pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / korina.c
blob1799fe1415df5070104edf4946a537e245c80176
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <linux/slab.h>
45 #include <linux/string.h>
46 #include <linux/delay.h>
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/skbuff.h>
50 #include <linux/errno.h>
51 #include <linux/platform_device.h>
52 #include <linux/mii.h>
53 #include <linux/ethtool.h>
54 #include <linux/crc32.h>
56 #include <asm/bootinfo.h>
57 #include <asm/bitops.h>
58 #include <asm/pgtable.h>
59 #include <asm/io.h>
60 #include <asm/dma.h>
62 #include <asm/mach-rc32434/rb.h>
63 #include <asm/mach-rc32434/rc32434.h>
64 #include <asm/mach-rc32434/eth.h>
65 #include <asm/mach-rc32434/dma_v.h>
67 #define DRV_NAME "korina"
68 #define DRV_VERSION "0.10"
69 #define DRV_RELDATE "04Mar2008"
71 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
72 ((dev)->dev_addr[1]))
73 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
74 ((dev)->dev_addr[3] << 16) | \
75 ((dev)->dev_addr[4] << 8) | \
76 ((dev)->dev_addr[5]))
78 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
80 /* the following must be powers of two */
81 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
82 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
84 /* KORINA_RBSIZE is the hardware's default maximum receive
85 * frame size in bytes. Having this hardcoded means that there
86 * is no support for MTU sizes greater than 1500. */
87 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
88 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
89 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
90 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
91 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
93 #define TX_TIMEOUT (6000 * HZ / 1000)
95 enum chain_status { desc_filled, desc_empty };
96 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
97 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
98 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
100 /* Information that need to be kept for each board. */
101 struct korina_private {
102 struct eth_regs *eth_regs;
103 struct dma_reg *rx_dma_regs;
104 struct dma_reg *tx_dma_regs;
105 struct dma_desc *td_ring; /* transmit descriptor ring */
106 struct dma_desc *rd_ring; /* receive descriptor ring */
108 struct sk_buff *tx_skb[KORINA_NUM_TDS];
109 struct sk_buff *rx_skb[KORINA_NUM_RDS];
111 int rx_next_done;
112 int rx_chain_head;
113 int rx_chain_tail;
114 enum chain_status rx_chain_status;
116 int tx_next_done;
117 int tx_chain_head;
118 int tx_chain_tail;
119 enum chain_status tx_chain_status;
120 int tx_count;
121 int tx_full;
123 int rx_irq;
124 int tx_irq;
125 int ovr_irq;
126 int und_irq;
128 spinlock_t lock; /* NIC xmit lock */
130 int dma_halt_cnt;
131 int dma_run_cnt;
132 struct napi_struct napi;
133 struct timer_list media_check_timer;
134 struct mii_if_info mii_if;
135 struct work_struct restart_task;
136 struct net_device *dev;
137 int phy_addr;
140 extern unsigned int idt_cpu_freq;
142 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
144 writel(0, &ch->dmandptr);
145 writel(dma_addr, &ch->dmadptr);
148 static inline void korina_abort_dma(struct net_device *dev,
149 struct dma_reg *ch)
151 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
152 writel(0x10, &ch->dmac);
154 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
155 netif_trans_update(dev);
157 writel(0, &ch->dmas);
160 writel(0, &ch->dmadptr);
161 writel(0, &ch->dmandptr);
164 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
166 writel(dma_addr, &ch->dmandptr);
169 static void korina_abort_tx(struct net_device *dev)
171 struct korina_private *lp = netdev_priv(dev);
173 korina_abort_dma(dev, lp->tx_dma_regs);
176 static void korina_abort_rx(struct net_device *dev)
178 struct korina_private *lp = netdev_priv(dev);
180 korina_abort_dma(dev, lp->rx_dma_regs);
