pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
bloba61447fd778eb579ef0b31d1a0d4c33a9e5386ee
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 /* e1000_82575
25 * e1000_82576
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 #include "igb.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_reset_hw_82580(struct e1000_hw *);
51 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
52 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
53 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
54 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
55 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
56 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
59 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 u16 *);
61 static s32 igb_get_phy_id_82575(struct e1000_hw *);
62 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63 static bool igb_sgmii_active_82575(struct e1000_hw *);
64 static s32 igb_reset_init_script_82575(struct e1000_hw *);
65 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
67 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
68 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
71 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
72 static const u16 e1000_82580_rxpbs_table[] = {
73 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 /* Due to a hw errata, if the host tries to configure the VFTA register
76 * while performing queries from the BMC or DMA, then the VFTA in some
77 * cases won't be written.
80 /**
81 * igb_write_vfta_i350 - Write value to VLAN filter table
82 * @hw: pointer to the HW structure
83 * @offset: register offset in VLAN filter table
84 * @value: register value written to VLAN filter table
86 * Writes value at the given offset in the register array which stores
87 * the VLAN filter table.
88 **/
89 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
91 struct igb_adapter *adapter = hw->back;
92 int i;
94 for (i = 10; i--;)
95 array_wr32(E1000_VFTA, offset, value);
97 wrfl();
98 adapter->shadow_vfta[offset] = value;
102 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
103 * @hw: pointer to the HW structure
105 * Called to determine if the I2C pins are being used for I2C or as an
106 * external MDIO interface since the two options are mutually exclusive.
108 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
110 u32 reg = 0;
111 bool ext_mdio = false;
113 switch (hw->mac.type) {
114 case e1000_82575:
115 case e1000_82576:
116 reg = rd32(E1000_MDIC);
117 ext_mdio = !!(reg & E1000_MDIC_DEST);
118 break;
119 case e1000_82580:
120 case e1000_i350:
121 case e1000_i354:
122 case e1000_i210:
123 case e1000_i211:
124 reg = rd32(E1000_MDICNFG);
125 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
126 break;
127 default:
128 break;
130 return ext_mdio;
134 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
135 * @hw: pointer to the HW structure
137 * Poll the M88E1112 interfaces to see which interface achieved link.
139 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
141 struct e1000_phy_info *phy = &hw->phy;
142 s32 ret_val;
143 u16 data;
144 u8 port = 0;
146 /* Check the copper medium. */
147 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148 if (ret_val)
149 return ret_val;
151 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
152 if (ret_val)
153 return ret_val;
155 if (data & E1000_M88E1112_STATUS_LINK)
156 port = E1000_MEDIA_PORT_COPPER;
158 /* Check the other medium. */
159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
160 if (ret_val)
161 return ret_val;
163 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
164 if (ret_val)
165 return ret_val;
168 if (data & E1000_M88E1112_STATUS_LINK)
169 port = E1000_MEDIA_PORT_OTHER;
171 /* Determine if a swap needs to happen. */
172 if (port && (hw->dev_spec._82575.media_port != port)) {
173 hw->dev_spec._82575.media_port = port;
174 hw->dev_spec._82575.media_changed = true;
177 if (port == E1000_MEDIA_PORT_COPPER) {
178 /* reset page to 0 */
179 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
180 if (ret_val)
181 return ret_val;
182 igb_check_for_link_82575(hw);
183 } else {
184 igb_check_for_link_82575(hw);
185 /* reset page to 0 */
186 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
187 if (ret_val)
188 return ret_val;
191 return 0;
195 * igb_init_phy_params_82575 - Init PHY func ptrs.
196 * @hw: pointer to the HW structure
198 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
200 struct e1000_phy_info *phy = &hw->phy;
201 s32 ret_val = 0;
202 u32 ctrl_ext;
204 if (hw->phy.media_type != e1000_media_type_copper) {
205 phy->type = e1000_phy_none;
206 goto out;
209 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
210 phy->reset_delay_us = 100;
212 ctrl_ext = rd32(E1000_CTRL_EXT);
214 if (igb_sgmii_active_82575(hw)) {
215 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
216 ctrl_ext |= E1000_CTRL_I2C_ENA;
217 } else {
218 phy->ops.reset = igb_phy_hw_reset;
219 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
222 wr32(E1000_CTRL_EXT, ctrl_ext);
223 igb_reset_mdicnfg_82580(hw);
225 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
226 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
228 } else {
229 switch (hw->mac.type) {
230 case e1000_82580:
231 case e1000_i350:
232 case e1000_i354:
233 case e1000_i210:
234 case e1000_i211:
235 phy->ops.read_reg = igb_read_phy_reg_82580;
236 phy->ops.write_reg = igb_write_phy_reg_82580;
237 break;
238 default:
239 phy->ops.read_reg = igb_read_phy_reg_igp;
240 phy->ops.write_reg = igb_write_phy_reg_igp;
244 /* set lan id */
245 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
246 E1000_STATUS_FUNC_SHIFT;
248 /* Set phy->phy_addr and phy->id. */
249 ret_val = igb_get_phy_id_82575(hw);
250 if (ret_val)
251 return ret_val;
253 /* Verify phy id and set remaining function pointers */
254 switch (phy->id) {
255 case M88E1543_E_PHY_ID:
256 case M88E1512_E_PHY_ID:
257 case I347AT4_E_PHY_ID:
258 case M88E1112_E_PHY_ID:
259 case M88E1111_I_PHY_ID:
260 phy->type = e1000_phy_m88;
261 phy->ops.check_polarity = igb_check_polarity_m88;
262 phy->ops.get_phy_info = igb_get_phy_info_m88;
263 if (phy->id != M88E1111_I_PHY_ID)
264 phy->ops.get_cable_length =
265 igb_get_cable_length_m88_gen2;
266 else
267 phy->ops.get_cable_length = igb_get_cable_length_m88;
268 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
269 /* Check if this PHY is configured for media swap. */
270 if (phy->id == M88E1112_E_PHY_ID) {
271 u16 data;
273 ret_val = phy->ops.write_reg(hw,
274 E1000_M88E1112_PAGE_ADDR,
276 if (ret_val)
277 goto out;
279 ret_val = phy->ops.read_reg(hw,
280 E1000_M88E1112_MAC_CTRL_1,
281 &data);
282 if (ret_val)
283 goto out;
285 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
286 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
287 if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
288 data == E1000_M88E1112_AUTO_COPPER_BASEX)
289 hw->mac.ops.check_for_link =
290 igb_check_for_link_media_swap;
292 if (phy->id == M88E1512_E_PHY_ID) {
293 ret_val = igb_initialize_M88E1512_phy(hw);
294 if (ret_val)
295 goto out;
297 if (phy->id == M88E1543_E_PHY_ID) {
298 ret_val = igb_initialize_M88E1543_phy(hw);
299 if (ret_val)
300 goto out;
302 break;
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->ops.get_phy_info = igb_get_phy_info_igp;
306 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
307 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
308 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
309 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
310 break;
311 case I82580_I_PHY_ID:
312 case I350_I_PHY_ID:
313 phy->type = e1000_phy_82580;
314 phy->ops.force_speed_duplex =
315 igb_phy_force_speed_duplex_82580;
316 phy->ops.get_cable_length = igb_get_cable_length_82580;
317 phy->ops.get_phy_info = igb_get_phy_info_82580;
318 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
319 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
320 break;
321 case I210_I_PHY_ID:
322 phy->type = e1000_phy_i210;
323 phy->ops.check_polarity = igb_check_polarity_m88;
324 phy->ops.get_cfg_done = igb_get_cfg_done_i210;
325 phy->ops.get_phy_info = igb_get_phy_info_m88;
326 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
327 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
328 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
329 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
330 break;
331 default:
332 ret_val = -E1000_ERR_PHY;
333 goto out;
336 out:
337 return ret_val;
341 * igb_init_nvm_params_82575 - Init NVM func ptrs.
342 * @hw: pointer to the HW structure
344 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
346 struct e1000_nvm_info *nvm = &hw->nvm;
347 u32 eecd = rd32(E1000_EECD);
348 u16 size;
350 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
351 E1000_EECD_SIZE_EX_SHIFT);
353 /* Added to a constant, "size" becomes the left-shift value
354 * for setting word_size.
356 size += NVM_WORD_SIZE_BASE_SHIFT;
358 /* Just in case size is out of range, cap it to the largest
359 * EEPROM size supported
361 if (size > 15)
362 size = 15;
364 nvm->word_size = BIT(size);
365 nvm->opcode_bits = 8;
366 nvm->delay_usec = 1;
368 switch (nvm->override) {
369 case e1000_nvm_override_spi_large:
370 nvm->page_size = 32;
371 nvm->address_bits = 16;
372 break;
373 case e1000_nvm_override_spi_small:
374 nvm->page_size = 8;
375 nvm->address_bits = 8;
376 break;
377 default:
378 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
379 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
380 16 : 8;
381 break;
383 if (nvm->word_size == BIT(15))
384 nvm->page_size = 128;
386 nvm->type = e1000_nvm_eeprom_spi;
388 /* NVM Function Pointers */
389 nvm->ops.acquire = igb_acquire_nvm_82575;
390 nvm->ops.release = igb_release_nvm_82575;
391 nvm->ops.write = igb_write_nvm_spi;
392 nvm->ops.validate = igb_validate_nvm_checksum;
393 nvm->ops.update = igb_update_nvm_checksum;
394 if (nvm->word_size < BIT(15))
395 nvm->ops.read = igb_read_nvm_eerd;
396 else
397 nvm->ops.read = igb_read_nvm_spi;
399 /* override generic family function pointers for specific descendants */
400 switch (hw->mac.type) {
401 case e1000_82580:
402 nvm->ops.validate = igb_validate_nvm_checksum_82580;
403 nvm->ops.update = igb_update_nvm_checksum_82580;
404 break;
405 case e1000_i354:
406 case e1000_i350:
407 nvm->ops.validate = igb_validate_nvm_checksum_i350;
408 nvm->ops.update = igb_update_nvm_checksum_i350;
409 break;
410 default:
411 break;
414 return 0;
418 * igb_init_mac_params_82575 - Init MAC func ptrs.
