1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
39 static s32
igb_get_invariants_82575(struct e1000_hw
*);
40 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
41 static void igb_release_phy_82575(struct e1000_hw
*);
42 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
43 static void igb_release_nvm_82575(struct e1000_hw
*);
44 static s32
igb_check_for_link_82575(struct e1000_hw
*);
45 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
46 static s32
igb_init_hw_82575(struct e1000_hw
*);
47 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
48 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_reset_hw_82575(struct e1000_hw
*);
50 static s32
igb_reset_hw_82580(struct e1000_hw
*);
51 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
52 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*, bool);
53 static s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*, bool);
54 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
55 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
56 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
57 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
58 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
59 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
61 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
62 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
63 static bool igb_sgmii_active_82575(struct e1000_hw
*);
64 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
65 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
66 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
67 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
68 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
69 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
70 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
71 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
72 static const u16 e1000_82580_rxpbs_table
[] = {
73 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 /* Due to a hw errata, if the host tries to configure the VFTA register
76 * while performing queries from the BMC or DMA, then the VFTA in some
77 * cases won't be written.
81 * igb_write_vfta_i350 - Write value to VLAN filter table
82 * @hw: pointer to the HW structure
83 * @offset: register offset in VLAN filter table
84 * @value: register value written to VLAN filter table
86 * Writes value at the given offset in the register array which stores
87 * the VLAN filter table.
89 static void igb_write_vfta_i350(struct e1000_hw
*hw
, u32 offset
, u32 value
)
91 struct igb_adapter
*adapter
= hw
->back
;
95 array_wr32(E1000_VFTA
, offset
, value
);
98 adapter
->shadow_vfta
[offset
] = value
;
102 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
103 * @hw: pointer to the HW structure
105 * Called to determine if the I2C pins are being used for I2C or as an
106 * external MDIO interface since the two options are mutually exclusive.
108 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
111 bool ext_mdio
= false;
113 switch (hw
->mac
.type
) {
116 reg
= rd32(E1000_MDIC
);
117 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
124 reg
= rd32(E1000_MDICNFG
);
125 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
134 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
135 * @hw: pointer to the HW structure
137 * Poll the M88E1112 interfaces to see which interface achieved link.
139 static s32
igb_check_for_link_media_swap(struct e1000_hw
*hw
)
141 struct e1000_phy_info
*phy
= &hw
->phy
;
146 /* Check the copper medium. */
147 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
151 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1112_STATUS
, &data
);
155 if (data
& E1000_M88E1112_STATUS_LINK
)
156 port
= E1000_MEDIA_PORT_COPPER
;
158 /* Check the other medium. */
159 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 1);
163 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1112_STATUS
, &data
);
168 if (data
& E1000_M88E1112_STATUS_LINK
)
169 port
= E1000_MEDIA_PORT_OTHER
;
171 /* Determine if a swap needs to happen. */
172 if (port
&& (hw
->dev_spec
._82575
.media_port
!= port
)) {
173 hw
->dev_spec
._82575
.media_port
= port
;
174 hw
->dev_spec
._82575
.media_changed
= true;
177 if (port
== E1000_MEDIA_PORT_COPPER
) {
178 /* reset page to 0 */
179 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
182 igb_check_for_link_82575(hw
);
184 igb_check_for_link_82575(hw
);
185 /* reset page to 0 */
186 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1112_PAGE_ADDR
, 0);
195 * igb_init_phy_params_82575 - Init PHY func ptrs.
196 * @hw: pointer to the HW structure
198 static s32
igb_init_phy_params_82575(struct e1000_hw
*hw
)
200 struct e1000_phy_info
*phy
= &hw
->phy
;
204 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
205 phy
->type
= e1000_phy_none
;
209 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
210 phy
->reset_delay_us
= 100;
212 ctrl_ext
= rd32(E1000_CTRL_EXT
);
214 if (igb_sgmii_active_82575(hw
)) {
215 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
216 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
218 phy
->ops
.reset
= igb_phy_hw_reset
;
219 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
222 wr32(E1000_CTRL_EXT
, ctrl_ext
);
223 igb_reset_mdicnfg_82580(hw
);
225 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
226 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
227 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
229 switch (hw
->mac
.type
) {
235 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
236 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
239 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
240 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
245 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
246 E1000_STATUS_FUNC_SHIFT
;
248 /* Set phy->phy_addr and phy->id. */
249 ret_val
= igb_get_phy_id_82575(hw
);
253 /* Verify phy id and set remaining function pointers */
255 case M88E1543_E_PHY_ID
:
256 case M88E1512_E_PHY_ID
:
257 case I347AT4_E_PHY_ID
:
258 case M88E1112_E_PHY_ID
:
259 case M88E1111_I_PHY_ID
:
260 phy
->type
= e1000_phy_m88
;
261 phy
->ops
.check_polarity
= igb_check_polarity_m88
;
262 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
263 if (phy
->id
!= M88E1111_I_PHY_ID
)
264 phy
->ops
.get_cable_length
=
265 igb_get_cable_length_m88_gen2
;
267 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
268 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
269 /* Check if this PHY is configured for media swap. */
270 if (phy
->id
== M88E1112_E_PHY_ID
) {
273 ret_val
= phy
->ops
.write_reg(hw
,
274 E1000_M88E1112_PAGE_ADDR
,
279 ret_val
= phy
->ops
.read_reg(hw
,
280 E1000_M88E1112_MAC_CTRL_1
,
285 data
= (data
& E1000_M88E1112_MAC_CTRL_1_MODE_MASK
) >>
286 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT
;
287 if (data
== E1000_M88E1112_AUTO_COPPER_SGMII
||
288 data
== E1000_M88E1112_AUTO_COPPER_BASEX
)
289 hw
->mac
.ops
.check_for_link
=
290 igb_check_for_link_media_swap
;
292 if (phy
->id
== M88E1512_E_PHY_ID
) {
293 ret_val
= igb_initialize_M88E1512_phy(hw
);
297 if (phy
->id
== M88E1543_E_PHY_ID
) {
298 ret_val
= igb_initialize_M88E1543_phy(hw
);
303 case IGP03E1000_E_PHY_ID
:
304 phy
->type
= e1000_phy_igp_3
;
305 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
306 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
307 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
308 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
309 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
311 case I82580_I_PHY_ID
:
313 phy
->type
= e1000_phy_82580
;
314 phy
->ops
.force_speed_duplex
=
315 igb_phy_force_speed_duplex_82580
;
316 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
317 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
318 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
319 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
322 phy
->type
= e1000_phy_i210
;
323 phy
->ops
.check_polarity
= igb_check_polarity_m88
;
324 phy
->ops
.get_cfg_done
= igb_get_cfg_done_i210
;
325 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
326 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
327 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
328 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
329 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
332 ret_val
= -E1000_ERR_PHY
;
341 * igb_init_nvm_params_82575 - Init NVM func ptrs.
342 * @hw: pointer to the HW structure
344 static s32
igb_init_nvm_params_82575(struct e1000_hw
*hw
)
346 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
347 u32 eecd
= rd32(E1000_EECD
);
350 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
351 E1000_EECD_SIZE_EX_SHIFT
);
353 /* Added to a constant, "size" becomes the left-shift value
354 * for setting word_size.
356 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
358 /* Just in case size is out of range, cap it to the largest
359 * EEPROM size supported
364 nvm
->word_size
= BIT(size
);
365 nvm
->opcode_bits
= 8;
368 switch (nvm
->override
) {
369 case e1000_nvm_override_spi_large
:
371 nvm
->address_bits
= 16;
373 case e1000_nvm_override_spi_small
:
375 nvm
->address_bits
= 8;
378 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
379 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
?
383 if (nvm
->word_size
== BIT(15))
384 nvm
->page_size
= 128;
386 nvm
->type
= e1000_nvm_eeprom_spi
;
388 /* NVM Function Pointers */
389 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
390 nvm
->ops
.release
= igb_release_nvm_82575
;
391 nvm
->ops
.write
= igb_write_nvm_spi
;
392 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
393 nvm
->ops
.update
= igb_update_nvm_checksum
;
394 if (nvm
->word_size
< BIT(15))
395 nvm
->ops
.read
= igb_read_nvm_eerd
;
397 nvm
->ops
.read
= igb_read_nvm_spi
;
399 /* override generic family function pointers for specific descendants */
400 switch (hw
->mac
.type
) {
402 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
403 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
407 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
408 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
418 * igb_init_mac_params_82575 - Init MAC func ptrs.
