1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
31 static s32
fm10k_reset_hw_pf(struct fm10k_hw
*hw
)
37 /* Disable interrupts */
38 fm10k_write_reg(hw
, FM10K_EIMR
, FM10K_EIMR_DISABLE(ALL
));
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw
, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw
, FM10K_INT_CTRL
, 0);
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i
= 0; i
< FM10K_TQMAP_TABLE_SIZE
; i
++) {
48 fm10k_write_reg(hw
, FM10K_TQMAP(i
), 0);
49 fm10k_write_reg(hw
, FM10K_RQMAP(i
), 0);
52 /* shut down all rings */
53 err
= fm10k_disable_queues_generic(hw
, FM10K_MAX_QUEUES
);
54 if (err
== FM10K_ERR_REQUESTS_PENDING
) {
55 hw
->mac
.reset_while_pending
++;
61 /* Verify that DMA is no longer active */
62 reg
= fm10k_read_reg(hw
, FM10K_DMA_CTRL
);
63 if (reg
& (FM10K_DMA_CTRL_TX_ACTIVE
| FM10K_DMA_CTRL_RX_ACTIVE
))
64 return FM10K_ERR_DMA_PENDING
;
67 /* Inititate data path reset */
68 reg
= FM10K_DMA_CTRL_DATAPATH_RESET
;
69 fm10k_write_reg(hw
, FM10K_DMA_CTRL
, reg
);
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw
);
73 udelay(FM10K_RESET_TIMEOUT
);
75 /* Reset mailbox global interrupts */
76 reg
= FM10K_MBX_GLOBAL_REQ_INTERRUPT
| FM10K_MBX_GLOBAL_ACK_INTERRUPT
;
77 fm10k_write_reg(hw
, FM10K_GMBX
, reg
);
79 /* Verify we made it out of reset */
80 reg
= fm10k_read_reg(hw
, FM10K_IP
);
81 if (!(reg
& FM10K_IP_NOTINRESET
))
82 return FM10K_ERR_RESET_FAILED
;
88 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
89 * @hw: pointer to hardware structure
91 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
93 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw
*hw
)
95 u16 sriov_ctrl
= fm10k_read_pci_cfg_word(hw
, FM10K_PCIE_SRIOV_CTRL
);
97 return !!(sriov_ctrl
& FM10K_PCIE_SRIOV_CTRL_VFARI
);
101 * fm10k_init_hw_pf - PF hardware initialization
102 * @hw: pointer to hardware structure
105 static s32
fm10k_init_hw_pf(struct fm10k_hw
*hw
)
107 u32 dma_ctrl
, txqctl
;
110 /* Establish default VSI as valid */
111 fm10k_write_reg(hw
, FM10K_DGLORTDEC(fm10k_dglort_default
), 0);
112 fm10k_write_reg(hw
, FM10K_DGLORTMAP(fm10k_dglort_default
),
113 FM10K_DGLORTMAP_ANY
);
115 /* Invalidate all other GLORT entries */
116 for (i
= 1; i
< FM10K_DGLORT_COUNT
; i
++)
117 fm10k_write_reg(hw
, FM10K_DGLORTMAP(i
), FM10K_DGLORTMAP_NONE
);
119 /* reset ITR2(0) to point to itself */
120 fm10k_write_reg(hw
, FM10K_ITR2(0), 0);
122 /* reset VF ITR2(0) to point to 0 avoid PF registers */
123 fm10k_write_reg(hw
, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF
), 0);
125 /* loop through all PF ITR2 registers pointing them to the previous */
126 for (i
= 1; i
< FM10K_ITR_REG_COUNT_PF
; i
++)
127 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- 1);
129 /* Enable interrupt moderator if not already enabled */
130 fm10k_write_reg(hw
, FM10K_INT_CTRL
, FM10K_INT_CTRL_ENABLEMODERATOR
);
132 /* compute the default txqctl configuration */
133 txqctl
= FM10K_TXQCTL_PF
| FM10K_TXQCTL_UNLIMITED_BW
|
134 (hw
->mac
.default_vid
<< FM10K_TXQCTL_VID_SHIFT
);
136 for (i
= 0; i
< FM10K_MAX_QUEUES
; i
++) {
137 /* configure rings for 256 Queue / 32 Descriptor cache mode */
138 fm10k_write_reg(hw
, FM10K_TQDLOC(i
),
139 (i
* FM10K_TQDLOC_BASE_32_DESC
) |
140 FM10K_TQDLOC_SIZE_32_DESC
);
141 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), txqctl
);
143 /* configure rings to provide TPH processing hints */
144 fm10k_write_reg(hw
, FM10K_TPH_TXCTRL(i
),
145 FM10K_TPH_TXCTRL_DESC_TPHEN
|
146 FM10K_TPH_TXCTRL_DESC_RROEN
|
147 FM10K_TPH_TXCTRL_DESC_WROEN
|
148 FM10K_TPH_TXCTRL_DATA_RROEN
);
149 fm10k_write_reg(hw
, FM10K_TPH_RXCTRL(i
),
150 FM10K_TPH_RXCTRL_DESC_TPHEN
|
151 FM10K_TPH_RXCTRL_DESC_RROEN
|
152 FM10K_TPH_RXCTRL_DATA_WROEN
|
153 FM10K_TPH_RXCTRL_HDR_WROEN
);
156 /* set max hold interval to align with 1.024 usec in all modes and
159 switch (hw
->bus
.speed
) {
160 case fm10k_bus_speed_2500
:
161 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1
;
162 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN1
;
164 case fm10k_bus_speed_5000
:
165 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2
;
166 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN2
;
168 case fm10k_bus_speed_8000
:
169 dma_ctrl
= FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3
;
170 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN3
;
174 /* just in case, assume Gen3 ITR scale */
175 hw
->mac
.itr_scale
= FM10K_TDLEN_ITR_SCALE_GEN3
;
179 /* Configure TSO flags */
180 fm10k_write_reg(hw
, FM10K_DTXTCPFLGL
, FM10K_TSO_FLAGS_LOW
);
181 fm10k_write_reg(hw
, FM10K_DTXTCPFLGH
, FM10K_TSO_FLAGS_HI
);
184 * Set Rx Descriptor size to 32
185 * Set Minimum MSS to 64
186 * Set Maximum number of Rx queues to 256 / 32 Descriptor
188 dma_ctrl
|= FM10K_DMA_CTRL_TX_ENABLE
| FM10K_DMA_CTRL_RX_ENABLE
|
189 FM10K_DMA_CTRL_RX_DESC_SIZE
| FM10K_DMA_CTRL_MINMSS_64
|
190 FM10K_DMA_CTRL_32_DESC
;
192 fm10k_write_reg(hw
, FM10K_DMA_CTRL
, dma_ctrl
);
194 /* record maximum queue count, we limit ourselves to 128 */
195 hw
->mac
.max_queues
= FM10K_MAX_QUEUES_PF
;
197 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
198 hw
->iov
.total_vfs
= fm10k_is_ari_hierarchy_pf(hw
) ? 64 : 7;
204 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
205 * @hw: pointer to hardware structure
206 * @vid: VLAN ID to add to table
207 * @vsi: Index indicating VF ID or PF ID in table
208 * @set: Indicates if this is a set or clear operation
210 * This function adds or removes the corresponding VLAN ID from the VLAN
211 * filter table for the corresponding function. In addition to the
212 * standard set/clear that supports one bit a multi-bit write is
213 * supported to set 64 bits at a time.
215 static s32
fm10k_update_vlan_pf(struct fm10k_hw
*hw
, u32 vid
, u8 vsi
, bool set
)
217 u32 vlan_table
, reg
, mask
, bit
, len
;
219 /* verify the VSI index is valid */
220 if (vsi
> FM10K_VLAN_TABLE_VSI_MAX
)
221 return FM10K_ERR_PARAM
;
223 /* VLAN multi-bit write:
224 * The multi-bit write has several parts to it.
226 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
227 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 * | RSVD0 | Length |C|RSVD0| VLAN ID |
229 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
231 * VLAN ID: Vlan Starting value
232 * RSVD0: Reserved section, must be 0
233 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
234 * Length: Number of times to repeat the bit being set
237 vid
= (vid
<< 17) >> 17;
239 /* verify the reserved 0 fields are 0 */
240 if (len
>= FM10K_VLAN_TABLE_VID_MAX
|| vid
>= FM10K_VLAN_TABLE_VID_MAX
)
241 return FM10K_ERR_PARAM
;
243 /* Loop through the table updating all required VLANs */
244 for (reg
= FM10K_VLAN_TABLE(vsi
, vid
/ 32), bit
= vid
% 32;
245 len
< FM10K_VLAN_TABLE_VID_MAX
;
246 len
-= 32 - bit
, reg
++, bit
= 0) {
247 /* record the initial state of the register */
248 vlan_table
= fm10k_read_reg(hw
, reg
);
250 /* truncate mask if we are at the start or end of the run */
251 mask
= (~(u32
)0 >> ((len
< 31) ? 31 - len
: 0)) << bit
;
253 /* make necessary modifications to the register */
254 mask
&= set
? ~vlan_table
: vlan_table
;
256 fm10k_write_reg(hw
, reg
, vlan_table
^ mask
);
263 * fm10k_read_mac_addr_pf - Read device MAC address
264 * @hw: pointer to the HW structure
266 * Reads the device MAC address from the SM_AREA and stores the value.