419 * @hw: pointer to the HW structure
421 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
423 struct e1000_mac_info *mac = &hw->mac;
424 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
426 /* Set mta register count */
427 mac->mta_reg_count = 128;
428 /* Set uta register count */
429 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
430 /* Set rar entry count */
431 switch (mac->type) {
432 case e1000_82576:
433 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
434 break;
435 case e1000_82580:
436 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
437 break;
438 case e1000_i350:
439 case e1000_i354:
440 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
441 break;
442 default:
443 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
444 break;
446 /* reset */
447 if (mac->type >= e1000_82580)
448 mac->ops.reset_hw = igb_reset_hw_82580;
449 else
450 mac->ops.reset_hw = igb_reset_hw_82575;
452 if (mac->type >= e1000_i210) {
453 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
454 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
456 } else {
457 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
458 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
461 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
462 mac->ops.write_vfta = igb_write_vfta_i350;
463 else
464 mac->ops.write_vfta = igb_write_vfta;
466 /* Set if part includes ASF firmware */
467 mac->asf_firmware_present = true;
468 /* Set if manageability features are enabled. */
469 mac->arc_subsystem_valid =
470 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
471 ? true : false;
472 /* enable EEE on i350 parts and later parts */
473 if (mac->type >= e1000_i350)
474 dev_spec->eee_disable = false;
475 else
476 dev_spec->eee_disable = true;
477 /* Allow a single clear of the SW semaphore on I210 and newer */
478 if (mac->type >= e1000_i210)
479 dev_spec->clear_semaphore_once = true;
480 /* physical interface link setup */
481 mac->ops.setup_physical_interface =
482 (hw->phy.media_type == e1000_media_type_copper)
483 ? igb_setup_copper_link_82575
484 : igb_setup_serdes_link_82575;
486 if (mac->type == e1000_82580) {
487 switch (hw->device_id) {
488 /* feature not supported on these id's */
489 case E1000_DEV_ID_DH89XXCC_SGMII:
490 case E1000_DEV_ID_DH89XXCC_SERDES:
491 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
492 case E1000_DEV_ID_DH89XXCC_SFP:
493 break;
494 default:
495 hw->dev_spec._82575.mas_capable = true;
496 break;
499 return 0;
503 * igb_set_sfp_media_type_82575 - derives SFP module media type.
504 * @hw: pointer to the HW structure
506 * The media type is chosen based on SFP module.
507 * compatibility flags retrieved from SFP ID EEPROM.
509 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
511 s32 ret_val = E1000_ERR_CONFIG;
512 u32 ctrl_ext = 0;
513 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
514 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
515 u8 tranceiver_type = 0;
516 s32 timeout = 3;
518 /* Turn I2C interface ON and power on sfp cage */
519 ctrl_ext = rd32(E1000_CTRL_EXT);
520 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
521 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
523 wrfl();
525 /* Read SFP module data */
526 while (timeout) {
527 ret_val = igb_read_sfp_data_byte(hw,
528 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
529 &tranceiver_type);
530 if (ret_val == 0)
531 break;
532 msleep(100);
533 timeout--;
535 if (ret_val != 0)
536 goto out;
538 ret_val = igb_read_sfp_data_byte(hw,
539 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
540 (u8 *)eth_flags);
541 if (ret_val != 0)
542 goto out;
544 /* Check if there is some SFP module plugged and powered */
545 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
546 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
547 dev_spec->module_plugged = true;
548 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
549 hw->phy.media_type = e1000_media_type_internal_serdes;
550 } else if (eth_flags->e100_base_fx) {
551 dev_spec->sgmii_active = true;
552 hw->phy.media_type = e1000_media_type_internal_serdes;
553 } else if (eth_flags->e1000_base_t) {
554 dev_spec->sgmii_active = true;
555 hw->phy.media_type = e1000_media_type_copper;
556 } else {
557 hw->phy.media_type = e1000_media_type_unknown;
558 hw_dbg("PHY module has not been recognized\n");
559 goto out;
561 } else {
562 hw->phy.media_type = e1000_media_type_unknown;
564 ret_val = 0;
565 out:
566 /* Restore I2C interface setting */
567 wr32(E1000_CTRL_EXT, ctrl_ext);
568 return ret_val;
571 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
573 struct e1000_mac_info *mac = &hw->mac;
574 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
575 s32 ret_val;
576 u32 ctrl_ext = 0;
577 u32 link_mode = 0;
579 switch (hw->device_id) {
580 case E1000_DEV_ID_82575EB_COPPER:
581 case E1000_DEV_ID_82575EB_FIBER_SERDES:
582 case E1000_DEV_ID_82575GB_QUAD_COPPER:
583 mac->type = e1000_82575;
584 break;
585 case E1000_DEV_ID_82576:
586 case E1000_DEV_ID_82576_NS:
587 case E1000_DEV_ID_82576_NS_SERDES:
588 case E1000_DEV_ID_82576_FIBER:
589 case E1000_DEV_ID_82576_SERDES:
590 case E1000_DEV_ID_82576_QUAD_COPPER:
591 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
592 case E1000_DEV_ID_82576_SERDES_QUAD:
593 mac->type = e1000_82576;
594 break;
595 case E1000_DEV_ID_82580_COPPER:
596 case E1000_DEV_ID_82580_FIBER:
597 case E1000_DEV_ID_82580_QUAD_FIBER:
598 case E1000_DEV_ID_82580_SERDES:
599 case E1000_DEV_ID_82580_SGMII:
600 case E1000_DEV_ID_82580_COPPER_DUAL:
601 case E1000_DEV_ID_DH89XXCC_SGMII:
602 case E1000_DEV_ID_DH89XXCC_SERDES:
603 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
604 case E1000_DEV_ID_DH89XXCC_SFP:
605 mac->type = e1000_82580;
606 break;
607 case E1000_DEV_ID_I350_COPPER:
608 case E1000_DEV_ID_I350_FIBER:
609 case E1000_DEV_ID_I350_SERDES:
610 case E1000_DEV_ID_I350_SGMII:
611 mac->type = e1000_i350;
612 break;
613 case E1000_DEV_ID_I210_COPPER:
614 case E1000_DEV_ID_I210_FIBER:
615 case E1000_DEV_ID_I210_SERDES:
616 case E1000_DEV_ID_I210_SGMII:
617 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
618 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
619 mac->type = e1000_i210;
620 break;
621 case E1000_DEV_ID_I211_COPPER:
622 mac->type = e1000_i211;
623 break;
624 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
625 case E1000_DEV_ID_I354_SGMII:
626 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
627 mac->type = e1000_i354;
628 break;
629 default:
630 return -E1000_ERR_MAC_INIT;
633 /* Set media type */
634 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
635 * based on the EEPROM. We cannot rely upon device ID. There
636 * is no distinguishable difference between fiber and internal
637 * SerDes mode on the 82575. There can be an external PHY attached
638 * on the SGMII interface. For this, we'll set sgmii_active to true.
640 hw->phy.media_type = e1000_media_type_copper;
641 dev_spec->sgmii_active = false;
642 dev_spec->module_plugged = false;
644 ctrl_ext = rd32(E1000_CTRL_EXT);
646 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
647 switch (link_mode) {
648 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
649 hw->phy.media_type = e1000_media_type_internal_serdes;
650 break;
651 case E1000_CTRL_EXT_LINK_MODE_SGMII:
652 /* Get phy control interface type set (MDIO vs. I2C)*/
653 if (igb_sgmii_uses_mdio_82575(hw)) {
654 hw->phy.media_type = e1000_media_type_copper;
655 dev_spec->sgmii_active = true;
656 break;
658 /* fall through for I2C based SGMII */
659 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
660 /* read media type from SFP EEPROM */
661 ret_val = igb_set_sfp_media_type_82575(hw);
662 if ((ret_val != 0) ||
663 (hw->phy.media_type == e1000_media_type_unknown)) {
664 /* If media type was not identified then return media
665 * type defined by the CTRL_EXT settings.
667 hw->phy.media_type = e1000_media_type_internal_serdes;
669 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
670 hw->phy.media_type = e1000_media_type_copper;
671 dev_spec->sgmii_active = true;
674 break;
677 /* do not change link mode for 100BaseFX */
678 if (dev_spec->eth_flags.e100_base_fx)
679 break;
681 /* change current link mode setting */
682 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
684 if (hw->phy.media_type == e1000_media_type_copper)
685 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
686 else
687 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
689 wr32(E1000_CTRL_EXT, ctrl_ext);
691 break;
692 default:
693 break;
696 /* mac initialization and operations */
697 ret_val = igb_init_mac_params_82575(hw);
698 if (ret_val)
699 goto out;
701 /* NVM initialization */
702 ret_val = igb_init_nvm_params_82575(hw);
703 switch (hw->mac.type) {
704 case e1000_i210:
705 case e1000_i211:
706 ret_val = igb_init_nvm_params_i210(hw);
707 break;
708 default:
709 break;
712 if (ret_val)
713 goto out;
715 /* if part supports SR-IOV then initialize mailbox parameters */
716 switch (mac->type) {
717 case e1000_82576:
718 case e1000_i350:
719 igb_init_mbx_params_pf(hw);
720 break;
721 default:
722 break;
725 /* setup PHY parameters */
726 ret_val = igb_init_phy_params_82575(hw);
728 out:
729 return ret_val;
733 * igb_acquire_phy_82575 - Acquire rights to access PHY
734 * @hw: pointer to the HW structure
736 * Acquire access rights to the correct PHY. This is a
737 * function pointer entry point called by the api module.
