2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 * Updated to the driver model and the PHY abstraction layer
23 * by Maciej W. Rozycki.
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
46 #include <asm/cache.h>
48 #include <asm/processor.h> /* Processor type for cache alignment. */
50 /* Operational parameters that usually are not changed. */
52 #define CONFIG_SBMAC_COALESCE
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT (2*HZ)
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
61 /* A few user-configurable values which may be modified when a driver
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
66 module_param(debug
, int, S_IRUGO
);
67 MODULE_PARM_DESC(debug
, "Debug messages");
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx
= 255;
71 module_param(int_pktcnt_tx
, int, S_IRUGO
);
72 MODULE_PARM_DESC(int_pktcnt_tx
, "TX packet count");
74 static int int_timeout_tx
= 255;
75 module_param(int_timeout_tx
, int, S_IRUGO
);
76 MODULE_PARM_DESC(int_timeout_tx
, "TX timeout value");
78 static int int_pktcnt_rx
= 64;
79 module_param(int_pktcnt_rx
, int, S_IRUGO
);
80 MODULE_PARM_DESC(int_pktcnt_rx
, "RX packet count");
82 static int int_timeout_rx
= 64;
83 module_param(int_timeout_rx
, int, S_IRUGO
);
84 MODULE_PARM_DESC(int_timeout_rx
, "RX timeout value");
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
97 #error invalid SiByte MAC configuration
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
108 #error invalid SiByte MAC configuration
112 #define SBMAC_PHY_INT K_INT_PHY
114 #define SBMAC_PHY_INT PHY_POLL
117 /**********************************************************************
119 ********************************************************************* */
122 sbmac_speed_none
= 0,
123 sbmac_speed_10
= SPEED_10
,
124 sbmac_speed_100
= SPEED_100
,
125 sbmac_speed_1000
= SPEED_1000
,
129 sbmac_duplex_none
= -1,
130 sbmac_duplex_half
= DUPLEX_HALF
,
131 sbmac_duplex_full
= DUPLEX_FULL
,
150 /**********************************************************************
152 ********************************************************************* */
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 (d)->sbdma_dscrtable : (d)->f+1)
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
161 #define SBMAC_MAX_TXDESCR 256
162 #define SBMAC_MAX_RXDESCR 256
164 #define ENET_PACKET_SIZE 1518
165 /*#define ENET_PACKET_SIZE 9216 */
167 /**********************************************************************
168 * DMA Descriptor structure
169 ********************************************************************* */
176 /**********************************************************************
177 * DMA Controller structure
178 ********************************************************************* */
183 * This stuff is used to identify the channel and the registers
184 * associated with it.
186 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated
188 int sbdma_channel
; /* channel number */
189 int sbdma_txdir
; /* direction (1=transmit) */
190 int sbdma_maxdescr
; /* total # of descriptors
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt
;
194 /* # descriptors rx/tx
196 int sbdma_int_timeout
;
197 /* # usec rx/tx interrupt */
199 void __iomem
*sbdma_config0
; /* DMA config register 0 */
200 void __iomem
*sbdma_config1
; /* DMA config register 1 */
201 void __iomem
*sbdma_dscrbase
;
202 /* descriptor base address */
203 void __iomem
*sbdma_dscrcnt
; /* descriptor count register */
204 void __iomem
*sbdma_curdscr
; /* current descriptor
206 void __iomem
*sbdma_oodpktlost
;
207 /* pkt drop (rx only) */
210 * This stuff is for maintenance of the ring
212 void *sbdma_dscrtable_unaligned
;
213 struct sbdmadscr
*sbdma_dscrtable
;
214 /* base of descriptor table */
215 struct sbdmadscr
*sbdma_dscrtable_end
;
216 /* end of descriptor table */
217 struct sk_buff
**sbdma_ctxtable
;
218 /* context table, one
220 dma_addr_t sbdma_dscrtable_phys
;
221 /* and also the phys addr */
222 struct sbdmadscr
*sbdma_addptr
; /* next dscr for sw to add */
223 struct sbdmadscr
*sbdma_remptr
; /* next dscr for sw
228 /**********************************************************************
229 * Ethernet softc structure
230 ********************************************************************* */
235 * Linux-specific things
237 struct net_device
*sbm_dev
; /* pointer to linux device */
238 struct napi_struct napi
;
239 struct phy_device
*phy_dev
; /* the associated PHY device */
240 struct mii_bus
*mii_bus
; /* the MII bus */
241 spinlock_t sbm_lock
; /* spin lock */
242 int sbm_devflags
; /* current device flags */
245 * Controller-specific things
247 void __iomem
*sbm_base
; /* MAC's base address */
248 enum sbmac_state sbm_state
; /* current state */
250 void __iomem
*sbm_macenable
; /* MAC Enable Register */
251 void __iomem
*sbm_maccfg
; /* MAC Config Register */
252 void __iomem
*sbm_fifocfg
; /* FIFO Config Register */
253 void __iomem
*sbm_framecfg
; /* Frame Config Register */
254 void __iomem
*sbm_rxfilter
; /* Receive Filter Register */
255 void __iomem
*sbm_isr
; /* Interrupt Status Register */
256 void __iomem
*sbm_imr
; /* Interrupt Mask Register */
257 void __iomem
*sbm_mdio
; /* MDIO Register */
259 enum sbmac_speed sbm_speed
; /* current speed */
260 enum sbmac_duplex sbm_duplex
; /* current duplex */
261 enum sbmac_fc sbm_fc
; /* cur. flow control setting */
262 int sbm_pause
; /* current pause setting */
263 int sbm_link
; /* current link state */
265 unsigned char sbm_hwaddr
[ETH_ALEN
];
267 struct sbmacdma sbm_txdma
; /* only channel 0 for now */
268 struct sbmacdma sbm_rxdma
;
274 /**********************************************************************
276 ********************************************************************* */
278 /**********************************************************************
280 ********************************************************************* */
282 static void sbdma_initctx(struct sbmacdma
*d
, struct sbmac_softc
*s
, int chan
,
283 int txrx
, int maxdescr
);
284 static void sbdma_channel_start(struct sbmacdma
*d
, int rxtx
);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
287 static int sbdma_add_txbuffer(struct sbmacdma
*d
, struct sk_buff
*m
);
288 static void sbdma_emptyring(struct sbmacdma
*d
);
289 static void sbdma_fillring(struct sbmac_softc
*sc
, struct sbmacdma
*d
);
290 static int sbdma_rx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
291 int work_to_do
, int poll
);
292 static void sbdma_tx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
294 static int sbmac_initctx(struct sbmac_softc
*s
);
295 static void sbmac_channel_start(struct sbmac_softc
*s
);
296 static void sbmac_channel_stop(struct sbmac_softc
*s
);
297 static enum sbmac_state
sbmac_set_channel_state(struct sbmac_softc
*,
299 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
, int onoff
);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr
);
301 static irqreturn_t
sbmac_intr(int irq
, void *dev_instance
);
302 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
303 static void sbmac_setmulti(struct sbmac_softc
*sc
);
304 static int sbmac_init(struct platform_device
*pldev
, long long base
);
305 static int sbmac_set_speed(struct sbmac_softc
*s
, enum sbmac_speed speed
);
306 static int sbmac_set_duplex(struct sbmac_softc
*s
, enum sbmac_duplex duplex
,
309 static int sbmac_open(struct net_device
*dev
);
310 static void sbmac_tx_timeout (struct net_device
*dev
);
311 static void sbmac_set_rx_mode(struct net_device
*dev
);
312 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
313 static int sbmac_close(struct net_device
*dev
);
314 static int sbmac_poll(struct napi_struct
*napi
, int budget
);
316 static void sbmac_mii_poll(struct net_device
*dev
);
317 static int sbmac_mii_probe(struct net_device
*dev
);
319 static void sbmac_mii_sync(void __iomem
*sbm_mdio
);
320 static void sbmac_mii_senddata(void __iomem
*sbm_mdio
, unsigned int data
,
322 static int sbmac_mii_read(struct mii_bus
*bus
, int phyaddr
, int regidx
);
323 static int sbmac_mii_write(struct mii_bus
*bus
, int phyaddr
, int regidx
,
327 /**********************************************************************
329 ********************************************************************* */
331 static char sbmac_string
[] = "sb1250-mac";
333 static char sbmac_mdio_string
[] = "sb1250-mac-mdio";
336 /**********************************************************************
338 ********************************************************************* */
340 #define MII_COMMAND_START 0x01
341 #define MII_COMMAND_READ 0x02
342 #define MII_COMMAND_WRITE 0x01
343 #define MII_COMMAND_ACK 0x02
345 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
350 /**********************************************************************
351 * SBMAC_MII_SYNC(sbm_mdio)
353 * Synchronize with the MII - send a pattern of bits to the MII
354 * that will guarantee that it is ready to accept a command.