268 static s32
fm10k_read_mac_addr_pf(struct fm10k_hw
*hw
)
270 u8 perm_addr
[ETH_ALEN
];
273 serial_num
= fm10k_read_reg(hw
, FM10K_SM_AREA(1));
275 /* last byte should be all 1's */
276 if ((~serial_num
) << 24)
277 return FM10K_ERR_INVALID_MAC_ADDR
;
279 perm_addr
[0] = (u8
)(serial_num
>> 24);
280 perm_addr
[1] = (u8
)(serial_num
>> 16);
281 perm_addr
[2] = (u8
)(serial_num
>> 8);
283 serial_num
= fm10k_read_reg(hw
, FM10K_SM_AREA(0));
285 /* first byte should be all 1's */
286 if ((~serial_num
) >> 24)
287 return FM10K_ERR_INVALID_MAC_ADDR
;
289 perm_addr
[3] = (u8
)(serial_num
>> 16);
290 perm_addr
[4] = (u8
)(serial_num
>> 8);
291 perm_addr
[5] = (u8
)(serial_num
);
293 ether_addr_copy(hw
->mac
.perm_addr
, perm_addr
);
294 ether_addr_copy(hw
->mac
.addr
, perm_addr
);
300 * fm10k_glort_valid_pf - Validate that the provided glort is valid
301 * @hw: pointer to the HW structure
302 * @glort: base glort to be validated
304 * This function will return an error if the provided glort is invalid
306 bool fm10k_glort_valid_pf(struct fm10k_hw
*hw
, u16 glort
)
308 glort
&= hw
->mac
.dglort_map
>> FM10K_DGLORTMAP_MASK_SHIFT
;
310 return glort
== (hw
->mac
.dglort_map
& FM10K_DGLORTMAP_NONE
);
314 * fm10k_update_xc_addr_pf - Update device addresses
315 * @hw: pointer to the HW structure
316 * @glort: base resource tag for this request
317 * @mac: MAC address to add/remove from table
318 * @vid: VLAN ID to add/remove from table
319 * @add: Indicates if this is an add or remove operation
320 * @flags: flags field to indicate add and secure
322 * This function generates a message to the Switch API requesting
323 * that the given logical port add/remove the given L2 MAC/VLAN address.
325 static s32
fm10k_update_xc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
326 const u8
*mac
, u16 vid
, bool add
, u8 flags
)
328 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
329 struct fm10k_mac_update mac_update
;
332 /* clear set bit from VLAN ID */
333 vid
&= ~FM10K_VLAN_CLEAR
;
335 /* if glort or VLAN are not valid return error */
336 if (!fm10k_glort_valid_pf(hw
, glort
) || vid
>= FM10K_VLAN_TABLE_VID_MAX
)
337 return FM10K_ERR_PARAM
;
340 mac_update
.mac_lower
= cpu_to_le32(((u32
)mac
[2] << 24) |
341 ((u32
)mac
[3] << 16) |
344 mac_update
.mac_upper
= cpu_to_le16(((u16
)mac
[0] << 8) |
346 mac_update
.vlan
= cpu_to_le16(vid
);
347 mac_update
.glort
= cpu_to_le16(glort
);
348 mac_update
.action
= add
? 0 : 1;
349 mac_update
.flags
= flags
;
351 /* populate mac_update fields */
352 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE
);
353 fm10k_tlv_attr_put_le_struct(msg
, FM10K_PF_ATTR_ID_MAC_UPDATE
,
354 &mac_update
, sizeof(mac_update
));
356 /* load onto outgoing mailbox */
357 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
361 * fm10k_update_uc_addr_pf - Update device unicast addresses
362 * @hw: pointer to the HW structure
363 * @glort: base resource tag for this request
364 * @mac: MAC address to add/remove from table
365 * @vid: VLAN ID to add/remove from table
366 * @add: Indicates if this is an add or remove operation
367 * @flags: flags field to indicate add and secure
369 * This function is used to add or remove unicast addresses for
372 static s32
fm10k_update_uc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
373 const u8
*mac
, u16 vid
, bool add
, u8 flags
)
375 /* verify MAC address is valid */
376 if (!is_valid_ether_addr(mac
))
377 return FM10K_ERR_PARAM
;
379 return fm10k_update_xc_addr_pf(hw
, glort
, mac
, vid
, add
, flags
);
383 * fm10k_update_mc_addr_pf - Update device multicast addresses
384 * @hw: pointer to the HW structure
385 * @glort: base resource tag for this request
386 * @mac: MAC address to add/remove from table
387 * @vid: VLAN ID to add/remove from table
388 * @add: Indicates if this is an add or remove operation
390 * This function is used to add or remove multicast MAC addresses for
393 static s32
fm10k_update_mc_addr_pf(struct fm10k_hw
*hw
, u16 glort
,
394 const u8
*mac
, u16 vid
, bool add
)
396 /* verify multicast address is valid */
397 if (!is_multicast_ether_addr(mac
))
398 return FM10K_ERR_PARAM
;
400 return fm10k_update_xc_addr_pf(hw
, glort
, mac
, vid
, add
, 0);
404 * fm10k_update_xcast_mode_pf - Request update of multicast mode
405 * @hw: pointer to hardware structure
406 * @glort: base resource tag for this request
407 * @mode: integer value indicating mode being requested
409 * This function will attempt to request a higher mode for the port
410 * so that it can enable either multicast, multicast promiscuous, or
411 * promiscuous mode of operation.
413 static s32
fm10k_update_xcast_mode_pf(struct fm10k_hw
*hw
, u16 glort
, u8 mode
)
415 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
416 u32 msg
[3], xcast_mode
;
418 if (mode
> FM10K_XCAST_MODE_NONE
)
419 return FM10K_ERR_PARAM
;
421 /* if glort is not valid return error */
422 if (!fm10k_glort_valid_pf(hw
, glort
))
423 return FM10K_ERR_PARAM
;
425 /* write xcast mode as a single u32 value,
426 * lower 16 bits: glort
427 * upper 16 bits: mode
429 xcast_mode
= ((u32
)mode
<< 16) | glort
;
431 /* generate message requesting to change xcast mode */
432 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_XCAST_MODES
);
433 fm10k_tlv_attr_put_u32(msg
, FM10K_PF_ATTR_ID_XCAST_MODE
, xcast_mode
);
435 /* load onto outgoing mailbox */
436 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
440 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441 * @hw: pointer to hardware structure
443 * This function walks through the MSI-X vector table to determine the
444 * number of active interrupts and based on that information updates the
445 * interrupt moderator linked list.
447 static void fm10k_update_int_moderator_pf(struct fm10k_hw
*hw
)
451 /* Disable interrupt moderator */
452 fm10k_write_reg(hw
, FM10K_INT_CTRL
, 0);
454 /* loop through PF from last to first looking enabled vectors */
455 for (i
= FM10K_ITR_REG_COUNT_PF
- 1; i
; i
--) {
456 if (!fm10k_read_reg(hw
, FM10K_MSIX_VECTOR_MASK(i
)))
460 /* always reset VFITR2[0] to point to last enabled PF vector */
461 fm10k_write_reg(hw
, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF
), i
);
463 /* reset ITR2[0] to point to last enabled PF vector */
464 if (!hw
->iov
.num_vfs
)
465 fm10k_write_reg(hw
, FM10K_ITR2(0), i
);
467 /* Enable interrupt moderator */
468 fm10k_write_reg(hw
, FM10K_INT_CTRL
, FM10K_INT_CTRL_ENABLEMODERATOR
);
472 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
473 * @hw: pointer to the HW structure
474 * @glort: base resource tag for this request
475 * @count: number of logical ports being updated
476 * @enable: boolean value indicating enable or disable
478 * This function is used to add/remove a logical port from the switch.
480 static s32
fm10k_update_lport_state_pf(struct fm10k_hw
*hw
, u16 glort
,
481 u16 count
, bool enable
)
483 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
484 u32 msg
[3], lport_msg
;
486 /* do nothing if we are being asked to create or destroy 0 ports */
490 /* if glort is not valid return error */
491 if (!fm10k_glort_valid_pf(hw
, glort
))
492 return FM10K_ERR_PARAM
;
494 /* reset multicast mode if deleting lport */
496 fm10k_update_xcast_mode_pf(hw
, glort
, FM10K_XCAST_MODE_NONE
);
498 /* construct the lport message from the 2 pieces of data we have */
499 lport_msg
= ((u32
)count
<< 16) | glort
;
501 /* generate lport create/delete message */
502 fm10k_tlv_msg_init(msg
, enable
? FM10K_PF_MSG_ID_LPORT_CREATE
:
503 FM10K_PF_MSG_ID_LPORT_DELETE
);
504 fm10k_tlv_attr_put_u32(msg
, FM10K_PF_ATTR_ID_PORT
, lport_msg
);
506 /* load onto outgoing mailbox */
507 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
511 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
512 * @hw: pointer to hardware structure
513 * @dglort: pointer to dglort configuration structure
515 * Reads the configuration structure contained in dglort_cfg and uses
516 * that information to then populate a DGLORTMAP/DEC entry and the queues
517 * to which it has been assigned.
