590 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
591 static int netdev_close(struct net_device
*dev
);
592 static void netdev_media_change(struct net_device
*dev
);
593 static const struct ethtool_ops ethtool_ops
;
597 static int netdev_vlan_rx_add_vid(struct net_device
*dev
,
598 __be16 proto
, u16 vid
)
600 struct netdev_private
*np
= netdev_priv(dev
);
602 spin_lock(&np
->lock
);
604 printk("%s: Adding vlanid %d to vlan filter\n", dev
->name
, vid
);
605 set_bit(vid
, np
->active_vlans
);
607 spin_unlock(&np
->lock
);
612 static int netdev_vlan_rx_kill_vid(struct net_device
*dev
,
613 __be16 proto
, u16 vid
)
615 struct netdev_private
*np
= netdev_priv(dev
);
617 spin_lock(&np
->lock
);
619 printk("%s: removing vlanid %d from vlan filter\n", dev
->name
, vid
);
620 clear_bit(vid
, np
->active_vlans
);
622 spin_unlock(&np
->lock
);
626 #endif /* VLAN_SUPPORT */
629 static const struct net_device_ops netdev_ops
= {
630 .ndo_open
= netdev_open
,
631 .ndo_stop
= netdev_close
,
632 .ndo_start_xmit
= start_tx
,
633 .ndo_tx_timeout
= tx_timeout
,
634 .ndo_get_stats
= get_stats
,
635 .ndo_set_rx_mode
= set_rx_mode
,
636 .ndo_do_ioctl
= netdev_ioctl
,
637 .ndo_change_mtu
= eth_change_mtu
,
638 .ndo_set_mac_address
= eth_mac_addr
,
639 .ndo_validate_addr
= eth_validate_addr
,
641 .ndo_vlan_rx_add_vid
= netdev_vlan_rx_add_vid
,
642 .ndo_vlan_rx_kill_vid
= netdev_vlan_rx_kill_vid
,
646 static int starfire_init_one(struct pci_dev
*pdev
,
647 const struct pci_device_id
*ent
)
649 struct device
*d
= &pdev
->dev
;
650 struct netdev_private
*np
;
651 int i
, irq
, chip_idx
= ent
->driver_data
;
652 struct net_device
*dev
;
655 int drv_flags
, io_size
;
658 /* when built into the kernel, we only print version if device is found */
660 static int printed_version
;
661 if (!printed_version
++)
665 if (pci_enable_device (pdev
))
668 ioaddr
= pci_resource_start(pdev
, 0);
669 io_size
= pci_resource_len(pdev
, 0);
670 if (!ioaddr
|| ((pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
) == 0)) {
671 dev_err(d
, "no PCI MEM resources, aborting\n");
675 dev
= alloc_etherdev(sizeof(*np
));
679 SET_NETDEV_DEV(dev
, &pdev
->dev
);
683 if (pci_request_regions (pdev
, DRV_NAME
)) {
684 dev_err(d
, "cannot reserve PCI resources, aborting\n");
685 goto err_out_free_netdev
;
688 base
= ioremap(ioaddr
, io_size
);
690 dev_err(d
, "cannot remap %#x @ %#lx, aborting\n",
692 goto err_out_free_res
;
695 pci_set_master(pdev
);
697 /* enable MWI -- it vastly improves Rx performance on sparc64 */
698 pci_try_set_mwi(pdev
);
701 /* Starfire can do TCP/UDP checksumming */
703 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
704 #endif /* ZEROCOPY */
707 dev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_FILTER
;
708 #endif /* VLAN_RX_KILL_VID */
710 dev
->features
|= NETIF_F_HIGHDMA
;
711 #endif /* ADDR_64BITS */
713 /* Serial EEPROM reads are hidden by the hardware. */
714 for (i
= 0; i
< 6; i
++)
715 dev
->dev_addr
[i
] = readb(base
+ EEPROMCtrl
+ 20 - i
);
717 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
719 for (i
= 0; i
< 0x20; i
++)
721 (unsigned int)readb(base
+ EEPROMCtrl
+ i
),
722 i
% 16 != 15 ? " " : "\n");
725 /* Issue soft reset */
726 writel(MiiSoftReset
, base
+ TxMode
);
728 writel(0, base
+ TxMode
);
730 /* Reset the chip to erase previous misconfiguration. */
731 writel(1, base
+ PCIDeviceConfig
);
733 while (--boguscnt
> 0) {
735 if ((readl(base
+ PCIDeviceConfig
) & 1) == 0)
739 printk("%s: chipset reset never completed!\n", dev
->name
);
740 /* wait a little longer */
743 np
= netdev_priv(dev
);
746 spin_lock_init(&np
->lock
);
747 pci_set_drvdata(pdev
, dev
);
751 np
->mii_if
.dev
= dev
;
752 np
->mii_if
.mdio_read
= mdio_read
;
753 np
->mii_if
.mdio_write
= mdio_write
;
754 np
->mii_if
.phy_id_mask
= 0x1f;
755 np
->mii_if
.reg_num_mask
= 0x1f;
757 drv_flags
= netdrv_tbl
[chip_idx
].drv_flags
;
761 /* timer resolution is 128 * 0.8us */
762 np
->intr_timer_ctrl
= (((intr_latency
* 10) / 1024) & IntrLatencyMask
) |
763 Timer10X
| EnableIntrMasking
;
765 if (small_frames
> 0) {
766 np
->intr_timer_ctrl
|= SmallFrameBypass
;
767 switch (small_frames
) {
769 np
->intr_timer_ctrl
|= SmallFrame64
;
772 np
->intr_timer_ctrl
|= SmallFrame128
;
775 np
->intr_timer_ctrl
|= SmallFrame256
;
778 np
->intr_timer_ctrl
|= SmallFrame512
;
779 if (small_frames
> 512)
780 printk("Adjusting small_frames down to 512\n");
785 dev
->netdev_ops
= &netdev_ops
;
786 dev
->watchdog_timeo
= TX_TIMEOUT
;
787 dev
->ethtool_ops
= ðtool_ops
;
789 netif_napi_add(dev
, &np
->napi
, netdev_poll
, max_interrupt_work
);
794 if (register_netdev(dev
))
795 goto err_out_cleardev
;
797 printk(KERN_INFO
"%s: %s at %p, %pM, IRQ %d.\n",
798 dev
->name
, netdrv_tbl
[chip_idx
].name
, base
,
801 if (drv_flags
& CanHaveMII
) {
802 int phy
, phy_idx
= 0;
804 for (phy
= 0; phy
< 32 && phy_idx
< PHY_CNT
; phy
++) {
805 mdio_write(dev
, phy
, MII_BMCR
, BMCR_RESET
);
808 while (--boguscnt
> 0)
809 if ((mdio_read(dev