419 * @hw: pointer to the HW structure
421 static s32
igb_init_mac_params_82575(struct e1000_hw
*hw
)
423 struct e1000_mac_info
*mac
= &hw
->mac
;
424 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
426 /* Set mta register count */
427 mac
->mta_reg_count
= 128;
428 /* Set uta register count */
429 mac
->uta_reg_count
= (hw
->mac
.type
== e1000_82575
) ? 0 : 128;
430 /* Set rar entry count */
433 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
436 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
440 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
443 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
447 if (mac
->type
>= e1000_82580
)
448 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
450 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
452 if (mac
->type
>= e1000_i210
) {
453 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_i210
;
454 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_i210
;
457 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_82575
;
458 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_82575
;
461 if ((hw
->mac
.type
== e1000_i350
) || (hw
->mac
.type
== e1000_i354
))
462 mac
->ops
.write_vfta
= igb_write_vfta_i350
;
464 mac
->ops
.write_vfta
= igb_write_vfta
;
466 /* Set if part includes ASF firmware */
467 mac
->asf_firmware_present
= true;
468 /* Set if manageability features are enabled. */
469 mac
->arc_subsystem_valid
=
470 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
472 /* enable EEE on i350 parts and later parts */
473 if (mac
->type
>= e1000_i350
)
474 dev_spec
->eee_disable
= false;
476 dev_spec
->eee_disable
= true;
477 /* Allow a single clear of the SW semaphore on I210 and newer */
478 if (mac
->type
>= e1000_i210
)
479 dev_spec
->clear_semaphore_once
= true;
480 /* physical interface link setup */
481 mac
->ops
.setup_physical_interface
=
482 (hw
->phy
.media_type
== e1000_media_type_copper
)
483 ? igb_setup_copper_link_82575
484 : igb_setup_serdes_link_82575
;
486 if (mac
->type
== e1000_82580
) {
487 switch (hw
->device_id
) {
488 /* feature not supported on these id's */
489 case E1000_DEV_ID_DH89XXCC_SGMII
:
490 case E1000_DEV_ID_DH89XXCC_SERDES
:
491 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
492 case E1000_DEV_ID_DH89XXCC_SFP
:
495 hw
->dev_spec
._82575
.mas_capable
= true;
503 * igb_set_sfp_media_type_82575 - derives SFP module media type.
504 * @hw: pointer to the HW structure
506 * The media type is chosen based on SFP module.
507 * compatibility flags retrieved from SFP ID EEPROM.
509 static s32
igb_set_sfp_media_type_82575(struct e1000_hw
*hw
)
511 s32 ret_val
= E1000_ERR_CONFIG
;
513 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
514 struct e1000_sfp_flags
*eth_flags
= &dev_spec
->eth_flags
;
515 u8 tranceiver_type
= 0;
518 /* Turn I2C interface ON and power on sfp cage */
519 ctrl_ext
= rd32(E1000_CTRL_EXT
);
520 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
521 wr32(E1000_CTRL_EXT
, ctrl_ext
| E1000_CTRL_I2C_ENA
);
525 /* Read SFP module data */
527 ret_val
= igb_read_sfp_data_byte(hw
,
528 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET
),
538 ret_val
= igb_read_sfp_data_byte(hw
,
539 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET
),
544 /* Check if there is some SFP module plugged and powered */
545 if ((tranceiver_type
== E1000_SFF_IDENTIFIER_SFP
) ||
546 (tranceiver_type
== E1000_SFF_IDENTIFIER_SFF
)) {
547 dev_spec
->module_plugged
= true;
548 if (eth_flags
->e1000_base_lx
|| eth_flags
->e1000_base_sx
) {
549 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
550 } else if (eth_flags
->e100_base_fx
) {
551 dev_spec
->sgmii_active
= true;
552 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
553 } else if (eth_flags
->e1000_base_t
) {
554 dev_spec
->sgmii_active
= true;
555 hw
->phy
.media_type
= e1000_media_type_copper
;
557 hw
->phy
.media_type
= e1000_media_type_unknown
;
558 hw_dbg("PHY module has not been recognized\n");
562 hw
->phy
.media_type
= e1000_media_type_unknown
;
566 /* Restore I2C interface setting */
567 wr32(E1000_CTRL_EXT
, ctrl_ext
);
571 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
573 struct e1000_mac_info
*mac
= &hw
->mac
;
574 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
579 switch (hw
->device_id
) {
580 case E1000_DEV_ID_82575EB_COPPER
:
581 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
582 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
583 mac
->type
= e1000_82575
;
585 case E1000_DEV_ID_82576
:
586 case E1000_DEV_ID_82576_NS
:
587 case E1000_DEV_ID_82576_NS_SERDES
:
588 case E1000_DEV_ID_82576_FIBER
:
589 case E1000_DEV_ID_82576_SERDES
:
590 case E1000_DEV_ID_82576_QUAD_COPPER
:
591 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
592 case E1000_DEV_ID_82576_SERDES_QUAD
:
593 mac
->type
= e1000_82576
;
595 case E1000_DEV_ID_82580_COPPER
:
596 case E1000_DEV_ID_82580_FIBER
:
597 case E1000_DEV_ID_82580_QUAD_FIBER
:
598 case E1000_DEV_ID_82580_SERDES
:
599 case E1000_DEV_ID_82580_SGMII
:
600 case E1000_DEV_ID_82580_COPPER_DUAL
:
601 case E1000_DEV_ID_DH89XXCC_SGMII
:
602 case E1000_DEV_ID_DH89XXCC_SERDES
:
603 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
604 case E1000_DEV_ID_DH89XXCC_SFP
:
605 mac
->type
= e1000_82580
;
607 case E1000_DEV_ID_I350_COPPER
:
608 case E1000_DEV_ID_I350_FIBER
:
609 case E1000_DEV_ID_I350_SERDES
:
610 case E1000_DEV_ID_I350_SGMII
:
611 mac
->type
= e1000_i350
;
613 case E1000_DEV_ID_I210_COPPER
:
614 case E1000_DEV_ID_I210_FIBER
:
615 case E1000_DEV_ID_I210_SERDES
:
616 case E1000_DEV_ID_I210_SGMII
:
617 case E1000_DEV_ID_I210_COPPER_FLASHLESS
:
618 case E1000_DEV_ID_I210_SERDES_FLASHLESS
:
619 mac
->type
= e1000_i210
;
621 case E1000_DEV_ID_I211_COPPER
:
622 mac
->type
= e1000_i211
;
624 case E1000_DEV_ID_I354_BACKPLANE_1GBPS
:
625 case E1000_DEV_ID_I354_SGMII
:
626 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
:
627 mac
->type
= e1000_i354
;
630 return -E1000_ERR_MAC_INIT
;
634 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
635 * based on the EEPROM. We cannot rely upon device ID. There
636 * is no distinguishable difference between fiber and internal
637 * SerDes mode on the 82575. There can be an external PHY attached
638 * on the SGMII interface. For this, we'll set sgmii_active to true.
640 hw
->phy
.media_type
= e1000_media_type_copper
;
641 dev_spec
->sgmii_active
= false;
642 dev_spec
->module_plugged
= false;
644 ctrl_ext
= rd32(E1000_CTRL_EXT
);
646 link_mode
= ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
;
648 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
649 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
651 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
652 /* Get phy control interface type set (MDIO vs. I2C)*/
653 if (igb_sgmii_uses_mdio_82575(hw
)) {
654 hw
->phy
.media_type
= e1000_media_type_copper
;
655 dev_spec
->sgmii_active
= true;
658 /* fall through for I2C based SGMII */
659 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
660 /* read media type from SFP EEPROM */
661 ret_val
= igb_set_sfp_media_type_82575(hw
);
662 if ((ret_val
!= 0) ||
663 (hw
->phy
.media_type
== e1000_media_type_unknown
)) {
664 /* If media type was not identified then return media
665 * type defined by the CTRL_EXT settings.
667 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
669 if (link_mode
== E1000_CTRL_EXT_LINK_MODE_SGMII
) {
670 hw
->phy
.media_type
= e1000_media_type_copper
;
671 dev_spec
->sgmii_active
= true;
677 /* do not change link mode for 100BaseFX */
678 if (dev_spec
->eth_flags
.e100_base_fx
)
681 /* change current link mode setting */
682 ctrl_ext
&= ~E1000_CTRL_EXT_LINK_MODE_MASK
;
684 if (hw
->phy
.media_type
== e1000_media_type_copper
)
685 ctrl_ext
|= E1000_CTRL_EXT_LINK_MODE_SGMII
;
687 ctrl_ext
|= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
689 wr32(E1000_CTRL_EXT
, ctrl_ext
);
696 /* mac initialization and operations */
697 ret_val
= igb_init_mac_params_82575(hw
);
701 /* NVM initialization */
702 ret_val
= igb_init_nvm_params_82575(hw
);
703 switch (hw
->mac
.type
) {
706 ret_val
= igb_init_nvm_params_i210(hw
);
715 /* if part supports SR-IOV then initialize mailbox parameters */
719 igb_init_mbx_params_pf(hw
);
725 /* setup PHY parameters */
726 ret_val
= igb_init_phy_params_82575(hw
);
733 * igb_acquire_phy_82575 - Acquire rights to access PHY
734 * @hw: pointer to the HW structure
736 * Acquire access rights to the correct PHY. This is a
737 * function pointer entry point called by the api module.