519 static s32
fm10k_configure_dglort_map_pf(struct fm10k_hw
*hw
,
520 struct fm10k_dglort_cfg
*dglort
)
522 u16 glort
, queue_count
, vsi_count
, pc_count
;
523 u16 vsi
, queue
, pc
, q_idx
;
524 u32 txqctl
, dglortdec
, dglortmap
;
526 /* verify the dglort pointer */
528 return FM10K_ERR_PARAM
;
530 /* verify the dglort values */
531 if ((dglort
->idx
> 7) || (dglort
->rss_l
> 7) || (dglort
->pc_l
> 3) ||
532 (dglort
->vsi_l
> 6) || (dglort
->vsi_b
> 64) ||
533 (dglort
->queue_l
> 8) || (dglort
->queue_b
>= 256))
534 return FM10K_ERR_PARAM
;
536 /* determine count of VSIs and queues */
537 queue_count
= BIT(dglort
->rss_l
+ dglort
->pc_l
);
538 vsi_count
= BIT(dglort
->vsi_l
+ dglort
->queue_l
);
539 glort
= dglort
->glort
;
540 q_idx
= dglort
->queue_b
;
542 /* configure SGLORT for queues */
543 for (vsi
= 0; vsi
< vsi_count
; vsi
++, glort
++) {
544 for (queue
= 0; queue
< queue_count
; queue
++, q_idx
++) {
545 if (q_idx
>= FM10K_MAX_QUEUES
)
548 fm10k_write_reg(hw
, FM10K_TX_SGLORT(q_idx
), glort
);
549 fm10k_write_reg(hw
, FM10K_RX_SGLORT(q_idx
), glort
);
553 /* determine count of PCs and queues */
554 queue_count
= BIT(dglort
->queue_l
+ dglort
->rss_l
+ dglort
->vsi_l
);
555 pc_count
= BIT(dglort
->pc_l
);
557 /* configure PC for Tx queues */
558 for (pc
= 0; pc
< pc_count
; pc
++) {
559 q_idx
= pc
+ dglort
->queue_b
;
560 for (queue
= 0; queue
< queue_count
; queue
++) {
561 if (q_idx
>= FM10K_MAX_QUEUES
)
564 txqctl
= fm10k_read_reg(hw
, FM10K_TXQCTL(q_idx
));
565 txqctl
&= ~FM10K_TXQCTL_PC_MASK
;
566 txqctl
|= pc
<< FM10K_TXQCTL_PC_SHIFT
;
567 fm10k_write_reg(hw
, FM10K_TXQCTL(q_idx
), txqctl
);
573 /* configure DGLORTDEC */
574 dglortdec
= ((u32
)(dglort
->rss_l
) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT
) |
575 ((u32
)(dglort
->queue_b
) << FM10K_DGLORTDEC_QBASE_SHIFT
) |
576 ((u32
)(dglort
->pc_l
) << FM10K_DGLORTDEC_PCLENGTH_SHIFT
) |
577 ((u32
)(dglort
->vsi_b
) << FM10K_DGLORTDEC_VSIBASE_SHIFT
) |
578 ((u32
)(dglort
->vsi_l
) << FM10K_DGLORTDEC_VSILENGTH_SHIFT
) |
579 ((u32
)(dglort
->queue_l
));
580 if (dglort
->inner_rss
)
581 dglortdec
|= FM10K_DGLORTDEC_INNERRSS_ENABLE
;
583 /* configure DGLORTMAP */
584 dglortmap
= (dglort
->idx
== fm10k_dglort_default
) ?
585 FM10K_DGLORTMAP_ANY
: FM10K_DGLORTMAP_ZERO
;
586 dglortmap
<<= dglort
->vsi_l
+ dglort
->queue_l
+ dglort
->shared_l
;
587 dglortmap
|= dglort
->glort
;
589 /* write values to hardware */
590 fm10k_write_reg(hw
, FM10K_DGLORTDEC(dglort
->idx
), dglortdec
);
591 fm10k_write_reg(hw
, FM10K_DGLORTMAP(dglort
->idx
), dglortmap
);
596 u16
fm10k_queues_per_pool(struct fm10k_hw
*hw
)
598 u16 num_pools
= hw
->iov
.num_pools
;
600 return (num_pools
> 32) ? 2 : (num_pools
> 16) ? 4 : (num_pools
> 8) ?
601 8 : FM10K_MAX_QUEUES_POOL
;
604 u16
fm10k_vf_queue_index(struct fm10k_hw
*hw
, u16 vf_idx
)
606 u16 num_vfs
= hw
->iov
.num_vfs
;
607 u16 vf_q_idx
= FM10K_MAX_QUEUES
;
609 vf_q_idx
-= fm10k_queues_per_pool(hw
) * (num_vfs
- vf_idx
);
614 static u16
fm10k_vectors_per_pool(struct fm10k_hw
*hw
)
616 u16 num_pools
= hw
->iov
.num_pools
;
618 return (num_pools
> 32) ? 8 : (num_pools
> 16) ? 16 :
619 FM10K_MAX_VECTORS_POOL
;
622 static u16
fm10k_vf_vector_index(struct fm10k_hw
*hw
, u16 vf_idx
)
624 u16 vf_v_idx
= FM10K_MAX_VECTORS_PF
;
626 vf_v_idx
+= fm10k_vectors_per_pool(hw
) * vf_idx
;
632 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
633 * @hw: pointer to the HW structure
634 * @num_vfs: number of VFs to be allocated
635 * @num_pools: number of virtualization pools to be allocated
637 * Allocates queues and traffic classes to virtualization entities to prepare
638 * the PF for SR-IOV and VMDq
640 static s32
fm10k_iov_assign_resources_pf(struct fm10k_hw
*hw
, u16 num_vfs
,
643 u16 qmap_stride
, qpp
, vpp
, vf_q_idx
, vf_q_idx0
, qmap_idx
;
644 u32 vid
= hw
->mac
.default_vid
<< FM10K_TXQCTL_VID_SHIFT
;
647 /* hardware only supports up to 64 pools */
649 return FM10K_ERR_PARAM
;
651 /* the number of VFs cannot exceed the number of pools */
652 if ((num_vfs
> num_pools
) || (num_vfs
> hw
->iov
.total_vfs
))
653 return FM10K_ERR_PARAM
;
655 /* record number of virtualization entities */
656 hw
->iov
.num_vfs
= num_vfs
;
657 hw
->iov
.num_pools
= num_pools
;
659 /* determine qmap offsets and counts */
660 qmap_stride
= (num_vfs
> 8) ? 32 : 256;
661 qpp
= fm10k_queues_per_pool(hw
);
662 vpp
= fm10k_vectors_per_pool(hw
);
664 /* calculate starting index for queues */
665 vf_q_idx
= fm10k_vf_queue_index(hw
, 0);
668 /* establish TCs with -1 credits and no quanta to prevent transmit */
669 for (i
= 0; i
< num_vfs
; i
++) {
670 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(i
), 0);
671 fm10k_write_reg(hw
, FM10K_TC_RATE(i
), 0);
672 fm10k_write_reg(hw
, FM10K_TC_CREDIT(i
),
673 FM10K_TC_CREDIT_CREDIT_MASK
);
676 /* zero out all mbmem registers */
677 for (i
= FM10K_VFMBMEM_LEN
* num_vfs
; i
--;)
678 fm10k_write_reg(hw
, FM10K_MBMEM(i
), 0);
680 /* clear event notification of VF FLR */
681 fm10k_write_reg(hw
, FM10K_PFVFLREC(0), ~0);
682 fm10k_write_reg(hw
, FM10K_PFVFLREC(1), ~0);
684 /* loop through unallocated rings assigning them back to PF */
685 for (i
= FM10K_MAX_QUEUES_PF
; i
< vf_q_idx
; i
++) {
686 fm10k_write_reg(hw
, FM10K_TXDCTL(i
), 0);
687 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), FM10K_TXQCTL_PF
|
688 FM10K_TXQCTL_UNLIMITED_BW
| vid
);
689 fm10k_write_reg(hw
, FM10K_RXQCTL(i
), FM10K_RXQCTL_PF
);
692 /* PF should have already updated VFITR2[0] */
694 /* update all ITR registers to flow to VFITR2[0] */
695 for (i
= FM10K_ITR_REG_COUNT_PF
+ 1; i
< FM10K_ITR_REG_COUNT
; i
++) {
696 if (!(i
& (vpp
- 1)))
697 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- vpp
);
699 fm10k_write_reg(hw
, FM10K_ITR2(i
), i
- 1);
702 /* update PF ITR2[0] to reference the last vector */
703 fm10k_write_reg(hw
, FM10K_ITR2(0),
704 fm10k_vf_vector_index(hw
, num_vfs
- 1));
706 /* loop through rings populating rings and TCs */
707 for (i
= 0; i
< num_vfs
; i
++) {
708 /* record index for VF queue 0 for use in end of loop */
709 vf_q_idx0
= vf_q_idx
;
711 for (j
= 0; j
< qpp
; j
++, qmap_idx
++, vf_q_idx
++) {
712 /* assign VF and locked TC to queues */
713 fm10k_write_reg(hw
, FM10K_TXDCTL(vf_q_idx
), 0);
714 fm10k_write_reg(hw
, FM10K_TXQCTL(vf_q_idx
),
715 (i
<< FM10K_TXQCTL_TC_SHIFT
) | i
|
716 FM10K_TXQCTL_VF
| vid
);
717 fm10k_write_reg(hw
, FM10K_RXDCTL(vf_q_idx
),
718 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY
|
719 FM10K_RXDCTL_DROP_ON_EMPTY
);
720 fm10k_write_reg(hw
, FM10K_RXQCTL(vf_q_idx
),
721 (i
<< FM10K_RXQCTL_VF_SHIFT
) |
724 /* map queue pair to VF */
725 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx
);
726 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), vf_q_idx
);
729 /* repeat the first ring for all of the remaining VF rings */
730 for (; j
< qmap_stride
; j
++, qmap_idx
++) {
731 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx0
);
732 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), vf_q_idx0
);
736 /* loop through remaining indexes assigning all to queue 0 */
737 while (qmap_idx
< FM10K_TQMAP_TABLE_SIZE
) {
738 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), 0);
739 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
), 0);
747 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
748 * @hw: pointer to the HW structure
749 * @vf_idx: index of VF receiving GLORT
750 * @rate: Rate indicated in Mb/s
752 * Configured the TC for a given VF to allow only up to a given number
753 * of Mb/s of outgoing Tx throughput.