, phy
, MII_BMCR
) & BMCR_RESET
) == 0)
812 printk("%s: PHY#%d reset never completed!\n", dev
->name
, phy
);
815 mii_status
= mdio_read(dev
, phy
, MII_BMSR
);
816 if (mii_status
!= 0) {
817 np
->phys
[phy_idx
++] = phy
;
818 np
->mii_if
.advertising
= mdio_read(dev
, phy
, MII_ADVERTISE
);
819 printk(KERN_INFO
"%s: MII PHY found at address %d, status "
820 "%#4.4x advertising %#4.4x.\n",
821 dev
->name
, phy
, mii_status
, np
->mii_if
.advertising
);
822 /* there can be only one PHY on-board */
826 np
->phy_cnt
= phy_idx
;
828 np
->mii_if
.phy_id
= np
->phys
[0];
830 memset(&np
->mii_if
, 0, sizeof(np
->mii_if
));
833 printk(KERN_INFO
"%s: scatter-gather and hardware TCP cksumming %s.\n",
834 dev
->name
, enable_hw_cksum
? "enabled" : "disabled");
840 pci_release_regions (pdev
);
847 /* Read the MII Management Data I/O (MDIO) interfaces. */
848 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
850 struct netdev_private
*np
= netdev_priv(dev
);
851 void __iomem
*mdio_addr
= np
->base
+ MIICtrl
+ (phy_id
<<7) + (location
<<2);
852 int result
, boguscnt
=1000;
853 /* ??? Should we add a busy-wait here? */
855 result
= readl(mdio_addr
);
856 } while ((result
& 0xC0000000) != 0x80000000 && --boguscnt
> 0);
859 if ((result
& 0xffff) == 0xffff)
861 return result
& 0xffff;
865 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
, int value
)
867 struct netdev_private
*np
= netdev_priv(dev
);
868 void __iomem
*mdio_addr
= np
->base
+ MIICtrl
+ (phy_id
<<7) + (location
<<2);
869 writel(value
, mdio_addr
);
870 /* The busy-wait will occur before a read. */
874 static int netdev_open(struct net_device
*dev
)
876 const struct firmware
*fw_rx
, *fw_tx
;
877 const __be32
*fw_rx_data
, *fw_tx_data
;
878 struct netdev_private
*np
= netdev_priv(dev
);
879 void __iomem
*ioaddr
= np
->base
;
880 const int irq
= np
->pci_dev
->irq
;
882 size_t tx_size
, rx_size
;
883 size_t tx_done_q_size
, rx_done_q_size
, tx_ring_size
, rx_ring_size
;
885 /* Do we ever need to reset the chip??? */
887 retval
= request_irq(irq
, intr_handler
, IRQF_SHARED
, dev
->name
, dev
);
891 /* Disable the Rx and Tx, and reset the chip. */
892 writel(0, ioaddr
+ GenCtrl
);
893 writel(1, ioaddr
+ PCIDeviceConfig
);
895 printk(KERN_DEBUG
"%s: netdev_open() irq %d.\n",
898 /* Allocate the various queues. */
899 if (!np
->queue_mem
) {
900 tx_done_q_size
= ((sizeof(struct tx_done_desc
) * DONE_Q_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
901 rx_done_q_size
= ((sizeof(rx_done_desc
) * DONE_Q_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
902 tx_ring_size
= ((sizeof(starfire_tx_desc
) * TX_RING_SIZE
+ QUEUE_ALIGN
- 1) / QUEUE_ALIGN
) * QUEUE_ALIGN
;
903 rx_ring_size
= sizeof(struct starfire_rx_desc
) * RX_RING_SIZE
;
904 np
->queue_mem_size
= tx_done_q_size
+ rx_done_q_size
+ tx_ring_size
+ rx_ring_size
;
905 np
->queue_mem
= pci_alloc_consistent(np
->pci_dev
, np
->queue_mem_size
, &np
->queue_mem_dma
);
906 if (np
->queue_mem
== NULL
) {
911 np
->tx_done_q
= np
->queue_mem
;
912 np
->tx_done_q_dma
= np
->queue_mem_dma
;
913 np
->rx_done_q
= (void *) np
->tx_done_q
+ tx_done_q_size
;
914 np
->rx_done_q_dma
= np
->tx_done_q_dma
+ tx_done_q_size
;
915 np
->tx_ring
= (void *) np
->rx_done_q
+ rx_done_q_size
;
916 np
->tx_ring_dma
= np
->rx_done_q_dma
+ rx_done_q_size
;
917 np
->rx_ring
= (void *) np
->tx_ring
+ tx_ring_size
;
918 np
->rx_ring_dma
= np
->tx_ring_dma
+ tx_ring_size
;
921 /* Start with no carrier, it gets adjusted later */
922 netif_carrier_off(dev
);
924 /* Set the size of the Rx buffers. */
925 writel((np
->rx_buf_sz
<< RxBufferLenShift
) |
926 (0 << RxMinDescrThreshShift
) |
927 RxPrefetchMode
| RxVariableQ
|
929 RX_DESC_Q_ADDR_SIZE
| RX_DESC_ADDR_SIZE
|
931 ioaddr
+ RxDescQCtrl
);
933 /* Set up the Rx DMA controller. */
934 writel(RxChecksumIgnore
|
935 (0 << RxEarlyIntThreshShift
) |
936 (6 << RxHighPrioThreshShift
) |
937 ((DMA_BURST_SIZE
/ 32) << RxBurstSizeShift
),
940 /* Set Tx descriptor */
941 writel((2 << TxHiPriFIFOThreshShift
) |
942 (0 << TxPadLenShift
) |
943 ((DMA_BURST_SIZE
/ 32) << TxDMABurstSizeShift
) |
944 TX_DESC_Q_ADDR_SIZE
|
945 TX_DESC_SPACING
| TX_DESC_TYPE
,
946 ioaddr
+ TxDescCtrl
);
948 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ RxDescQHiAddr
);
949 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ TxRingHiAddr
);
950 writel( (np
->queue_mem_dma
>> 16) >> 16, ioaddr
+ CompletionHiAddr
);
951 writel(np
->rx_ring_dma
, ioaddr
+ RxDescQAddr
);
952 writel(np
->tx_ring_dma
, ioaddr
+ TxRingPtr
);
954 writel(np
->tx_done_q_dma
, ioaddr
+ TxCompletionAddr
);
955 writel(np
->rx_done_q_dma
|
957 (0 << RxComplThreshShift
),
958 ioaddr
+ RxCompletionAddr
);
961 printk(KERN_DEBUG
"%s: Filling in the station address.\n", dev
->name
);
963 /* Fill both the Tx SA register and the Rx perfect filter. */
964 for (i
= 0; i
< 6; i
++)
965 writeb(dev
->dev_addr
[i
], ioaddr
+ TxStationAddr
+ 5 - i
);
966 /* The first entry is special because it bypasses the VLAN filter.