357 * sbm_mdio - address of the MAC's MDIO register
361 ********************************************************************* */
363 static void sbmac_mii_sync(void __iomem
*sbm_mdio
)
369 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
371 bits
= M_MAC_MDIO_DIR_OUTPUT
| M_MAC_MDIO_OUT
;
373 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
375 for (cnt
= 0; cnt
< 32; cnt
++) {
376 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, sbm_mdio
);
377 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
381 /**********************************************************************
382 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
384 * Send some bits to the MII. The bits to be sent are right-
385 * justified in the 'data' parameter.
388 * sbm_mdio - address of the MAC's MDIO register
389 * data - data to send
390 * bitcnt - number of bits to send
391 ********************************************************************* */
393 static void sbmac_mii_senddata(void __iomem
*sbm_mdio
, unsigned int data
,
398 unsigned int curmask
;
401 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
403 bits
= M_MAC_MDIO_DIR_OUTPUT
;
404 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
406 curmask
= 1 << (bitcnt
- 1);
408 for (i
= 0; i
< bitcnt
; i
++) {
410 bits
|= M_MAC_MDIO_OUT
;
411 else bits
&= ~M_MAC_MDIO_OUT
;
412 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
413 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, sbm_mdio
);
414 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
421 /**********************************************************************
422 * SBMAC_MII_READ(bus, phyaddr, regidx)
423 * Read a PHY register.
426 * bus - MDIO bus handle
427 * phyaddr - PHY's address
428 * regnum - index of register to read
431 * value read, or 0xffff if an error occurred.
432 ********************************************************************* */
434 static int sbmac_mii_read(struct mii_bus
*bus
, int phyaddr
, int regidx
)
436 struct sbmac_softc
*sc
= (struct sbmac_softc
*)bus
->priv
;
437 void __iomem
*sbm_mdio
= sc
->sbm_mdio
;
444 * Synchronize ourselves so that the PHY knows the next
445 * thing coming down is a command
447 sbmac_mii_sync(sbm_mdio
);
450 * Send the data to the PHY. The sequence is
451 * a "start" command (2 bits)
452 * a "read" command (2 bits)
453 * the PHY addr (5 bits)
454 * the register index (5 bits)
456 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_START
, 2);
457 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_READ
, 2);
458 sbmac_mii_senddata(sbm_mdio
, phyaddr
, 5);
459 sbmac_mii_senddata(sbm_mdio
, regidx
, 5);
461 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
464 * Switch the port around without a clock transition.
466 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
469 * Send out a clock pulse to signal we want the status
471 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
473 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
476 * If an error occurred, the PHY will signal '1' back
478 error
= __raw_readq(sbm_mdio
) & M_MAC_MDIO_IN
;
481 * Issue an 'idle' clock pulse, but keep the direction
484 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
486 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
490 for (idx
= 0; idx
< 16; idx
++) {
494 if (__raw_readq(sbm_mdio
) & M_MAC_MDIO_IN
)
498 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
500 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
503 /* Switch back to output */
504 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, sbm_mdio
);
512 /**********************************************************************
513 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
515 * Write a value to a PHY register.
518 * bus - MDIO bus handle
519 * phyaddr - PHY to use
520 * regidx - register within the PHY
521 * regval - data to write to register
525 ********************************************************************* */
527 static int sbmac_mii_write(struct mii_bus
*bus
, int phyaddr
, int regidx
,
530 struct sbmac_softc
*sc
= (struct sbmac_softc
*)bus
->priv
;
531 void __iomem
*sbm_mdio
= sc
->sbm_mdio
;
534 sbmac_mii_sync(sbm_mdio
);
536 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_START
, 2);
537 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_WRITE
, 2);
538 sbmac_mii_senddata(sbm_mdio
, phyaddr
, 5);
539 sbmac_mii_senddata(sbm_mdio
, regidx
, 5);
540 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_ACK
, 2);
541 sbmac_mii_senddata(sbm_mdio
, regval
, 16);
543 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
545 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, sbm_mdio
);
552 /**********************************************************************
553 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
555 * Initialize a DMA channel context. Since there are potentially
556 * eight DMA channels per MAC, it's nice to do this in a standard
560 * d - struct sbmacdma (DMA channel context)
561 * s - struct sbmac_softc (pointer to a MAC)
562 * chan - channel number (0..1 right now)
563 * txrx - Identifies DMA_TX or DMA_RX for channel direction
564 * maxdescr - number of descriptors
568 ********************************************************************* */
570 static void sbdma_initctx(struct sbmacdma
*d
, struct sbmac_softc
*s
, int chan
,
571 int txrx
, int maxdescr
)
573 #ifdef CONFIG_SBMAC_COALESCE
574 int int_pktcnt
, int_timeout
;
578 * Save away interesting stuff in the structure
582 d
->sbdma_channel
= chan
;
583 d
->sbdma_txdir
= txrx
;
587 s
->sbe_idx
=(s
->sbm_base
- A_MAC_BASE_0
)/MAC_SPACING
;
590 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_BYTES
);
591 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_COLLISIONS
);
592 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_LATE_COL
);
593 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_EX_COL
);
594 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_FCS_ERROR
);
595 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_ABORT
);
596 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_BAD
);
597 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_GOOD
);
598 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_RUNT
);
599 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_OVERSIZE
);
600 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BYTES
);
601 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_MCAST
);
602 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BCAST
);
603 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BAD
);
604 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_GOOD
);
605 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_RUNT
);
606 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_OVERSIZE
);
607 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_FCS_ERROR
);
608 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_LENGTH_ERROR
);
609 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_CODE_ERROR
);
610 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_ALIGN_ERROR
);
613 * initialize register pointers
617 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG0
);
619 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG1
);
621 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_BASE
);
623 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_CNT
);
625 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CUR_DSCRADDR
);
627 d
->sbdma_oodpktlost
= NULL
;
629 d
->sbdma_oodpktlost
=
630 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_OODPKTLOST_RX
);
633 * Allocate memory for the ring
636 d
->sbdma_maxdescr
= maxdescr
;
638 d
->sbdma_dscrtable_unaligned
= kcalloc(d
->sbdma_maxdescr
+ 1,
639 sizeof(*d
->sbdma_dscrtable
),
643 * The descriptor table must be aligned to at least 16 bytes or the
644 * MAC will corrupt it.