183 static void korina_start_rx(struct korina_private *lp,
184 struct dma_desc *rd)
186 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
189 static void korina_chain_rx(struct korina_private *lp,
190 struct dma_desc *rd)
192 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
195 /* transmit packet */
196 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
198 struct korina_private *lp = netdev_priv(dev);
199 unsigned long flags;
200 u32 length;
201 u32 chain_prev, chain_next;
202 struct dma_desc *td;
204 spin_lock_irqsave(&lp->lock, flags);
206 td = &lp->td_ring[lp->tx_chain_tail];
208 /* stop queue when full, drop pkts if queue already full */
209 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
210 lp->tx_full = 1;
212 if (lp->tx_count == (KORINA_NUM_TDS - 2))
213 netif_stop_queue(dev);
214 else {
215 dev->stats.tx_dropped++;
216 dev_kfree_skb_any(skb);
217 spin_unlock_irqrestore(&lp->lock, flags);
219 return NETDEV_TX_BUSY;
223 lp->tx_count++;
225 lp->tx_skb[lp->tx_chain_tail] = skb;
227 length = skb->len;
228 dma_cache_wback((u32)skb->data, skb->len);
230 /* Setup the transmit descriptor. */
231 dma_cache_inv((u32) td, sizeof(*td));
232 td->ca = CPHYSADDR(skb->data);
233 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
234 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
236 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
237 if (lp->tx_chain_status == desc_empty) {
238 /* Update tail */
239 td->control = DMA_COUNT(length) |
240 DMA_DESC_COF | DMA_DESC_IOF;
241 /* Move tail */
242 lp->tx_chain_tail = chain_next;
243 /* Write to NDPTR */
244 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
245 &lp->tx_dma_regs->dmandptr);
246 /* Move head to tail */
247 lp->tx_chain_head = lp->tx_chain_tail;
248 } else {
249 /* Update tail */
250 td->control = DMA_COUNT(length) |
251 DMA_DESC_COF | DMA_DESC_IOF;
252 /* Link to prev */
253 lp->td_ring[chain_prev].control &=
254 ~DMA_DESC_COF;
255 /* Link to prev */
256 lp->td_ring[chain_prev].link = CPHYSADDR(td);
257 /* Move tail */
258 lp->tx_chain_tail = chain_next;
259 /* Write to NDPTR */
260 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
261 &(lp->tx_dma_regs->dmandptr));
262 /* Move head to tail */
263 lp->tx_chain_head = lp->tx_chain_tail;
264 lp->tx_chain_status = desc_empty;
266 } else {
267 if (lp->tx_chain_status == desc_empty) {
268 /* Update tail */
269 td->control = DMA_COUNT(length) |
270 DMA_DESC_COF | DMA_DESC_IOF;
271 /* Move tail */
272 lp->tx_chain_tail = chain_next;
273 lp->tx_chain_status = desc_filled;
274 } else {
275 /* Update tail */
276 td->control = DMA_COUNT(length) |
277 DMA_DESC_COF | DMA_DESC_IOF;
278 lp->td_ring[chain_prev].control &=
279 ~DMA_DESC_COF;
280 lp->td_ring[chain_prev].link = CPHYSADDR(td);
281 lp->tx_chain_tail = chain_next;
284 dma_cache_wback((u32) td, sizeof(*td));
286 netif_trans_update(dev);
287 spin_unlock_irqrestore(&lp->lock, flags);
289 return NETDEV_TX_OK;
292 static int mdio_read(struct net_device *dev, int mii_id, int reg)
294 struct korina_private *lp = netdev_priv(dev);
295 int ret;
297 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
299 writel(0, &lp->eth_regs->miimcfg);
300 writel(0, &lp->eth_regs->miimcmd);
301 writel(mii_id | reg, &lp->eth_regs->miimaddr);
302 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
304 ret = (int)(readl(&lp->eth_regs->miimrdd));
305 return ret;
308 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
310 struct korina_private *lp = netdev_priv(dev);
312 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
314 writel(0, &lp->eth_regs->miimcfg);
315 writel(1, &lp->eth_regs->miimcmd);
316 writel(mii_id | reg, &lp->eth_regs->miimaddr);
317 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
318 writel(val, &lp->eth_regs->miimwtd);
321 /* Ethernet Rx DMA interrupt */
322 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
324 struct net_device *dev = dev_id;