755 static s32
fm10k_iov_configure_tc_pf(struct fm10k_hw
*hw
, u16 vf_idx
, int rate
)
757 /* configure defaults */
758 u32 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN3
;
759 u32 tc_rate
= FM10K_TC_RATE_QUANTA_MASK
;
761 /* verify vf is in range */
762 if (vf_idx
>= hw
->iov
.num_vfs
)
763 return FM10K_ERR_PARAM
;
765 /* set interval to align with 4.096 usec in all modes */
766 switch (hw
->bus
.speed
) {
767 case fm10k_bus_speed_2500
:
768 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN1
;
770 case fm10k_bus_speed_5000
:
771 interval
= FM10K_TC_RATE_INTERVAL_4US_GEN2
;
778 if (rate
> FM10K_VF_TC_MAX
|| rate
< FM10K_VF_TC_MIN
)
779 return FM10K_ERR_PARAM
;
781 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
782 * The rate is provided in Mbits per second
783 * To tralslate from rate to quanta we need to multiply the
784 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
785 * dealing with floating point we can round the values up
786 * to the nearest whole number ratio which gives us 128 / 125.
788 tc_rate
= (rate
* 128) / 125;
790 /* try to keep the rate limiting accurate by increasing
791 * the number of credits and interval for rates less than 4Gb/s
799 /* update rate limiter with new values */
800 fm10k_write_reg(hw
, FM10K_TC_RATE(vf_idx
), tc_rate
| interval
);
801 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(vf_idx
), FM10K_TC_MAXCREDIT_64K
);
802 fm10k_write_reg(hw
, FM10K_TC_CREDIT(vf_idx
), FM10K_TC_MAXCREDIT_64K
);
808 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
809 * @hw: pointer to the HW structure
810 * @vf_idx: index of VF receiving GLORT
812 * Update the interrupt moderator linked list to include any MSI-X
813 * interrupts which the VF has enabled in the MSI-X vector table.
815 static s32
fm10k_iov_assign_int_moderator_pf(struct fm10k_hw
*hw
, u16 vf_idx
)
817 u16 vf_v_idx
, vf_v_limit
, i
;
819 /* verify vf is in range */
820 if (vf_idx
>= hw
->iov
.num_vfs
)
821 return FM10K_ERR_PARAM
;
823 /* determine vector offset and count */
824 vf_v_idx
= fm10k_vf_vector_index(hw
, vf_idx
);
825 vf_v_limit
= vf_v_idx
+ fm10k_vectors_per_pool(hw
);
827 /* search for first vector that is not masked */
828 for (i
= vf_v_limit
- 1; i
> vf_v_idx
; i
--) {
829 if (!fm10k_read_reg(hw
, FM10K_MSIX_VECTOR_MASK(i
)))
833 /* reset linked list so it now includes our active vectors */
834 if (vf_idx
== (hw
->iov
.num_vfs
- 1))
835 fm10k_write_reg(hw
, FM10K_ITR2(0), i
);
837 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_limit
), i
);
843 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
844 * @hw: pointer to the HW structure
845 * @vf_info: pointer to VF information structure
847 * Assign a MAC address and default VLAN to a VF and notify it of the update
849 static s32
fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw
*hw
,
850 struct fm10k_vf_info
*vf_info
)
852 u16 qmap_stride
, queues_per_pool
, vf_q_idx
, timeout
, qmap_idx
, i
;
853 u32 msg
[4], txdctl
, txqctl
, tdbal
= 0, tdbah
= 0;
857 /* verify vf is in range */
858 if (!vf_info
|| vf_info
->vf_idx
>= hw
->iov
.num_vfs
)
859 return FM10K_ERR_PARAM
;
861 /* determine qmap offsets and counts */
862 qmap_stride
= (hw
->iov
.num_vfs
> 8) ? 32 : 256;
863 queues_per_pool
= fm10k_queues_per_pool(hw
);
865 /* calculate starting index for queues */
866 vf_idx
= vf_info
->vf_idx
;
867 vf_q_idx
= fm10k_vf_queue_index(hw
, vf_idx
);
868 qmap_idx
= qmap_stride
* vf_idx
;
870 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
871 * used here to indicate to the VF that it will not have privilege to
872 * write VLAN_TABLE. All policy is enforced on the PF but this allows
873 * the VF to correctly report errors to userspace rqeuests.
876 vf_vid
= vf_info
->pf_vid
| FM10K_VLAN_OVERRIDE
;
878 vf_vid
= vf_info
->sw_vid
;
880 /* generate MAC_ADDR request */
881 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_MAC_VLAN
);
882 fm10k_tlv_attr_put_mac_vlan(msg
, FM10K_MAC_VLAN_MSG_DEFAULT_MAC
,
883 vf_info
->mac
, vf_vid
);
885 /* Configure Queue control register with new VLAN ID. The TXQCTL
886 * register is RO from the VF, so the PF must do this even in the
887 * case of notifying the VF of a new VID via the mailbox.
889 txqctl
= ((u32
)vf_vid
<< FM10K_TXQCTL_VID_SHIFT
) &
890 FM10K_TXQCTL_VID_MASK
;
891 txqctl
|= (vf_idx
<< FM10K_TXQCTL_TC_SHIFT
) |
892 FM10K_TXQCTL_VF
| vf_idx
;
894 for (i
= 0; i
< queues_per_pool
; i
++)
895 fm10k_write_reg(hw
, FM10K_TXQCTL(vf_q_idx
+ i
), txqctl
);
897 /* try loading a message onto outgoing mailbox first */
898 if (vf_info
->mbx
.ops
.enqueue_tx
) {
899 err
= vf_info
->mbx
.ops
.enqueue_tx(hw
, &vf_info
->mbx
, msg
);
900 if (err
!= FM10K_MBX_ERR_NO_MBX
)
905 /* If we aren't connected to a mailbox, this is most likely because
906 * the VF driver is not running. It should thus be safe to re-map
907 * queues and use the registers to pass the MAC address so that the VF
908 * driver gets correct information during its initialization.