739 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
741 u16 mask
= E1000_SWFW_PHY0_SM
;
743 if (hw
->bus
.func
== E1000_FUNC_1
)
744 mask
= E1000_SWFW_PHY1_SM
;
745 else if (hw
->bus
.func
== E1000_FUNC_2
)
746 mask
= E1000_SWFW_PHY2_SM
;
747 else if (hw
->bus
.func
== E1000_FUNC_3
)
748 mask
= E1000_SWFW_PHY3_SM
;
750 return hw
->mac
.ops
.acquire_swfw_sync(hw
, mask
);
754 * igb_release_phy_82575 - Release rights to access PHY
755 * @hw: pointer to the HW structure
757 * A wrapper to release access rights to the correct PHY. This is a
758 * function pointer entry point called by the api module.
760 static void igb_release_phy_82575(struct e1000_hw
*hw
)
762 u16 mask
= E1000_SWFW_PHY0_SM
;
764 if (hw
->bus
.func
== E1000_FUNC_1
)
765 mask
= E1000_SWFW_PHY1_SM
;
766 else if (hw
->bus
.func
== E1000_FUNC_2
)
767 mask
= E1000_SWFW_PHY2_SM
;
768 else if (hw
->bus
.func
== E1000_FUNC_3
)
769 mask
= E1000_SWFW_PHY3_SM
;
771 hw
->mac
.ops
.release_swfw_sync(hw
, mask
);
775 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
776 * @hw: pointer to the HW structure
777 * @offset: register offset to be read
778 * @data: pointer to the read data
780 * Reads the PHY register at offset using the serial gigabit media independent
781 * interface and stores the retrieved information in data.
783 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
786 s32 ret_val
= -E1000_ERR_PARAM
;
788 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
789 hw_dbg("PHY Address %u is out of range\n", offset
);
793 ret_val
= hw
->phy
.ops
.acquire(hw
);
797 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
799 hw
->phy
.ops
.release(hw
);
806 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
807 * @hw: pointer to the HW structure
808 * @offset: register offset to write to
809 * @data: data to write at register offset
811 * Writes the data to PHY register at the offset using the serial gigabit
812 * media independent interface.
814 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
817 s32 ret_val
= -E1000_ERR_PARAM
;
820 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
821 hw_dbg("PHY Address %d is out of range\n", offset
);
825 ret_val
= hw
->phy
.ops
.acquire(hw
);
829 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
831 hw
->phy
.ops
.release(hw
);
838 * igb_get_phy_id_82575 - Retrieve PHY addr and id
839 * @hw: pointer to the HW structure
841 * Retrieves the PHY address and ID for both PHY's which do and do not use
844 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
846 struct e1000_phy_info
*phy
= &hw
->phy
;
852 /* Extra read required for some PHY's on i354 */
853 if (hw
->mac
.type
== e1000_i354
)
856 /* For SGMII PHYs, we try the list of possible addresses until
857 * we find one that works. For non-SGMII PHYs
858 * (e.g. integrated copper PHYs), an address of 1 should
859 * work. The result of this function should mean phy->phy_addr
860 * and phy->id are set correctly.
862 if (!(igb_sgmii_active_82575(hw
))) {
864 ret_val
= igb_get_phy_id(hw
);
868 if (igb_sgmii_uses_mdio_82575(hw
)) {
869 switch (hw
->mac
.type
) {
872 mdic
= rd32(E1000_MDIC
);
873 mdic
&= E1000_MDIC_PHY_MASK
;
874 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
881 mdic
= rd32(E1000_MDICNFG
);
882 mdic
&= E1000_MDICNFG_PHY_MASK
;
883 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
886 ret_val
= -E1000_ERR_PHY
;
889 ret_val
= igb_get_phy_id(hw
);
893 /* Power on sgmii phy if it is disabled */
894 ctrl_ext
= rd32(E1000_CTRL_EXT
);
895 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
899 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
900 * Therefore, we need to test 1-7
902 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
903 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
905 hw_dbg("Vendor ID 0x%08X read at address %u\n",
907 /* At the time of this writing, The M88 part is
908 * the only supported SGMII PHY product.
910 if (phy_id
== M88_VENDOR
)
913 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
917 /* A valid PHY type couldn't be found. */
918 if (phy
->addr
== 8) {
920 ret_val
= -E1000_ERR_PHY
;
923 ret_val
= igb_get_phy_id(hw
);
926 /* restore previous sfp cage power state */
927 wr32(E1000_CTRL_EXT
, ctrl_ext
);
934 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
935 * @hw: pointer to the HW structure
937 * Resets the PHY using the serial gigabit media independent interface.
939 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
941 struct e1000_phy_info
*phy
= &hw
->phy
;
944 /* This isn't a true "hard" reset, but is the only reset
945 * available to us at this time.
948 hw_dbg("Soft resetting SGMII attached PHY...\n");
950 /* SFP documentation requires the following to configure the SPF module
951 * to work on SGMII. No further documentation is given.
953 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
957 ret_val
= igb_phy_sw_reset(hw
);
961 if (phy
->id
== M88E1512_E_PHY_ID
)
962 ret_val
= igb_initialize_M88E1512_phy(hw
);
963 if (phy
->id
== M88E1543_E_PHY_ID
)
964 ret_val
= igb_initialize_M88E1543_phy(hw
);
970 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
971 * @hw: pointer to the HW structure
972 * @active: true to enable LPLU, false to disable
974 * Sets the LPLU D0 state according to the active flag. When
975 * activating LPLU this function also disables smart speed
976 * and vice versa. LPLU will not be activated unless the
977 * device autonegotiation advertisement meets standards of
978 * either 10 or 10/100 or 10/100/1000 at all duplexes.
979 * This is a function pointer entry point only called by
980 * PHY setup routines.
982 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
984 struct e1000_phy_info
*phy
= &hw
->phy
;
988 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
993 data
|= IGP02E1000_PM_D0_LPLU
;
994 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
999 /* When LPLU is enabled, we should disable SmartSpeed */
1000 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1002 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1003 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1008 data
&= ~IGP02E1000_PM_D0_LPLU
;
1009 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1011 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1012 * during Dx states where the power conservation is most
1013 * important. During driver activity we should enable
1014 * SmartSpeed, so performance is maintained.
1016 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1017 ret_val
= phy
->ops
.read_reg(hw
,
1018 IGP01E1000_PHY_PORT_CONFIG
, &data
);
1022 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1023 ret_val
= phy
->ops
.write_reg(hw
,
1024 IGP01E1000_PHY_PORT_CONFIG
, data
);
1027 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1028 ret_val
= phy
->ops
.read_reg(hw
,
1029 IGP01E1000_PHY_PORT_CONFIG
, &data
);
1033 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1034 ret_val
= phy
->ops
.write_reg(hw
,
1035 IGP01E1000_PHY_PORT_CONFIG
, data
);
1046 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047 * @hw: pointer to the HW structure
1048 * @active: true to enable LPLU, false to disable
1050 * Sets the LPLU D0 state according to the active flag. When
1051 * activating LPLU this function also disables smart speed
1052 * and vice versa. LPLU will not be activated unless the
1053 * device autonegotiation advertisement meets standards of
1054 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1055 * This is a function pointer entry point only called by
1056 * PHY setup routines.
1058 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
1060 struct e1000_phy_info
*phy
= &hw
->phy
;
1063 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
1066 data
|= E1000_82580_PM_D0_LPLU
;
1068 /* When LPLU is enabled, we should disable SmartSpeed */
1069 data
&= ~E1000_82580_PM_SPD
;
1071 data
&= ~E1000_82580_PM_D0_LPLU
;
1073 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1074 * during Dx states where the power conservation is most
1075 * important. During driver activity we should enable
1076 * SmartSpeed, so performance is maintained.
1078 if (phy
->smart_speed
== e1000_smart_speed_on
)
1079 data
|= E1000_82580_PM_SPD
;
1080 else if (phy
->smart_speed
== e1000_smart_speed_off
)
1081 data
&= ~E1000_82580_PM_SPD
; }
1083 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
1088 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089 * @hw: pointer to the HW structure
1090 * @active: boolean used to enable/disable lplu
1092 * Success returns 0, Failure returns 1
1094 * The low power link up (lplu) state is set to the power management level D3
1095 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1096 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1097 * is used during Dx states where the power conservation is most important.
1098 * During driver activity, SmartSpeed should be enabled so performance is
1101 static s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
1103 struct e1000_phy_info
*phy
= &hw
->phy
;
1106 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
1109 data
&= ~E1000_82580_PM_D3_LPLU
;
1110 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1111 * during Dx states where the power conservation is most
1112 * important. During driver activity we should enable
1113 * SmartSpeed, so performance is maintained.