325 struct korina_private *lp = netdev_priv(dev);
326 u32 dmas, dmasm;
327 irqreturn_t retval;
329 dmas = readl(&lp->rx_dma_regs->dmas);
330 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
331 dmasm = readl(&lp->rx_dma_regs->dmasm);
332 writel(dmasm | (DMA_STAT_DONE |
333 DMA_STAT_HALT | DMA_STAT_ERR),
334 &lp->rx_dma_regs->dmasm);
336 napi_schedule(&lp->napi);
338 if (dmas & DMA_STAT_ERR)
339 printk(KERN_ERR "%s: DMA error\n", dev->name);
341 retval = IRQ_HANDLED;
342 } else
343 retval = IRQ_NONE;
345 return retval;
348 static int korina_rx(struct net_device *dev, int limit)
350 struct korina_private *lp = netdev_priv(dev);
351 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
352 struct sk_buff *skb, *skb_new;
353 u8 *pkt_buf;
354 u32 devcs, pkt_len, dmas;
355 int count;
357 dma_cache_inv((u32)rd, sizeof(*rd));
359 for (count = 0; count < limit; count++) {
360 skb = lp->rx_skb[lp->rx_next_done];
361 skb_new = NULL;
363 devcs = rd->devcs;
365 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
366 break;
368 /* Update statistics counters */
369 if (devcs & ETH_RX_CRC)
370 dev->stats.rx_crc_errors++;
371 if (devcs & ETH_RX_LOR)
372 dev->stats.rx_length_errors++;
373 if (devcs & ETH_RX_LE)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_OVR)
376 dev->stats.rx_fifo_errors++;
377 if (devcs & ETH_RX_CV)
378 dev->stats.rx_frame_errors++;
379 if (devcs & ETH_RX_CES)
380 dev->stats.rx_length_errors++;
381 if (devcs & ETH_RX_MP)
382 dev->stats.multicast++;
384 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
385 /* check that this is a whole packet
386 * WARNING: DMA_FD bit incorrectly set
387 * in Rc32434 (errata ref #077) */
388 dev->stats.rx_errors++;
389 dev->stats.rx_dropped++;
390 } else if ((devcs & ETH_RX_ROK)) {
391 pkt_len = RCVPKT_LENGTH(devcs);
393 /* must be the (first and) last
394 * descriptor then */
395 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
397 /* invalidate the cache */
398 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
400 /* Malloc up new buffer. */
401 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
403 if (!skb_new)
404 break;
405 /* Do not count the CRC */
406 skb_put(skb, pkt_len - 4);
407 skb->protocol = eth_type_trans(skb, dev);
409 /* Pass the packet to upper layers */
410 netif_receive_skb(skb);
411 dev->stats.rx_packets++;
412 dev->stats.rx_bytes += pkt_len;
414 /* Update the mcast stats */
415 if (devcs & ETH_RX_MP)
416 dev->stats.multicast++;
418 lp->rx_skb[lp->rx_next_done] = skb_new;
421 rd->devcs = 0;
423 /* Restore descriptor's curr_addr */
424 if (skb_new)
425 rd->ca = CPHYSADDR(skb_new->data);
426 else
427 rd->ca = CPHYSADDR(skb->data);
429 rd->control = DMA_COUNT(KORINA_RBSIZE) |
430 DMA_DESC_COD | DMA_DESC_IOD;
431 lp->rd_ring[(lp->rx_next_done - 1) &
432 KORINA_RDS_MASK].control &=
433 ~DMA_DESC_COD;
435 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
436 dma_cache_wback((u32)rd, sizeof(*rd));
437 rd = &lp->rd_ring[lp->rx_next_done];
438 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
441 dmas = readl(&lp->rx_dma_regs->dmas);
443 if (dmas & DMA_STAT_HALT) {
444 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
445 &lp->rx_dma_regs->dmas);
447 lp->dma_halt_cnt++;
448 rd->devcs = 0;
449 skb = lp->rx_skb[lp->rx_next_done];
450 rd->ca = CPHYSADDR(skb->data);
451 dma_cache_wback((u32)rd, sizeof(*rd));
452 korina_chain_rx(lp, rd);
455 return count;
458 static int korina_poll(struct napi_struct *napi, int budget)
460 struct korina_private *lp =
461 container_of(napi, struct korina_private, napi);
462 struct net_device *dev = lp->dev;
463 int work_done;
465 work_done = korina_rx(dev, budget);
466 if (work_done < budget) {
467 napi_complete(napi);
469 writel(readl(&lp->rx_dma_regs->dmasm) &
470 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
471 &lp->rx_dma_regs->dmasm);
473 return work_done;
477 * Set or clear the multicast filter for this adaptor.