968 writew(0, ioaddr
+ PerfFilterTable
);
969 writew(0, ioaddr
+ PerfFilterTable
+ 4);
970 writew(0, ioaddr
+ PerfFilterTable
+ 8);
971 for (i
= 1; i
< 16; i
++) {
972 __be16
*eaddrs
= (__be16
*)dev
->dev_addr
;
973 void __iomem
*setup_frm
= ioaddr
+ PerfFilterTable
+ i
* 16;
974 writew(be16_to_cpu(eaddrs
[2]), setup_frm
); setup_frm
+= 4;
975 writew(be16_to_cpu(eaddrs
[1]), setup_frm
); setup_frm
+= 4;
976 writew(be16_to_cpu(eaddrs
[0]), setup_frm
); setup_frm
+= 8;
979 /* Initialize other registers. */
980 /* Configure the PCI bus bursts and FIFO thresholds. */
981 np
->tx_mode
= TxFlowEnable
|RxFlowEnable
|PadEnable
; /* modified when link is up. */
982 writel(MiiSoftReset
| np
->tx_mode
, ioaddr
+ TxMode
);
984 writel(np
->tx_mode
, ioaddr
+ TxMode
);
985 np
->tx_threshold
= 4;
986 writel(np
->tx_threshold
, ioaddr
+ TxThreshold
);
988 writel(np
->intr_timer_ctrl
, ioaddr
+ IntrTimerCtrl
);
990 napi_enable(&np
->napi
);
992 netif_start_queue(dev
);
995 printk(KERN_DEBUG
"%s: Setting the Rx and Tx modes.\n", dev
->name
);
998 np
->mii_if
.advertising
= mdio_read(dev
, np
->phys
[0], MII_ADVERTISE
);
1001 /* Enable GPIO interrupts on link change */
1002 writel(0x0f00ff00, ioaddr
+ GPIOCtrl
);
1004 /* Set the interrupt mask */
1005 writel(IntrRxDone
| IntrRxEmpty
| IntrDMAErr
|
1006 IntrTxDMADone
| IntrStatsMax
| IntrLinkChange
|
1007 IntrRxGFPDead
| IntrNoTxCsum
| IntrTxBadID
,
1008 ioaddr
+ IntrEnable
);
1009 /* Enable PCI interrupts. */
1010 writel(0x00800000 | readl(ioaddr
+ PCIDeviceConfig
),
1011 ioaddr
+ PCIDeviceConfig
);
1014 /* Set VLAN type to 802.1q */
1015 writel(ETH_P_8021Q
, ioaddr
+ VlanType
);
1016 #endif /* VLAN_SUPPORT */
1018 retval
= request_firmware(&fw_rx
, FIRMWARE_RX
, &np
->pci_dev
->dev
);
1020 printk(KERN_ERR
"starfire: Failed to load firmware \"%s\"\n",
1024 if (fw_rx
->size
% 4) {
1025 printk(KERN_ERR
"starfire: bogus length %zu in \"%s\"\n",
1026 fw_rx
->size
, FIRMWARE_RX
);
1030 retval
= request_firmware(&fw_tx
, FIRMWARE_TX
, &np
->pci_dev
->dev
);
1032 printk(KERN_ERR
"starfire: Failed to load firmware \"%s\"\n",
1036 if (fw_tx
->size
% 4) {
1037 printk(KERN_ERR
"starfire: bogus length %zu in \"%s\"\n",
1038 fw_tx
->size
, FIRMWARE_TX
);
1042 fw_rx_data
= (const __be32
*)&fw_rx
->data
[0];
1043 fw_tx_data
= (const __be32
*)&fw_tx
->data
[0];
1044 rx_size
= fw_rx
->size
/ 4;
1045 tx_size
= fw_tx
->size
/ 4;
1047 /* Load Rx/Tx firmware into the frame processors */
1048 for (i
= 0; i
< rx_size
; i
++)
1049 writel(be32_to_cpup(&fw_rx_data
[i
]), ioaddr
+ RxGfpMem
+ i
* 4);
1050 for (i
= 0; i
< tx_size
; i
++)
1051 writel(be32_to_cpup(&fw_tx_data
[i
]), ioaddr
+ TxGfpMem
+ i
* 4);
1052 if (enable_hw_cksum
)
1053 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054 writel(TxEnable
|TxGFPEnable
|RxEnable
|RxGFPEnable
, ioaddr
+ GenCtrl
);
1056 /* Enable the Rx and Tx units only. */
1057 writel(TxEnable
|RxEnable
, ioaddr
+ GenCtrl
);
1060 printk(KERN_DEBUG
"%s: Done netdev_open().\n",
1064 release_firmware(fw_tx
);
1066 release_firmware(fw_rx
);
1074 static void check_duplex(struct net_device
*dev
)
1076 struct netdev_private
*np
= netdev_priv(dev
);
1078 int silly_count
= 1000;
1080 mdio_write(dev
, np
->phys
[0], MII_ADVERTISE
, np
->mii_if
.advertising
);
1081 mdio_write(dev
, np
->phys
[0], MII_BMCR
, BMCR_RESET
);
1083 while (--silly_count
&& mdio_read(dev
, np
->phys
[0], MII_BMCR
) & BMCR_RESET
)
1086 printk("%s: MII reset failed!\n", dev
->name
);
1090 reg0
= mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1092 if (!np
->mii_if
.force_media
) {
1093 reg0
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
1095 reg0
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
1097 reg0
|= BMCR_SPEED100
;
1098 if (np
->mii_if
.full_duplex
)
1099 reg0
|= BMCR_FULLDPLX
;
1100 printk(KERN_DEBUG
"%s: Link forced to %sMbit %s-duplex\n",
1102 np
->speed100
? "100" : "10",
1103 np
->mii_if
.full_duplex
? "full" : "half");
1105 mdio_write(dev
, np
->phys
[0], MII_BMCR
, reg0
);
1109 static void tx_timeout(struct net_device
*dev
)
1111 struct netdev_private
*np
= netdev_priv(dev
);
1112 void __iomem
*ioaddr
= np
->base
;
1115 printk(KERN_WARNING
"%s: Transmit timed out, status %#8.8x, "
1116 "resetting...\n", dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1118 /* Perhaps we should reinitialize the hardware here. */
1121 * Stop and restart the interface.
1122 * Cheat and increase the debug level temporarily.