1115 if (phy
->smart_speed
== e1000_smart_speed_on
)
1116 data
|= E1000_82580_PM_SPD
;
1117 else if (phy
->smart_speed
== e1000_smart_speed_off
)
1118 data
&= ~E1000_82580_PM_SPD
;
1119 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1120 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1121 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1122 data
|= E1000_82580_PM_D3_LPLU
;
1123 /* When LPLU is enabled, we should disable SmartSpeed */
1124 data
&= ~E1000_82580_PM_SPD
;
1127 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
1132 * igb_acquire_nvm_82575 - Request for access to EEPROM
1133 * @hw: pointer to the HW structure
1135 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1136 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137 * Return successful if access grant bit set, else clear the request for
1138 * EEPROM access and return -E1000_ERR_NVM (-1).
1140 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
1144 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1148 ret_val
= igb_acquire_nvm(hw
);
1151 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1158 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1159 * @hw: pointer to the HW structure
1161 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162 * then release the semaphores acquired.
1164 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
1166 igb_release_nvm(hw
);
1167 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
1171 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172 * @hw: pointer to the HW structure
1173 * @mask: specifies which semaphore to acquire
1175 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1176 * will also specify which port we're acquiring the lock for.
1178 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
1182 u32 fwmask
= mask
<< 16;
1184 s32 i
= 0, timeout
= 200;
1186 while (i
< timeout
) {
1187 if (igb_get_hw_semaphore(hw
)) {
1188 ret_val
= -E1000_ERR_SWFW_SYNC
;
1192 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
1193 if (!(swfw_sync
& (fwmask
| swmask
)))
1196 /* Firmware currently using resource (fwmask)
1197 * or other software thread using resource (swmask)
1199 igb_put_hw_semaphore(hw
);
1205 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206 ret_val
= -E1000_ERR_SWFW_SYNC
;
1210 swfw_sync
|= swmask
;
1211 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
1213 igb_put_hw_semaphore(hw
);
1220 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221 * @hw: pointer to the HW structure
1222 * @mask: specifies which semaphore to acquire
1224 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1225 * will also specify which port we're releasing the lock for.
1227 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
1231 while (igb_get_hw_semaphore(hw
) != 0)
1234 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
1236 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
1238 igb_put_hw_semaphore(hw
);
1242 * igb_get_cfg_done_82575 - Read config done bit
1243 * @hw: pointer to the HW structure
1245 * Read the management control register for the config done bit for
1246 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1247 * to read the config done bit, so an error is *ONLY* logged and returns
1248 * 0. If we were to return with error, EEPROM-less silicon
1249 * would not be able to be reset or change link.
1251 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
1253 s32 timeout
= PHY_CFG_TIMEOUT
;
1254 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
1256 if (hw
->bus
.func
== 1)
1257 mask
= E1000_NVM_CFG_DONE_PORT_1
;
1258 else if (hw
->bus
.func
== E1000_FUNC_2
)
1259 mask
= E1000_NVM_CFG_DONE_PORT_2
;
1260 else if (hw
->bus
.func
== E1000_FUNC_3
)
1261 mask
= E1000_NVM_CFG_DONE_PORT_3
;
1264 if (rd32(E1000_EEMNGCTL
) & mask
)
1266 usleep_range(1000, 2000);
1270 hw_dbg("MNG configuration cycle has not completed.\n");
1272 /* If EEPROM is not marked present, init the PHY manually */
1273 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
1274 (hw
->phy
.type
== e1000_phy_igp_3
))
1275 igb_phy_init_script_igp3(hw
);
1281 * igb_get_link_up_info_82575 - Get link speed/duplex info
1282 * @hw: pointer to the HW structure
1283 * @speed: stores the current speed
1284 * @duplex: stores the current duplex
1286 * This is a wrapper function, if using the serial gigabit media independent
1287 * interface, use PCS to retrieve the link speed and duplex information.
1288 * Otherwise, use the generic function to get the link speed and duplex info.
1290 static s32
igb_get_link_up_info_82575(struct e1000_hw
*hw
, u16
*speed
,
1295 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
1296 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, speed
,
1299 ret_val
= igb_get_speed_and_duplex_copper(hw
, speed
,
1306 * igb_check_for_link_82575 - Check for link
1307 * @hw: pointer to the HW structure
1309 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1310 * use the generic interface for determining link.
1312 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
1317 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1318 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
1320 /* Use this flag to determine if link needs to be checked or
1321 * not. If we have link clear the flag so that we do not
1322 * continue to check for link.
1324 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
1326 /* Configure Flow Control now that Auto-Neg has completed.
1327 * First, we need to restore the desired flow control
1328 * settings because we may have had to re-autoneg with a
1329 * different link partner.
1331 ret_val
= igb_config_fc_after_link_up(hw
);
1333 hw_dbg("Error configuring flow control\n");
1335 ret_val
= igb_check_for_copper_link(hw
);
1342 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343 * @hw: pointer to the HW structure
1345 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
1350 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1351 !igb_sgmii_active_82575(hw
))
1354 /* Enable PCS to turn on link */
1355 reg
= rd32(E1000_PCS_CFG0
);
1356 reg
|= E1000_PCS_CFG_PCS_EN
;
1357 wr32(E1000_PCS_CFG0
, reg
);
1359 /* Power up the laser */
1360 reg
= rd32(E1000_CTRL_EXT
);
1361 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1362 wr32(E1000_CTRL_EXT
, reg
);
1364 /* flush the write to verify completion */
1366 usleep_range(1000, 2000);
1370 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371 * @hw: pointer to the HW structure
1372 * @speed: stores the current speed
1373 * @duplex: stores the current duplex
1375 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1376 * duplex, then store the values in the pointers provided.
1378 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
1381 struct e1000_mac_info
*mac
= &hw
->mac
;
1384 /* Set up defaults for the return values of this function */
1385 mac
->serdes_has_link
= false;
1389 /* Read the PCS Status register for link state. For non-copper mode,
1390 * the status register is not accurate. The PCS status register is
1393 pcs
= rd32(E1000_PCS_LSTAT
);
1395 /* The link up bit determines when link is up on autoneg. The sync ok
1396 * gets set once both sides sync up and agree upon link. Stable link
1397 * can be determined by checking for both link up and link sync ok
1399 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
1400 mac
->serdes_has_link
= true;
1402 /* Detect and store PCS speed */
1403 if (pcs
& E1000_PCS_LSTS_SPEED_1000
)
1404 *speed
= SPEED_1000
;
1405 else if (pcs
& E1000_PCS_LSTS_SPEED_100
)
1410 /* Detect and store PCS duplex */
1411 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
)
1412 *duplex
= FULL_DUPLEX
;
1414 *duplex
= HALF_DUPLEX
;
1416 /* Check if it is an I354 2.5Gb backplane connection. */
1417 if (mac
->type
== e1000_i354
) {
1418 status
= rd32(E1000_STATUS
);
1419 if ((status
& E1000_STATUS_2P5_SKU
) &&
1420 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
1421 *speed
= SPEED_2500
;
1422 *duplex
= FULL_DUPLEX
;
1423 hw_dbg("2500 Mbs, ");
1424 hw_dbg("Full Duplex\n");
1434 * igb_shutdown_serdes_link_82575 - Remove link during power down
1435 * @hw: pointer to the HW structure
1437 * In the case of fiber serdes, shut down optics and PCS on driver unload
1438 * when management pass thru is not enabled.
1440 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
1444 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
1445 igb_sgmii_active_82575(hw
))
1448 if (!igb_enable_mng_pass_thru(hw
)) {
1449 /* Disable PCS to turn off link */
1450 reg
= rd32(E1000_PCS_CFG0
);
1451 reg
&= ~E1000_PCS_CFG_PCS_EN
;
1452 wr32(E1000_PCS_CFG0
, reg
);
1454 /* shutdown the laser */
1455 reg
= rd32(E1000_CTRL_EXT
);
1456 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
1457 wr32(E1000_CTRL_EXT
, reg
);
1459 /* flush the write to verify completion */
1461 usleep_range(1000, 2000);
1466 * igb_reset_hw_82575 - Reset hardware
1467 * @hw: pointer to the HW structure
1469 * This resets the hardware into a known state. This is a
1470 * function pointer entry point called by the api module.
1472 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
1477 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1478 * on the last TLP read/write transaction when MAC is reset.
1480 ret_val
= igb_disable_pcie_master(hw
);
1482 hw_dbg("PCI-E Master disable polling has failed.\n");
1484 /* set the completion timeout for interface */
1485 ret_val
= igb_set_pcie_completion_timeout(hw
);
1487 hw_dbg("PCI-E Set completion timeout has failed.\n");
1489 hw_dbg("Masking off all interrupts\n");
1490 wr32(E1000_IMC
, 0xffffffff);
1492 wr32(E1000_RCTL
, 0);
1493 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1496 usleep_range(10000, 20000);
1498 ctrl
= rd32(E1000_CTRL
);
1500 hw_dbg("Issuing a global reset to MAC\n");
1501 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1503 ret_val
= igb_get_auto_rd_done(hw
);
1505 /* When auto config read does not complete, do not
1506 * return with an error. This can happen in situations
1507 * where there is no eeprom and prevents getting link.