739 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
741 u16 mask = E1000_SWFW_PHY0_SM;
743 if (hw->bus.func == E1000_FUNC_1)
744 mask = E1000_SWFW_PHY1_SM;
745 else if (hw->bus.func == E1000_FUNC_2)
746 mask = E1000_SWFW_PHY2_SM;
747 else if (hw->bus.func == E1000_FUNC_3)
748 mask = E1000_SWFW_PHY3_SM;
750 return hw->mac.ops.acquire_swfw_sync(hw, mask);
754 * igb_release_phy_82575 - Release rights to access PHY
755 * @hw: pointer to the HW structure
757 * A wrapper to release access rights to the correct PHY. This is a
758 * function pointer entry point called by the api module.
760 static void igb_release_phy_82575(struct e1000_hw *hw)
762 u16 mask = E1000_SWFW_PHY0_SM;
764 if (hw->bus.func == E1000_FUNC_1)
765 mask = E1000_SWFW_PHY1_SM;
766 else if (hw->bus.func == E1000_FUNC_2)
767 mask = E1000_SWFW_PHY2_SM;
768 else if (hw->bus.func == E1000_FUNC_3)
769 mask = E1000_SWFW_PHY3_SM;
771 hw->mac.ops.release_swfw_sync(hw, mask);
775 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
776 * @hw: pointer to the HW structure
777 * @offset: register offset to be read
778 * @data: pointer to the read data
780 * Reads the PHY register at offset using the serial gigabit media independent
781 * interface and stores the retrieved information in data.
783 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
784 u16 *data)
786 s32 ret_val = -E1000_ERR_PARAM;
788 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
789 hw_dbg("PHY Address %u is out of range\n", offset);
790 goto out;
793 ret_val = hw->phy.ops.acquire(hw);
794 if (ret_val)
795 goto out;
797 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
799 hw->phy.ops.release(hw);
801 out:
802 return ret_val;
806 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
807 * @hw: pointer to the HW structure
808 * @offset: register offset to write to
809 * @data: data to write at register offset
811 * Writes the data to PHY register at the offset using the serial gigabit
812 * media independent interface.
814 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
815 u16 data)
817 s32 ret_val = -E1000_ERR_PARAM;
820 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
821 hw_dbg("PHY Address %d is out of range\n", offset);
822 goto out;
825 ret_val = hw->phy.ops.acquire(hw);
826 if (ret_val)
827 goto out;
829 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
831 hw->phy.ops.release(hw);
833 out:
834 return ret_val;
838 * igb_get_phy_id_82575 - Retrieve PHY addr and id
839 * @hw: pointer to the HW structure
841 * Retrieves the PHY address and ID for both PHY's which do and do not use
842 * sgmi interface.
844 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
846 struct e1000_phy_info *phy = &hw->phy;
847 s32 ret_val = 0;
848 u16 phy_id;
849 u32 ctrl_ext;
850 u32 mdic;
852 /* Extra read required for some PHY's on i354 */
853 if (hw->mac.type == e1000_i354)
854 igb_get_phy_id(hw);
856 /* For SGMII PHYs, we try the list of possible addresses until
857 * we find one that works. For non-SGMII PHYs
858 * (e.g. integrated copper PHYs), an address of 1 should
859 * work. The result of this function should mean phy->phy_addr
860 * and phy->id are set correctly.
862 if (!(igb_sgmii_active_82575(hw))) {
863 phy->addr = 1;
864 ret_val = igb_get_phy_id(hw);
865 goto out;
868 if (igb_sgmii_uses_mdio_82575(hw)) {
869 switch (hw->mac.type) {
870 case e1000_82575:
871 case e1000_82576:
872 mdic = rd32(E1000_MDIC);
873 mdic &= E1000_MDIC_PHY_MASK;
874 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
875 break;
876 case e1000_82580:
877 case e1000_i350:
878 case e1000_i354:
879 case e1000_i210:
880 case e1000_i211:
881 mdic = rd32(E1000_MDICNFG);
882 mdic &= E1000_MDICNFG_PHY_MASK;
883 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
884 break;
885 default:
886 ret_val = -E1000_ERR_PHY;
887 goto out;
889 ret_val = igb_get_phy_id(hw);
890 goto out;
893 /* Power on sgmii phy if it is disabled */
894 ctrl_ext = rd32(E1000_CTRL_EXT);
895 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
896 wrfl();
897 msleep(300);
899 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
900 * Therefore, we need to test 1-7
902 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
903 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
904 if (ret_val == 0) {
905 hw_dbg("Vendor ID 0x%08X read at address %u\n",
906 phy_id, phy->addr);
907 /* At the time of this writing, The M88 part is
908 * the only supported SGMII PHY product.
910 if (phy_id == M88_VENDOR)
911 break;
912 } else {
913 hw_dbg("PHY address %u was unreadable\n", phy->addr);
917 /* A valid PHY type couldn't be found. */
918 if (phy->addr == 8) {
919 phy->addr = 0;
920 ret_val = -E1000_ERR_PHY;
921 goto out;
922 } else {
923 ret_val = igb_get_phy_id(hw);
926 /* restore previous sfp cage power state */
927 wr32(E1000_CTRL_EXT, ctrl_ext);
929 out:
930 return ret_val;
934 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
935 * @hw: pointer to the HW structure
937 * Resets the PHY using the serial gigabit media independent interface.
939 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
941 struct e1000_phy_info *phy = &hw->phy;
942 s32 ret_val;
944 /* This isn't a true "hard" reset, but is the only reset
945 * available to us at this time.
948 hw_dbg("Soft resetting SGMII attached PHY...\n");
950 /* SFP documentation requires the following to configure the SPF module
951 * to work on SGMII. No further documentation is given.
953 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
954 if (ret_val)
955 goto out;
957 ret_val = igb_phy_sw_reset(hw);
958 if (ret_val)
959 goto out;
961 if (phy->id == M88E1512_E_PHY_ID)
962 ret_val = igb_initialize_M88E1512_phy(hw);
963 if (phy->id == M88E1543_E_PHY_ID)
964 ret_val = igb_initialize_M88E1543_phy(hw);
965 out:
966 return ret_val;
970 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
971 * @hw: pointer to the HW structure
972 * @active: true to enable LPLU, false to disable
974 * Sets the LPLU D0 state according to the active flag. When
975 * activating LPLU this function also disables smart speed
976 * and vice versa. LPLU will not be activated unless the
977 * device autonegotiation advertisement meets standards of
978 * either 10 or 10/100 or 10/100/1000 at all duplexes.
979 * This is a function pointer entry point only called by
980 * PHY setup routines.
982 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
984 struct e1000_phy_info *phy = &hw->phy;
985 s32 ret_val;
986 u16 data;
988 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
989 if (ret_val)
990 goto out;
992 if (active) {
993 data |= IGP02E1000_PM_D0_LPLU;
994 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
995 data);
996 if (ret_val)
997 goto out;
999 /* When LPLU is enabled, we should disable SmartSpeed */
1000 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1001 &data);
1002 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1004 data);
1005 if (ret_val)
1006 goto out;
1007 } else {
1008 data &= ~IGP02E1000_PM_D0_LPLU;
1009 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010 data);
1011 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1012 * during Dx states where the power conservation is most
1013 * important. During driver activity we should enable
1014 * SmartSpeed, so performance is maintained.
1016 if (phy->smart_speed == e1000_smart_speed_on) {
1017 ret_val = phy->ops.read_reg(hw,
1018 IGP01E1000_PHY_PORT_CONFIG, &data);
1019 if (ret_val)
1020 goto out;
1022 data |= IGP01E1000_PSCFR_SMART_SPEED;
1023 ret_val = phy->ops.write_reg(hw,
1024 IGP01E1000_PHY_PORT_CONFIG, data);
1025 if (ret_val)
1026 goto out;
1027 } else if (phy->smart_speed == e1000_smart_speed_off) {
1028 ret_val = phy->ops.read_reg(hw,
1029 IGP01E1000_PHY_PORT_CONFIG, &data);
1030 if (ret_val)
1031 goto out;
1033 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1034 ret_val = phy->ops.write_reg(hw,
1035 IGP01E1000_PHY_PORT_CONFIG, data);
1036 if (ret_val)
1037 goto out;
1041 out:
1042 return ret_val;
1046 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047 * @hw: pointer to the HW structure
1048 * @active: true to enable LPLU, false to disable
1050 * Sets the LPLU D0 state according to the active flag. When
1051 * activating LPLU this function also disables smart speed
1052 * and vice versa. LPLU will not be activated unless the
1053 * device autonegotiation advertisement meets standards of
1054 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1055 * This is a function pointer entry point only called by
1056 * PHY setup routines.
1058 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1060 struct e1000_phy_info *phy = &hw->phy;
1061 u16 data;
1063 data = rd32(E1000_82580_PHY_POWER_MGMT);
1065 if (active) {
1066 data |= E1000_82580_PM_D0_LPLU;
1068 /* When LPLU is enabled, we should disable SmartSpeed */
1069 data &= ~E1000_82580_PM_SPD;
1070 } else {
1071 data &= ~E1000_82580_PM_D0_LPLU;
1073 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1074 * during Dx states where the power conservation is most
1075 * important. During driver activity we should enable
1076 * SmartSpeed, so performance is maintained.