1130 /* Trigger an immediate transmit demand. */
1132 netif_trans_update(dev
); /* prevent tx timeout */
1133 dev
->stats
.tx_errors
++;
1134 netif_wake_queue(dev
);
1138 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139 static void init_ring(struct net_device
*dev
)
1141 struct netdev_private
*np
= netdev_priv(dev
);
1144 np
->cur_rx
= np
->cur_tx
= np
->reap_tx
= 0;
1145 np
->dirty_rx
= np
->dirty_tx
= np
->rx_done
= np
->tx_done
= 0;
1147 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PKT_BUF_SZ
: dev
->mtu
+ 32);
1149 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1150 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1151 struct sk_buff
*skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
1152 np
->rx_info
[i
].skb
= skb
;
1155 np
->rx_info
[i
].mapping
= pci_map_single(np
->pci_dev
, skb
->data
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1156 if (pci_dma_mapping_error(np
->pci_dev
,
1157 np
->rx_info
[i
].mapping
)) {
1159 np
->rx_info
[i
].skb
= NULL
;
1162 /* Grrr, we cannot offset to correctly align the IP header. */
1163 np
->rx_ring
[i
].rxaddr
= cpu_to_dma(np
->rx_info
[i
].mapping
| RxDescValid
);
1165 writew(i
- 1, np
->base
+ RxDescQIdx
);
1166 np
->dirty_rx
= (unsigned int)(i
- RX_RING_SIZE
);
1168 /* Clear the remainder of the Rx buffer ring. */
1169 for ( ; i
< RX_RING_SIZE
; i
++) {
1170 np
->rx_ring
[i
].rxaddr
= 0;
1171 np
->rx_info
[i
].skb
= NULL
;
1172 np
->rx_info
[i
].mapping
= 0;
1174 /* Mark the last entry as wrapping the ring. */
1175 np
->rx_ring
[RX_RING_SIZE
- 1].rxaddr
|= cpu_to_dma(RxDescEndRing
);
1177 /* Clear the completion rings. */
1178 for (i
= 0; i
< DONE_Q_SIZE
; i
++) {
1179 np
->rx_done_q
[i
].status
= 0;
1180 np
->tx_done_q
[i
].status
= 0;
1183 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1184 memset(&np
->tx_info
[i
], 0, sizeof(np
->tx_info
[i
]));
1188 static netdev_tx_t
start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1190 struct netdev_private
*np
= netdev_priv(dev
);
1192 unsigned int prev_tx
;
1197 * be cautious here, wrapping the queue has weird semantics
1198 * and we may not have enough slots even when it seems we do.
1200 if ((np
->cur_tx
- np
->dirty_tx
) + skb_num_frags(skb
) * 2 > TX_RING_SIZE
) {
1201 netif_stop_queue(dev
);
1202 return NETDEV_TX_BUSY
;
1205 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1206 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1207 if (skb_padto(skb
, (skb
->len
+ PADDING_MASK
) & ~PADDING_MASK
))
1208 return NETDEV_TX_OK
;
1210 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1212 prev_tx
= np
->cur_tx
;
1213 entry
= np
->cur_tx
% TX_RING_SIZE
;
1214 for (i
= 0; i
< skb_num_frags(skb
); i
++) {
1219 np
->tx_info
[entry
].skb
= skb
;
1221 if (entry
>= TX_RING_SIZE
- skb_num_frags(skb
)) {
1222 status
|= TxRingWrap
;
1226 status
|= TxDescIntr
;
1229 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1231 dev
->stats
.tx_compressed
++;
1233 status
|= skb_first_frag_len(skb
) | (skb_num_frags(skb
) << 16);
1235 np
->tx_info
[entry
].mapping
=
1236 pci_map_single(np
->pci_dev
, skb
->data
, skb_first_frag_len(skb
), PCI_DMA_TODEVICE
);
1238 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1239 status
|= skb_frag_size(this_frag
);
1240 np
->tx_info
[entry
].mapping
=
1241 pci_map_single(np
->pci_dev
,
1242 skb_frag_address(this_frag
),
1243 skb_frag_size(this_frag
),
1246 if (pci_dma_mapping_error(np
->pci_dev
,
1247 np
->tx_info
[entry
].mapping
)) {
1248 dev
->stats
.tx_dropped
++;
1252 np
->tx_ring
[entry
].addr
= cpu_to_dma(np
->tx_info
[entry
].mapping
);
1253 np
->tx_ring
[entry
].status
= cpu_to_le32(status
);
1255 printk(KERN_DEBUG
"%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1256 dev
->name
, np
->cur_tx
, np
->dirty_tx
,
1259 np
->tx_info
[entry
].used_slots
= TX_RING_SIZE
- entry
;
1260 np
->cur_tx
+= np
->tx_info
[entry
].used_slots
;
1263 np
->tx_info
[entry
].used_slots
= 1;
1264 np
->cur_tx
+= np
->tx_info
[entry
].used_slots
;
1267 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1268 if (np
->cur_tx
% (TX_RING_SIZE
/ 2) == 0)
1272 /* Non-x86: explicitly flush descriptor cache lines here. */
1273 /* Ensure all descriptors are written back before the transmit is
1277 /* Update the producer index. */
1278 writel(entry
* (sizeof(starfire_tx_desc
) / 8), np
->base
+ TxProducerIdx
);
1280 /* 4 is arbitrary, but should be ok */
1281 if ((np
->cur_tx
- np
->dirty_tx
) + 4 > TX_RING_SIZE
)
1282 netif_stop_queue(dev
);
1284 return NETDEV_TX_OK
;
1287 entry
= prev_tx
% TX_RING_SIZE
;
1288 np
->tx_info
[entry
].skb
= NULL
;
1290 pci_unmap_single(np
->pci_dev
,
1291 np
->tx_info
[entry
].mapping
,
1292 skb_first_frag_len(skb
),
1294 np
->tx_info
[entry
].mapping
= 0;
1295 entry
= (entry
+ np
->tx_info
[entry
].used_slots
) % TX_RING_SIZE
;
1296 for (j
= 1; j
< i
; j
++) {
1297 pci_unmap_single(np
->pci_dev
,
1298 np
->tx_info
[entry
].mapping
,
1300 &skb_shinfo(skb
)->frags
[j
-1]),
1305 dev_kfree_skb_any(skb
);
1306 np
->cur_tx
= prev_tx
;
1307 return NETDEV_TX_OK
;
1310 /* The interrupt handler does all of the Rx thread work and cleans up
1311 after the Tx thread. */
1312 static irqreturn_t
intr_handler(int irq
, void *dev_instance
)
1314 struct net_device
*dev
= dev_instance
;
1315 struct netdev_private
*np
= netdev_priv(dev
);
1316 void __iomem
*ioaddr
= np
->base
;
1317 int boguscnt
= max_interrupt_work
;
1323 u32 intr_status
= readl(ioaddr
+ IntrClear
);
1326 printk(KERN_DEBUG
"%s: Interrupt status %#8.8x.\n",
1327 dev
->name
, intr_status
);
1329 if (intr_status
== 0 || intr_status
== (u32
) -1)
1334 if (intr_status
& (IntrRxDone
| IntrRxEmpty
)) {
1337 if (likely(napi_schedule_prep(&np
->napi
))) {
1338 __napi_schedule(&np
->napi
);
1339 enable
= readl(ioaddr
+ IntrEnable
);
1340 enable
&= ~(IntrRxDone
| IntrRxEmpty
);
1341 writel(enable
, ioaddr
+ IntrEnable
);
1342 /* flush PCI posting buffers */
1343 readl(ioaddr
+ IntrEnable
);
1345 /* Paranoia check */
1346 enable
= readl(ioaddr
+ IntrEnable
);
1347 if (enable
& (IntrRxDone
| IntrRxEmpty
)) {
1349 "%s: interrupt while in poll!\n",
1351 enable
&= ~(IntrRxDone
| IntrRxEmpty
);
1352 writel(enable
, ioaddr
+ IntrEnable
);
1357 /* Scavenge the skbuff list based on the Tx-done queue.