911 /* MAP Tx queue back to 0 temporarily, and disable it */
912 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), 0);
913 fm10k_write_reg(hw
, FM10K_TXDCTL(vf_q_idx
), 0);
915 /* verify ring has disabled before modifying base address registers */
916 txdctl
= fm10k_read_reg(hw
, FM10K_TXDCTL(vf_q_idx
));
917 for (timeout
= 0; txdctl
& FM10K_TXDCTL_ENABLE
; timeout
++) {
918 /* limit ourselves to a 1ms timeout */
920 err
= FM10K_ERR_DMA_PENDING
;
924 usleep_range(100, 200);
925 txdctl
= fm10k_read_reg(hw
, FM10K_TXDCTL(vf_q_idx
));
928 /* Update base address registers to contain MAC address */
929 if (is_valid_ether_addr(vf_info
->mac
)) {
930 tdbal
= (((u32
)vf_info
->mac
[3]) << 24) |
931 (((u32
)vf_info
->mac
[4]) << 16) |
932 (((u32
)vf_info
->mac
[5]) << 8);
934 tdbah
= (((u32
)0xFF) << 24) |
935 (((u32
)vf_info
->mac
[0]) << 16) |
936 (((u32
)vf_info
->mac
[1]) << 8) |
937 ((u32
)vf_info
->mac
[2]);
940 /* Record the base address into queue 0 */
941 fm10k_write_reg(hw
, FM10K_TDBAL(vf_q_idx
), tdbal
);
942 fm10k_write_reg(hw
, FM10K_TDBAH(vf_q_idx
), tdbah
);
944 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
945 * to pass the information during VF initialization. See definition of
946 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
948 fm10k_write_reg(hw
, FM10K_TDLEN(vf_q_idx
), hw
->mac
.itr_scale
<<
949 FM10K_TDLEN_ITR_SCALE_SHIFT
);
952 /* restore the queue back to VF ownership */
953 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
), vf_q_idx
);
958 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
959 * @hw: pointer to the HW structure
960 * @vf_info: pointer to VF information structure
962 * Reassign the interrupts and queues to a VF following an FLR
964 static s32
fm10k_iov_reset_resources_pf(struct fm10k_hw
*hw
,
965 struct fm10k_vf_info
*vf_info
)
967 u16 qmap_stride
, queues_per_pool
, vf_q_idx
, qmap_idx
;
968 u32 tdbal
= 0, tdbah
= 0, txqctl
, rxqctl
;
969 u16 vf_v_idx
, vf_v_limit
, vf_vid
;
970 u8 vf_idx
= vf_info
->vf_idx
;
973 /* verify vf is in range */
974 if (vf_idx
>= hw
->iov
.num_vfs
)
975 return FM10K_ERR_PARAM
;
977 /* clear event notification of VF FLR */
978 fm10k_write_reg(hw
, FM10K_PFVFLREC(vf_idx
/ 32), BIT(vf_idx
% 32));
980 /* force timeout and then disconnect the mailbox */
981 vf_info
->mbx
.timeout
= 0;
982 if (vf_info
->mbx
.ops
.disconnect
)
983 vf_info
->mbx
.ops
.disconnect(hw
, &vf_info
->mbx
);
985 /* determine vector offset and count */
986 vf_v_idx
= fm10k_vf_vector_index(hw
, vf_idx
);
987 vf_v_limit
= vf_v_idx
+ fm10k_vectors_per_pool(hw
);
989 /* determine qmap offsets and counts */
990 qmap_stride
= (hw
->iov
.num_vfs
> 8) ? 32 : 256;
991 queues_per_pool
= fm10k_queues_per_pool(hw
);
992 qmap_idx
= qmap_stride
* vf_idx
;
994 /* make all the queues inaccessible to the VF */
995 for (i
= qmap_idx
; i
< (qmap_idx
+ qmap_stride
); i
++) {
996 fm10k_write_reg(hw
, FM10K_TQMAP(i
), 0);
997 fm10k_write_reg(hw
, FM10K_RQMAP(i
), 0);
1000 /* calculate starting index for queues */
1001 vf_q_idx
= fm10k_vf_queue_index(hw
, vf_idx
);
1003 /* determine correct default VLAN ID */
1004 if (vf_info
->pf_vid
)
1005 vf_vid
= vf_info
->pf_vid
;
1007 vf_vid
= vf_info
->sw_vid
;
1009 /* configure Queue control register */
1010 txqctl
= ((u32
)vf_vid
<< FM10K_TXQCTL_VID_SHIFT
) |
1011 (vf_idx
<< FM10K_TXQCTL_TC_SHIFT
) |
1012 FM10K_TXQCTL_VF
| vf_idx
;
1013 rxqctl
= (vf_idx
<< FM10K_RXQCTL_VF_SHIFT
) | FM10K_RXQCTL_VF
;
1015 /* stop further DMA and reset queue ownership back to VF */
1016 for (i
= vf_q_idx
; i
< (queues_per_pool
+ vf_q_idx
); i
++) {
1017 fm10k_write_reg(hw
, FM10K_TXDCTL(i
), 0);
1018 fm10k_write_reg(hw
, FM10K_TXQCTL(i
), txqctl
);
1019 fm10k_write_reg(hw
, FM10K_RXDCTL(i
),
1020 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY
|
1021 FM10K_RXDCTL_DROP_ON_EMPTY
);
1022 fm10k_write_reg(hw
, FM10K_RXQCTL(i
), rxqctl
);
1025 /* reset TC with -1 credits and no quanta to prevent transmit */
1026 fm10k_write_reg(hw
, FM10K_TC_MAXCREDIT(vf_idx
), 0);
1027 fm10k_write_reg(hw
, FM10K_TC_RATE(vf_idx
), 0);
1028 fm10k_write_reg(hw
, FM10K_TC_CREDIT(vf_idx
),
1029 FM10K_TC_CREDIT_CREDIT_MASK
);
1031 /* update our first entry in the table based on previous VF */
1033 hw
->mac
.ops
.update_int_moderator(hw
);
1035 hw
->iov
.ops
.assign_int_moderator(hw
, vf_idx
- 1);
1037 /* reset linked list so it now includes our active vectors */
1038 if (vf_idx
== (hw
->iov
.num_vfs
- 1))
1039 fm10k_write_reg(hw
, FM10K_ITR2(0), vf_v_idx
);
1041 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_limit
), vf_v_idx
);
1043 /* link remaining vectors so that next points to previous */
1044 for (vf_v_idx
++; vf_v_idx
< vf_v_limit
; vf_v_idx
++)
1045 fm10k_write_reg(hw
, FM10K_ITR2(vf_v_idx
), vf_v_idx
- 1);
1047 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1048 for (i
= FM10K_VFMBMEM_LEN
; i
--;)
1049 fm10k_write_reg(hw
, FM10K_MBMEM_VF(vf_idx
, i
), 0);
1050 for (i
= FM10K_VLAN_TABLE_SIZE
; i
--;)
1051 fm10k_write_reg(hw
, FM10K_VLAN_TABLE(vf_info
->vsi
, i
), 0);
1052 for (i
= FM10K_RETA_SIZE
; i
--;)
1053 fm10k_write_reg(hw
, FM10K_RETA(vf_info
->vsi
, i
), 0);
1054 for (i
= FM10K_RSSRK_SIZE
; i
--;)
1055 fm10k_write_reg(hw
, FM10K_RSSRK(vf_info
->vsi
, i
), 0);
1056 fm10k_write_reg(hw
, FM10K_MRQC(vf_info
->vsi
), 0);
1058 /* Update base address registers to contain MAC address */
1059 if (is_valid_ether_addr(vf_info
->mac
)) {
1060 tdbal
= (((u32
)vf_info
->mac
[3]) << 24) |
1061 (((u32
)vf_info
->mac
[4]) << 16) |
1062 (((u32
)vf_info
->mac
[5]) << 8);
1063 tdbah
= (((u32
)0xFF) << 24) |
1064 (((u32
)vf_info
->mac
[0]) << 16) |
1065 (((u32
)vf_info
->mac
[1]) << 8) |
1066 ((u32
)vf_info
->mac
[2]);
1069 /* map queue pairs back to VF from last to first */
1070 for (i
= queues_per_pool
; i
--;) {
1071 fm10k_write_reg(hw
, FM10K_TDBAL(vf_q_idx
+ i
), tdbal
);
1072 fm10k_write_reg(hw
, FM10K_TDBAH(vf_q_idx
+ i
), tdbah
);
1073 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1074 * explanation of how TDLEN is used.
1076 fm10k_write_reg(hw
, FM10K_TDLEN(vf_q_idx
+ i
),
1077 hw
->mac
.itr_scale
<<
1078 FM10K_TDLEN_ITR_SCALE_SHIFT
);
1079 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
+ i
), vf_q_idx
+ i
);
1080 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
+ i
), vf_q_idx
+ i
);
1083 /* repeat the first ring for all the remaining VF rings */
1084 for (i
= queues_per_pool
; i
< qmap_stride
; i
++) {
1085 fm10k_write_reg(hw
, FM10K_TQMAP(qmap_idx
+ i
), vf_q_idx
);
1086 fm10k_write_reg(hw
, FM10K_RQMAP(qmap_idx
+ i
), vf_q_idx
);
1093 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1094 * @hw: pointer to hardware structure
1095 * @vf_info: pointer to VF information structure
1096 * @lport_idx: Logical port offset from the hardware glort
1097 * @flags: Set of capability flags to extend port beyond basic functionality
1099 * This function allows enabling a VF port by assigning it a GLORT and
1100 * setting the flags so that it can enable an Rx mode.
1102 static s32
fm10k_iov_set_lport_pf(struct fm10k_hw
*hw
,
1103 struct fm10k_vf_info
*vf_info
,
1104 u16 lport_idx
, u8 flags
)
1106 u16 glort
= (hw
->mac
.dglort_map
+ lport_idx
) & FM10K_DGLORTMAP_NONE
;
1108 /* if glort is not valid return error */
1109 if (!fm10k_glort_valid_pf(hw
, glort
))
1110 return FM10K_ERR_PARAM
;
1112 vf_info
->vf_flags
= flags
| FM10K_VF_FLAG_NONE_CAPABLE
;
1113 vf_info
->glort
= glort
;
1119 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1120 * @hw: pointer to hardware structure
1121 * @vf_info: pointer to VF information structure
1123 * This function disables a VF port by stripping it of a GLORT and
1124 * setting the flags so that it cannot enable any Rx mode.