646 d
->sbdma_dscrtable
= (struct sbdmadscr
*)
647 ALIGN((unsigned long)d
->sbdma_dscrtable_unaligned
,
648 sizeof(*d
->sbdma_dscrtable
));
650 d
->sbdma_dscrtable_end
= d
->sbdma_dscrtable
+ d
->sbdma_maxdescr
;
652 d
->sbdma_dscrtable_phys
= virt_to_phys(d
->sbdma_dscrtable
);
658 d
->sbdma_ctxtable
= kcalloc(d
->sbdma_maxdescr
,
659 sizeof(*d
->sbdma_ctxtable
), GFP_KERNEL
);
661 #ifdef CONFIG_SBMAC_COALESCE
663 * Setup Rx/Tx DMA coalescing defaults
666 int_pktcnt
= (txrx
== DMA_TX
) ? int_pktcnt_tx
: int_pktcnt_rx
;
668 d
->sbdma_int_pktcnt
= int_pktcnt
;
670 d
->sbdma_int_pktcnt
= 1;
673 int_timeout
= (txrx
== DMA_TX
) ? int_timeout_tx
: int_timeout_rx
;
675 d
->sbdma_int_timeout
= int_timeout
;
677 d
->sbdma_int_timeout
= 0;
683 /**********************************************************************
684 * SBDMA_CHANNEL_START(d)
686 * Initialize the hardware registers for a DMA channel.
689 * d - DMA channel to init (context must be previously init'd
690 * rxtx - DMA_RX or DMA_TX depending on what type of channel
694 ********************************************************************* */
696 static void sbdma_channel_start(struct sbmacdma
*d
, int rxtx
)
699 * Turn on the DMA channel
702 #ifdef CONFIG_SBMAC_COALESCE
703 __raw_writeq(V_DMA_INT_TIMEOUT(d
->sbdma_int_timeout
) |
704 0, d
->sbdma_config1
);
705 __raw_writeq(M_DMA_EOP_INT_EN
|
706 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
707 V_DMA_INT_PKTCNT(d
->sbdma_int_pktcnt
) |
708 0, d
->sbdma_config0
);
710 __raw_writeq(0, d
->sbdma_config1
);
711 __raw_writeq(V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
712 0, d
->sbdma_config0
);
715 __raw_writeq(d
->sbdma_dscrtable_phys
, d
->sbdma_dscrbase
);
718 * Initialize ring pointers
721 d
->sbdma_addptr
= d
->sbdma_dscrtable
;
722 d
->sbdma_remptr
= d
->sbdma_dscrtable
;
725 /**********************************************************************
726 * SBDMA_CHANNEL_STOP(d)
728 * Initialize the hardware registers for a DMA channel.
731 * d - DMA channel to init (context must be previously init'd
735 ********************************************************************* */
737 static void sbdma_channel_stop(struct sbmacdma
*d
)
740 * Turn off the DMA channel
743 __raw_writeq(0, d
->sbdma_config1
);
745 __raw_writeq(0, d
->sbdma_dscrbase
);
747 __raw_writeq(0, d
->sbdma_config0
);
753 d
->sbdma_addptr
= NULL
;
754 d
->sbdma_remptr
= NULL
;
757 static inline void sbdma_align_skb(struct sk_buff
*skb
,
758 unsigned int power2
, unsigned int offset
)
760 unsigned char *addr
= skb
->data
;
761 unsigned char *newaddr
= PTR_ALIGN(addr
, power2
);
763 skb_reserve(skb
, newaddr
- addr
+ offset
);
767 /**********************************************************************
768 * SBDMA_ADD_RCVBUFFER(d,sb)
770 * Add a buffer to the specified DMA channel. For receive channels,
771 * this queues a buffer for inbound packets.
774 * sc - softc structure
775 * d - DMA channel descriptor
776 * sb - sk_buff to add, or NULL if we should allocate one
779 * 0 if buffer could not be added (ring is full)
780 * 1 if buffer added successfully
781 ********************************************************************* */
784 static int sbdma_add_rcvbuffer(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
787 struct net_device
*dev
= sc
->sbm_dev
;
788 struct sbdmadscr
*dsc
;
789 struct sbdmadscr
*nextdsc
;
790 struct sk_buff
*sb_new
= NULL
;
791 int pktsize
= ENET_PACKET_SIZE
;
793 /* get pointer to our current place in the ring */
795 dsc
= d
->sbdma_addptr
;
796 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
799 * figure out if the ring is full - if the next descriptor
800 * is the same as the one that we're going to remove from
801 * the ring, the ring is full
804 if (nextdsc
== d
->sbdma_remptr
) {
809 * Allocate a sk_buff if we don't already have one.
810 * If we do have an sk_buff, reset it so that it's empty.
812 * Note: sk_buffs don't seem to be guaranteed to have any sort
813 * of alignment when they are allocated. Therefore, allocate enough
814 * extra space to make sure that:
816 * 1. the data does not start in the middle of a cache line.
817 * 2. The data does not end in the middle of a cache line
818 * 3. The buffer can be aligned such that the IP addresses are
821 * Remember, the SOCs MAC writes whole cache lines at a time,
822 * without reading the old contents first. So, if the sk_buff's
823 * data portion starts in the middle of a cache line, the SOC
824 * DMA will trash the beginning (and ending) portions.
828 sb_new
= netdev_alloc_skb(dev
, ENET_PACKET_SIZE
+
829 SMP_CACHE_BYTES
* 2 +
834 sbdma_align_skb(sb_new
, SMP_CACHE_BYTES
, NET_IP_ALIGN
);
839 * nothing special to reinit buffer, it's already aligned
840 * and sb->data already points to a good place.
845 * fill in the descriptor
848 #ifdef CONFIG_SBMAC_COALESCE
850 * Do not interrupt per DMA transfer.
852 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
853 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ NET_IP_ALIGN
)) | 0;
855 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
856 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ NET_IP_ALIGN
)) |
857 M_DMA_DSCRA_INTERRUPT
;
860 /* receiving: no options */
864 * fill in the context
867 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb_new
;
870 * point at next packet
873 d
->sbdma_addptr
= nextdsc
;
876 * Give the buffer to the DMA engine.
879 __raw_writeq(1, d
->sbdma_dscrcnt
);
881 return 0; /* we did it */
884 /**********************************************************************
885 * SBDMA_ADD_TXBUFFER(d,sb)
887 * Add a transmit buffer to the specified DMA channel, causing a
891 * d - DMA channel descriptor
892 * sb - sk_buff to add
895 * 0 transmit queued successfully
896 * otherwise error code
897 ********************************************************************* */
900 static int sbdma_add_txbuffer(struct sbmacdma
*d
, struct sk_buff
*sb
)
902 struct sbdmadscr
*dsc
;
903 struct sbdmadscr
*nextdsc
;
908 /* get pointer to our current place in the ring */
910 dsc
= d
->sbdma_addptr
;
911 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
914 * figure out if the ring is full - if the next descriptor
915 * is the same as the one that we're going to remove from
916 * the ring, the ring is full
919 if (nextdsc
== d
->sbdma_remptr
) {
924 * Under Linux, it's not necessary to copy/coalesce buffers
925 * like it is on NetBSD. We think they're all contiguous,
926 * but that may not be true for GBE.
932 * fill in the descriptor. Note that the number of cache
933 * blocks in the descriptor is the number of blocks
934 * *spanned*, so we need to add in the offset (if any)
935 * while doing the calculation.
938 phys
= virt_to_phys(sb
->data
);
939 ncb
= NUMCACHEBLKS(length
+(phys
& (SMP_CACHE_BYTES
- 1)));
942 V_DMA_DSCRA_A_SIZE(ncb
) |
943 #ifndef CONFIG_SBMAC_COALESCE
944 M_DMA_DSCRA_INTERRUPT
|
948 /* transmitting: set outbound options and length */
950 dsc
->dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
951 V_DMA_DSCRB_PKT_SIZE(length
);
954 * fill in the context
957 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb
;
960 * point at next packet
963 d
->sbdma_addptr
= nextdsc
;
966 * Give the buffer to the DMA engine.