1358 There are redundant checks here that may be cleaned up
1359 after the driver has proven to be reliable. */
1360 consumer
= readl(ioaddr
+ TxConsumerIdx
);
1362 printk(KERN_DEBUG
"%s: Tx Consumer index is %d.\n",
1363 dev
->name
, consumer
);
1365 while ((tx_status
= le32_to_cpu(np
->tx_done_q
[np
->tx_done
].status
)) != 0) {
1367 printk(KERN_DEBUG
"%s: Tx completion #%d entry %d is %#8.8x.\n",
1368 dev
->name
, np
->dirty_tx
, np
->tx_done
, tx_status
);
1369 if ((tx_status
& 0xe0000000) == 0xa0000000) {
1370 dev
->stats
.tx_packets
++;
1371 } else if ((tx_status
& 0xe0000000) == 0x80000000) {
1372 u16 entry
= (tx_status
& 0x7fff) / sizeof(starfire_tx_desc
);
1373 struct sk_buff
*skb
= np
->tx_info
[entry
].skb
;
1374 np
->tx_info
[entry
].skb
= NULL
;
1375 pci_unmap_single(np
->pci_dev
,
1376 np
->tx_info
[entry
].mapping
,
1377 skb_first_frag_len(skb
),
1379 np
->tx_info
[entry
].mapping
= 0;
1380 np
->dirty_tx
+= np
->tx_info
[entry
].used_slots
;
1381 entry
= (entry
+ np
->tx_info
[entry
].used_slots
) % TX_RING_SIZE
;
1384 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1385 pci_unmap_single(np
->pci_dev
,
1386 np
->tx_info
[entry
].mapping
,
1387 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
1394 dev_kfree_skb_irq(skb
);
1396 np
->tx_done_q
[np
->tx_done
].status
= 0;
1397 np
->tx_done
= (np
->tx_done
+ 1) % DONE_Q_SIZE
;
1399 writew(np
->tx_done
, ioaddr
+ CompletionQConsumerIdx
+ 2);
1401 if (netif_queue_stopped(dev
) &&
1402 (np
->cur_tx
- np
->dirty_tx
+ 4 < TX_RING_SIZE
)) {
1403 /* The ring is no longer full, wake the queue. */
1404 netif_wake_queue(dev
);
1407 /* Stats overflow */
1408 if (intr_status
& IntrStatsMax
)
1411 /* Media change interrupt. */
1412 if (intr_status
& IntrLinkChange
)
1413 netdev_media_change(dev
);
1415 /* Abnormal error summary/uncommon events handlers. */
1416 if (intr_status
& IntrAbnormalSummary
)
1417 netdev_error(dev
, intr_status
);
1419 if (--boguscnt
< 0) {
1421 printk(KERN_WARNING
"%s: Too much work at interrupt, "
1423 dev
->name
, intr_status
);
1429 printk(KERN_DEBUG
"%s: exiting interrupt, status=%#8.8x.\n",
1430 dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1431 return IRQ_RETVAL(handled
);
1436 * This routine is logically part of the interrupt/poll handler, but separated
1437 * for clarity and better register allocation.
1439 static int __netdev_rx(struct net_device
*dev
, int *quota
)
1441 struct netdev_private
*np
= netdev_priv(dev
);
1445 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1446 while ((desc_status
= le32_to_cpu(np
->rx_done_q
[np
->rx_done
].status
)) != 0) {
1447 struct sk_buff
*skb
;
1450 rx_done_desc
*desc
= &np
->rx_done_q
[np
->rx_done
];
1453 printk(KERN_DEBUG
" netdev_rx() status of %d was %#8.8x.\n", np
->rx_done
, desc_status
);
1454 if (!(desc_status
& RxOK
)) {
1455 /* There was an error. */
1457 printk(KERN_DEBUG
" netdev_rx() Rx error was %#8.8x.\n", desc_status
);
1458 dev
->stats
.rx_errors
++;
1459 if (desc_status
& RxFIFOErr
)
1460 dev
->stats
.rx_fifo_errors
++;
1464 if (*quota
<= 0) { /* out of rx quota */
1470 pkt_len
= desc_status
; /* Implicitly Truncate */
1471 entry
= (desc_status
>> 16) & 0x7ff;
1474 printk(KERN_DEBUG
" netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len
, *quota
);
1475 /* Check if the packet is long enough to accept without copying
1476 to a minimally-sized skbuff. */
1477 if (pkt_len
< rx_copybreak
&&
1478 (skb
= netdev_alloc_skb(dev
, pkt_len
+ 2)) != NULL
) {
1479 skb_reserve(skb
, 2); /* 16 byte align the IP header */
1480 pci_dma_sync_single_for_cpu(np
->pci_dev
,
1481 np
->rx_info
[entry
].mapping
,
1482 pkt_len
, PCI_DMA_FROMDEVICE
);
1483 skb_copy_to_linear_data(skb
, np
->rx_info
[entry
].skb
->data
, pkt_len
);
1484 pci_dma_sync_single_for_device(np
->pci_dev
,
1485 np
->rx_info
[entry
].mapping
,
1486 pkt_len
, PCI_DMA_FROMDEVICE
);
1487 skb_put(skb
, pkt_len
);
1489 pci_unmap_single(np
->pci_dev
, np
->rx_info
[entry
].mapping
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1490 skb
= np
->rx_info
[entry
].skb
;
1491 skb_put(skb
, pkt_len
);
1492 np
->rx_info
[entry
].skb
= NULL
;
1493 np
->rx_info
[entry
].mapping
= 0;
1495 #ifndef final_version /* Remove after testing. */
1496 /* You will want this info for the initial debug. */
1498 printk(KERN_DEBUG
" Rx data %pM %pM %2.2x%2.2x.\n",
1499 skb
->data
, skb
->data
+ 6,
1500 skb
->data
[12], skb
->data
[13]);
1504 skb
->protocol
= eth_type_trans(skb
, dev
);
1507 printk(KERN_DEBUG
" netdev_rx() status2 of %d was %#4.4x.\n", np
->rx_done
, le16_to_cpu(desc
->status2
));
1509 if (le16_to_cpu(desc
->status2
) & 0x0100) {
1510 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1511 dev
->stats
.rx_compressed
++;
1514 * This feature doesn't seem to be working, at least
1515 * with the two firmware versions I have. If the GFP sees
1516 * an IP fragment, it either ignores it completely, or reports
1517 * "bad checksum" on it.
1519 * Maybe I missed something -- corrections are welcome.