479 static void korina_multicast_list(struct net_device *dev)
481 struct korina_private *lp = netdev_priv(dev);
482 unsigned long flags;
483 struct netdev_hw_addr *ha;
484 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
486 /* Set promiscuous mode */
487 if (dev->flags & IFF_PROMISC)
488 recognise |= ETH_ARC_PRO;
490 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
491 /* All multicast and broadcast */
492 recognise |= ETH_ARC_AM;
494 /* Build the hash table */
495 if (netdev_mc_count(dev) > 4) {
496 u16 hash_table[4] = { 0 };
497 u32 crc;
499 netdev_for_each_mc_addr(ha, dev) {
500 crc = ether_crc_le(6, ha->addr);
501 crc >>= 26;
502 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
504 /* Accept filtered multicast */
505 recognise |= ETH_ARC_AFM;
507 /* Fill the MAC hash tables with their values */
508 writel((u32)(hash_table[1] << 16 | hash_table[0]),
509 &lp->eth_regs->ethhash0);
510 writel((u32)(hash_table[3] << 16 | hash_table[2]),
511 &lp->eth_regs->ethhash1);
514 spin_lock_irqsave(&lp->lock, flags);
515 writel(recognise, &lp->eth_regs->etharc);
516 spin_unlock_irqrestore(&lp->lock, flags);
519 static void korina_tx(struct net_device *dev)
521 struct korina_private *lp = netdev_priv(dev);
522 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
523 u32 devcs;
524 u32 dmas;
526 spin_lock(&lp->lock);
528 /* Process all desc that are done */
529 while (IS_DMA_FINISHED(td->control)) {
530 if (lp->tx_full == 1) {
531 netif_wake_queue(dev);
532 lp->tx_full = 0;
535 devcs = lp->td_ring[lp->tx_next_done].devcs;
536 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
537 (ETH_TX_FD | ETH_TX_LD)) {
538 dev->stats.tx_errors++;
539 dev->stats.tx_dropped++;
541 /* Should never happen */
542 printk(KERN_ERR "%s: split tx ignored\n",
543 dev->name);
544 } else if (devcs & ETH_TX_TOK) {
545 dev->stats.tx_packets++;
546 dev->stats.tx_bytes +=
547 lp->tx_skb[lp->tx_next_done]->len;
548 } else {
549 dev->stats.tx_errors++;
550 dev->stats.tx_dropped++;
552 /* Underflow */
553 if (devcs & ETH_TX_UND)
554 dev->stats.tx_fifo_errors++;
556 /* Oversized frame */
557 if (devcs & ETH_TX_OF)
558 dev->stats.tx_aborted_errors++;
560 /* Excessive deferrals */
561 if (devcs & ETH_TX_ED)
562 dev->stats.tx_carrier_errors++;
564 /* Collisions: medium busy */
565 if (devcs & ETH_TX_EC)
566 dev->stats.collisions++;
568 /* Late collision */
569 if (devcs & ETH_TX_LC)
570 dev->stats.tx_window_errors++;
573 /* We must always free the original skb */
574 if (lp->tx_skb[lp->tx_next_done]) {
575 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
576 lp->tx_skb[lp->tx_next_done] = NULL;
579 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
580 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
581 lp->td_ring[lp->tx_next_done].link = 0;
582 lp->td_ring[lp->tx_next_done].ca = 0;
583 lp->tx_count--;
585 /* Go on to next transmission */
586 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
587 td = &lp->td_ring[lp->tx_next_done];
591 /* Clear the DMA status register */
592 dmas = readl(&lp->tx_dma_regs->dmas);
593 writel(~dmas, &lp->tx_dma_regs->dmas);
595 writel(readl(&lp->tx_dma_regs->dmasm) &
596 ~(DMA_STAT_FINI | DMA_STAT_ERR),
597 &lp->tx_dma_regs->dmasm);
599 spin_unlock(&lp->lock);
602 static irqreturn_t
603 korina_tx_dma_interrupt(int irq, void *dev_id)
605 struct net_device *dev = dev_id;
606 struct korina_private *lp = netdev_priv(dev);
607 u32 dmas, dmasm;
608 irqreturn_t retval;
610 dmas = readl(&lp->tx_dma_regs->dmas);
612 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
613 dmasm = readl(&lp->tx_dma_regs->dmasm);