969 __raw_writeq(1, d
->sbdma_dscrcnt
);
971 return 0; /* we did it */
977 /**********************************************************************
980 * Free all allocated sk_buffs on the specified DMA channel;
987 ********************************************************************* */
989 static void sbdma_emptyring(struct sbmacdma
*d
)
994 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
995 sb
= d
->sbdma_ctxtable
[idx
];
998 d
->sbdma_ctxtable
[idx
] = NULL
;
1004 /**********************************************************************
1007 * Fill the specified DMA channel (must be receive channel)
1011 * sc - softc structure
1016 ********************************************************************* */
1018 static void sbdma_fillring(struct sbmac_softc
*sc
, struct sbmacdma
*d
)
1022 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
- 1; idx
++) {
1023 if (sbdma_add_rcvbuffer(sc
, d
, NULL
) != 0)
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device
*netdev
)
1031 struct sbmac_softc
*sc
= netdev_priv(netdev
);
1032 int irq
= sc
->sbm_dev
->irq
;
1034 __raw_writeq(0, sc
->sbm_imr
);
1036 sbmac_intr(irq
, netdev
);
1038 #ifdef CONFIG_SBMAC_COALESCE
1039 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1040 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
),
1043 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1044 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), sc
->sbm_imr
);
1049 /**********************************************************************
1050 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1052 * Process "completed" receive buffers on the specified DMA channel.
1055 * sc - softc structure
1056 * d - DMA channel context
1057 * work_to_do - no. of packets to process before enabling interrupt
1059 * poll - 1: using polling (for NAPI)
1063 ********************************************************************* */
1065 static int sbdma_rx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
1066 int work_to_do
, int poll
)
1068 struct net_device
*dev
= sc
->sbm_dev
;
1071 struct sbdmadscr
*dsc
;
1080 /* Check if the HW dropped any frames */
1081 dev
->stats
.rx_fifo_errors
1082 += __raw_readq(sc
->sbm_rxdma
.sbdma_oodpktlost
) & 0xffff;
1083 __raw_writeq(0, sc
->sbm_rxdma
.sbdma_oodpktlost
);
1085 while (work_to_do
-- > 0) {
1087 * figure out where we are (as an index) and where
1088 * the hardware is (also as an index)
1090 * This could be done faster if (for example) the
1091 * descriptor table was page-aligned and contiguous in
1092 * both virtual and physical memory -- you could then
1093 * just compare the low-order bits of the virtual address
1094 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1097 dsc
= d
->sbdma_remptr
;
1098 curidx
= dsc
- d
->sbdma_dscrtable
;
1101 prefetch(&d
->sbdma_ctxtable
[curidx
]);
1103 hwidx
= ((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1104 d
->sbdma_dscrtable_phys
) /
1105 sizeof(*d
->sbdma_dscrtable
);
1108 * If they're the same, that means we've processed all
1109 * of the descriptors up to (but not including) the one that
1110 * the hardware is working on right now.
1113 if (curidx
== hwidx
)
1117 * Otherwise, get the packet's sk_buff ptr back
1120 sb
= d
->sbdma_ctxtable
[curidx
];
1121 d
->sbdma_ctxtable
[curidx
] = NULL
;
1123 len
= (int)G_DMA_DSCRB_PKT_SIZE(dsc
->dscr_b
) - 4;
1126 * Check packet status. If good, process it.
1127 * If not, silently drop it and put it back on the
1131 if (likely (!(dsc
->dscr_a
& M_DMA_ETHRX_BAD
))) {
1134 * Add a new buffer to replace the old one. If we fail
1135 * to allocate a buffer, we're going to drop this
1136 * packet and put it right back on the receive ring.
1139 if (unlikely(sbdma_add_rcvbuffer(sc
, d
, NULL
) ==
1141 dev
->stats
.rx_dropped
++;
1142 /* Re-add old buffer */
1143 sbdma_add_rcvbuffer(sc
, d
, sb
);
1144 /* No point in continuing at the moment */
1145 printk(KERN_ERR
"dropped packet (1)\n");
1146 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1150 * Set length into the packet
1155 * Buffer has been replaced on the
1156 * receive ring. Pass the buffer to
1159 sb
->protocol
= eth_type_trans(sb
,d
->sbdma_eth
->sbm_dev
);
1160 /* Check hw IPv4/TCP checksum if supported */
1161 if (sc
->rx_hw_checksum
== ENABLE
) {
1162 if (!((dsc
->dscr_a
) & M_DMA_ETHRX_BADIP4CS
) &&
1163 !((dsc
->dscr_a
) & M_DMA_ETHRX_BADTCPCS
)) {
1164 sb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1165 /* don't need to set sb->csum */
1167 skb_checksum_none_assert(sb
);
1171 prefetch((const void *)(((char *)sb
->data
)+32));
1173 dropped
= netif_receive_skb(sb
);
1175 dropped
= netif_rx(sb
);
1177 if (dropped
== NET_RX_DROP
) {
1178 dev
->stats
.rx_dropped
++;
1179 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1183 dev
->stats
.rx_bytes
+= len
;
1184 dev
->stats
.rx_packets
++;
1189 * Packet was mangled somehow. Just drop it and
1190 * put it back on the receive ring.
1192 dev
->stats
.rx_errors
++;
1193 sbdma_add_rcvbuffer(sc
, d
, sb
);
1198 * .. and advance to the next buffer.
1201 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1206 goto again
; /* collect fifo drop statistics again */
1212 /**********************************************************************
1213 * SBDMA_TX_PROCESS(sc,d)
1215 * Process "completed" transmit buffers on the specified DMA channel.
1216 * This is normally called within the interrupt service routine.
1217 * Note that this isn't really ideal for priority channels, since
1218 * it processes all of the packets on a given channel before
1222 * sc - softc structure
1223 * d - DMA channel context
1224 * poll - 1: using polling (for NAPI)
1228 ********************************************************************* */
1230 static void sbdma_tx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
1233 struct net_device
*dev
= sc
->sbm_dev
;
1236 struct sbdmadscr
*dsc
;
1238 unsigned long flags
;
1239 int packets_handled
= 0;
1241 spin_lock_irqsave(&(sc
->sbm_lock
), flags
);
1243 if (d
->sbdma_remptr
== d
->sbdma_addptr
)
1246 hwidx
= ((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1247 d
->sbdma_dscrtable_phys
) / sizeof(*d
->sbdma_dscrtable
);
1251 * figure out where we are (as an index) and where
1252 * the hardware is (also as an index)
1254 * This could be done faster if (for example) the
1255 * descriptor table was page-aligned and contiguous in
1256 * both virtual and physical memory -- you could then
1257 * just compare the low-order bits of the virtual address
1258 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1261 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1264 * If they're the same, that means we've processed all
1265 * of the descriptors up to (but not including) the one that
1266 * the hardware is working on right now.
1269 if (curidx
== hwidx
)
1273 * Otherwise, get the packet's sk_buff ptr back
1276 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1277 sb
= d
->sbdma_ctxtable
[curidx
];
1278 d
->sbdma_ctxtable
[curidx
] = NULL
;
1284 dev
->stats
.tx_bytes
+= sb
->len
;
1285 dev
->stats
.tx_packets
++;
1288 * for transmits, we just free buffers.
1291 dev_kfree_skb_irq(sb
);
1294 * .. and advance to the next buffer.
1297 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1304 * Decide if we should wake up the protocol or not.
1305 * Other drivers seem to do this when we reach a low
1306 * watermark on the transmit queue.
1309 if (packets_handled
)
1310 netif_wake_queue(d
->sbdma_eth
->sbm_dev
);
1313 spin_unlock_irqrestore(&(sc
->sbm_lock
), flags
);
1319 /**********************************************************************
1322 * Initialize an Ethernet context structure - this is called
1323 * once per MAC on the 1250. Memory is allocated here, so don't
1324 * call it again from inside the ioctl routines that bring the
1328 * s - sbmac context structure
1332 ********************************************************************* */
1334 static int sbmac_initctx(struct sbmac_softc
*s
)
1338 * figure out the addresses of some ports
1341 s
->sbm_macenable
= s
->sbm_base
+ R_MAC_ENABLE
;
1342 s
->sbm_maccfg
= s
->sbm_base
+ R_MAC_CFG
;
1343 s
->sbm_fifocfg
= s
->sbm_base
+ R_MAC_THRSH_CFG
;
1344 s
->sbm_framecfg
= s
->sbm_base
+ R_MAC_FRAMECFG
;
1345 s
->sbm_rxfilter
= s
->sbm_base
+ R_MAC_ADFILTER_CFG
;
1346 s
->sbm_isr
= s
->sbm_base
+ R_MAC_STATUS
;
1347 s
->sbm_imr
= s
->sbm_base
+ R_MAC_INT_MASK
;
1348 s
->sbm_mdio
= s
->sbm_base
+ R_MAC_MDIO
;
1351 * Initialize the DMA channels. Right now, only one per MAC is used
1352 * Note: Only do this _once_, as it allocates memory from the kernel!