1078 if (phy->smart_speed == e1000_smart_speed_on)
1079 data |= E1000_82580_PM_SPD;
1080 else if (phy->smart_speed == e1000_smart_speed_off)
1081 data &= ~E1000_82580_PM_SPD; }
1083 wr32(E1000_82580_PHY_POWER_MGMT, data);
1084 return 0;
1088 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089 * @hw: pointer to the HW structure
1090 * @active: boolean used to enable/disable lplu
1092 * Success returns 0, Failure returns 1
1094 * The low power link up (lplu) state is set to the power management level D3
1095 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1096 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1097 * is used during Dx states where the power conservation is most important.
1098 * During driver activity, SmartSpeed should be enabled so performance is
1099 * maintained.
1101 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1103 struct e1000_phy_info *phy = &hw->phy;
1104 u16 data;
1106 data = rd32(E1000_82580_PHY_POWER_MGMT);
1108 if (!active) {
1109 data &= ~E1000_82580_PM_D3_LPLU;
1110 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1111 * during Dx states where the power conservation is most
1112 * important. During driver activity we should enable
1113 * SmartSpeed, so performance is maintained.
1115 if (phy->smart_speed == e1000_smart_speed_on)
1116 data |= E1000_82580_PM_SPD;
1117 else if (phy->smart_speed == e1000_smart_speed_off)
1118 data &= ~E1000_82580_PM_SPD;
1119 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1120 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1121 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1122 data |= E1000_82580_PM_D3_LPLU;
1123 /* When LPLU is enabled, we should disable SmartSpeed */
1124 data &= ~E1000_82580_PM_SPD;
1127 wr32(E1000_82580_PHY_POWER_MGMT, data);
1128 return 0;
1132 * igb_acquire_nvm_82575 - Request for access to EEPROM
1133 * @hw: pointer to the HW structure
1135 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1136 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137 * Return successful if access grant bit set, else clear the request for
1138 * EEPROM access and return -E1000_ERR_NVM (-1).
1140 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1142 s32 ret_val;
1144 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145 if (ret_val)
1146 goto out;
1148 ret_val = igb_acquire_nvm(hw);
1150 if (ret_val)
1151 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1153 out:
1154 return ret_val;
1158 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1159 * @hw: pointer to the HW structure
1161 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162 * then release the semaphores acquired.
1164 static void igb_release_nvm_82575(struct e1000_hw *hw)
1166 igb_release_nvm(hw);
1167 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1171 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172 * @hw: pointer to the HW structure
1173 * @mask: specifies which semaphore to acquire
1175 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1176 * will also specify which port we're acquiring the lock for.
1178 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1180 u32 swfw_sync;
1181 u32 swmask = mask;
1182 u32 fwmask = mask << 16;
1183 s32 ret_val = 0;
1184 s32 i = 0, timeout = 200;
1186 while (i < timeout) {
1187 if (igb_get_hw_semaphore(hw)) {
1188 ret_val = -E1000_ERR_SWFW_SYNC;
1189 goto out;
1192 swfw_sync = rd32(E1000_SW_FW_SYNC);
1193 if (!(swfw_sync & (fwmask | swmask)))
1194 break;
1196 /* Firmware currently using resource (fwmask)
1197 * or other software thread using resource (swmask)
1199 igb_put_hw_semaphore(hw);
1200 mdelay(5);
1201 i++;
1204 if (i == timeout) {
1205 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206 ret_val = -E1000_ERR_SWFW_SYNC;
1207 goto out;
1210 swfw_sync |= swmask;
1211 wr32(E1000_SW_FW_SYNC, swfw_sync);
1213 igb_put_hw_semaphore(hw);
1215 out:
1216 return ret_val;
1220 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221 * @hw: pointer to the HW structure
1222 * @mask: specifies which semaphore to acquire
1224 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1225 * will also specify which port we're releasing the lock for.
1227 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1229 u32 swfw_sync;
1231 while (igb_get_hw_semaphore(hw) != 0)
1232 ; /* Empty */
1234 swfw_sync = rd32(E1000_SW_FW_SYNC);
1235 swfw_sync &= ~mask;
1236 wr32(E1000_SW_FW_SYNC, swfw_sync);
1238 igb_put_hw_semaphore(hw);
1242 * igb_get_cfg_done_82575 - Read config done bit
1243 * @hw: pointer to the HW structure
1245 * Read the management control register for the config done bit for
1246 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1247 * to read the config done bit, so an error is *ONLY* logged and returns
1248 * 0. If we were to return with error, EEPROM-less silicon
1249 * would not be able to be reset or change link.
1251 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1253 s32 timeout = PHY_CFG_TIMEOUT;
1254 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1256 if (hw->bus.func == 1)
1257 mask = E1000_NVM_CFG_DONE_PORT_1;
1258 else if (hw->bus.func == E1000_FUNC_2)
1259 mask = E1000_NVM_CFG_DONE_PORT_2;
1260 else if (hw->bus.func == E1000_FUNC_3)
1261 mask = E1000_NVM_CFG_DONE_PORT_3;
1263 while (timeout) {
1264 if (rd32(E1000_EEMNGCTL) & mask)
1265 break;
1266 usleep_range(1000, 2000);
1267 timeout--;
1269 if (!timeout)
1270 hw_dbg("MNG configuration cycle has not completed.\n");
1272 /* If EEPROM is not marked present, init the PHY manually */
1273 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1274 (hw->phy.type == e1000_phy_igp_3))
1275 igb_phy_init_script_igp3(hw);
1277 return 0;
1281 * igb_get_link_up_info_82575 - Get link speed/duplex info
1282 * @hw: pointer to the HW structure
1283 * @speed: stores the current speed
1284 * @duplex: stores the current duplex
1286 * This is a wrapper function, if using the serial gigabit media independent
1287 * interface, use PCS to retrieve the link speed and duplex information.
1288 * Otherwise, use the generic function to get the link speed and duplex info.
1290 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1291 u16 *duplex)
1293 s32 ret_val;
1295 if (hw->phy.media_type != e1000_media_type_copper)
1296 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1297 duplex);
1298 else
1299 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1300 duplex);
1302 return ret_val;
1306 * igb_check_for_link_82575 - Check for link
1307 * @hw: pointer to the HW structure
1309 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1310 * use the generic interface for determining link.
1312 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1314 s32 ret_val;
1315 u16 speed, duplex;
1317 if (hw->phy.media_type != e1000_media_type_copper) {
1318 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1319 &duplex);
1320 /* Use this flag to determine if link needs to be checked or
1321 * not. If we have link clear the flag so that we do not
1322 * continue to check for link.
1324 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1326 /* Configure Flow Control now that Auto-Neg has completed.
1327 * First, we need to restore the desired flow control
1328 * settings because we may have had to re-autoneg with a
1329 * different link partner.
1331 ret_val = igb_config_fc_after_link_up(hw);
1332 if (ret_val)
1333 hw_dbg("Error configuring flow control\n");
1334 } else {
1335 ret_val = igb_check_for_copper_link(hw);
1338 return ret_val;
1342 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343 * @hw: pointer to the HW structure
1345 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1347 u32 reg;
1350 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1351 !igb_sgmii_active_82575(hw))
1352 return;
1354 /* Enable PCS to turn on link */
1355 reg = rd32(E1000_PCS_CFG0);
1356 reg |= E1000_PCS_CFG_PCS_EN;
1357 wr32(E1000_PCS_CFG0, reg);
1359 /* Power up the laser */
1360 reg = rd32(E1000_CTRL_EXT);
1361 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1362 wr32(E1000_CTRL_EXT, reg);
1364 /* flush the write to verify completion */
1365 wrfl();
1366 usleep_range(1000, 2000);
1370 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371 * @hw: pointer to the HW structure
1372 * @speed: stores the current speed
1373 * @duplex: stores the current duplex
1375 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1376 * duplex, then store the values in the pointers provided.
1378 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1379 u16 *duplex)
1381 struct e1000_mac_info *mac = &hw->mac;
1382 u32 pcs, status;
1384 /* Set up defaults for the return values of this function */
1385 mac->serdes_has_link = false;
1386 *speed = 0;
1387 *duplex = 0;
1389 /* Read the PCS Status register for link state. For non-copper mode,
1390 * the status register is not accurate. The PCS status register is
1391 * used instead.
1393 pcs = rd32(E1000_PCS_LSTAT);
1395 /* The link up bit determines when link is up on autoneg. The sync ok
1396 * gets set once both sides sync up and agree upon link. Stable link
1397 * can be determined by checking for both link up and link sync ok
1399 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1400 mac->serdes_has_link = true;
1402 /* Detect and store PCS speed */
1403 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1404 *speed = SPEED_1000;
1405 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1406 *speed = SPEED_100;
1407 else
1408 *speed = SPEED_10;
1410 /* Detect and store PCS duplex */
1411 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1412 *duplex = FULL_DUPLEX;
1413 else
1414 *duplex = HALF_DUPLEX;
1416 /* Check if it is an I354 2.5Gb backplane connection. */
1417 if (mac->type == e1000_i354) {
1418 status = rd32(E1000_STATUS);
1419 if ((status & E1000_STATUS_2P5_SKU) &&
1420 !(status & E1000_STATUS_2P5_SKU_OVER)) {
1421 *speed = SPEED_2500;
1422 *duplex = FULL_DUPLEX;
1423 hw_dbg("2500 Mbs, ");
1424 hw_dbg("Full Duplex\n");
1430 return 0;
1434 * igb_shutdown_serdes_link_82575 - Remove link during power down
1435 * @hw: pointer to the HW structure
1437 * In the case of fiber serdes, shut down optics and PCS on driver unload
1438 * when management pass thru is not enabled.