614 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
615 &lp->tx_dma_regs->dmasm);
617 korina_tx(dev);
619 if (lp->tx_chain_status == desc_filled &&
620 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
621 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
622 &(lp->tx_dma_regs->dmandptr));
623 lp->tx_chain_status = desc_empty;
624 lp->tx_chain_head = lp->tx_chain_tail;
625 netif_trans_update(dev);
627 if (dmas & DMA_STAT_ERR)
628 printk(KERN_ERR "%s: DMA error\n", dev->name);
630 retval = IRQ_HANDLED;
631 } else
632 retval = IRQ_NONE;
634 return retval;
638 static void korina_check_media(struct net_device *dev, unsigned int init_media)
640 struct korina_private *lp = netdev_priv(dev);
642 mii_check_media(&lp->mii_if, 0, init_media);
644 if (lp->mii_if.full_duplex)
645 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
646 &lp->eth_regs->ethmac2);
647 else
648 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
649 &lp->eth_regs->ethmac2);
652 static void korina_poll_media(unsigned long data)
654 struct net_device *dev = (struct net_device *) data;
655 struct korina_private *lp = netdev_priv(dev);
657 korina_check_media(dev, 0);
658 mod_timer(&lp->media_check_timer, jiffies + HZ);
661 static void korina_set_carrier(struct mii_if_info *mii)
663 if (mii->force_media) {
664 /* autoneg is off: Link is always assumed to be up */
665 if (!netif_carrier_ok(mii->dev))
666 netif_carrier_on(mii->dev);
667 } else /* Let MMI library update carrier status */
668 korina_check_media(mii->dev, 0);
671 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
673 struct korina_private *lp = netdev_priv(dev);
674 struct mii_ioctl_data *data = if_mii(rq);
675 int rc;
677 if (!netif_running(dev))
678 return -EINVAL;
679 spin_lock_irq(&lp->lock);
680 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
681 spin_unlock_irq(&lp->lock);
682 korina_set_carrier(&lp->mii_if);
684 return rc;
687 /* ethtool helpers */
688 static void netdev_get_drvinfo(struct net_device *dev,
689 struct ethtool_drvinfo *info)
691 struct korina_private *lp = netdev_priv(dev);
693 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
694 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
695 strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
698 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
700 struct korina_private *lp = netdev_priv(dev);
701 int rc;
703 spin_lock_irq(&lp->lock);
704 rc = mii_ethtool_gset(&lp->mii_if, cmd);
705 spin_unlock_irq(&lp->lock);
707 return rc;
710 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
712 struct korina_private *lp = netdev_priv(dev);
713 int rc;
715 spin_lock_irq(&lp->lock);
716 rc = mii_ethtool_sset(&lp->mii_if, cmd);
717 spin_unlock_irq(&lp->lock);
718 korina_set_carrier(&lp->mii_if);
720 return rc;
723 static u32 netdev_get_link(struct net_device *dev)
725 struct korina_private *lp = netdev_priv(dev);
727 return mii_link_ok(&lp->mii_if);
730 static const struct ethtool_ops netdev_ethtool_ops = {
731 .get_drvinfo = netdev_get_drvinfo,
732 .get_settings = netdev_get_settings,
733 .set_settings = netdev_set_settings,
734 .get_link = netdev_get_link,
737 static int korina_alloc_ring(struct net_device *dev)
739 struct korina_private *lp = netdev_priv(dev);
740 struct sk_buff *skb;
741 int i;
743 /* Initialize the transmit descriptors */
744 for (i = 0; i < KORINA_NUM_TDS; i++) {
745 lp->td_ring[i].control = DMA_DESC_IOF;
746 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
747 lp->td_ring[i].ca = 0;
748 lp->td_ring[i].link = 0;
750 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
751 lp->tx_full = lp->tx_count = 0;
752 lp->tx_chain_status = desc_empty;