1126 static void fm10k_iov_reset_lport_pf(struct fm10k_hw
*hw
,
1127 struct fm10k_vf_info
*vf_info
)
1131 /* need to disable the port if it is already enabled */
1132 if (FM10K_VF_FLAG_ENABLED(vf_info
)) {
1133 /* notify switch that this port has been disabled */
1134 fm10k_update_lport_state_pf(hw
, vf_info
->glort
, 1, false);
1136 /* generate port state response to notify VF it is not ready */
1137 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_LPORT_STATE
);
1138 vf_info
->mbx
.ops
.enqueue_tx(hw
, &vf_info
->mbx
, msg
);
1141 /* clear flags and glort if it exists */
1142 vf_info
->vf_flags
= 0;
1147 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1148 * @hw: pointer to hardware structure
1149 * @q: stats for all queues of a VF
1150 * @vf_idx: index of VF
1152 * This function collects queue stats for VFs.
1154 static void fm10k_iov_update_stats_pf(struct fm10k_hw
*hw
,
1155 struct fm10k_hw_stats_q
*q
,
1160 /* get stats for all of the queues */
1161 qpp
= fm10k_queues_per_pool(hw
);
1162 idx
= fm10k_vf_queue_index(hw
, vf_idx
);
1163 fm10k_update_hw_stats_q(hw
, q
, idx
, qpp
);
1167 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1168 * @hw: Pointer to hardware structure
1169 * @results: Pointer array to message, results[0] is pointer to message
1170 * @mbx: Pointer to mailbox information structure
1172 * This function is a default handler for MSI-X requests from the VF. The
1173 * assumption is that in this case it is acceptable to just directly
1174 * hand off the message from the VF to the underlying shared code.
1176 s32
fm10k_iov_msg_msix_pf(struct fm10k_hw
*hw
, u32
**results
,
1177 struct fm10k_mbx_info
*mbx
)
1179 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1180 u8 vf_idx
= vf_info
->vf_idx
;
1182 return hw
->iov
.ops
.assign_int_moderator(hw
, vf_idx
);
1186 * fm10k_iov_select_vid - Select correct default VLAN ID
1187 * @hw: Pointer to hardware structure
1188 * @vid: VLAN ID to correct
1190 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1191 * return either the pf_vid or sw_vid depending on which one is set.
1193 static s32
fm10k_iov_select_vid(struct fm10k_vf_info
*vf_info
, u16 vid
)
1196 return vf_info
->pf_vid
? vf_info
->pf_vid
: vf_info
->sw_vid
;
1197 else if (vf_info
->pf_vid
&& vid
!= vf_info
->pf_vid
)
1198 return FM10K_ERR_PARAM
;
1204 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1205 * @hw: Pointer to hardware structure
1206 * @results: Pointer array to message, results[0] is pointer to message
1207 * @mbx: Pointer to mailbox information structure
1209 * This function is a default handler for MAC/VLAN requests from the VF.
1210 * The assumption is that in this case it is acceptable to just directly
1211 * hand off the message from the VF to the underlying shared code.
1213 s32
fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw
*hw
, u32
**results
,
1214 struct fm10k_mbx_info
*mbx
)
1216 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1224 /* we shouldn't be updating rules on a disabled interface */
1225 if (!FM10K_VF_FLAG_ENABLED(vf_info
))
1226 err
= FM10K_ERR_PARAM
;
1228 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_VLAN
]) {
1229 result
= results
[FM10K_MAC_VLAN_MSG_VLAN
];
1231 /* record VLAN id requested */
1232 err
= fm10k_tlv_attr_get_u32(result
, &vid
);
1236 set
= !(vid
& FM10K_VLAN_CLEAR
);
1237 vid
&= ~FM10K_VLAN_CLEAR
;
1239 /* if the length field has been set, this is a multi-bit
1240 * update request. For multi-bit requests, simply disallow
1241 * them when the pf_vid has been set. In this case, the PF
1242 * should have already cleared the VLAN_TABLE, and if we
1243 * allowed them, it could allow a rogue VF to receive traffic
1244 * on a VLAN it was not assigned. In the single-bit case, we
1245 * need to modify requests for VLAN 0 to use the default PF or
1246 * SW vid when assigned.
1250 /* prevent multi-bit requests when PF has
1251 * administratively set the VLAN for this VF
1253 if (vf_info
->pf_vid
)
1254 return FM10K_ERR_PARAM
;
1256 err
= fm10k_iov_select_vid(vf_info
, (u16
)vid
);
1263 /* update VSI info for VF in regards to VLAN table */
1264 err
= hw
->mac
.ops
.update_vlan(hw
, vid
, vf_info
->vsi
, set
);
1267 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_MAC
]) {
1268 result
= results
[FM10K_MAC_VLAN_MSG_MAC
];
1270 /* record unicast MAC address requested */
1271 err
= fm10k_tlv_attr_get_mac_vlan(result
, mac
, &vlan
);
1275 /* block attempts to set MAC for a locked device */
1276 if (is_valid_ether_addr(vf_info
->mac
) &&
1277 !ether_addr_equal(mac
, vf_info
->mac
))
1278 return FM10K_ERR_PARAM
;
1280 set
= !(vlan
& FM10K_VLAN_CLEAR
);
1281 vlan
&= ~FM10K_VLAN_CLEAR
;
1283 err
= fm10k_iov_select_vid(vf_info
, vlan
);
1289 /* notify switch of request for new unicast address */
1290 err
= hw
->mac
.ops
.update_uc_addr(hw
, vf_info
->glort
,
1294 if (!err
&& !!results
[FM10K_MAC_VLAN_MSG_MULTICAST
]) {
1295 result
= results
[FM10K_MAC_VLAN_MSG_MULTICAST
];
1297 /* record multicast MAC address requested */
1298 err
= fm10k_tlv_attr_get_mac_vlan(result
, mac
, &vlan
);
1302 /* verify that the VF is allowed to request multicast */
1303 if (!(vf_info
->vf_flags
& FM10K_VF_FLAG_MULTI_ENABLED
))
1304 return FM10K_ERR_PARAM
;
1306 set
= !(vlan
& FM10K_VLAN_CLEAR
);
1307 vlan
&= ~FM10K_VLAN_CLEAR
;
1309 err
= fm10k_iov_select_vid(vf_info
, vlan
);
1315 /* notify switch of request for new multicast address */
1316 err
= hw
->mac
.ops
.update_mc_addr(hw
, vf_info
->glort
,
1324 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1325 * @vf_info: VF info structure containing capability flags
1326 * @mode: Requested xcast mode
1328 * This function outputs the mode that most closely matches the requested
1329 * mode. If not modes match it will request we disable the port
1331 static u8
fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info
*vf_info
,
1334 u8 vf_flags
= vf_info
->vf_flags
;
1336 /* match up mode to capabilities as best as possible */
1338 case FM10K_XCAST_MODE_PROMISC
:
1339 if (vf_flags
& FM10K_VF_FLAG_PROMISC_CAPABLE
)
1340 return FM10K_XCAST_MODE_PROMISC
;
1342 case FM10K_XCAST_MODE_ALLMULTI
:
1343 if (vf_flags
& FM10K_VF_FLAG_ALLMULTI_CAPABLE
)
1344 return FM10K_XCAST_MODE_ALLMULTI
;
1346 case FM10K_XCAST_MODE_MULTI
:
1347 if (vf_flags
& FM10K_VF_FLAG_MULTI_CAPABLE
)
1348 return FM10K_XCAST_MODE_MULTI
;
1350 case FM10K_XCAST_MODE_NONE
:
1351 if (vf_flags
& FM10K_VF_FLAG_NONE_CAPABLE
)
1352 return FM10K_XCAST_MODE_NONE
;
1358 /* disable interface as it should not be able to request any */
1359 return FM10K_XCAST_MODE_DISABLE
;
1363 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1364 * @hw: Pointer to hardware structure
1365 * @results: Pointer array to message, results[0] is pointer to message
1366 * @mbx: Pointer to mailbox information structure
1368 * This function is a default handler for port state requests. The port
1369 * state requests for now are basic and consist of enabling or disabling
1372 s32
fm10k_iov_msg_lport_state_pf(struct fm10k_hw
*hw
, u32
**results
,
1373 struct fm10k_mbx_info
*mbx
)
1375 struct fm10k_vf_info
*vf_info
= (struct fm10k_vf_info
*)mbx
;
1381 /* verify VF is allowed to enable even minimal mode */
1382 if (!(vf_info
->vf_flags
& FM10K_VF_FLAG_NONE_CAPABLE
))
1383 return FM10K_ERR_PARAM
;
1385 if (!!results
[FM10K_LPORT_STATE_MSG_XCAST_MODE
]) {
1386 result
= results
[FM10K_LPORT_STATE_MSG_XCAST_MODE
];
1388 /* XCAST mode update requested */
1389 err
= fm10k_tlv_attr_get_u8(result
, &mode
);
1391 return FM10K_ERR_PARAM
;
1393 /* prep for possible demotion depending on capabilities */
1394 mode
= fm10k_iov_supported_xcast_mode_pf(vf_info
, mode
);
1396 /* if mode is not currently enabled, enable it */
1397 if (!(FM10K_VF_FLAG_ENABLED(vf_info
) & BIT(mode
)))
1398 fm10k_update_xcast_mode_pf(hw
, vf_info
->glort
, mode
);
1400 /* swap mode back to a bit flag */
1401 mode
= FM10K_VF_FLAG_SET_MODE(mode
);
1402 } else if (!results
[FM10K_LPORT_STATE_MSG_DISABLE
]) {
1403 /* need to disable the port if it is already enabled */
1404 if (FM10K_VF_FLAG_ENABLED(vf_info
))
1405 err
= fm10k_update_lport_state_pf(hw
, vf_info
->glort
,
1408 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1409 * that we actually re-enable the LPORT state below. Note that
1410 * this has no impact if the VF is already disabled, as the
1411 * flags are already cleared.