1520 * Until then, the printk stays. :-) -Ion
1522 else if (le16_to_cpu(desc
->status2
) & 0x0040) {
1523 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1524 skb
->csum
= le16_to_cpu(desc
->csum
);
1525 printk(KERN_DEBUG
"%s: checksum_hw, status2 = %#x\n", dev
->name
, le16_to_cpu(desc
->status2
));
1528 if (le16_to_cpu(desc
->status2
) & 0x0200) {
1529 u16 vlid
= le16_to_cpu(desc
->vlanid
);
1532 printk(KERN_DEBUG
" netdev_rx() vlanid = %d\n",
1535 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlid
);
1537 #endif /* VLAN_SUPPORT */
1538 netif_receive_skb(skb
);
1539 dev
->stats
.rx_packets
++;
1544 np
->rx_done
= (np
->rx_done
+ 1) % DONE_Q_SIZE
;
1547 if (*quota
== 0) { /* out of rx quota */
1551 writew(np
->rx_done
, np
->base
+ CompletionQConsumerIdx
);
1554 refill_rx_ring(dev
);
1556 printk(KERN_DEBUG
" exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1557 retcode
, np
->rx_done
, desc_status
);
1561 static int netdev_poll(struct napi_struct
*napi
, int budget
)
1563 struct netdev_private
*np
= container_of(napi
, struct netdev_private
, napi
);
1564 struct net_device
*dev
= np
->dev
;
1566 void __iomem
*ioaddr
= np
->base
;
1570 writel(IntrRxDone
| IntrRxEmpty
, ioaddr
+ IntrClear
);
1572 if (__netdev_rx(dev
, "a
))
1575 intr_status
= readl(ioaddr
+ IntrStatus
);
1576 } while (intr_status
& (IntrRxDone
| IntrRxEmpty
));
1578 napi_complete(napi
);
1579 intr_status
= readl(ioaddr
+ IntrEnable
);
1580 intr_status
|= IntrRxDone
| IntrRxEmpty
;
1581 writel(intr_status
, ioaddr
+ IntrEnable
);
1585 printk(KERN_DEBUG
" exiting netdev_poll(): %d.\n",
1588 /* Restart Rx engine if stopped. */
1589 return budget
- quota
;
1592 static void refill_rx_ring(struct net_device
*dev
)
1594 struct netdev_private
*np
= netdev_priv(dev
);
1595 struct sk_buff
*skb
;
1598 /* Refill the Rx ring buffers. */
1599 for (; np
->cur_rx
- np
->dirty_rx
> 0; np
->dirty_rx
++) {
1600 entry
= np
->dirty_rx
% RX_RING_SIZE
;
1601 if (np
->rx_info
[entry
].skb
== NULL
) {
1602 skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
1603 np
->rx_info
[entry
].skb
= skb
;
1605 break; /* Better luck next round. */
1606 np
->rx_info
[entry
].mapping
=
1607 pci_map_single(np
->pci_dev
, skb
->data
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1608 if (pci_dma_mapping_error(np
->pci_dev
,
1609 np
->rx_info
[entry
].mapping
)) {
1611 np
->rx_info
[entry
].skb
= NULL
;
1614 np
->rx_ring
[entry
].rxaddr
=
1615 cpu_to_dma(np
->rx_info
[entry
].mapping
| RxDescValid
);
1617 if (entry
== RX_RING_SIZE
- 1)
1618 np
->rx_ring
[entry
].rxaddr
|= cpu_to_dma(RxDescEndRing
);
1621 writew(entry
, np
->base
+ RxDescQIdx
);
1625 static void netdev_media_change(struct net_device
*dev
)
1627 struct netdev_private
*np
= netdev_priv(dev
);
1628 void __iomem
*ioaddr
= np
->base
;
1629 u16 reg0
, reg1
, reg4
, reg5
;
1631 u32 new_intr_timer_ctrl
;
1633 /* reset status first */
1634 mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1635 mdio_read(dev
, np
->phys
[0], MII_BMSR
);
1637 reg0
= mdio_read(dev
, np
->phys
[0], MII_BMCR
);
1638 reg1
= mdio_read(dev
, np
->phys
[0], MII_BMSR
);
1640 if (reg1
& BMSR_LSTATUS
) {
1642 if (reg0
& BMCR_ANENABLE
) {
1643 /* autonegotiation is enabled */
1644 reg4
= mdio_read(dev
, np
->phys
[0], MII_ADVERTISE
);
1645 reg5
= mdio_read(dev
, np
->phys
[0], MII_LPA
);
1646 if (reg4
& ADVERTISE_100FULL
&& reg5
& LPA_100FULL
) {
1648 np
->mii_if
.full_duplex
= 1;
1649 } else if (reg4
& ADVERTISE_100HALF
&& reg5
& LPA_100HALF
) {
1651 np
->mii_if
.full_duplex
= 0;
1652 } else if (reg4
& ADVERTISE_10FULL
&& reg5
& LPA_10FULL
) {
1654 np
->mii_if
.full_duplex
= 1;
1657 np
->mii_if
.full_duplex
= 0;
1660 /* autonegotiation is disabled */
1661 if (reg0
& BMCR_SPEED100
)
1665 if (reg0
& BMCR_FULLDPLX
)
1666 np
->mii_if
.full_duplex
= 1;
1668 np
->mii_if
.full_duplex
= 0;
1670 netif_carrier_on(dev
);
1671 printk(KERN_DEBUG
"%s: Link is up, running at %sMbit %s-duplex\n",
1673 np
->speed100
? "100" : "10",
1674 np
->mii_if
.full_duplex
? "full" : "half");
1676 new_tx_mode
= np
->tx_mode
& ~FullDuplex
; /* duplex setting */
1677 if (np
->mii_if
.full_duplex
)
1678 new_tx_mode
|= FullDuplex
;
1679 if (np
->tx_mode
!= new_tx_mode
) {
1680 np
->tx_mode
= new_tx_mode
;
1681 writel(np
->tx_mode
| MiiSoftReset
, ioaddr
+ TxMode
);
1683 writel(np
->tx_mode
, ioaddr
+ TxMode
);
1686 new_intr_timer_ctrl
= np
->intr_timer_ctrl
& ~Timer10X
;
1688 new_intr_timer_ctrl
|= Timer10X
;
1689 if (np
->intr_timer_ctrl
!= new_intr_timer_ctrl
) {
1690 np
->intr_timer_ctrl
= new_intr_timer_ctrl
;
1691 writel(new_intr_timer_ctrl
, ioaddr
+ IntrTimerCtrl
);
1694 netif_carrier_off(dev
);
1695 printk(KERN_DEBUG
"%s: Link is down\n", dev
->name
);
1700 static void netdev_error(struct net_device
*dev
, int intr_status
)
1702 struct netdev_private
*np
= netdev_priv(dev
);
1704 /* Came close to underrunning the Tx FIFO, increase threshold. */
1705 if (intr_status
& IntrTxDataLow
) {
1706 if (np
->tx_threshold
<= PKT_BUF_SZ
/ 16) {
1707 writel(++np
->tx_threshold
, np
->base
+ TxThreshold
);
1708 printk(KERN_NOTICE
"%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1709 dev
->name
, np
->tx_threshold
* 16);
1711 printk(KERN_WARNING
"%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev
->name
);
1713 if (intr_status
& IntrRxGFPDead
) {
1714 dev
->stats
.rx_fifo_errors
++;
1715 dev
->stats
.rx_errors
++;
1717 if (intr_status
& (IntrNoTxCsum
| IntrDMAErr
)) {
1718 dev
->stats
.tx_fifo_errors
++;
1719 dev
->stats
.tx_errors
++;
1721 if ((intr_status
& ~(IntrNormalMask
| IntrAbnormalSummary
| IntrLinkChange
| IntrStatsMax
| IntrTxDataLow
| IntrRxGFPDead
| IntrNoTxCsum
| IntrPCIPad
)) && debug
)
1722 printk(KERN_ERR
"%s: Something Wicked happened! %#8.8x.\n",
1723 dev
->name
, intr_status
);
1727 static struct net_device_stats
*get_stats(struct net_device
*dev
)
1729 struct netdev_private
*np
= netdev_priv(dev
);
1730 void __iomem
*ioaddr
= np
->base
;
1732 /* This adapter architecture needs no SMP locks. */
1733 dev
->stats
.tx_bytes
= readl(ioaddr
+ 0x57010);
1734 dev
->stats
.rx_bytes
= readl(ioaddr
+ 0x57044);
1735 dev
->stats
.tx_packets
= readl(ioaddr
+ 0x57000);
1736 dev
->stats
.tx_aborted_errors
=
1737 readl(ioaddr
+ 0x57024) + readl(ioaddr
+ 0x57028);
1738 dev
->stats
.tx_window_errors
= readl(ioaddr
+ 0x57018);
1739 dev
->stats
.collisions
=
1740 readl(ioaddr
+ 0x57004) + readl(ioaddr
+ 0x57008);
1742 /* The chip only need report frame silently dropped. */
1743 dev
->stats
.rx_dropped
+= readw(ioaddr
+ RxDMAStatus
);
1744 writew(0, ioaddr
+ RxDMAStatus
);
1745 dev
->stats
.rx_crc_errors
= readl(ioaddr
+ 0x5703C);
1746 dev
->stats
.rx_frame_errors
= readl(ioaddr
+ 0x57040);
1747 dev
->stats
.rx_length_errors
= readl(ioaddr
+ 0x57058);
1748 dev
->stats
.rx_missed_errors
= readl(ioaddr
+ 0x5707C);
1754 static u32
set_vlan_mode(struct netdev_private
*np
)
1758 void __iomem
*filter_addr
= np
->base
+ HashTable
+ 8;
1761 for_each_set_bit(vid
, np
->active_vlans
, VLAN_N_VID
) {
1762 if (vlan_count
== 32)
1764 writew(vid
, filter_addr
);
1768 if (vlan_count
== 32) {
1769 ret
|= PerfectFilterVlan
;
1770 while (vlan_count
< 32) {
1771 writew(0, filter_addr
);
1778 #endif /* VLAN_SUPPORT */
1780 static void set_rx_mode(struct net_device
*dev
)
1782 struct netdev_private
*np
= netdev_priv(dev
);
1783 void __iomem
*ioaddr
= np
->base
;
1784 u32 rx_mode
= MinVLANPrio
;
1785 struct netdev_hw_addr
*ha
;
1789 rx_mode
|= set_vlan_mode(np
);
1790 #endif /* VLAN_SUPPORT */
1792 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1793 rx_mode
|= AcceptAll
;
1794 } else if ((netdev_mc_count(dev
) > multicast_filter_limit
) ||
1795 (dev
->flags
& IFF_ALLMULTI
)) {
1796 /* Too many to match, or accept all multicasts. */
1797 rx_mode
|= AcceptBroadcast
|AcceptAllMulticast
|PerfectFilter
;
1798 } else if (netdev_mc_count(dev
) <= 14) {
1799 /* Use the 16 element perfect filter, skip first two entries. */
1800 void __iomem
*filter_addr
= ioaddr
+ PerfFilterTable
+ 2 * 16;
1802 netdev_for_each_mc_addr(ha
, dev
) {
1803 eaddrs
= (__be16
*) ha
->addr
;
1804 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 4;
1805 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1806 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 8;
1808 eaddrs
= (__be16
*)dev
->dev_addr
;
1809 i
= netdev_mc_count(dev
) + 2;
1811 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 4;
1812 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1813 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 8;
1815 rx_mode
|= AcceptBroadcast
|PerfectFilter
;
1817 /* Must use a multicast hash table. */
1818 void __iomem
*filter_addr
;
1820 __le16 mc_filter
[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1822 memset(mc_filter
, 0, sizeof(mc_filter
));
1823 netdev_for_each_mc_addr(ha
, dev
) {
1824 /* The chip uses the upper 9 CRC bits
1825 as index into the hash table */
1826 int bit_nr
= ether_crc_le(ETH_ALEN
, ha
->addr
) >> 23;
1827 __le32
*fptr
= (__le32
*) &mc_filter
[(bit_nr
>> 4) & ~1];
1829 *fptr
|= cpu_to_le32(1 << (bit_nr
& 31));
1831 /* Clear the perfect filter list, skip first two entries. */
1832 filter_addr
= ioaddr
+ PerfFilterTable
+ 2 * 16;
1833 eaddrs
= (__be16
*)dev
->dev_addr
;
1834 for (i
= 2; i
< 16; i
++) {
1835 writew(be16_to_cpu(eaddrs
[0]), filter_addr
); filter_addr
+= 4;
1836 writew(be16_to_cpu(eaddrs
[1]), filter_addr
); filter_addr
+= 4;
1837 writew(be16_to_cpu(eaddrs
[2]), filter_addr
); filter_addr
+= 8;
1839 for (filter_addr
= ioaddr
+ HashTable
, i
= 0; i
< 32; filter_addr
+= 16, i
++)
1840 writew(mc_filter
[i
], filter_addr
);
1841 rx_mode
|= AcceptBroadcast
|PerfectFilter
|HashFilter
;
1843 writel(rx_mode
, ioaddr
+ RxFilterMode
);
1846 static int check_if_running(struct net_device
*dev
)
1848 if (!netif_running(dev
))
1853 static void get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1855 struct netdev_private
*np
= netdev_priv(dev
);
1856 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
1857 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1858 strlcpy(info
->bus_info
, pci_name(np
->pci_dev
), sizeof(info
->bus_info
));
1861 static int get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
1863 struct netdev_private
*np
= netdev_priv(dev
);
1864 spin_lock_irq(&np
->lock
);
1865 mii_ethtool_gset(&np
->mii_if
, ecmd
);
1866 spin_unlock_irq(&np
->lock
);
1870 static int set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
1872 struct netdev_private
*np
= netdev_priv(dev
);
1874 spin_lock_irq(&np
->lock
);