754 /* Initialize the receive descriptors */
755 for (i = 0; i < KORINA_NUM_RDS; i++) {
756 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
757 if (!skb)
758 return -ENOMEM;
759 lp->rx_skb[i] = skb;
760 lp->rd_ring[i].control = DMA_DESC_IOD |
761 DMA_COUNT(KORINA_RBSIZE);
762 lp->rd_ring[i].devcs = 0;
763 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
764 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
767 /* loop back receive descriptors, so the last
768 * descriptor points to the first one */
769 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
770 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
772 lp->rx_next_done = 0;
773 lp->rx_chain_head = 0;
774 lp->rx_chain_tail = 0;
775 lp->rx_chain_status = desc_empty;
777 return 0;
780 static void korina_free_ring(struct net_device *dev)
782 struct korina_private *lp = netdev_priv(dev);
783 int i;
785 for (i = 0; i < KORINA_NUM_RDS; i++) {
786 lp->rd_ring[i].control = 0;
787 if (lp->rx_skb[i])
788 dev_kfree_skb_any(lp->rx_skb[i]);
789 lp->rx_skb[i] = NULL;
792 for (i = 0; i < KORINA_NUM_TDS; i++) {
793 lp->td_ring[i].control = 0;
794 if (lp->tx_skb[i])
795 dev_kfree_skb_any(lp->tx_skb[i]);
796 lp->tx_skb[i] = NULL;
801 * Initialize the RC32434 ethernet controller.
803 static int korina_init(struct net_device *dev)
805 struct korina_private *lp = netdev_priv(dev);
807 /* Disable DMA */
808 korina_abort_tx(dev);
809 korina_abort_rx(dev);
811 /* reset ethernet logic */
812 writel(0, &lp->eth_regs->ethintfc);
813 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
814 netif_trans_update(dev);
816 /* Enable Ethernet Interface */
817 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
819 /* Allocate rings */
820 if (korina_alloc_ring(dev)) {
821 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
822 korina_free_ring(dev);
823 return -ENOMEM;
826 writel(0, &lp->rx_dma_regs->dmas);
827 /* Start Rx DMA */
828 korina_start_rx(lp, &lp->rd_ring[0]);
830 writel(readl(&lp->tx_dma_regs->dmasm) &
831 ~(DMA_STAT_FINI | DMA_STAT_ERR),
832 &lp->tx_dma_regs->dmasm);
833 writel(readl(&lp->rx_dma_regs->dmasm) &
834 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
835 &lp->rx_dma_regs->dmasm);
837 /* Accept only packets destined for this Ethernet device address */
838 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
840 /* Set all Ether station address registers to their initial values */
841 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
842 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
844 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
845 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
847 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
848 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
850 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
851 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
854 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
855 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
856 &lp->eth_regs->ethmac2);
858 /* Back to back inter-packet-gap */
859 writel(0x15, &lp->eth_regs->ethipgt);
860 /* Non - Back to back inter-packet-gap */
861 writel(0x12, &lp->eth_regs->ethipgr);
863 /* Management Clock Prescaler Divisor
864 * Clock independent setting */
865 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
866 &lp->eth_regs->ethmcp);
868 /* don't transmit until fifo contains 48b */
869 writel(48, &lp->eth_regs->ethfifott);
871 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
873 napi_enable(&lp->napi);
874 netif_start_queue(dev);
876 return 0;
880 * Restart the RC32434 ethernet controller.