1440 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1442 u32 reg;
1444 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1445 igb_sgmii_active_82575(hw))
1446 return;
1448 if (!igb_enable_mng_pass_thru(hw)) {
1449 /* Disable PCS to turn off link */
1450 reg = rd32(E1000_PCS_CFG0);
1451 reg &= ~E1000_PCS_CFG_PCS_EN;
1452 wr32(E1000_PCS_CFG0, reg);
1454 /* shutdown the laser */
1455 reg = rd32(E1000_CTRL_EXT);
1456 reg |= E1000_CTRL_EXT_SDP3_DATA;
1457 wr32(E1000_CTRL_EXT, reg);
1459 /* flush the write to verify completion */
1460 wrfl();
1461 usleep_range(1000, 2000);
1466 * igb_reset_hw_82575 - Reset hardware
1467 * @hw: pointer to the HW structure
1469 * This resets the hardware into a known state. This is a
1470 * function pointer entry point called by the api module.
1472 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1474 u32 ctrl;
1475 s32 ret_val;
1477 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1478 * on the last TLP read/write transaction when MAC is reset.
1480 ret_val = igb_disable_pcie_master(hw);
1481 if (ret_val)
1482 hw_dbg("PCI-E Master disable polling has failed.\n");
1484 /* set the completion timeout for interface */
1485 ret_val = igb_set_pcie_completion_timeout(hw);
1486 if (ret_val)
1487 hw_dbg("PCI-E Set completion timeout has failed.\n");
1489 hw_dbg("Masking off all interrupts\n");
1490 wr32(E1000_IMC, 0xffffffff);
1492 wr32(E1000_RCTL, 0);
1493 wr32(E1000_TCTL, E1000_TCTL_PSP);
1494 wrfl();
1496 usleep_range(10000, 20000);
1498 ctrl = rd32(E1000_CTRL);
1500 hw_dbg("Issuing a global reset to MAC\n");
1501 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1503 ret_val = igb_get_auto_rd_done(hw);
1504 if (ret_val) {
1505 /* When auto config read does not complete, do not
1506 * return with an error. This can happen in situations
1507 * where there is no eeprom and prevents getting link.
1509 hw_dbg("Auto Read Done did not complete\n");
1512 /* If EEPROM is not present, run manual init scripts */
1513 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1514 igb_reset_init_script_82575(hw);
1516 /* Clear any pending interrupt events. */
1517 wr32(E1000_IMC, 0xffffffff);
1518 rd32(E1000_ICR);
1520 /* Install any alternate MAC address into RAR0 */
1521 ret_val = igb_check_alt_mac_addr(hw);
1523 return ret_val;
1527 * igb_init_hw_82575 - Initialize hardware
1528 * @hw: pointer to the HW structure
1530 * This inits the hardware readying it for operation.
1532 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1534 struct e1000_mac_info *mac = &hw->mac;
1535 s32 ret_val;
1536 u16 i, rar_count = mac->rar_entry_count;
1538 if ((hw->mac.type >= e1000_i210) &&
1539 !(igb_get_flash_presence_i210(hw))) {
1540 ret_val = igb_pll_workaround_i210(hw);
1541 if (ret_val)
1542 return ret_val;
1545 /* Initialize identification LED */
1546 ret_val = igb_id_led_init(hw);
1547 if (ret_val) {
1548 hw_dbg("Error initializing identification LED\n");
1549 /* This is not fatal and we should not stop init due to this */
1552 /* Disabling VLAN filtering */
1553 hw_dbg("Initializing the IEEE VLAN\n");
1554 igb_clear_vfta(hw);
1556 /* Setup the receive address */
1557 igb_init_rx_addrs(hw, rar_count);
1559 /* Zero out the Multicast HASH table */
1560 hw_dbg("Zeroing the MTA\n");
1561 for (i = 0; i < mac->mta_reg_count; i++)
1562 array_wr32(E1000_MTA, i, 0);
1564 /* Zero out the Unicast HASH table */
1565 hw_dbg("Zeroing the UTA\n");
1566 for (i = 0; i < mac->uta_reg_count; i++)
1567 array_wr32(E1000_UTA, i, 0);
1569 /* Setup link and flow control */
1570 ret_val = igb_setup_link(hw);
1572 /* Clear all of the statistics registers (clear on read). It is
1573 * important that we do this after we have tried to establish link
1574 * because the symbol error count will increment wildly if there
1575 * is no link.
1577 igb_clear_hw_cntrs_82575(hw);
1578 return ret_val;
1582 * igb_setup_copper_link_82575 - Configure copper link settings
1583 * @hw: pointer to the HW structure
1585 * Configures the link for auto-neg or forced speed and duplex. Then we check
1586 * for link, once link is established calls to configure collision distance
1587 * and flow control are called.
1589 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1591 u32 ctrl;
1592 s32 ret_val;
1593 u32 phpm_reg;
1595 ctrl = rd32(E1000_CTRL);
1596 ctrl |= E1000_CTRL_SLU;
1597 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1598 wr32(E1000_CTRL, ctrl);
1600 /* Clear Go Link Disconnect bit on supported devices */
1601 switch (hw->mac.type) {
1602 case e1000_82580:
1603 case e1000_i350:
1604 case e1000_i210:
1605 case e1000_i211:
1606 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1607 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1608 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1609 break;
1610 default:
1611 break;
1614 ret_val = igb_setup_serdes_link_82575(hw);
1615 if (ret_val)
1616 goto out;
1618 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1619 /* allow time for SFP cage time to power up phy */
1620 msleep(300);
1622 ret_val = hw->phy.ops.reset(hw);
1623 if (ret_val) {
1624 hw_dbg("Error resetting the PHY.\n");
1625 goto out;
1628 switch (hw->phy.type) {
1629 case e1000_phy_i210:
1630 case e1000_phy_m88:
1631 switch (hw->phy.id) {
1632 case I347AT4_E_PHY_ID:
1633 case M88E1112_E_PHY_ID:
1634 case M88E1543_E_PHY_ID:
1635 case M88E1512_E_PHY_ID:
1636 case I210_I_PHY_ID:
1637 ret_val = igb_copper_link_setup_m88_gen2(hw);
1638 break;
1639 default:
1640 ret_val = igb_copper_link_setup_m88(hw);
1641 break;
1643 break;
1644 case e1000_phy_igp_3:
1645 ret_val = igb_copper_link_setup_igp(hw);
1646 break;
1647 case e1000_phy_82580:
1648 ret_val = igb_copper_link_setup_82580(hw);
1649 break;
1650 default:
1651 ret_val = -E1000_ERR_PHY;
1652 break;
1655 if (ret_val)
1656 goto out;
1658 ret_val = igb_setup_copper_link(hw);
1659 out:
1660 return ret_val;
1664 * igb_setup_serdes_link_82575 - Setup link for serdes
1665 * @hw: pointer to the HW structure
1667 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1668 * used on copper connections where the serialized gigabit media independent
1669 * interface (sgmii), or serdes fiber is being used. Configures the link
1670 * for auto-negotiation or forces speed/duplex.
1672 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1674 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1675 bool pcs_autoneg;
1676 s32 ret_val = 0;
1677 u16 data;
1679 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1680 !igb_sgmii_active_82575(hw))
1681 return ret_val;
1684 /* On the 82575, SerDes loopback mode persists until it is
1685 * explicitly turned off or a power cycle is performed. A read to
1686 * the register does not indicate its status. Therefore, we ensure
1687 * loopback mode is disabled during initialization.
1689 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1691 /* power on the sfp cage if present and turn on I2C */
1692 ctrl_ext = rd32(E1000_CTRL_EXT);
1693 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1694 ctrl_ext |= E1000_CTRL_I2C_ENA;
1695 wr32(E1000_CTRL_EXT, ctrl_ext);
1697 ctrl_reg = rd32(E1000_CTRL);
1698 ctrl_reg |= E1000_CTRL_SLU;
1700 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1701 /* set both sw defined pins */
1702 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1704 /* Set switch control to serdes energy detect */
1705 reg = rd32(E1000_CONNSW);
1706 reg |= E1000_CONNSW_ENRGSRC;
1707 wr32(E1000_CONNSW, reg);
1710 reg = rd32(E1000_PCS_LCTL);
1712 /* default pcs_autoneg to the same setting as mac autoneg */
1713 pcs_autoneg = hw->mac.autoneg;
1715 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1716 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1717 /* sgmii mode lets the phy handle forcing speed/duplex */
1718 pcs_autoneg = true;
1719 /* autoneg time out should be disabled for SGMII mode */
1720 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1721 break;
1722 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1723 /* disable PCS autoneg and support parallel detect only */
1724 pcs_autoneg = false;
1725 default:
1726 if (hw->mac.type == e1000_82575 ||
1727 hw->mac.type == e1000_82576) {
1728 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1729 if (ret_val) {
1730 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1731 return ret_val;
1734 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1735 pcs_autoneg = false;
1738 /* non-SGMII modes only supports a speed of 1000/Full for the
1739 * link so it is best to just force the MAC and let the pcs
1740 * link either autoneg or be forced to 1000/Full
1742 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1743 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1745 /* set speed of 1000/Full if speed/duplex is forced */
1746 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1747 break;
1750 wr32(E1000_CTRL, ctrl_reg);
1752 /* New SerDes mode allows for forcing speed or autonegotiating speed
1753 * at 1gb. Autoneg should be default set by most drivers. This is the
1754 * mode that will be compatible with older link partners and switches.
1755 * However, both are supported by the hardware and some drivers/tools.