1414 vf_info
->vf_flags
= FM10K_VF_FLAG_CAPABLE(vf_info
);
1416 /* when enabling the port we should reset the rate limiters */
1417 hw
->iov
.ops
.configure_tc(hw
, vf_info
->vf_idx
, vf_info
->rate
);
1419 /* set mode for minimal functionality */
1420 mode
= FM10K_VF_FLAG_SET_MODE_NONE
;
1422 /* generate port state response to notify VF it is ready */
1423 fm10k_tlv_msg_init(msg
, FM10K_VF_MSG_ID_LPORT_STATE
);
1424 fm10k_tlv_attr_put_bool(msg
, FM10K_LPORT_STATE_MSG_READY
);
1425 mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
1428 /* if enable state toggled note the update */
1429 if (!err
&& (!FM10K_VF_FLAG_ENABLED(vf_info
) != !mode
))
1430 err
= fm10k_update_lport_state_pf(hw
, vf_info
->glort
, 1,
1433 /* if state change succeeded, then update our stored state */
1434 mode
|= FM10K_VF_FLAG_CAPABLE(vf_info
);
1436 vf_info
->vf_flags
= mode
;
1442 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1443 * @hw: pointer to hardware structure
1444 * @stats: pointer to the stats structure to update
1446 * This function collects and aggregates global and per queue hardware
1449 static void fm10k_update_hw_stats_pf(struct fm10k_hw
*hw
,
1450 struct fm10k_hw_stats
*stats
)
1452 u32 timeout
, ur
, ca
, um
, xec
, vlan_drop
, loopback_drop
, nodesc_drop
;
1455 /* Use Tx queue 0 as a canary to detect a reset */
1456 id
= fm10k_read_reg(hw
, FM10K_TXQCTL(0));
1458 /* Read Global Statistics */
1460 timeout
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_TIMEOUT
,
1462 ur
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_UR
, &stats
->ur
);
1463 ca
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_CA
, &stats
->ca
);
1464 um
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_UM
, &stats
->um
);
1465 xec
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_XEC
, &stats
->xec
);
1466 vlan_drop
= fm10k_read_hw_stats_32b(hw
, FM10K_STATS_VLAN_DROP
,
1469 fm10k_read_hw_stats_32b(hw
,
1470 FM10K_STATS_LOOPBACK_DROP
,
1471 &stats
->loopback_drop
);
1472 nodesc_drop
= fm10k_read_hw_stats_32b(hw
,
1473 FM10K_STATS_NODESC_DROP
,
1474 &stats
->nodesc_drop
);
1476 /* if value has not changed then we have consistent data */
1478 id
= fm10k_read_reg(hw
, FM10K_TXQCTL(0));
1479 } while ((id
^ id_prev
) & FM10K_TXQCTL_ID_MASK
);
1481 /* drop non-ID bits and set VALID ID bit */
1482 id
&= FM10K_TXQCTL_ID_MASK
;
1483 id
|= FM10K_STAT_VALID
;
1485 /* Update Global Statistics */
1486 if (stats
->stats_idx
== id
) {
1487 stats
->timeout
.count
+= timeout
;
1488 stats
->ur
.count
+= ur
;
1489 stats
->ca
.count
+= ca
;
1490 stats
->um
.count
+= um
;
1491 stats
->xec
.count
+= xec
;
1492 stats
->vlan_drop
.count
+= vlan_drop
;
1493 stats
->loopback_drop
.count
+= loopback_drop
;
1494 stats
->nodesc_drop
.count
+= nodesc_drop
;
1497 /* Update bases and record current PF id */
1498 fm10k_update_hw_base_32b(&stats
->timeout
, timeout
);
1499 fm10k_update_hw_base_32b(&stats
->ur
, ur
);
1500 fm10k_update_hw_base_32b(&stats
->ca
, ca
);
1501 fm10k_update_hw_base_32b(&stats
->um
, um
);
1502 fm10k_update_hw_base_32b(&stats
->xec
, xec
);
1503 fm10k_update_hw_base_32b(&stats
->vlan_drop
, vlan_drop
);
1504 fm10k_update_hw_base_32b(&stats
->loopback_drop
, loopback_drop
);
1505 fm10k_update_hw_base_32b(&stats
->nodesc_drop
, nodesc_drop
);
1506 stats
->stats_idx
= id
;
1508 /* Update Queue Statistics */
1509 fm10k_update_hw_stats_q(hw
, stats
->q
, 0, hw
->mac
.max_queues
);
1513 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1514 * @hw: pointer to hardware structure
1515 * @stats: pointer to the stats structure to update
1517 * This function resets the base for global and per queue hardware
1520 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw
*hw
,
1521 struct fm10k_hw_stats
*stats
)
1523 /* Unbind Global Statistics */
1524 fm10k_unbind_hw_stats_32b(&stats
->timeout
);
1525 fm10k_unbind_hw_stats_32b(&stats
->ur
);
1526 fm10k_unbind_hw_stats_32b(&stats
->ca
);
1527 fm10k_unbind_hw_stats_32b(&stats
->um
);
1528 fm10k_unbind_hw_stats_32b(&stats
->xec
);
1529 fm10k_unbind_hw_stats_32b(&stats
->vlan_drop
);
1530 fm10k_unbind_hw_stats_32b(&stats
->loopback_drop
);
1531 fm10k_unbind_hw_stats_32b(&stats
->nodesc_drop
);
1533 /* Unbind Queue Statistics */
1534 fm10k_unbind_hw_stats_q(stats
->q
, 0, hw
->mac
.max_queues
);
1536 /* Reinitialize bases for all stats */
1537 fm10k_update_hw_stats_pf(hw
, stats
);
1541 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1542 * @hw: pointer to hardware structure
1543 * @dma_mask: 64 bit DMA mask required for platform
1545 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1546 * to limit the access to memory beyond what is physically in the system.
1548 static void fm10k_set_dma_mask_pf(struct fm10k_hw
*hw
, u64 dma_mask
)
1550 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1551 u32 phyaddr
= (u32
)(dma_mask
>> 32);
1553 fm10k_write_reg(hw
, FM10K_PHYADDR
, phyaddr
);
1557 * fm10k_get_fault_pf - Record a fault in one of the interface units
1558 * @hw: pointer to hardware structure
1559 * @type: pointer to fault type register offset
1560 * @fault: pointer to memory location to record the fault
1562 * Record the fault register contents to the fault data structure and
1563 * clear the entry from the register.
1565 * Returns ERR_PARAM if invalid register is specified or no error is present.
1567 static s32
fm10k_get_fault_pf(struct fm10k_hw
*hw
, int type
,
1568 struct fm10k_fault
*fault
)
1572 /* verify the fault register is in range and is aligned */
1574 case FM10K_PCA_FAULT
:
1575 case FM10K_THI_FAULT
:
1576 case FM10K_FUM_FAULT
:
1579 return FM10K_ERR_PARAM
;
1582 /* only service faults that are valid */
1583 func
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_FUNC
);
1584 if (!(func
& FM10K_FAULT_FUNC_VALID
))
1585 return FM10K_ERR_PARAM
;
1587 /* read remaining fields */
1588 fault
->address
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_ADDR_HI
);
1589 fault
->address
<<= 32;
1590 fault
->address
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_ADDR_LO
);
1591 fault
->specinfo
= fm10k_read_reg(hw
, type
+ FM10K_FAULT_SPECINFO
);
1593 /* clear valid bit to allow for next error */
1594 fm10k_write_reg(hw
, type
+ FM10K_FAULT_FUNC
, FM10K_FAULT_FUNC_VALID
);
1596 /* Record which function triggered the error */
1597 if (func
& FM10K_FAULT_FUNC_PF
)
1600 fault
->func
= 1 + ((func
& FM10K_FAULT_FUNC_VF_MASK
) >>
1601 FM10K_FAULT_FUNC_VF_SHIFT
);
1603 /* record fault type */
1604 fault
->type
= func
& FM10K_FAULT_FUNC_TYPE_MASK
;
1610 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1611 * @hw: pointer to hardware structure
1614 static s32
fm10k_request_lport_map_pf(struct fm10k_hw
*hw
)
1616 struct fm10k_mbx_info
*mbx
= &hw
->mbx
;
1619 /* issue request asking for LPORT map */
1620 fm10k_tlv_msg_init(msg
, FM10K_PF_MSG_ID_LPORT_MAP
);
1622 /* load onto outgoing mailbox */
1623 return mbx
->ops
.enqueue_tx(hw
, mbx
, msg
);
1627 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1628 * @hw: pointer to hardware structure
1629 * @switch_ready: pointer to boolean value that will record switch state
1631 * This function will check the DMA_CTRL2 register and mailbox in order
1632 * to determine if the switch is ready for the PF to begin requesting
1633 * addresses and mapping traffic to the local interface.