1509 hw_dbg("Auto Read Done did not complete\n");
1512 /* If EEPROM is not present, run manual init scripts */
1513 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1514 igb_reset_init_script_82575(hw
);
1516 /* Clear any pending interrupt events. */
1517 wr32(E1000_IMC
, 0xffffffff);
1520 /* Install any alternate MAC address into RAR0 */
1521 ret_val
= igb_check_alt_mac_addr(hw
);
1527 * igb_init_hw_82575 - Initialize hardware
1528 * @hw: pointer to the HW structure
1530 * This inits the hardware readying it for operation.
1532 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1534 struct e1000_mac_info
*mac
= &hw
->mac
;
1536 u16 i
, rar_count
= mac
->rar_entry_count
;
1538 if ((hw
->mac
.type
>= e1000_i210
) &&
1539 !(igb_get_flash_presence_i210(hw
))) {
1540 ret_val
= igb_pll_workaround_i210(hw
);
1545 /* Initialize identification LED */
1546 ret_val
= igb_id_led_init(hw
);
1548 hw_dbg("Error initializing identification LED\n");
1549 /* This is not fatal and we should not stop init due to this */
1552 /* Disabling VLAN filtering */
1553 hw_dbg("Initializing the IEEE VLAN\n");
1556 /* Setup the receive address */
1557 igb_init_rx_addrs(hw
, rar_count
);
1559 /* Zero out the Multicast HASH table */
1560 hw_dbg("Zeroing the MTA\n");
1561 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1562 array_wr32(E1000_MTA
, i
, 0);
1564 /* Zero out the Unicast HASH table */
1565 hw_dbg("Zeroing the UTA\n");
1566 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1567 array_wr32(E1000_UTA
, i
, 0);
1569 /* Setup link and flow control */
1570 ret_val
= igb_setup_link(hw
);
1572 /* Clear all of the statistics registers (clear on read). It is
1573 * important that we do this after we have tried to establish link
1574 * because the symbol error count will increment wildly if there
1577 igb_clear_hw_cntrs_82575(hw
);
1582 * igb_setup_copper_link_82575 - Configure copper link settings
1583 * @hw: pointer to the HW structure
1585 * Configures the link for auto-neg or forced speed and duplex. Then we check
1586 * for link, once link is established calls to configure collision distance
1587 * and flow control are called.
1589 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1595 ctrl
= rd32(E1000_CTRL
);
1596 ctrl
|= E1000_CTRL_SLU
;
1597 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1598 wr32(E1000_CTRL
, ctrl
);
1600 /* Clear Go Link Disconnect bit on supported devices */
1601 switch (hw
->mac
.type
) {
1606 phpm_reg
= rd32(E1000_82580_PHY_POWER_MGMT
);
1607 phpm_reg
&= ~E1000_82580_PM_GO_LINKD
;
1608 wr32(E1000_82580_PHY_POWER_MGMT
, phpm_reg
);
1614 ret_val
= igb_setup_serdes_link_82575(hw
);
1618 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1619 /* allow time for SFP cage time to power up phy */
1622 ret_val
= hw
->phy
.ops
.reset(hw
);
1624 hw_dbg("Error resetting the PHY.\n");
1628 switch (hw
->phy
.type
) {
1629 case e1000_phy_i210
:
1631 switch (hw
->phy
.id
) {
1632 case I347AT4_E_PHY_ID
:
1633 case M88E1112_E_PHY_ID
:
1634 case M88E1543_E_PHY_ID
:
1635 case M88E1512_E_PHY_ID
:
1637 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1640 ret_val
= igb_copper_link_setup_m88(hw
);
1644 case e1000_phy_igp_3
:
1645 ret_val
= igb_copper_link_setup_igp(hw
);
1647 case e1000_phy_82580
:
1648 ret_val
= igb_copper_link_setup_82580(hw
);
1651 ret_val
= -E1000_ERR_PHY
;
1658 ret_val
= igb_setup_copper_link(hw
);
1664 * igb_setup_serdes_link_82575 - Setup link for serdes
1665 * @hw: pointer to the HW structure
1667 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1668 * used on copper connections where the serialized gigabit media independent
1669 * interface (sgmii), or serdes fiber is being used. Configures the link
1670 * for auto-negotiation or forces speed/duplex.
1672 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1674 u32 ctrl_ext
, ctrl_reg
, reg
, anadv_reg
;
1679 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1680 !igb_sgmii_active_82575(hw
))
1684 /* On the 82575, SerDes loopback mode persists until it is
1685 * explicitly turned off or a power cycle is performed. A read to
1686 * the register does not indicate its status. Therefore, we ensure
1687 * loopback mode is disabled during initialization.
1689 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1691 /* power on the sfp cage if present and turn on I2C */
1692 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1693 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1694 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
1695 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1697 ctrl_reg
= rd32(E1000_CTRL
);
1698 ctrl_reg
|= E1000_CTRL_SLU
;
1700 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1701 /* set both sw defined pins */
1702 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1704 /* Set switch control to serdes energy detect */
1705 reg
= rd32(E1000_CONNSW
);
1706 reg
|= E1000_CONNSW_ENRGSRC
;
1707 wr32(E1000_CONNSW
, reg
);
1710 reg
= rd32(E1000_PCS_LCTL
);
1712 /* default pcs_autoneg to the same setting as mac autoneg */
1713 pcs_autoneg
= hw
->mac
.autoneg
;
1715 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1716 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1717 /* sgmii mode lets the phy handle forcing speed/duplex */
1719 /* autoneg time out should be disabled for SGMII mode */
1720 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1722 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1723 /* disable PCS autoneg and support parallel detect only */
1724 pcs_autoneg
= false;
1726 if (hw
->mac
.type
== e1000_82575
||
1727 hw
->mac
.type
== e1000_82576
) {
1728 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &data
);
1730 hw_dbg(KERN_DEBUG
"NVM Read Error\n\n");
1734 if (data
& E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT
)
1735 pcs_autoneg
= false;
1738 /* non-SGMII modes only supports a speed of 1000/Full for the
1739 * link so it is best to just force the MAC and let the pcs
1740 * link either autoneg or be forced to 1000/Full
1742 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1743 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1745 /* set speed of 1000/Full if speed/duplex is forced */
1746 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1750 wr32(E1000_CTRL
, ctrl_reg
);
1752 /* New SerDes mode allows for forcing speed or autonegotiating speed
1753 * at 1gb. Autoneg should be default set by most drivers. This is the
1754 * mode that will be compatible with older link partners and switches.
1755 * However, both are supported by the hardware and some drivers/tools.
1757 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1758 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1761 /* Set PCS register for autoneg */
1762 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1763 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1765 /* Disable force flow control for autoneg */
1766 reg
&= ~E1000_PCS_LCTL_FORCE_FCTRL
;
1768 /* Configure flow control advertisement for autoneg */
1769 anadv_reg
= rd32(E1000_PCS_ANADV
);
1770 anadv_reg
&= ~(E1000_TXCW_ASM_DIR
| E1000_TXCW_PAUSE
);
1771 switch (hw
->fc
.requested_mode
) {
1773 case e1000_fc_rx_pause
:
1774 anadv_reg
|= E1000_TXCW_ASM_DIR
;
1775 anadv_reg
|= E1000_TXCW_PAUSE
;
1777 case e1000_fc_tx_pause
:
1778 anadv_reg
|= E1000_TXCW_ASM_DIR
;
1783 wr32(E1000_PCS_ANADV
, anadv_reg
);
1785 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1787 /* Set PCS register for forced link */
1788 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1790 /* Force flow control for forced link */
1791 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1793 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1796 wr32(E1000_PCS_LCTL
, reg
);
1798 if (!pcs_autoneg
&& !igb_sgmii_active_82575(hw
))
1799 igb_force_mac_fc(hw
);
1805 * igb_sgmii_active_82575 - Return sgmii state
1806 * @hw: pointer to the HW structure
1808 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1809 * which can be enabled for use in the embedded applications. Simply
1810 * return the current state of the sgmii interface.
1812 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1814 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1815 return dev_spec
->sgmii_active
;
1819 * igb_reset_init_script_82575 - Inits HW defaults after reset
1820 * @hw: pointer to the HW structure
1822 * Inits recommended HW defaults after a reset when there is no EEPROM
1823 * detected. This is only for the 82575.