1757 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1758 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1760 if (pcs_autoneg) {
1761 /* Set PCS register for autoneg */
1762 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1763 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1765 /* Disable force flow control for autoneg */
1766 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1768 /* Configure flow control advertisement for autoneg */
1769 anadv_reg = rd32(E1000_PCS_ANADV);
1770 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1771 switch (hw->fc.requested_mode) {
1772 case e1000_fc_full:
1773 case e1000_fc_rx_pause:
1774 anadv_reg |= E1000_TXCW_ASM_DIR;
1775 anadv_reg |= E1000_TXCW_PAUSE;
1776 break;
1777 case e1000_fc_tx_pause:
1778 anadv_reg |= E1000_TXCW_ASM_DIR;
1779 break;
1780 default:
1781 break;
1783 wr32(E1000_PCS_ANADV, anadv_reg);
1785 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1786 } else {
1787 /* Set PCS register for forced link */
1788 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1790 /* Force flow control for forced link */
1791 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1793 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1796 wr32(E1000_PCS_LCTL, reg);
1798 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1799 igb_force_mac_fc(hw);
1801 return ret_val;
1805 * igb_sgmii_active_82575 - Return sgmii state
1806 * @hw: pointer to the HW structure
1808 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1809 * which can be enabled for use in the embedded applications. Simply
1810 * return the current state of the sgmii interface.
1812 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1814 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1815 return dev_spec->sgmii_active;
1819 * igb_reset_init_script_82575 - Inits HW defaults after reset
1820 * @hw: pointer to the HW structure
1822 * Inits recommended HW defaults after a reset when there is no EEPROM
1823 * detected. This is only for the 82575.
1825 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1827 if (hw->mac.type == e1000_82575) {
1828 hw_dbg("Running reset init script for 82575\n");
1829 /* SerDes configuration via SERDESCTRL */
1830 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1831 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1832 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1833 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1835 /* CCM configuration via CCMCTL register */
1836 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1837 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1839 /* PCIe lanes configuration */
1840 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1841 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1842 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1843 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1845 /* PCIe PLL Configuration */
1846 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1847 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1848 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1851 return 0;
1855 * igb_read_mac_addr_82575 - Read device MAC address
1856 * @hw: pointer to the HW structure
1858 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1860 s32 ret_val = 0;
1862 /* If there's an alternate MAC address place it in RAR0
1863 * so that it will override the Si installed default perm
1864 * address.
1866 ret_val = igb_check_alt_mac_addr(hw);
1867 if (ret_val)
1868 goto out;
1870 ret_val = igb_read_mac_addr(hw);
1872 out:
1873 return ret_val;
1877 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878 * @hw: pointer to the HW structure
1880 * In the case of a PHY power down to save power, or to turn off link during a
1881 * driver unload, or wake on lan is not enabled, remove the link.
1883 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1885 /* If the management interface is not enabled, then power down */
1886 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1887 igb_power_down_phy_copper(hw);
1891 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892 * @hw: pointer to the HW structure
1894 * Clears the hardware counters by reading the counter registers.
1896 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1898 igb_clear_hw_cntrs_base(hw);
1900 rd32(E1000_PRC64);
1901 rd32(E1000_PRC127);
1902 rd32(E1000_PRC255);
1903 rd32(E1000_PRC511);
1904 rd32(E1000_PRC1023);
1905 rd32(E1000_PRC1522);
1906 rd32(E1000_PTC64);
1907 rd32(E1000_PTC127);
1908 rd32(E1000_PTC255);
1909 rd32(E1000_PTC511);
1910 rd32(E1000_PTC1023);
1911 rd32(E1000_PTC1522);
1913 rd32(E1000_ALGNERRC);
1914 rd32(E1000_RXERRC);
1915 rd32(E1000_TNCRS);
1916 rd32(E1000_CEXTERR);
1917 rd32(E1000_TSCTC);
1918 rd32(E1000_TSCTFC);
1920 rd32(E1000_MGTPRC);
1921 rd32(E1000_MGTPDC);
1922 rd32(E1000_MGTPTC);
1924 rd32(E1000_IAC);
1925 rd32(E1000_ICRXOC);
1927 rd32(E1000_ICRXPTC);
1928 rd32(E1000_ICRXATC);
1929 rd32(E1000_ICTXPTC);
1930 rd32(E1000_ICTXATC);
1931 rd32(E1000_ICTXQEC);
1932 rd32(E1000_ICTXQMTC);
1933 rd32(E1000_ICRXDMTC);
1935 rd32(E1000_CBTMPC);
1936 rd32(E1000_HTDPMC);
1937 rd32(E1000_CBRMPC);
1938 rd32(E1000_RPTHC);
1939 rd32(E1000_HGPTC);
1940 rd32(E1000_HTCBDPC);
1941 rd32(E1000_HGORCL);
1942 rd32(E1000_HGORCH);
1943 rd32(E1000_HGOTCL);
1944 rd32(E1000_HGOTCH);
1945 rd32(E1000_LENERRS);
1947 /* This register should not be read in copper configurations */
1948 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1949 igb_sgmii_active_82575(hw))
1950 rd32(E1000_SCVPC);
1954 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955 * @hw: pointer to the HW structure
1957 * After rx enable if manageability is enabled then there is likely some
1958 * bad data at the start of the fifo and possibly in the DMA fifo. This
1959 * function clears the fifos and flushes any packets that came in as rx was
1960 * being enabled.
1962 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1964 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1965 int i, ms_wait;
1967 /* disable IPv6 options as per hardware errata */
1968 rfctl = rd32(E1000_RFCTL);
1969 rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1970 wr32(E1000_RFCTL, rfctl);
1972 if (hw->mac.type != e1000_82575 ||
1973 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1974 return;
1976 /* Disable all RX queues */
1977 for (i = 0; i < 4; i++) {
1978 rxdctl[i] = rd32(E1000_RXDCTL(i));
1979 wr32(E1000_RXDCTL(i),
1980 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1982 /* Poll all queues to verify they have shut down */
1983 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1984 usleep_range(1000, 2000);
1985 rx_enabled = 0;
1986 for (i = 0; i < 4; i++)
1987 rx_enabled |= rd32(E1000_RXDCTL(i));
1988 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1989 break;
1992 if (ms_wait == 10)
1993 hw_dbg("Queue disable timed out after 10ms\n");
1995 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996 * incoming packets are rejected. Set enable and wait 2ms so that
1997 * any packet that was coming in as RCTL.EN was set is flushed
1999 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2001 rlpml = rd32(E1000_RLPML);
2002 wr32(E1000_RLPML, 0);
2004 rctl = rd32(E1000_RCTL);
2005 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2006 temp_rctl |= E1000_RCTL_LPE;
2008 wr32(E1000_RCTL, temp_rctl);
2009 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2010 wrfl();
2011 usleep_range(2000, 3000);
2013 /* Enable RX queues that were previously enabled and restore our
2014 * previous state
2016 for (i = 0; i < 4; i++)
2017 wr32(E1000_RXDCTL(i), rxdctl[i]);
2018 wr32(E1000_RCTL, rctl);
2019 wrfl();
2021 wr32(E1000_RLPML, rlpml);
2022 wr32(E1000_RFCTL, rfctl);
2024 /* Flush receive errors generated by workaround */
2025 rd32(E1000_ROC);
2026 rd32(E1000_RNBC);
2027 rd32(E1000_MPC);
2031 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2032 * @hw: pointer to the HW structure
2034 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035 * however the hardware default for these parts is 500us to 1ms which is less
2036 * than the 10ms recommended by the pci-e spec. To address this we need to
2037 * increase the value to either 10ms to 200ms for capability version 1 config,
2038 * or 16ms to 55ms for version 2.
2040 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2042 u32 gcr = rd32(E1000_GCR);
2043 s32 ret_val = 0;
2044 u16 pcie_devctl2;
2046 /* only take action if timeout value is defaulted to 0 */
2047 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2048 goto out;
2050 /* if capabilities version is type 1 we can write the
2051 * timeout of 10ms to 200ms through the GCR register
2053 if (!(gcr & E1000_GCR_CAP_VER2)) {
2054 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2055 goto out;
2058 /* for version 2 capabilities we need to write the config space
2059 * directly in order to set the completion timeout value for
2060 * 16ms to 55ms
2062 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2063 &pcie_devctl2);
2064 if (ret_val)
2065 goto out;
2067 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2069 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2070 &pcie_devctl2);
2071 out:
2072 /* disable completion timeout resend */
2073 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2075 wr32(E1000_GCR, gcr);
2076 return ret_val;
2080 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081 * @hw: pointer to the hardware struct
2082 * @enable: state to enter, either enabled or disabled
2083 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2085 * enables/disables L2 switch anti-spoofing functionality.
2087 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2089 u32 reg_val, reg_offset;
2091 switch (hw->mac.type) {
2092 case e1000_82576:
2093 reg_offset = E1000_DTXSWC;
2094 break;
2095 case e1000_i350:
2096 case e1000_i354:
2097 reg_offset = E1000_TXSWC;
2098 break;
2099 default:
2100 return;
2103 reg_val = rd32(reg_offset);
2104 if (enable) {
2105 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2106 E1000_DTXSWC_VLAN_SPOOF_MASK);
2107 /* The PF can spoof - it has to in order to
2108 * support emulation mode NICs
2110 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2111 } else {
2112 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2113 E1000_DTXSWC_VLAN_SPOOF_MASK);
2115 wr32(reg_offset, reg_val);
2119 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120 * @hw: pointer to the hardware struct
2121 * @enable: state to enter, either enabled or disabled
2123 * enables/disables L2 switch loopback functionality.