1875 res
= mii_ethtool_sset(&np
->mii_if
, ecmd
);
1876 spin_unlock_irq(&np
->lock
);
1881 static int nway_reset(struct net_device
*dev
)
1883 struct netdev_private
*np
= netdev_priv(dev
);
1884 return mii_nway_restart(&np
->mii_if
);
1887 static u32
get_link(struct net_device
*dev
)
1889 struct netdev_private
*np
= netdev_priv(dev
);
1890 return mii_link_ok(&np
->mii_if
);
1893 static u32
get_msglevel(struct net_device
*dev
)
1898 static void set_msglevel(struct net_device
*dev
, u32 val
)
1903 static const struct ethtool_ops ethtool_ops
= {
1904 .begin
= check_if_running
,
1905 .get_drvinfo
= get_drvinfo
,
1906 .get_settings
= get_settings
,
1907 .set_settings
= set_settings
,
1908 .nway_reset
= nway_reset
,
1909 .get_link
= get_link
,
1910 .get_msglevel
= get_msglevel
,
1911 .set_msglevel
= set_msglevel
,
1914 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1916 struct netdev_private
*np
= netdev_priv(dev
);
1917 struct mii_ioctl_data
*data
= if_mii(rq
);
1920 if (!netif_running(dev
))
1923 spin_lock_irq(&np
->lock
);
1924 rc
= generic_mii_ioctl(&np
->mii_if
, data
, cmd
, NULL
);
1925 spin_unlock_irq(&np
->lock
);
1927 if ((cmd
== SIOCSMIIREG
) && (data
->phy_id
== np
->phys
[0]))
1933 static int netdev_close(struct net_device
*dev
)
1935 struct netdev_private
*np
= netdev_priv(dev
);
1936 void __iomem
*ioaddr
= np
->base
;
1939 netif_stop_queue(dev
);
1941 napi_disable(&np
->napi
);
1944 printk(KERN_DEBUG
"%s: Shutting down ethercard, Intr status %#8.8x.\n",
1945 dev
->name
, (int) readl(ioaddr
+ IntrStatus
));
1946 printk(KERN_DEBUG
"%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1947 dev
->name
, np
->cur_tx
, np
->dirty_tx
,
1948 np
->cur_rx
, np
->dirty_rx
);
1951 /* Disable interrupts by clearing the interrupt mask. */
1952 writel(0, ioaddr
+ IntrEnable
);
1954 /* Stop the chip's Tx and Rx processes. */
1955 writel(0, ioaddr
+ GenCtrl
);
1956 readl(ioaddr
+ GenCtrl
);
1959 printk(KERN_DEBUG
" Tx ring at %#llx:\n",
1960 (long long) np
->tx_ring_dma
);
1961 for (i
= 0; i
< 8 /* TX_RING_SIZE is huge! */; i
++)
1962 printk(KERN_DEBUG
" #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1963 i
, le32_to_cpu(np
->tx_ring
[i
].status
),
1964 (long long) dma_to_cpu(np
->tx_ring
[i
].addr
),
1965 le32_to_cpu(np
->tx_done_q
[i
].status
));
1966 printk(KERN_DEBUG
" Rx ring at %#llx -> %p:\n",
1967 (long long) np
->rx_ring_dma
, np
->rx_done_q
);
1969 for (i
= 0; i
< 8 /* RX_RING_SIZE */; i
++) {
1970 printk(KERN_DEBUG
" #%d desc. %#llx -> %#8.8x\n",
1971 i
, (long long) dma_to_cpu(np
->rx_ring
[i
].rxaddr
), le32_to_cpu(np
->rx_done_q
[i
].status
));
1975 free_irq(np
->pci_dev
->irq
, dev
);
1977 /* Free all the skbuffs in the Rx queue. */
1978 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1979 np
->rx_ring
[i
].rxaddr
= cpu_to_dma(0xBADF00D0); /* An invalid address. */
1980 if (np
->rx_info
[i
].skb
!= NULL
) {
1981 pci_unmap_single(np
->pci_dev
, np
->rx_info
[i
].mapping
, np
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1982 dev_kfree_skb(np
->rx_info
[i
].skb
);
1984 np
->rx_info
[i
].skb
= NULL
;
1985 np
->rx_info
[i
].mapping
= 0;
1987 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1988 struct sk_buff
*skb
= np
->tx_info
[i
].skb
;
1991 pci_unmap_single(np
->pci_dev
,
1992 np
->tx_info
[i
].mapping
,
1993 skb_first_frag_len(skb
), PCI_DMA_TODEVICE
);
1994 np
->tx_info
[i
].mapping
= 0;
1996 np
->tx_info
[i
].skb
= NULL
;
2003 static int starfire_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2005 struct net_device
*dev
= pci_get_drvdata(pdev
);
2007 if (netif_running(dev
)) {
2008 netif_device_detach(dev
);
2012 pci_save_state(pdev
);
2013 pci_set_power_state(pdev
, pci_choose_state(pdev
,state
));
2018 static int starfire_resume(struct pci_dev
*pdev
)
2020 struct net_device
*dev
= pci_get_drvdata(pdev
);
2022 pci_set_power_state(pdev
, PCI_D0
);
2023 pci_restore_state(pdev
);
2025 if (netif_running(dev
)) {
2027 netif_device_attach(dev
);
2032 #endif /* CONFIG_PM */
2035 static void starfire_remove_one(struct pci_dev
*pdev
)
2037 struct net_device
*dev
= pci_get_drvdata(pdev
);
2038 struct netdev_private
*np
= netdev_priv(dev
);
2042 unregister_netdev(dev
);
2045 pci_free_consistent(pdev
, np
->queue_mem_size
, np
->queue_mem
, np
->queue_mem_dma
);
2048 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2049 pci_set_power_state(pdev
, PCI_D3hot
); /* go to sleep in D3 mode */
2050 pci_disable_device(pdev
);
2053 pci_release_regions(pdev
);
2055 free_netdev(dev
); /* Will also free np!! */
2059 static struct pci_driver starfire_driver
= {
2061 .probe
= starfire_init_one
,
2062 .remove
= starfire_remove_one
,
2064 .suspend
= starfire_suspend
,
2065 .resume
= starfire_resume
,
2066 #endif /* CONFIG_PM */
2067 .id_table
= starfire_pci_tbl
,
2071 static int __init
starfire_init (void)
2073 /* when a module, this is printed whether or not devices are found in probe */
2077 printk(KERN_INFO DRV_NAME
": polling (NAPI) enabled\n");
2080 BUILD_BUG_ON(sizeof(dma_addr_t
) != sizeof(netdrv_addr_t
));
2082 return pci_register_driver(&starfire_driver
);
2086 static void __exit
starfire_cleanup (void)
2088 pci_unregister_driver (&starfire_driver
);
2092 module_init(starfire_init
);
2093 module_exit(starfire_cleanup
);