1355 sbdma_initctx(&(s
->sbm_txdma
),s
,0,DMA_TX
,SBMAC_MAX_TXDESCR
);
1356 sbdma_initctx(&(s
->sbm_rxdma
),s
,0,DMA_RX
,SBMAC_MAX_RXDESCR
);
1359 * initial state is OFF
1362 s
->sbm_state
= sbmac_state_off
;
1368 static void sbdma_uninitctx(struct sbmacdma
*d
)
1370 if (d
->sbdma_dscrtable_unaligned
) {
1371 kfree(d
->sbdma_dscrtable_unaligned
);
1372 d
->sbdma_dscrtable_unaligned
= d
->sbdma_dscrtable
= NULL
;
1375 if (d
->sbdma_ctxtable
) {
1376 kfree(d
->sbdma_ctxtable
);
1377 d
->sbdma_ctxtable
= NULL
;
1382 static void sbmac_uninitctx(struct sbmac_softc
*sc
)
1384 sbdma_uninitctx(&(sc
->sbm_txdma
));
1385 sbdma_uninitctx(&(sc
->sbm_rxdma
));
1389 /**********************************************************************
1390 * SBMAC_CHANNEL_START(s)
1392 * Start packet processing on this MAC.
1395 * s - sbmac structure
1399 ********************************************************************* */
1401 static void sbmac_channel_start(struct sbmac_softc
*s
)
1405 uint64_t cfg
,fifo
,framecfg
;
1409 * Don't do this if running
1412 if (s
->sbm_state
== sbmac_state_on
)
1416 * Bring the controller out of reset, but leave it off.
1419 __raw_writeq(0, s
->sbm_macenable
);
1422 * Ignore all received packets
1425 __raw_writeq(0, s
->sbm_rxfilter
);
1428 * Calculate values for various control registers.
1431 cfg
= M_MAC_RETRY_EN
|
1432 M_MAC_TX_HOLD_SOP_EN
|
1433 V_MAC_TX_PAUSE_CNT_16K
|
1440 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1441 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1442 * Use a larger RD_THRSH for gigabit
1444 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2)
1449 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1450 ((s
->sbm_speed
== sbmac_speed_1000
)
1451 ? V_MAC_TX_RD_THRSH(th_value
) : V_MAC_TX_RD_THRSH(4)) |
1452 V_MAC_TX_RL_THRSH(4) |
1453 V_MAC_RX_PL_THRSH(4) |
1454 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1455 V_MAC_RX_RL_THRSH(8) |
1458 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1459 V_MAC_MAX_FRAMESZ_DEFAULT
|
1460 V_MAC_BACKOFF_SEL(1);
1463 * Clear out the hash address map
1466 port
= s
->sbm_base
+ R_MAC_HASH_BASE
;
1467 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1468 __raw_writeq(0, port
);
1469 port
+= sizeof(uint64_t);
1473 * Clear out the exact-match table
1476 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1477 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1478 __raw_writeq(0, port
);
1479 port
+= sizeof(uint64_t);
1483 * Clear out the DMA Channel mapping table registers
1486 port
= s
->sbm_base
+ R_MAC_CHUP0_BASE
;
1487 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1488 __raw_writeq(0, port
);
1489 port
+= sizeof(uint64_t);
1493 port
= s
->sbm_base
+ R_MAC_CHLO0_BASE
;
1494 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1495 __raw_writeq(0, port
);
1496 port
+= sizeof(uint64_t);
1500 * Program the hardware address. It goes into the hardware-address
1501 * register as well as the first filter register.
1504 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1506 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1507 __raw_writeq(reg
, port
);
1508 port
= s
->sbm_base
+ R_MAC_ETHERNET_ADDR
;
1510 __raw_writeq(reg
, port
);
1513 * Set the receive filter for no packets, and write values
1514 * to the various config registers
1517 __raw_writeq(0, s
->sbm_rxfilter
);
1518 __raw_writeq(0, s
->sbm_imr
);
1519 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1520 __raw_writeq(fifo
, s
->sbm_fifocfg
);
1521 __raw_writeq(cfg
, s
->sbm_maccfg
);
1524 * Initialize DMA channels (rings should be ok now)
1527 sbdma_channel_start(&(s
->sbm_rxdma
), DMA_RX
);
1528 sbdma_channel_start(&(s
->sbm_txdma
), DMA_TX
);
1531 * Configure the speed, duplex, and flow control
1534 sbmac_set_speed(s
,s
->sbm_speed
);
1535 sbmac_set_duplex(s
,s
->sbm_duplex
,s
->sbm_fc
);
1538 * Fill the receive ring
1541 sbdma_fillring(s
, &(s
->sbm_rxdma
));
1544 * Turn on the rest of the bits in the enable register
1547 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1548 __raw_writeq(M_MAC_RXDMA_EN0
|
1549 M_MAC_TXDMA_EN0
, s
->sbm_macenable
);
1550 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1551 __raw_writeq(M_MAC_RXDMA_EN0
|
1554 M_MAC_TX_ENABLE
, s
->sbm_macenable
);
1556 #error invalid SiByte MAC configuration
1559 #ifdef CONFIG_SBMAC_COALESCE
1560 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1561 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
), s
->sbm_imr
);
1563 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1564 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), s
->sbm_imr
);
1568 * Enable receiving unicasts and broadcasts
1571 __raw_writeq(M_MAC_UCAST_EN
| M_MAC_BCAST_EN
, s
->sbm_rxfilter
);
1574 * we're running now.
1577 s
->sbm_state
= sbmac_state_on
;
1580 * Program multicast addresses
1586 * If channel was in promiscuous mode before, turn that on
1589 if (s
->sbm_devflags
& IFF_PROMISC
) {
1590 sbmac_promiscuous_mode(s
,1);
1596 /**********************************************************************
1597 * SBMAC_CHANNEL_STOP(s)
1599 * Stop packet processing on this MAC.