1635 static s32
fm10k_get_host_state_pf(struct fm10k_hw
*hw
, bool *switch_ready
)
1639 /* verify the switch is ready for interaction */
1640 dma_ctrl2
= fm10k_read_reg(hw
, FM10K_DMA_CTRL2
);
1641 if (!(dma_ctrl2
& FM10K_DMA_CTRL2_SWITCH_READY
))
1644 /* retrieve generic host state info */
1645 return fm10k_get_host_state_generic(hw
, switch_ready
);
1648 /* This structure defines the attibutes to be parsed below */
1649 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr
[] = {
1650 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR
,
1651 sizeof(struct fm10k_swapi_error
)),
1652 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP
),
1657 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1658 * @hw: Pointer to hardware structure
1659 * @results: pointer array containing parsed data
1660 * @mbx: Pointer to mailbox information structure
1662 * This handler configures the lport mapping based on the reply from the
1665 s32
fm10k_msg_lport_map_pf(struct fm10k_hw
*hw
, u32
**results
,
1666 struct fm10k_mbx_info
*mbx
)
1672 err
= fm10k_tlv_attr_get_u32(results
[FM10K_PF_ATTR_ID_LPORT_MAP
],
1677 /* extract values out of the header */
1678 glort
= FM10K_MSG_HDR_FIELD_GET(dglort_map
, LPORT_MAP_GLORT
);
1679 mask
= FM10K_MSG_HDR_FIELD_GET(dglort_map
, LPORT_MAP_MASK
);
1681 /* verify mask is set and none of the masked bits in glort are set */
1682 if (!mask
|| (glort
& ~mask
))
1683 return FM10K_ERR_PARAM
;
1685 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1686 if (((~(mask
- 1) & mask
) + mask
) & FM10K_DGLORTMAP_NONE
)
1687 return FM10K_ERR_PARAM
;
1689 /* record the glort, mask, and port count */
1690 hw
->mac
.dglort_map
= dglort_map
;
1695 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr
[] = {
1696 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID
),
1701 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1702 * @hw: Pointer to hardware structure
1703 * @results: pointer array containing parsed data
1704 * @mbx: Pointer to mailbox information structure
1706 * This handler configures the default VLAN for the PF
1708 static s32
fm10k_msg_update_pvid_pf(struct fm10k_hw
*hw
, u32
**results
,
1709 struct fm10k_mbx_info
*mbx
)
1715 err
= fm10k_tlv_attr_get_u32(results
[FM10K_PF_ATTR_ID_UPDATE_PVID
],
1720 /* extract values from the pvid update */
1721 glort
= FM10K_MSG_HDR_FIELD_GET(pvid_update
, UPDATE_PVID_GLORT
);
1722 pvid
= FM10K_MSG_HDR_FIELD_GET(pvid_update
, UPDATE_PVID_PVID
);
1724 /* if glort is not valid return error */
1725 if (!fm10k_glort_valid_pf(hw
, glort
))
1726 return FM10K_ERR_PARAM
;
1728 /* verify VLAN ID is valid */
1729 if (pvid
>= FM10K_VLAN_TABLE_VID_MAX
)
1730 return FM10K_ERR_PARAM
;
1732 /* record the port VLAN ID value */
1733 hw
->mac
.default_vid
= pvid
;
1739 * fm10k_record_global_table_data - Move global table data to swapi table info
1740 * @from: pointer to source table data structure
1741 * @to: pointer to destination table info structure
1743 * This function is will copy table_data to the table_info contained in
1746 static void fm10k_record_global_table_data(struct fm10k_global_table_data
*from
,
1747 struct fm10k_swapi_table_info
*to
)
1749 /* convert from le32 struct to CPU byte ordered values */
1750 to
->used
= le32_to_cpu(from
->used
);
1751 to
->avail
= le32_to_cpu(from
->avail
);
1754 const struct fm10k_tlv_attr fm10k_err_msg_attr
[] = {
1755 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR
,
1756 sizeof(struct fm10k_swapi_error
)),
1761 * fm10k_msg_err_pf - Message handler for error reply
1762 * @hw: Pointer to hardware structure
1763 * @results: pointer array containing parsed data
1764 * @mbx: Pointer to mailbox information structure
1766 * This handler will capture the data for any error replies to previous
1767 * messages that the PF has sent.
1769 s32
fm10k_msg_err_pf(struct fm10k_hw
*hw
, u32
**results
,
1770 struct fm10k_mbx_info
*mbx
)
1772 struct fm10k_swapi_error err_msg
;
1775 /* extract structure from message */
1776 err
= fm10k_tlv_attr_get_le_struct(results
[FM10K_PF_ATTR_ID_ERR
],
1777 &err_msg
, sizeof(err_msg
));
1781 /* record table status */
1782 fm10k_record_global_table_data(&err_msg
.mac
, &hw
->swapi
.mac
);
1783 fm10k_record_global_table_data(&err_msg
.nexthop
, &hw
->swapi
.nexthop
);
1784 fm10k_record_global_table_data(&err_msg
.ffu
, &hw
->swapi
.ffu
);
1786 /* record SW API status value */
1787 hw
->swapi
.status
= le32_to_cpu(err_msg
.status
);
1792 static const struct fm10k_msg_data fm10k_msg_data_pf
[] = {
1793 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES
, fm10k_msg_err_pf
),
1794 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE
, fm10k_msg_err_pf
),
1795 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf
),
1796 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE
, fm10k_msg_err_pf
),
1797 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE
, fm10k_msg_err_pf
),
1798 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf
),
1799 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error
),
1802 static const struct fm10k_mac_ops mac_ops_pf
= {
1803 .get_bus_info
= fm10k_get_bus_info_generic
,
1804 .reset_hw
= fm10k_reset_hw_pf
,
1805 .init_hw
= fm10k_init_hw_pf
,
1806 .start_hw
= fm10k_start_hw_generic
,
1807 .stop_hw
= fm10k_stop_hw_generic
,
1808 .update_vlan
= fm10k_update_vlan_pf
,
1809 .read_mac_addr
= fm10k_read_mac_addr_pf
,
1810 .update_uc_addr
= fm10k_update_uc_addr_pf
,
1811 .update_mc_addr
= fm10k_update_mc_addr_pf
,
1812 .update_xcast_mode
= fm10k_update_xcast_mode_pf
,
1813 .update_int_moderator
= fm10k_update_int_moderator_pf
,
1814 .update_lport_state
= fm10k_update_lport_state_pf
,
1815 .update_hw_stats
= fm10k_update_hw_stats_pf
,
1816 .rebind_hw_stats
= fm10k_rebind_hw_stats_pf
,
1817 .configure_dglort_map
= fm10k_configure_dglort_map_pf
,
1818 .set_dma_mask
= fm10k_set_dma_mask_pf
,
1819 .get_fault
= fm10k_get_fault_pf
,
1820 .get_host_state
= fm10k_get_host_state_pf
,
1821 .request_lport_map
= fm10k_request_lport_map_pf
,
1824 static const struct fm10k_iov_ops iov_ops_pf
= {
1825 .assign_resources
= fm10k_iov_assign_resources_pf
,
1826 .configure_tc
= fm10k_iov_configure_tc_pf
,
1827 .assign_int_moderator
= fm10k_iov_assign_int_moderator_pf
,
1828 .assign_default_mac_vlan
= fm10k_iov_assign_default_mac_vlan_pf
,
1829 .reset_resources
= fm10k_iov_reset_resources_pf
,
1830 .set_lport
= fm10k_iov_set_lport_pf
,
1831 .reset_lport
= fm10k_iov_reset_lport_pf
,
1832 .update_stats
= fm10k_iov_update_stats_pf
,
1835 static s32
fm10k_get_invariants_pf(struct fm10k_hw
*hw
)
1837 fm10k_get_invariants_generic(hw
);
1839 return fm10k_sm_mbx_init(hw
, &hw
->mbx
, fm10k_msg_data_pf
);
1842 const struct fm10k_info fm10k_pf_info
= {
1843 .mac
= fm10k_mac_pf
,
1844 .get_invariants
= fm10k_get_invariants_pf
,
1845 .mac_ops
= &mac_ops_pf
,
1846 .iov_ops
= &iov_ops_pf
,