1825 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1827 if (hw
->mac
.type
== e1000_82575
) {
1828 hw_dbg("Running reset init script for 82575\n");
1829 /* SerDes configuration via SERDESCTRL */
1830 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1831 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1832 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1833 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1835 /* CCM configuration via CCMCTL register */
1836 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1837 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1839 /* PCIe lanes configuration */
1840 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1841 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1842 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1843 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1845 /* PCIe PLL Configuration */
1846 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1847 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1848 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1855 * igb_read_mac_addr_82575 - Read device MAC address
1856 * @hw: pointer to the HW structure
1858 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1862 /* If there's an alternate MAC address place it in RAR0
1863 * so that it will override the Si installed default perm
1866 ret_val
= igb_check_alt_mac_addr(hw
);
1870 ret_val
= igb_read_mac_addr(hw
);
1877 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878 * @hw: pointer to the HW structure
1880 * In the case of a PHY power down to save power, or to turn off link during a
1881 * driver unload, or wake on lan is not enabled, remove the link.
1883 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1885 /* If the management interface is not enabled, then power down */
1886 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1887 igb_power_down_phy_copper(hw
);
1891 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892 * @hw: pointer to the HW structure
1894 * Clears the hardware counters by reading the counter registers.
1896 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1898 igb_clear_hw_cntrs_base(hw
);
1904 rd32(E1000_PRC1023
);
1905 rd32(E1000_PRC1522
);
1910 rd32(E1000_PTC1023
);
1911 rd32(E1000_PTC1522
);
1913 rd32(E1000_ALGNERRC
);
1916 rd32(E1000_CEXTERR
);
1927 rd32(E1000_ICRXPTC
);
1928 rd32(E1000_ICRXATC
);
1929 rd32(E1000_ICTXPTC
);
1930 rd32(E1000_ICTXATC
);
1931 rd32(E1000_ICTXQEC
);
1932 rd32(E1000_ICTXQMTC
);
1933 rd32(E1000_ICRXDMTC
);
1940 rd32(E1000_HTCBDPC
);
1945 rd32(E1000_LENERRS
);
1947 /* This register should not be read in copper configurations */
1948 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1949 igb_sgmii_active_82575(hw
))
1954 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955 * @hw: pointer to the HW structure
1957 * After rx enable if manageability is enabled then there is likely some
1958 * bad data at the start of the fifo and possibly in the DMA fifo. This
1959 * function clears the fifos and flushes any packets that came in as rx was
1962 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1964 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1967 /* disable IPv6 options as per hardware errata */
1968 rfctl
= rd32(E1000_RFCTL
);
1969 rfctl
|= E1000_RFCTL_IPV6_EX_DIS
;
1970 wr32(E1000_RFCTL
, rfctl
);
1972 if (hw
->mac
.type
!= e1000_82575
||
1973 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1976 /* Disable all RX queues */
1977 for (i
= 0; i
< 4; i
++) {
1978 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1979 wr32(E1000_RXDCTL(i
),
1980 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1982 /* Poll all queues to verify they have shut down */
1983 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1984 usleep_range(1000, 2000);
1986 for (i
= 0; i
< 4; i
++)
1987 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1988 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1993 hw_dbg("Queue disable timed out after 10ms\n");
1995 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996 * incoming packets are rejected. Set enable and wait 2ms so that
1997 * any packet that was coming in as RCTL.EN was set is flushed
1999 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
2001 rlpml
= rd32(E1000_RLPML
);
2002 wr32(E1000_RLPML
, 0);
2004 rctl
= rd32(E1000_RCTL
);
2005 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
2006 temp_rctl
|= E1000_RCTL_LPE
;
2008 wr32(E1000_RCTL
, temp_rctl
);
2009 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
2011 usleep_range(2000, 3000);
2013 /* Enable RX queues that were previously enabled and restore our
2016 for (i
= 0; i
< 4; i
++)
2017 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
2018 wr32(E1000_RCTL
, rctl
);
2021 wr32(E1000_RLPML
, rlpml
);
2022 wr32(E1000_RFCTL
, rfctl
);
2024 /* Flush receive errors generated by workaround */
2031 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2032 * @hw: pointer to the HW structure
2034 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035 * however the hardware default for these parts is 500us to 1ms which is less
2036 * than the 10ms recommended by the pci-e spec. To address this we need to
2037 * increase the value to either 10ms to 200ms for capability version 1 config,
2038 * or 16ms to 55ms for version 2.
2040 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
2042 u32 gcr
= rd32(E1000_GCR
);
2046 /* only take action if timeout value is defaulted to 0 */
2047 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
2050 /* if capabilities version is type 1 we can write the
2051 * timeout of 10ms to 200ms through the GCR register
2053 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
2054 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
2058 /* for version 2 capabilities we need to write the config space
2059 * directly in order to set the completion timeout value for
2062 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
2067 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
2069 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
2072 /* disable completion timeout resend */
2073 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
2075 wr32(E1000_GCR
, gcr
);
2080 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081 * @hw: pointer to the hardware struct
2082 * @enable: state to enter, either enabled or disabled
2083 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2085 * enables/disables L2 switch anti-spoofing functionality.
2087 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
2089 u32 reg_val
, reg_offset
;
2091 switch (hw
->mac
.type
) {
2093 reg_offset
= E1000_DTXSWC
;
2097 reg_offset
= E1000_TXSWC
;
2103 reg_val
= rd32(reg_offset
);
2105 reg_val
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
2106 E1000_DTXSWC_VLAN_SPOOF_MASK
);
2107 /* The PF can spoof - it has to in order to
2108 * support emulation mode NICs
2110 reg_val
^= (BIT(pf
) | BIT(pf
+ MAX_NUM_VFS
));
2112 reg_val
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
2113 E1000_DTXSWC_VLAN_SPOOF_MASK
);
2115 wr32(reg_offset
, reg_val
);
2119 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120 * @hw: pointer to the hardware struct
2121 * @enable: state to enter, either enabled or disabled
2123 * enables/disables L2 switch loopback functionality.
2125 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
2129 switch (hw
->mac
.type
) {
2131 dtxswc
= rd32(E1000_DTXSWC
);
2133 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2135 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2136 wr32(E1000_DTXSWC
, dtxswc
);
2140 dtxswc
= rd32(E1000_TXSWC
);
2142 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2144 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
2145 wr32(E1000_TXSWC
, dtxswc
);
2148 /* Currently no other hardware supports loopback */
2155 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156 * @hw: pointer to the hardware struct
2157 * @enable: state to enter, either enabled or disabled
2159 * enables/disables replication of packets across multiple pools.
2161 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
2163 u32 vt_ctl
= rd32(E1000_VT_CTL
);
2166 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
2168 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
2170 wr32(E1000_VT_CTL
, vt_ctl
);
2174 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2175 * @hw: pointer to the HW structure
2176 * @offset: register offset to be read
2177 * @data: pointer to the read data
2179 * Reads the MDI control register in the PHY at offset and stores the
2180 * information read to data.
2182 s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2186 ret_val
= hw
->phy
.ops
.acquire(hw
);
2190 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
2192 hw
->phy
.ops
.release(hw
);
2199 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2200 * @hw: pointer to the HW structure
2201 * @offset: register offset to write to
2202 * @data: data to write to register at offset
2204 * Writes data to MDI control register in the PHY at offset.
2206 s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2211 ret_val
= hw
->phy
.ops
.acquire(hw
);
2215 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
2217 hw
->phy
.ops
.release(hw
);
2224 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225 * @hw: pointer to the HW structure
2227 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228 * the values found in the EEPROM. This addresses an issue in which these
2229 * bits are not restored from EEPROM after reset.
2231 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
2237 if (hw
->mac
.type
!= e1000_82580
)
2239 if (!igb_sgmii_active_82575(hw
))
2242 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
2243 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
2246 hw_dbg("NVM Read Error\n");
2250 mdicnfg
= rd32(E1000_MDICNFG
);
2251 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
2252 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
2253 if (nvm_data
& NVM_WORD24_COM_MDIO
)
2254 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
2255 wr32(E1000_MDICNFG
, mdicnfg
);
2261 * igb_reset_hw_82580 - Reset hardware
2262 * @hw: pointer to the HW structure
2264 * This resets function or entire device (all ports, etc.)
2267 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
2270 /* BH SW mailbox bit in SW_FW_SYNC */
2271 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
2273 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
2275 hw
->dev_spec
._82575
.global_device_reset
= false;
2277 /* due to hw errata, global device reset doesn't always
2280 if (hw
->mac
.type
== e1000_82580
)
2281 global_device_reset
= false;
2283 /* Get current control state. */
2284 ctrl
= rd32(E1000_CTRL
);
2286 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2287 * on the last TLP read/write transaction when MAC is reset.