2125 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2127 u32 dtxswc;
2129 switch (hw->mac.type) {
2130 case e1000_82576:
2131 dtxswc = rd32(E1000_DTXSWC);
2132 if (enable)
2133 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2134 else
2135 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2136 wr32(E1000_DTXSWC, dtxswc);
2137 break;
2138 case e1000_i354:
2139 case e1000_i350:
2140 dtxswc = rd32(E1000_TXSWC);
2141 if (enable)
2142 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2143 else
2144 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2145 wr32(E1000_TXSWC, dtxswc);
2146 break;
2147 default:
2148 /* Currently no other hardware supports loopback */
2149 break;
2155 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156 * @hw: pointer to the hardware struct
2157 * @enable: state to enter, either enabled or disabled
2159 * enables/disables replication of packets across multiple pools.
2161 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2163 u32 vt_ctl = rd32(E1000_VT_CTL);
2165 if (enable)
2166 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2167 else
2168 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2170 wr32(E1000_VT_CTL, vt_ctl);
2174 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2175 * @hw: pointer to the HW structure
2176 * @offset: register offset to be read
2177 * @data: pointer to the read data
2179 * Reads the MDI control register in the PHY at offset and stores the
2180 * information read to data.
2182 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2184 s32 ret_val;
2186 ret_val = hw->phy.ops.acquire(hw);
2187 if (ret_val)
2188 goto out;
2190 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2192 hw->phy.ops.release(hw);
2194 out:
2195 return ret_val;
2199 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2200 * @hw: pointer to the HW structure
2201 * @offset: register offset to write to
2202 * @data: data to write to register at offset
2204 * Writes data to MDI control register in the PHY at offset.
2206 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2208 s32 ret_val;
2211 ret_val = hw->phy.ops.acquire(hw);
2212 if (ret_val)
2213 goto out;
2215 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2217 hw->phy.ops.release(hw);
2219 out:
2220 return ret_val;
2224 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225 * @hw: pointer to the HW structure
2227 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228 * the values found in the EEPROM. This addresses an issue in which these
2229 * bits are not restored from EEPROM after reset.
2231 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2233 s32 ret_val = 0;
2234 u32 mdicnfg;
2235 u16 nvm_data = 0;
2237 if (hw->mac.type != e1000_82580)
2238 goto out;
2239 if (!igb_sgmii_active_82575(hw))
2240 goto out;
2242 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2244 &nvm_data);
2245 if (ret_val) {
2246 hw_dbg("NVM Read Error\n");
2247 goto out;
2250 mdicnfg = rd32(E1000_MDICNFG);
2251 if (nvm_data & NVM_WORD24_EXT_MDIO)
2252 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2253 if (nvm_data & NVM_WORD24_COM_MDIO)
2254 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2255 wr32(E1000_MDICNFG, mdicnfg);
2256 out:
2257 return ret_val;
2261 * igb_reset_hw_82580 - Reset hardware
2262 * @hw: pointer to the HW structure
2264 * This resets function or entire device (all ports, etc.)
2265 * to a known state.
2267 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2269 s32 ret_val = 0;
2270 /* BH SW mailbox bit in SW_FW_SYNC */
2271 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2272 u32 ctrl;
2273 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2275 hw->dev_spec._82575.global_device_reset = false;
2277 /* due to hw errata, global device reset doesn't always
2278 * work on 82580
2280 if (hw->mac.type == e1000_82580)
2281 global_device_reset = false;
2283 /* Get current control state. */
2284 ctrl = rd32(E1000_CTRL);
2286 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2287 * on the last TLP read/write transaction when MAC is reset.
2289 ret_val = igb_disable_pcie_master(hw);
2290 if (ret_val)
2291 hw_dbg("PCI-E Master disable polling has failed.\n");
2293 hw_dbg("Masking off all interrupts\n");
2294 wr32(E1000_IMC, 0xffffffff);
2295 wr32(E1000_RCTL, 0);
2296 wr32(E1000_TCTL, E1000_TCTL_PSP);
2297 wrfl();
2299 usleep_range(10000, 11000);
2301 /* Determine whether or not a global dev reset is requested */
2302 if (global_device_reset &&
2303 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2304 global_device_reset = false;
2306 if (global_device_reset &&
2307 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2308 ctrl |= E1000_CTRL_DEV_RST;
2309 else
2310 ctrl |= E1000_CTRL_RST;
2312 wr32(E1000_CTRL, ctrl);
2313 wrfl();
2315 /* Add delay to insure DEV_RST has time to complete */
2316 if (global_device_reset)
2317 usleep_range(5000, 6000);
2319 ret_val = igb_get_auto_rd_done(hw);
2320 if (ret_val) {
2321 /* When auto config read does not complete, do not
2322 * return with an error. This can happen in situations
2323 * where there is no eeprom and prevents getting link.
2325 hw_dbg("Auto Read Done did not complete\n");
2328 /* clear global device reset status bit */
2329 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2331 /* Clear any pending interrupt events. */
2332 wr32(E1000_IMC, 0xffffffff);
2333 rd32(E1000_ICR);
2335 ret_val = igb_reset_mdicnfg_82580(hw);
2336 if (ret_val)
2337 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2339 /* Install any alternate MAC address into RAR0 */
2340 ret_val = igb_check_alt_mac_addr(hw);
2342 /* Release semaphore */
2343 if (global_device_reset)
2344 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2346 return ret_val;
2350 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351 * @data: data received by reading RXPBS register
2353 * The 82580 uses a table based approach for packet buffer allocation sizes.
2354 * This function converts the retrieved value into the correct table value
2355 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356 * 0x0 36 72 144 1 2 4 8 16
2357 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2359 u16 igb_rxpbs_adjust_82580(u32 data)
2361 u16 ret_val = 0;
2363 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2364 ret_val = e1000_82580_rxpbs_table[data];
2366 return ret_val;
2370 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2371 * checksum
2372 * @hw: pointer to the HW structure
2373 * @offset: offset in words of the checksum protected region
2375 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2378 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2379 u16 offset)
2381 s32 ret_val = 0;
2382 u16 checksum = 0;
2383 u16 i, nvm_data;
2385 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2386 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2387 if (ret_val) {
2388 hw_dbg("NVM Read Error\n");
2389 goto out;
2391 checksum += nvm_data;
2394 if (checksum != (u16) NVM_SUM) {
2395 hw_dbg("NVM Checksum Invalid\n");
2396 ret_val = -E1000_ERR_NVM;
2397 goto out;
2400 out:
2401 return ret_val;
2405 * igb_update_nvm_checksum_with_offset - Update EEPROM
2406 * checksum
2407 * @hw: pointer to the HW structure
2408 * @offset: offset in words of the checksum protected region
2410 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411 * up to the checksum. Then calculates the EEPROM checksum and writes the
2412 * value to the EEPROM.
2414 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2416 s32 ret_val;
2417 u16 checksum = 0;
2418 u16 i, nvm_data;
2420 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2421 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2422 if (ret_val) {
2423 hw_dbg("NVM Read Error while updating checksum.\n");
2424 goto out;
2426 checksum += nvm_data;
2428 checksum = (u16) NVM_SUM - checksum;
2429 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2430 &checksum);
2431 if (ret_val)
2432 hw_dbg("NVM Write Error while updating checksum.\n");
2434 out:
2435 return ret_val;
2439 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440 * @hw: pointer to the HW structure
2442 * Calculates the EEPROM section checksum by reading/adding each word of
2443 * the EEPROM and then verifies that the sum of the EEPROM is
2444 * equal to 0xBABA.
2446 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2448 s32 ret_val = 0;
2449 u16 eeprom_regions_count = 1;
2450 u16 j, nvm_data;
2451 u16 nvm_offset;
2453 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2454 if (ret_val) {
2455 hw_dbg("NVM Read Error\n");
2456 goto out;
2459 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2460 /* if checksums compatibility bit is set validate checksums
2461 * for all 4 ports.
2463 eeprom_regions_count = 4;
2466 for (j = 0; j < eeprom_regions_count; j++) {
2467 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2468 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2469 nvm_offset);
2470 if (ret_val != 0)
2471 goto out;
2474 out:
2475 return ret_val;
2479 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480 * @hw: pointer to the HW structure
2482 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2483 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2484 * checksum and writes the value to the EEPROM.
2486 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2488 s32 ret_val;
2489 u16 j, nvm_data;
2490 u16 nvm_offset;
2492 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2493 if (ret_val) {
2494 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2495 goto out;
2498 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2499 /* set compatibility bit to validate checksums appropriately */
2500 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2501 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2502 &nvm_data);
2503 if (ret_val) {
2504 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2505 goto out;
2509 for (j = 0; j < 4; j++) {
2510 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2511 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2512 if (ret_val)
2513 goto out;
2516 out:
2517 return ret_val;
2521 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522 * @hw: pointer to the HW structure
2524 * Calculates the EEPROM section checksum by reading/adding each word of
2525 * the EEPROM and then verifies that the sum of the EEPROM is
2526 * equal to 0xBABA.
2528 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2530 s32 ret_val = 0;
2531 u16 j;
2532 u16 nvm_offset;
2534 for (j = 0; j < 4; j++) {
2535 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2536 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2537 nvm_offset);
2538 if (ret_val != 0)
2539 goto out;
2542 out:
2543 return ret_val;
2547 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548 * @hw: pointer to the HW structure
2550 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2551 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2552 * checksum and writes the value to the EEPROM.