1602 * s - sbmac structure
1606 ********************************************************************* */
1608 static void sbmac_channel_stop(struct sbmac_softc
*s
)
1610 /* don't do this if already stopped */
1612 if (s
->sbm_state
== sbmac_state_off
)
1615 /* don't accept any packets, disable all interrupts */
1617 __raw_writeq(0, s
->sbm_rxfilter
);
1618 __raw_writeq(0, s
->sbm_imr
);
1620 /* Turn off ticker */
1624 /* turn off receiver and transmitter */
1626 __raw_writeq(0, s
->sbm_macenable
);
1628 /* We're stopped now. */
1630 s
->sbm_state
= sbmac_state_off
;
1633 * Stop DMA channels (rings should be ok now)
1636 sbdma_channel_stop(&(s
->sbm_rxdma
));
1637 sbdma_channel_stop(&(s
->sbm_txdma
));
1639 /* Empty the receive and transmit rings */
1641 sbdma_emptyring(&(s
->sbm_rxdma
));
1642 sbdma_emptyring(&(s
->sbm_txdma
));
1646 /**********************************************************************
1647 * SBMAC_SET_CHANNEL_STATE(state)
1649 * Set the channel's state ON or OFF
1656 ********************************************************************* */
1657 static enum sbmac_state
sbmac_set_channel_state(struct sbmac_softc
*sc
,
1658 enum sbmac_state state
)
1660 enum sbmac_state oldstate
= sc
->sbm_state
;
1663 * If same as previous state, return
1666 if (state
== oldstate
) {
1671 * If new state is ON, turn channel on
1674 if (state
== sbmac_state_on
) {
1675 sbmac_channel_start(sc
);
1678 sbmac_channel_stop(sc
);
1682 * Return previous state
1689 /**********************************************************************
1690 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1692 * Turn on or off promiscuous mode
1696 * onoff - 1 to turn on, 0 to turn off
1700 ********************************************************************* */
1702 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
)
1706 if (sc
->sbm_state
!= sbmac_state_on
)
1710 reg
= __raw_readq(sc
->sbm_rxfilter
);
1711 reg
|= M_MAC_ALLPKT_EN
;
1712 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1715 reg
= __raw_readq(sc
->sbm_rxfilter
);
1716 reg
&= ~M_MAC_ALLPKT_EN
;
1717 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1721 /**********************************************************************
1722 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1724 * Set the iphdr offset as 15 assuming ethernet encapsulation
1731 ********************************************************************* */
1733 static void sbmac_set_iphdr_offset(struct sbmac_softc
*sc
)
1737 /* Hard code the off set to 15 for now */
1738 reg
= __raw_readq(sc
->sbm_rxfilter
);
1739 reg
&= ~M_MAC_IPHDR_OFFSET
| V_MAC_IPHDR_OFFSET(15);
1740 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1742 /* BCM1250 pass1 didn't have hardware checksum. Everything
1744 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2) {
1745 sc
->rx_hw_checksum
= DISABLE
;
1747 sc
->rx_hw_checksum
= ENABLE
;
1752 /**********************************************************************
1753 * SBMAC_ADDR2REG(ptr)
1755 * Convert six bytes into the 64-bit register value that
1756 * we typically write into the SBMAC's address/mcast registers
1759 * ptr - pointer to 6 bytes
1763 ********************************************************************* */
1765 static uint64_t sbmac_addr2reg(unsigned char *ptr
)
1771 reg
|= (uint64_t) *(--ptr
);
1773 reg
|= (uint64_t) *(--ptr
);
1775 reg
|= (uint64_t) *(--ptr
);
1777 reg
|= (uint64_t) *(--ptr
);
1779 reg
|= (uint64_t) *(--ptr
);
1781 reg
|= (uint64_t) *(--ptr
);
1787 /**********************************************************************
1788 * SBMAC_SET_SPEED(s,speed)
1790 * Configure LAN speed for the specified MAC.
1791 * Warning: must be called when MAC is off!
1794 * s - sbmac structure
1795 * speed - speed to set MAC to (see enum sbmac_speed)
1799 * 0 indicates invalid parameters
1800 ********************************************************************* */
1802 static int sbmac_set_speed(struct sbmac_softc
*s
, enum sbmac_speed speed
)
1808 * Save new current values
1811 s
->sbm_speed
= speed
;
1813 if (s
->sbm_state
== sbmac_state_on
)
1814 return 0; /* save for next restart */
1817 * Read current register values
1820 cfg
= __raw_readq(s
->sbm_maccfg
);
1821 framecfg
= __raw_readq(s
->sbm_framecfg
);
1824 * Mask out the stuff we want to change
1827 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1828 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1832 * Now add in the new bits
1836 case sbmac_speed_10
:
1837 framecfg
|= V_MAC_IFG_RX_10
|
1839 K_MAC_IFG_THRSH_10
|
1841 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1844 case sbmac_speed_100
:
1845 framecfg
|= V_MAC_IFG_RX_100
|
1847 V_MAC_IFG_THRSH_100
|
1848 V_MAC_SLOT_SIZE_100
;
1849 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1852 case sbmac_speed_1000
:
1853 framecfg
|= V_MAC_IFG_RX_1000
|
1855 V_MAC_IFG_THRSH_1000
|
1856 V_MAC_SLOT_SIZE_1000
;
1857 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1865 * Send the bits back to the hardware
1868 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1869 __raw_writeq(cfg
, s
->sbm_maccfg
);
1874 /**********************************************************************
1875 * SBMAC_SET_DUPLEX(s,duplex,fc)
1877 * Set Ethernet duplex and flow control options for this MAC
1878 * Warning: must be called when MAC is off!
1881 * s - sbmac structure
1882 * duplex - duplex setting (see enum sbmac_duplex)
1883 * fc - flow control setting (see enum sbmac_fc)
1887 * 0 if an invalid parameter combination was specified
1888 ********************************************************************* */
1890 static int sbmac_set_duplex(struct sbmac_softc
*s
, enum sbmac_duplex duplex
,
1896 * Save new current values
1899 s
->sbm_duplex
= duplex
;
1902 if (s
->sbm_state
== sbmac_state_on
)
1903 return 0; /* save for next restart */
1906 * Read current register values
1909 cfg
= __raw_readq(s
->sbm_maccfg
);
1912 * Mask off the stuff we're about to change
1915 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
1919 case sbmac_duplex_half
:
1921 case sbmac_fc_disabled
:
1922 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
1925 case sbmac_fc_collision
:
1926 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
1929 case sbmac_fc_carrier
:
1930 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
1933 case sbmac_fc_frame
: /* not valid in half duplex */
1934 default: /* invalid selection */
1939 case sbmac_duplex_full
:
1941 case sbmac_fc_disabled
:
1942 cfg
|= V_MAC_FC_CMD_DISABLED
;
1945 case sbmac_fc_frame
:
1946 cfg
|= V_MAC_FC_CMD_ENABLED
;
1949 case sbmac_fc_collision
: /* not valid in full duplex */
1950 case sbmac_fc_carrier
: /* not valid in full duplex */
1960 * Send the bits back to the hardware
1963 __raw_writeq(cfg
, s
->sbm_maccfg
);
1971 /**********************************************************************
1974 * Interrupt handler for MAC interrupts
1981 ********************************************************************* */
1982 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
)
1984 struct net_device
*dev
= (struct net_device
*) dev_instance
;
1985 struct sbmac_softc
*sc
= netdev_priv(dev
);
1990 * Read the ISR (this clears the bits in the real
1991 * register, except for counter addr)
1994 isr
= __raw_readq(sc
->sbm_isr
) & ~M_MAC_COUNTER_ADDR
;
1997 return IRQ_RETVAL(0);
2001 * Transmits on channel 0
2004 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
))
2005 sbdma_tx_process(sc
,&(sc
->sbm_txdma
), 0);
2007 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
2008 if (napi_schedule_prep(&sc
->napi
)) {
2009 __raw_writeq(0, sc
->sbm_imr
);
2010 __napi_schedule(&sc
->napi
);
2011 /* Depend on the exit from poll to reenable intr */
2014 /* may leave some packets behind */
2015 sbdma_rx_process(sc
,&(sc
->sbm_rxdma
),
2016 SBMAC_MAX_RXDESCR
* 2, 0);
2019 return IRQ_RETVAL(handled
);
2022 /**********************************************************************
2023 * SBMAC_START_TX(skb,dev)
2025 * Start output on the specified interface. Basically, we
2026 * queue as many buffers as we can until the ring fills up, or
2027 * we run off the end of the queue, whichever comes first.
2034 ********************************************************************* */
2035 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2037 struct sbmac_softc
*sc
= netdev_priv(dev
);
2038 unsigned long flags
;
2041 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2044 * Put the buffer on the transmit ring. If we
2045 * don't have room, stop the queue.