2289 ret_val
= igb_disable_pcie_master(hw
);
2291 hw_dbg("PCI-E Master disable polling has failed.\n");
2293 hw_dbg("Masking off all interrupts\n");
2294 wr32(E1000_IMC
, 0xffffffff);
2295 wr32(E1000_RCTL
, 0);
2296 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
2299 usleep_range(10000, 11000);
2301 /* Determine whether or not a global dev reset is requested */
2302 if (global_device_reset
&&
2303 hw
->mac
.ops
.acquire_swfw_sync(hw
, swmbsw_mask
))
2304 global_device_reset
= false;
2306 if (global_device_reset
&&
2307 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
2308 ctrl
|= E1000_CTRL_DEV_RST
;
2310 ctrl
|= E1000_CTRL_RST
;
2312 wr32(E1000_CTRL
, ctrl
);
2315 /* Add delay to insure DEV_RST has time to complete */
2316 if (global_device_reset
)
2317 usleep_range(5000, 6000);
2319 ret_val
= igb_get_auto_rd_done(hw
);
2321 /* When auto config read does not complete, do not
2322 * return with an error. This can happen in situations
2323 * where there is no eeprom and prevents getting link.
2325 hw_dbg("Auto Read Done did not complete\n");
2328 /* clear global device reset status bit */
2329 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
2331 /* Clear any pending interrupt events. */
2332 wr32(E1000_IMC
, 0xffffffff);
2335 ret_val
= igb_reset_mdicnfg_82580(hw
);
2337 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2339 /* Install any alternate MAC address into RAR0 */
2340 ret_val
= igb_check_alt_mac_addr(hw
);
2342 /* Release semaphore */
2343 if (global_device_reset
)
2344 hw
->mac
.ops
.release_swfw_sync(hw
, swmbsw_mask
);
2350 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351 * @data: data received by reading RXPBS register
2353 * The 82580 uses a table based approach for packet buffer allocation sizes.
2354 * This function converts the retrieved value into the correct table value
2355 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356 * 0x0 36 72 144 1 2 4 8 16
2357 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2359 u16
igb_rxpbs_adjust_82580(u32 data
)
2363 if (data
< ARRAY_SIZE(e1000_82580_rxpbs_table
))
2364 ret_val
= e1000_82580_rxpbs_table
[data
];
2370 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2372 * @hw: pointer to the HW structure
2373 * @offset: offset in words of the checksum protected region
2375 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2378 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
2385 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
2386 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2388 hw_dbg("NVM Read Error\n");
2391 checksum
+= nvm_data
;
2394 if (checksum
!= (u16
) NVM_SUM
) {
2395 hw_dbg("NVM Checksum Invalid\n");
2396 ret_val
= -E1000_ERR_NVM
;
2405 * igb_update_nvm_checksum_with_offset - Update EEPROM
2407 * @hw: pointer to the HW structure
2408 * @offset: offset in words of the checksum protected region
2410 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411 * up to the checksum. Then calculates the EEPROM checksum and writes the
2412 * value to the EEPROM.
2414 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
2420 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
2421 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2423 hw_dbg("NVM Read Error while updating checksum.\n");
2426 checksum
+= nvm_data
;
2428 checksum
= (u16
) NVM_SUM
- checksum
;
2429 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
2432 hw_dbg("NVM Write Error while updating checksum.\n");
2439 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440 * @hw: pointer to the HW structure
2442 * Calculates the EEPROM section checksum by reading/adding each word of
2443 * the EEPROM and then verifies that the sum of the EEPROM is
2446 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
2449 u16 eeprom_regions_count
= 1;
2453 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2455 hw_dbg("NVM Read Error\n");
2459 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
2460 /* if checksums compatibility bit is set validate checksums
2463 eeprom_regions_count
= 4;
2466 for (j
= 0; j
< eeprom_regions_count
; j
++) {
2467 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2468 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2479 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480 * @hw: pointer to the HW structure
2482 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2483 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2484 * checksum and writes the value to the EEPROM.
2486 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
2492 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2494 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2498 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
2499 /* set compatibility bit to validate checksums appropriately */
2500 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
2501 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
2504 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2509 for (j
= 0; j
< 4; j
++) {
2510 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2511 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2521 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522 * @hw: pointer to the HW structure
2524 * Calculates the EEPROM section checksum by reading/adding each word of
2525 * the EEPROM and then verifies that the sum of the EEPROM is
2528 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
2534 for (j
= 0; j
< 4; j
++) {
2535 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2536 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2547 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548 * @hw: pointer to the HW structure
2550 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2551 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2552 * checksum and writes the value to the EEPROM.
2554 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
2560 for (j
= 0; j
< 4; j
++) {
2561 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2562 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2572 * __igb_access_emi_reg - Read/write EMI register
2573 * @hw: pointer to the HW structure
2574 * @addr: EMI address to program
2575 * @data: pointer to value to read/write from/to the EMI address
2576 * @read: boolean flag to indicate read or write
2578 static s32
__igb_access_emi_reg(struct e1000_hw
*hw
, u16 address
,
2579 u16
*data
, bool read
)
2583 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_EMIADD
, address
);
2588 ret_val
= hw
->phy
.ops
.read_reg(hw
, E1000_EMIDATA
, data
);
2590 ret_val
= hw
->phy
.ops
.write_reg(hw
, E1000_EMIDATA
, *data
);
2596 * igb_read_emi_reg - Read Extended Management Interface register
2597 * @hw: pointer to the HW structure
2598 * @addr: EMI address to program
2599 * @data: value to be read from the EMI address
2601 s32
igb_read_emi_reg(struct e1000_hw
*hw
, u16 addr
, u16
*data
)
2603 return __igb_access_emi_reg(hw
, addr
, data
, true);
2607 * igb_set_eee_i350 - Enable/disable EEE support
2608 * @hw: pointer to the HW structure
2609 * @adv1G: boolean flag enabling 1G EEE advertisement
2610 * @adv100m: boolean flag enabling 100M EEE advertisement
2612 * Enable/disable EEE based on setting in dev_spec structure.
2615 s32
igb_set_eee_i350(struct e1000_hw
*hw
, bool adv1G
, bool adv100M
)
2619 if ((hw
->mac
.type
< e1000_i350
) ||
2620 (hw
->phy
.media_type
!= e1000_media_type_copper
))
2622 ipcnfg
= rd32(E1000_IPCNFG
);
2623 eeer
= rd32(E1000_EEER
);
2625 /* enable or disable per user setting */
2626 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2627 u32 eee_su
= rd32(E1000_EEE_SU
);
2630 ipcnfg
|= E1000_IPCNFG_EEE_100M_AN
;
2632 ipcnfg
&= ~E1000_IPCNFG_EEE_100M_AN
;
2635 ipcnfg
|= E1000_IPCNFG_EEE_1G_AN
;
2637 ipcnfg
&= ~E1000_IPCNFG_EEE_1G_AN
;
2639 eeer
|= (E1000_EEER_TX_LPI_EN
| E1000_EEER_RX_LPI_EN
|