2554 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2556 s32 ret_val = 0;
2557 u16 j;
2558 u16 nvm_offset;
2560 for (j = 0; j < 4; j++) {
2561 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2563 if (ret_val != 0)
2564 goto out;
2567 out:
2568 return ret_val;
2572 * __igb_access_emi_reg - Read/write EMI register
2573 * @hw: pointer to the HW structure
2574 * @addr: EMI address to program
2575 * @data: pointer to value to read/write from/to the EMI address
2576 * @read: boolean flag to indicate read or write
2578 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2579 u16 *data, bool read)
2581 s32 ret_val = 0;
2583 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2584 if (ret_val)
2585 return ret_val;
2587 if (read)
2588 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2589 else
2590 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2592 return ret_val;
2596 * igb_read_emi_reg - Read Extended Management Interface register
2597 * @hw: pointer to the HW structure
2598 * @addr: EMI address to program
2599 * @data: value to be read from the EMI address
2601 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2603 return __igb_access_emi_reg(hw, addr, data, true);
2607 * igb_set_eee_i350 - Enable/disable EEE support
2608 * @hw: pointer to the HW structure
2609 * @adv1G: boolean flag enabling 1G EEE advertisement
2610 * @adv100m: boolean flag enabling 100M EEE advertisement
2612 * Enable/disable EEE based on setting in dev_spec structure.
2615 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2617 u32 ipcnfg, eeer;
2619 if ((hw->mac.type < e1000_i350) ||
2620 (hw->phy.media_type != e1000_media_type_copper))
2621 goto out;
2622 ipcnfg = rd32(E1000_IPCNFG);
2623 eeer = rd32(E1000_EEER);
2625 /* enable or disable per user setting */
2626 if (!(hw->dev_spec._82575.eee_disable)) {
2627 u32 eee_su = rd32(E1000_EEE_SU);
2629 if (adv100M)
2630 ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2631 else
2632 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2634 if (adv1G)
2635 ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2636 else
2637 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2639 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2640 E1000_EEER_LPI_FC);
2642 /* This bit should not be set in normal operation. */
2643 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2644 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2646 } else {
2647 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2648 E1000_IPCNFG_EEE_100M_AN);
2649 eeer &= ~(E1000_EEER_TX_LPI_EN |
2650 E1000_EEER_RX_LPI_EN |
2651 E1000_EEER_LPI_FC);
2653 wr32(E1000_IPCNFG, ipcnfg);
2654 wr32(E1000_EEER, eeer);
2655 rd32(E1000_IPCNFG);
2656 rd32(E1000_EEER);
2657 out:
2659 return 0;
2663 * igb_set_eee_i354 - Enable/disable EEE support
2664 * @hw: pointer to the HW structure
2665 * @adv1G: boolean flag enabling 1G EEE advertisement
2666 * @adv100m: boolean flag enabling 100M EEE advertisement
2668 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2671 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2673 struct e1000_phy_info *phy = &hw->phy;
2674 s32 ret_val = 0;
2675 u16 phy_data;
2677 if ((hw->phy.media_type != e1000_media_type_copper) ||
2678 ((phy->id != M88E1543_E_PHY_ID) &&
2679 (phy->id != M88E1512_E_PHY_ID)))
2680 goto out;
2682 if (!hw->dev_spec._82575.eee_disable) {
2683 /* Switch to PHY page 18. */
2684 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2685 if (ret_val)
2686 goto out;
2688 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2689 &phy_data);
2690 if (ret_val)
2691 goto out;
2693 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2694 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2695 phy_data);
2696 if (ret_val)
2697 goto out;
2699 /* Return the PHY to page 0. */
2700 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2701 if (ret_val)
2702 goto out;
2704 /* Turn on EEE advertisement. */
2705 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2706 E1000_EEE_ADV_DEV_I354,
2707 &phy_data);
2708 if (ret_val)
2709 goto out;
2711 if (adv100M)
2712 phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2713 else
2714 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2716 if (adv1G)
2717 phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2718 else
2719 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2721 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722 E1000_EEE_ADV_DEV_I354,
2723 phy_data);
2724 } else {
2725 /* Turn off EEE advertisement. */
2726 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2727 E1000_EEE_ADV_DEV_I354,
2728 &phy_data);
2729 if (ret_val)
2730 goto out;
2732 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2733 E1000_EEE_ADV_1000_SUPPORTED);
2734 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2735 E1000_EEE_ADV_DEV_I354,
2736 phy_data);
2739 out:
2740 return ret_val;
2744 * igb_get_eee_status_i354 - Get EEE status
2745 * @hw: pointer to the HW structure
2746 * @status: EEE status
2748 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2749 * been received.
2751 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2753 struct e1000_phy_info *phy = &hw->phy;
2754 s32 ret_val = 0;
2755 u16 phy_data;
2757 /* Check if EEE is supported on this device. */
2758 if ((hw->phy.media_type != e1000_media_type_copper) ||
2759 ((phy->id != M88E1543_E_PHY_ID) &&
2760 (phy->id != M88E1512_E_PHY_ID)))
2761 goto out;
2763 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2764 E1000_PCS_STATUS_DEV_I354,
2765 &phy_data);
2766 if (ret_val)
2767 goto out;
2769 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2770 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2772 out:
2773 return ret_val;
2776 static const u8 e1000_emc_temp_data[4] = {
2777 E1000_EMC_INTERNAL_DATA,
2778 E1000_EMC_DIODE1_DATA,
2779 E1000_EMC_DIODE2_DATA,
2780 E1000_EMC_DIODE3_DATA
2782 static const u8 e1000_emc_therm_limit[4] = {
2783 E1000_EMC_INTERNAL_THERM_LIMIT,
2784 E1000_EMC_DIODE1_THERM_LIMIT,
2785 E1000_EMC_DIODE2_THERM_LIMIT,
2786 E1000_EMC_DIODE3_THERM_LIMIT
2789 #ifdef CONFIG_IGB_HWMON
2791 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792 * @hw: pointer to hardware structure
2794 * Updates the temperatures in mac.thermal_sensor_data
2796 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2798 u16 ets_offset;
2799 u16 ets_cfg;
2800 u16 ets_sensor;
2801 u8 num_sensors;
2802 u8 sensor_index;
2803 u8 sensor_location;
2804 u8 i;
2805 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2807 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2808 return E1000_NOT_IMPLEMENTED;
2810 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2812 /* Return the internal sensor only if ETS is unsupported */
2813 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2814 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2815 return 0;
2817 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2818 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2819 != NVM_ETS_TYPE_EMC)
2820 return E1000_NOT_IMPLEMENTED;
2822 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2823 if (num_sensors > E1000_MAX_SENSORS)
2824 num_sensors = E1000_MAX_SENSORS;
2826 for (i = 1; i < num_sensors; i++) {
2827 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2828 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2829 NVM_ETS_DATA_INDEX_SHIFT);
2830 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2831 NVM_ETS_DATA_LOC_SHIFT);
2833 if (sensor_location != 0)
2834 hw->phy.ops.read_i2c_byte(hw,
2835 e1000_emc_temp_data[sensor_index],
2836 E1000_I2C_THERMAL_SENSOR_ADDR,
2837 &data->sensor[i].temp);
2839 return 0;
2843 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844 * @hw: pointer to hardware structure
2846 * Sets the thermal sensor thresholds according to the NVM map
2847 * and save off the threshold and location values into mac.thermal_sensor_data
2849 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2851 u16 ets_offset;
2852 u16 ets_cfg;
2853 u16 ets_sensor;
2854 u8 low_thresh_delta;
2855 u8 num_sensors;
2856 u8 sensor_index;
2857 u8 sensor_location;
2858 u8 therm_limit;
2859 u8 i;
2860 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2862 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2863 return E1000_NOT_IMPLEMENTED;
2865 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2867 data->sensor[0].location = 0x1;
2868 data->sensor[0].caution_thresh =
2869 (rd32(E1000_THHIGHTC) & 0xFF);
2870 data->sensor[0].max_op_thresh =
2871 (rd32(E1000_THLOWTC) & 0xFF);
2873 /* Return the internal sensor only if ETS is unsupported */
2874 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2875 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2876 return 0;
2878 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2879 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2880 != NVM_ETS_TYPE_EMC)
2881 return E1000_NOT_IMPLEMENTED;
2883 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2884 NVM_ETS_LTHRES_DELTA_SHIFT);
2885 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2887 for (i = 1; i <= num_sensors; i++) {
2888 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2889 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2890 NVM_ETS_DATA_INDEX_SHIFT);
2891 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2892 NVM_ETS_DATA_LOC_SHIFT);
2893 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2895 hw->phy.ops.write_i2c_byte(hw,
2896 e1000_emc_therm_limit[sensor_index],
2897 E1000_I2C_THERMAL_SENSOR_ADDR,
2898 therm_limit);
2900 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2901 data->sensor[i].location = sensor_location;
2902 data->sensor[i].caution_thresh = therm_limit;
2903 data->sensor[i].max_op_thresh = therm_limit -
2904 low_thresh_delta;
2907 return 0;
2910 #endif
2911 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2912 .init_hw = igb_init_hw_82575,
2913 .check_for_link = igb_check_for_link_82575,
2914 .rar_set = igb_rar_set,
2915 .read_mac_addr = igb_read_mac_addr_82575,
2916 .get_speed_and_duplex = igb_get_link_up_info_82575,
2917 #ifdef CONFIG_IGB_HWMON
2918 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2919 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2920 #endif
2923 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2924 .acquire = igb_acquire_phy_82575,
2925 .get_cfg_done = igb_get_cfg_done_82575,
2926 .release = igb_release_phy_82575,
2927 .write_i2c_byte = igb_write_i2c_byte,
2928 .read_i2c_byte = igb_read_i2c_byte,
2931 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2932 .acquire = igb_acquire_nvm_82575,
2933 .read = igb_read_nvm_eerd,
2934 .release = igb_release_nvm_82575,
2935 .write = igb_write_nvm_spi,
2938 const struct e1000_info e1000_82575_info = {
2939 .get_invariants = igb_get_invariants_82575,
2940 .mac_ops = &e1000_mac_ops_82575,
2941 .phy_ops = &e1000_phy_ops_82575,
2942 .nvm_ops = &e1000_nvm_ops_82575,