2048 if (sbdma_add_txbuffer(&(sc
->sbm_txdma
),skb
)) {
2049 /* XXX save skb that we could not send */
2050 netif_stop_queue(dev
);
2051 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2053 return NETDEV_TX_BUSY
;
2056 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2058 return NETDEV_TX_OK
;
2061 /**********************************************************************
2062 * SBMAC_SETMULTI(sc)
2064 * Reprogram the multicast table into the hardware, given
2065 * the list of multicasts associated with the interface
2073 ********************************************************************* */
2075 static void sbmac_setmulti(struct sbmac_softc
*sc
)
2080 struct netdev_hw_addr
*ha
;
2081 struct net_device
*dev
= sc
->sbm_dev
;
2084 * Clear out entire multicast table. We do this by nuking
2085 * the entire hash table and all the direct matches except
2086 * the first one, which is used for our station address
2089 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
2090 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t));
2091 __raw_writeq(0, port
);
2094 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
2095 port
= sc
->sbm_base
+ R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t));
2096 __raw_writeq(0, port
);
2100 * Clear the filter to say we don't want any multicasts.
2103 reg
= __raw_readq(sc
->sbm_rxfilter
);
2104 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2105 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2107 if (dev
->flags
& IFF_ALLMULTI
) {
2109 * Enable ALL multicasts. Do this by inverting the
2110 * multicast enable bit.
2112 reg
= __raw_readq(sc
->sbm_rxfilter
);
2113 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2114 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2120 * Progam new multicast entries. For now, only use the
2121 * perfect filter. In the future we'll need to use the
2122 * hash filter if the perfect filter overflows
2125 /* XXX only using perfect filter for now, need to use hash
2126 * XXX if the table overflows */
2128 idx
= 1; /* skip station address */
2129 netdev_for_each_mc_addr(ha
, dev
) {
2130 if (idx
== MAC_ADDR_COUNT
)
2132 reg
= sbmac_addr2reg(ha
->addr
);
2133 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
* sizeof(uint64_t));
2134 __raw_writeq(reg
, port
);
2139 * Enable the "accept multicast bits" if we programmed at least one
2144 reg
= __raw_readq(sc
->sbm_rxfilter
);
2145 reg
|= M_MAC_MCAST_EN
;
2146 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2150 static int sb1250_change_mtu(struct net_device
*_dev
, int new_mtu
)
2152 if (new_mtu
> ENET_PACKET_SIZE
)
2154 _dev
->mtu
= new_mtu
;
2155 pr_info("changing the mtu to %d\n", new_mtu
);
2159 static const struct net_device_ops sbmac_netdev_ops
= {
2160 .ndo_open
= sbmac_open
,
2161 .ndo_stop
= sbmac_close
,
2162 .ndo_start_xmit
= sbmac_start_tx
,
2163 .ndo_set_rx_mode
= sbmac_set_rx_mode
,
2164 .ndo_tx_timeout
= sbmac_tx_timeout
,
2165 .ndo_do_ioctl
= sbmac_mii_ioctl
,
2166 .ndo_change_mtu
= sb1250_change_mtu
,
2167 .ndo_validate_addr
= eth_validate_addr
,
2168 .ndo_set_mac_address
= eth_mac_addr
,
2169 #ifdef CONFIG_NET_POLL_CONTROLLER
2170 .ndo_poll_controller
= sbmac_netpoll
,
2174 /**********************************************************************
2177 * Attach routine - init hardware and hook ourselves into linux
2180 * dev - net_device structure
2184 ********************************************************************* */
2186 static int sbmac_init(struct platform_device
*pldev
, long long base
)
2188 struct net_device
*dev
= platform_get_drvdata(pldev
);
2189 int idx
= pldev
->id
;
2190 struct sbmac_softc
*sc
= netdev_priv(dev
);
2191 unsigned char *eaddr
;
2199 eaddr
= sc
->sbm_hwaddr
;
2202 * Read the ethernet address. The firmware left this programmed
2203 * for us in the ethernet address register for each mac.
2206 ea_reg
= __raw_readq(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2207 __raw_writeq(0, sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2208 for (i
= 0; i
< 6; i
++) {
2209 eaddr
[i
] = (uint8_t) (ea_reg
& 0xFF);
2213 for (i
= 0; i
< 6; i
++) {
2214 dev
->dev_addr
[i
] = eaddr
[i
];
2218 * Initialize context (get pointers to registers and stuff), then
2219 * allocate the memory for the descriptor tables.
2225 * Set up Linux device callins
2228 spin_lock_init(&(sc
->sbm_lock
));
2230 dev
->netdev_ops
= &sbmac_netdev_ops
;
2231 dev
->watchdog_timeo
= TX_TIMEOUT
;
2233 netif_napi_add(dev
, &sc
->napi
, sbmac_poll
, 16);
2235 dev
->irq
= UNIT_INT(idx
);
2237 /* This is needed for PASS2 for Rx H/W checksum feature */
2238 sbmac_set_iphdr_offset(sc
);
2240 sc
->mii_bus
= mdiobus_alloc();
2241 if (sc
->mii_bus
== NULL
) {
2246 sc
->mii_bus
->name
= sbmac_mdio_string
;
2247 snprintf(sc
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2249 sc
->mii_bus
->priv
= sc
;
2250 sc
->mii_bus
->read
= sbmac_mii_read
;
2251 sc
->mii_bus
->write
= sbmac_mii_write
;
2253 sc
->mii_bus
->parent
= &pldev
->dev
;
2257 err
= mdiobus_register(sc
->mii_bus
);
2259 printk(KERN_ERR
"%s: unable to register MDIO bus\n",
2263 platform_set_drvdata(pldev
, sc
->mii_bus
);
2265 err
= register_netdev(dev
);
2267 printk(KERN_ERR
"%s.%d: unable to register netdev\n",
2272 pr_info("%s.%d: registered as %s\n", sbmac_string
, idx
, dev
->name
);
2274 if (sc
->rx_hw_checksum
== ENABLE
)
2275 pr_info("%s: enabling TCP rcv checksum\n", dev
->name
);
2278 * Display Ethernet address (this is called during the config
2279 * process so we need to finish off the config message that
2280 * was being displayed)
2282 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2283 dev
->name
, base
, eaddr
);
2287 mdiobus_unregister(sc
->mii_bus
);
2289 mdiobus_free(sc
->mii_bus
);
2291 sbmac_uninitctx(sc
);
2296 static int sbmac_open(struct net_device
*dev
)
2298 struct sbmac_softc
*sc
= netdev_priv(dev
);
2302 pr_debug("%s: sbmac_open() irq %d.\n", dev
->name
, dev
->irq
);
2305 * map/route interrupt (clear status first, in case something
2306 * weird is pending; we haven't initialized the mac registers
2310 __raw_readq(sc
->sbm_isr
);
2311 err
= request_irq(dev
->irq
, sbmac_intr
, IRQF_SHARED
, dev
->name
, dev
);
2313 printk(KERN_ERR
"%s: unable to get IRQ %d\n", dev
->name
,
2318 sc
->sbm_speed
= sbmac_speed_none
;
2319 sc
->sbm_duplex
= sbmac_duplex_none
;
2320 sc
->sbm_fc
= sbmac_fc_none
;
2327 err
= sbmac_mii_probe(dev
);
2329 goto out_unregister
;
2332 * Turn on the channel
2335 sbmac_set_channel_state(sc
,sbmac_state_on
);
2337 netif_start_queue(dev
);
2339 sbmac_set_rx_mode(dev
);
2341 phy_start(sc