2642 /* This bit should not be set in normal operation. */
2643 if (eee_su
& E1000_EEE_SU_LPI_CLK_STP
)
2644 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2647 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2648 E1000_IPCNFG_EEE_100M_AN
);
2649 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2650 E1000_EEER_RX_LPI_EN
|
2653 wr32(E1000_IPCNFG
, ipcnfg
);
2654 wr32(E1000_EEER
, eeer
);
2663 * igb_set_eee_i354 - Enable/disable EEE support
2664 * @hw: pointer to the HW structure
2665 * @adv1G: boolean flag enabling 1G EEE advertisement
2666 * @adv100m: boolean flag enabling 100M EEE advertisement
2668 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2671 s32
igb_set_eee_i354(struct e1000_hw
*hw
, bool adv1G
, bool adv100M
)
2673 struct e1000_phy_info
*phy
= &hw
->phy
;
2677 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
2678 ((phy
->id
!= M88E1543_E_PHY_ID
) &&
2679 (phy
->id
!= M88E1512_E_PHY_ID
)))
2682 if (!hw
->dev_spec
._82575
.eee_disable
) {
2683 /* Switch to PHY page 18. */
2684 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 18);
2688 ret_val
= phy
->ops
.read_reg(hw
, E1000_M88E1543_EEE_CTRL_1
,
2693 phy_data
|= E1000_M88E1543_EEE_CTRL_1_MS
;
2694 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_EEE_CTRL_1
,
2699 /* Return the PHY to page 0. */
2700 ret_val
= phy
->ops
.write_reg(hw
, E1000_M88E1543_PAGE_ADDR
, 0);
2704 /* Turn on EEE advertisement. */
2705 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2706 E1000_EEE_ADV_DEV_I354
,
2712 phy_data
|= E1000_EEE_ADV_100_SUPPORTED
;
2714 phy_data
&= ~E1000_EEE_ADV_100_SUPPORTED
;
2717 phy_data
|= E1000_EEE_ADV_1000_SUPPORTED
;
2719 phy_data
&= ~E1000_EEE_ADV_1000_SUPPORTED
;
2721 ret_val
= igb_write_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2722 E1000_EEE_ADV_DEV_I354
,
2725 /* Turn off EEE advertisement. */
2726 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2727 E1000_EEE_ADV_DEV_I354
,
2732 phy_data
&= ~(E1000_EEE_ADV_100_SUPPORTED
|
2733 E1000_EEE_ADV_1000_SUPPORTED
);
2734 ret_val
= igb_write_xmdio_reg(hw
, E1000_EEE_ADV_ADDR_I354
,
2735 E1000_EEE_ADV_DEV_I354
,
2744 * igb_get_eee_status_i354 - Get EEE status
2745 * @hw: pointer to the HW structure
2746 * @status: EEE status
2748 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2751 s32
igb_get_eee_status_i354(struct e1000_hw
*hw
, bool *status
)
2753 struct e1000_phy_info
*phy
= &hw
->phy
;
2757 /* Check if EEE is supported on this device. */
2758 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
2759 ((phy
->id
!= M88E1543_E_PHY_ID
) &&
2760 (phy
->id
!= M88E1512_E_PHY_ID
)))
2763 ret_val
= igb_read_xmdio_reg(hw
, E1000_PCS_STATUS_ADDR_I354
,
2764 E1000_PCS_STATUS_DEV_I354
,
2769 *status
= phy_data
& (E1000_PCS_STATUS_TX_LPI_RCVD
|
2770 E1000_PCS_STATUS_RX_LPI_RCVD
) ? true : false;
2776 static const u8 e1000_emc_temp_data
[4] = {
2777 E1000_EMC_INTERNAL_DATA
,
2778 E1000_EMC_DIODE1_DATA
,
2779 E1000_EMC_DIODE2_DATA
,
2780 E1000_EMC_DIODE3_DATA
2782 static const u8 e1000_emc_therm_limit
[4] = {
2783 E1000_EMC_INTERNAL_THERM_LIMIT
,
2784 E1000_EMC_DIODE1_THERM_LIMIT
,
2785 E1000_EMC_DIODE2_THERM_LIMIT
,
2786 E1000_EMC_DIODE3_THERM_LIMIT
2789 #ifdef CONFIG_IGB_HWMON
2791 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792 * @hw: pointer to hardware structure
2794 * Updates the temperatures in mac.thermal_sensor_data
2796 static s32
igb_get_thermal_sensor_data_generic(struct e1000_hw
*hw
)
2805 struct e1000_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
2807 if ((hw
->mac
.type
!= e1000_i350
) || (hw
->bus
.func
!= 0))
2808 return E1000_NOT_IMPLEMENTED
;
2810 data
->sensor
[0].temp
= (rd32(E1000_THMJT
) & 0xFF);
2812 /* Return the internal sensor only if ETS is unsupported */
2813 hw
->nvm
.ops
.read(hw
, NVM_ETS_CFG
, 1, &ets_offset
);
2814 if ((ets_offset
== 0x0000) || (ets_offset
== 0xFFFF))
2817 hw
->nvm
.ops
.read(hw
, ets_offset
, 1, &ets_cfg
);
2818 if (((ets_cfg
& NVM_ETS_TYPE_MASK
) >> NVM_ETS_TYPE_SHIFT
)
2819 != NVM_ETS_TYPE_EMC
)
2820 return E1000_NOT_IMPLEMENTED
;
2822 num_sensors
= (ets_cfg
& NVM_ETS_NUM_SENSORS_MASK
);
2823 if (num_sensors
> E1000_MAX_SENSORS
)
2824 num_sensors
= E1000_MAX_SENSORS
;
2826 for (i
= 1; i
< num_sensors
; i
++) {
2827 hw
->nvm
.ops
.read(hw
, (ets_offset
+ i
), 1, &ets_sensor
);
2828 sensor_index
= ((ets_sensor
& NVM_ETS_DATA_INDEX_MASK
) >>
2829 NVM_ETS_DATA_INDEX_SHIFT
);
2830 sensor_location
= ((ets_sensor
& NVM_ETS_DATA_LOC_MASK
) >>
2831 NVM_ETS_DATA_LOC_SHIFT
);
2833 if (sensor_location
!= 0)
2834 hw
->phy
.ops
.read_i2c_byte(hw
,
2835 e1000_emc_temp_data
[sensor_index
],
2836 E1000_I2C_THERMAL_SENSOR_ADDR
,
2837 &data
->sensor
[i
].temp
);
2843 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844 * @hw: pointer to hardware structure
2846 * Sets the thermal sensor thresholds according to the NVM map
2847 * and save off the threshold and location values into mac.thermal_sensor_data
2849 static s32
igb_init_thermal_sensor_thresh_generic(struct e1000_hw
*hw
)
2854 u8 low_thresh_delta
;
2860 struct e1000_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
2862 if ((hw
->mac
.type
!= e1000_i350
) || (hw
->bus
.func
!= 0))
2863 return E1000_NOT_IMPLEMENTED
;
2865 memset(data
, 0, sizeof(struct e1000_thermal_sensor_data
));
2867 data
->sensor
[0].location
= 0x1;
2868 data
->sensor
[0].caution_thresh
=
2869 (rd32(E1000_THHIGHTC
) & 0xFF);
2870 data
->sensor
[0].max_op_thresh
=
2871 (rd32(E1000_THLOWTC
) & 0xFF);
2873 /* Return the internal sensor only if ETS is unsupported */
2874 hw
->nvm
.ops
.read(hw
, NVM_ETS_CFG
, 1, &ets_offset
);
2875 if ((ets_offset
== 0x0000) || (ets_offset
== 0xFFFF))
2878 hw
->nvm
.ops
.read(hw
, ets_offset
, 1, &ets_cfg
);
2879 if (((ets_cfg
& NVM_ETS_TYPE_MASK
) >> NVM_ETS_TYPE_SHIFT
)
2880 != NVM_ETS_TYPE_EMC
)
2881 return E1000_NOT_IMPLEMENTED
;
2883 low_thresh_delta
= ((ets_cfg
& NVM_ETS_LTHRES_DELTA_MASK
) >>
2884 NVM_ETS_LTHRES_DELTA_SHIFT
);
2885 num_sensors
= (ets_cfg
& NVM_ETS_NUM_SENSORS_MASK
);
2887 for (i
= 1; i
<= num_sensors
; i
++) {
2888 hw
->nvm
.ops
.read(hw
, (ets_offset
+ i
), 1, &ets_sensor
);
2889 sensor_index
= ((ets_sensor
& NVM_ETS_DATA_INDEX_MASK
) >>
2890 NVM_ETS_DATA_INDEX_SHIFT
);
2891 sensor_location
= ((ets_sensor
& NVM_ETS_DATA_LOC_MASK
) >>
2892 NVM_ETS_DATA_LOC_SHIFT
);
2893 therm_limit
= ets_sensor
& NVM_ETS_DATA_HTHRESH_MASK
;
2895 hw
->phy
.ops
.write_i2c_byte(hw
,
2896 e1000_emc_therm_limit
[sensor_index
],
2897 E1000_I2C_THERMAL_SENSOR_ADDR
,
2900 if ((i
< E1000_MAX_SENSORS
) && (sensor_location
!= 0)) {
2901 data
->sensor
[i
].location
= sensor_location
;
2902 data
->sensor
[i
].caution_thresh
= therm_limit
;
2903 data
->sensor
[i
].max_op_thresh
= therm_limit
-
2911 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2912 .init_hw
= igb_init_hw_82575
,
2913 .check_for_link
= igb_check_for_link_82575
,
2914 .rar_set
= igb_rar_set
,
2915 .read_mac_addr
= igb_read_mac_addr_82575
,
2916 .get_speed_and_duplex
= igb_get_link_up_info_82575
,
2917 #ifdef CONFIG_IGB_HWMON
2918 .get_thermal_sensor_data
= igb_get_thermal_sensor_data_generic
,
2919 .init_thermal_sensor_thresh
= igb_init_thermal_sensor_thresh_generic
,
2923 static const struct e1000_phy_operations e1000_phy_ops_82575
= {
2924 .acquire
= igb_acquire_phy_82575
,
2925 .get_cfg_done
= igb_get_cfg_done_82575
,
2926 .release
= igb_release_phy_82575
,
2927 .write_i2c_byte
= igb_write_i2c_byte
,
2928 .read_i2c_byte
= igb_read_i2c_byte
,
2931 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2932 .acquire
= igb_acquire_nvm_82575
,
2933 .read
= igb_read_nvm_eerd
,
2934 .release
= igb_release_nvm_82575
,
2935 .write
= igb_write_nvm_spi
,
2938 const struct e1000_info e1000_82575_info
= {
2939 .get_invariants
= igb_get_invariants_82575
,
2940 .mac_ops
= &e1000_mac_ops_82575
,
2941 .phy_ops
= &e1000_phy_ops_82575
,
2942 .nvm_ops
= &e1000_nvm_ops_82575
,