882 static void korina_restart_task(struct work_struct *work)
884 struct korina_private *lp = container_of(work,
885 struct korina_private, restart_task);
886 struct net_device *dev = lp->dev;
889 * Disable interrupts
891 disable_irq(lp->rx_irq);
892 disable_irq(lp->tx_irq);
893 disable_irq(lp->ovr_irq);
894 disable_irq(lp->und_irq);
896 writel(readl(&lp->tx_dma_regs->dmasm) |
897 DMA_STAT_FINI | DMA_STAT_ERR,
898 &lp->tx_dma_regs->dmasm);
899 writel(readl(&lp->rx_dma_regs->dmasm) |
900 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
901 &lp->rx_dma_regs->dmasm);
903 korina_free_ring(dev);
905 napi_disable(&lp->napi);
907 if (korina_init(dev) < 0) {
908 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
909 return;
911 korina_multicast_list(dev);
913 enable_irq(lp->und_irq);
914 enable_irq(lp->ovr_irq);
915 enable_irq(lp->tx_irq);
916 enable_irq(lp->rx_irq);
919 static void korina_clear_and_restart(struct net_device *dev, u32 value)
921 struct korina_private *lp = netdev_priv(dev);
923 netif_stop_queue(dev);
924 writel(value, &lp->eth_regs->ethintfc);
925 schedule_work(&lp->restart_task);
928 /* Ethernet Tx Underflow interrupt */
929 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
931 struct net_device *dev = dev_id;
932 struct korina_private *lp = netdev_priv(dev);
933 unsigned int und;
935 spin_lock(&lp->lock);
937 und = readl(&lp->eth_regs->ethintfc);
939 if (und & ETH_INT_FC_UND)
940 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
942 spin_unlock(&lp->lock);
944 return IRQ_HANDLED;
947 static void korina_tx_timeout(struct net_device *dev)
949 struct korina_private *lp = netdev_priv(dev);
951 schedule_work(&lp->restart_task);
954 /* Ethernet Rx Overflow interrupt */
955 static irqreturn_t
956 korina_ovr_interrupt(int irq, void *dev_id)
958 struct net_device *dev = dev_id;
959 struct korina_private *lp = netdev_priv(dev);
960 unsigned int ovr;
962 spin_lock(&lp->lock);
963 ovr = readl(&lp->eth_regs->ethintfc);
965 if (ovr & ETH_INT_FC_OVR)
966 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
968 spin_unlock(&lp->lock);
970 return IRQ_HANDLED;
973 #ifdef CONFIG_NET_POLL_CONTROLLER
974 static void korina_poll_controller(struct net_device *dev)
976 disable_irq(dev->irq);
977 korina_tx_dma_interrupt(dev->irq, dev);
978 enable_irq(dev->irq);
980 #endif
982 static int korina_open(struct net_device *dev)
984 struct korina_private *lp = netdev_priv(dev);
985 int ret;
987 /* Initialize */
988 ret = korina_init(dev);
989 if (ret < 0) {
990 printk(KERN_ERR "%s: cannot open device\n", dev->name);
991 goto out;
994 /* Install the interrupt handler
995 * that handles the Done Finished
996 * Ovr and Und Events */
997 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
998 0, "Korina ethernet Rx", dev);
999 if (ret < 0) {
1000 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1001 dev->name, lp->rx_irq);
1002 goto err_release;
1004 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1005 0, "Korina ethernet Tx", dev);
1006 if (ret < 0) {
1007 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1008 dev->name, lp->tx_irq);
1009 goto err_free_rx_irq;
1012 /* Install handler for overrun error. */
1013 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1014 0, "Ethernet Overflow", dev);
1015 if (ret < 0) {