->phy_dev
);
2343 napi_enable(&sc
->napi
);
2348 free_irq(dev
->irq
, dev
);
2353 static int sbmac_mii_probe(struct net_device
*dev
)
2355 struct sbmac_softc
*sc
= netdev_priv(dev
);
2356 struct phy_device
*phy_dev
;
2358 phy_dev
= phy_find_first(sc
->mii_bus
);
2360 printk(KERN_ERR
"%s: no PHY found\n", dev
->name
);
2364 phy_dev
= phy_connect(dev
, dev_name(&phy_dev
->mdio
.dev
),
2365 &sbmac_mii_poll
, PHY_INTERFACE_MODE_GMII
);
2366 if (IS_ERR(phy_dev
)) {
2367 printk(KERN_ERR
"%s: could not attach to PHY\n", dev
->name
);
2368 return PTR_ERR(phy_dev
);
2371 /* Remove any features not supported by the controller */
2372 phy_dev
->supported
&= SUPPORTED_10baseT_Half
|
2373 SUPPORTED_10baseT_Full
|
2374 SUPPORTED_100baseT_Half
|
2375 SUPPORTED_100baseT_Full
|
2376 SUPPORTED_1000baseT_Half
|
2377 SUPPORTED_1000baseT_Full
|
2381 SUPPORTED_Asym_Pause
;
2383 phy_attached_info(phy_dev
);
2385 phy_dev
->advertising
= phy_dev
->supported
;
2387 sc
->phy_dev
= phy_dev
;
2393 static void sbmac_mii_poll(struct net_device
*dev
)
2395 struct sbmac_softc
*sc
= netdev_priv(dev
);
2396 struct phy_device
*phy_dev
= sc
->phy_dev
;
2397 unsigned long flags
;
2399 int link_chg
, speed_chg
, duplex_chg
, pause_chg
, fc_chg
;
2401 link_chg
= (sc
->sbm_link
!= phy_dev
->link
);
2402 speed_chg
= (sc
->sbm_speed
!= phy_dev
->speed
);
2403 duplex_chg
= (sc
->sbm_duplex
!= phy_dev
->duplex
);
2404 pause_chg
= (sc
->sbm_pause
!= phy_dev
->pause
);
2406 if (!link_chg
&& !speed_chg
&& !duplex_chg
&& !pause_chg
)
2407 return; /* Hmmm... */
2409 if (!phy_dev
->link
) {
2411 sc
->sbm_link
= phy_dev
->link
;
2412 sc
->sbm_speed
= sbmac_speed_none
;
2413 sc
->sbm_duplex
= sbmac_duplex_none
;
2414 sc
->sbm_fc
= sbmac_fc_disabled
;
2416 pr_info("%s: link unavailable\n", dev
->name
);
2421 if (phy_dev
->duplex
== DUPLEX_FULL
) {
2423 fc
= sbmac_fc_frame
;
2425 fc
= sbmac_fc_disabled
;
2427 fc
= sbmac_fc_collision
;
2428 fc_chg
= (sc
->sbm_fc
!= fc
);
2430 pr_info("%s: link available: %dbase-%cD\n", dev
->name
, phy_dev
->speed
,
2431 phy_dev
->duplex
== DUPLEX_FULL
? 'F' : 'H');
2433 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2435 sc
->sbm_speed
= phy_dev
->speed
;
2436 sc
->sbm_duplex
= phy_dev
->duplex
;
2438 sc
->sbm_pause
= phy_dev
->pause
;
2439 sc
->sbm_link
= phy_dev
->link
;
2441 if ((speed_chg
|| duplex_chg
|| fc_chg
) &&
2442 sc
->sbm_state
!= sbmac_state_off
) {
2444 * something changed, restart the channel
2447 pr_debug("%s: restarting channel "
2448 "because PHY state changed\n", dev
->name
);
2449 sbmac_channel_stop(sc
);
2450 sbmac_channel_start(sc
);
2453 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2457 static void sbmac_tx_timeout (struct net_device
*dev
)
2459 struct sbmac_softc
*sc
= netdev_priv(dev
);
2460 unsigned long flags
;
2462 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2465 netif_trans_update(dev
); /* prevent tx timeout */
2466 dev
->stats
.tx_errors
++;
2468 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2470 printk (KERN_WARNING
"%s: Transmit timed out\n",dev
->name
);
2476 static void sbmac_set_rx_mode(struct net_device
*dev
)
2478 unsigned long flags
;
2479 struct sbmac_softc
*sc
= netdev_priv(dev
);
2481 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2482 if ((dev
->flags
^ sc
->sbm_devflags
) & IFF_PROMISC
) {
2484 * Promiscuous changed.
2487 if (dev
->flags
& IFF_PROMISC
) {
2488 sbmac_promiscuous_mode(sc
,1);
2491 sbmac_promiscuous_mode(sc
,0);
2494 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2497 * Program the multicasts. Do this every time.
2504 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2506 struct sbmac_softc
*sc
= netdev_priv(dev
);
2508 if (!netif_running(dev
) || !sc
->phy_dev
)
2511 return phy_mii_ioctl(sc
->phy_dev
, rq
, cmd
);
2514 static int sbmac_close(struct net_device
*dev
)
2516 struct sbmac_softc
*sc
= netdev_priv(dev
);
2518 napi_disable(&sc
->napi
);
2520 phy_stop(sc
->phy_dev
);
2522 sbmac_set_channel_state(sc
, sbmac_state_off
);
2524 netif_stop_queue(dev
);
2527 pr_debug("%s: Shutting down ethercard\n", dev
->name
);
2529 phy_disconnect(sc
->phy_dev
);
2531 free_irq(dev
->irq
, dev
);
2533 sbdma_emptyring(&(sc
->sbm_txdma
));
2534 sbdma_emptyring(&(sc
->sbm_rxdma
));
2539 static int sbmac_poll(struct napi_struct
*napi
, int budget
)
2541 struct sbmac_softc
*sc
= container_of(napi
, struct sbmac_softc
, napi
);
2544 work_done
= sbdma_rx_process(sc
, &(sc
->sbm_rxdma
), budget
, 1);
2545 sbdma_tx_process(sc
, &(sc
->sbm_txdma
), 1);
2547 if (work_done
< budget
) {
2548 napi_complete(napi
);
2550 #ifdef CONFIG_SBMAC_COALESCE
2551 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
2552 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
),
2555 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
2556 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), sc
->sbm_imr
);
2564 static int sbmac_probe(struct platform_device
*pldev
)
2566 struct net_device
*dev
;
2567 struct sbmac_softc
*sc
;
2568 void __iomem
*sbm_base
;
2569 struct resource
*res
;
2570 u64 sbmac_orig_hwaddr
;
2573 res
= platform_get_resource(pldev
, IORESOURCE_MEM
, 0);
2575 sbm_base
= ioremap_nocache(res
->start
, resource_size(res
));
2577 printk(KERN_ERR
"%s: unable to map device registers\n",
2578 dev_name(&pldev
->dev
));
2584 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2585 * value for us by the firmware if we're going to use this MAC.
2586 * If we find a zero, skip this MAC.
2588 sbmac_orig_hwaddr
= __raw_readq(sbm_base
+ R_MAC_ETHERNET_ADDR
);
2589 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev
->dev
),
2590 sbmac_orig_hwaddr
? "" : "not ", (long long)res
->start
);
2591 if (sbmac_orig_hwaddr
== 0) {
2597 * Okay, cool. Initialize this MAC.
2599 dev
= alloc_etherdev(sizeof(struct sbmac_softc
));
2605 platform_set_drvdata(pldev
, dev
);
2606 SET_NETDEV_DEV(dev
, &pldev
->dev
);
2608 sc
= netdev_priv(dev
);
2609 sc
->sbm_base
= sbm_base
;
2611 err
= sbmac_init(pldev
, res
->start
);
2619 __raw_writeq(sbmac_orig_hwaddr
, sbm_base
+ R_MAC_ETHERNET_ADDR
);
2628 static int __exit
sbmac_remove(struct platform_device
*pldev
)
2630 struct net_device
*dev
= platform_get_drvdata(pldev
);
2631 struct sbmac_softc
*sc
= netdev_priv(dev
);
2633 unregister_netdev(dev
);
2634 sbmac_uninitctx(sc
);
2635 mdiobus_unregister(sc
->mii_bus
);
2636 mdiobus_free(sc
->mii_bus
);
2637 iounmap(sc
->sbm_base
);
2643 static struct platform_driver sbmac_driver
= {
2644 .probe
= sbmac_probe
,
2645 .remove
= __exit_p(sbmac_remove
),
2647 .name
= sbmac_string
,
2651 module_platform_driver(sbmac_driver
);