1016 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1017 dev->name, lp->ovr_irq);
1018 goto err_free_tx_irq;
1021 /* Install handler for underflow error. */
1022 ret = request_irq(lp->und_irq, korina_und_interrupt,
1023 0, "Ethernet Underflow", dev);
1024 if (ret < 0) {
1025 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1026 dev->name, lp->und_irq);
1027 goto err_free_ovr_irq;
1029 mod_timer(&lp->media_check_timer, jiffies + 1);
1030 out:
1031 return ret;
1033 err_free_ovr_irq:
1034 free_irq(lp->ovr_irq, dev);
1035 err_free_tx_irq:
1036 free_irq(lp->tx_irq, dev);
1037 err_free_rx_irq:
1038 free_irq(lp->rx_irq, dev);
1039 err_release:
1040 korina_free_ring(dev);
1041 goto out;
1044 static int korina_close(struct net_device *dev)
1046 struct korina_private *lp = netdev_priv(dev);
1047 u32 tmp;
1049 del_timer(&lp->media_check_timer);
1051 /* Disable interrupts */
1052 disable_irq(lp->rx_irq);
1053 disable_irq(lp->tx_irq);
1054 disable_irq(lp->ovr_irq);
1055 disable_irq(lp->und_irq);
1057 korina_abort_tx(dev);
1058 tmp = readl(&lp->tx_dma_regs->dmasm);
1059 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1060 writel(tmp, &lp->tx_dma_regs->dmasm);
1062 korina_abort_rx(dev);
1063 tmp = readl(&lp->rx_dma_regs->dmasm);
1064 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1065 writel(tmp, &lp->rx_dma_regs->dmasm);
1067 korina_free_ring(dev);
1069 napi_disable(&lp->napi);
1071 cancel_work_sync(&lp->restart_task);
1073 free_irq(lp->rx_irq, dev);
1074 free_irq(lp->tx_irq, dev);
1075 free_irq(lp->ovr_irq, dev);
1076 free_irq(lp->und_irq, dev);
1078 return 0;
1081 static const struct net_device_ops korina_netdev_ops = {
1082 .ndo_open = korina_open,
1083 .ndo_stop = korina_close,
1084 .ndo_start_xmit = korina_send_packet,
1085 .ndo_set_rx_mode = korina_multicast_list,
1086 .ndo_tx_timeout = korina_tx_timeout,
1087 .ndo_do_ioctl = korina_ioctl,
1088 .ndo_change_mtu = eth_change_mtu,
1089 .ndo_validate_addr = eth_validate_addr,
1090 .ndo_set_mac_address = eth_mac_addr,
1091 #ifdef CONFIG_NET_POLL_CONTROLLER
1092 .ndo_poll_controller = korina_poll_controller,
1093 #endif
1096 static int korina_probe(struct platform_device *pdev)
1098 struct korina_device *bif = platform_get_drvdata(pdev);
1099 struct korina_private *lp;
1100 struct net_device *dev;
1101 struct resource *r;
1102 int rc;
1104 dev = alloc_etherdev(sizeof(struct korina_private));
1105 if (!dev)
1106 return -ENOMEM;
1108 SET_NETDEV_DEV(dev, &pdev->dev);
1109 lp = netdev_priv(dev);
1111 bif->dev = dev;
1112 memcpy(dev->dev_addr, bif->mac, ETH_ALEN);
1114 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1115 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1116 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1117 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1119 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1120 dev->base_addr = r->start;
1121 lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1122 if (!lp->eth_regs) {
1123 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1124 rc = -ENXIO;
1125 goto probe_err_out;
1128 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1129 lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1130 if (!lp->rx_dma_regs) {
1131 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1132 rc = -ENXIO;
1133 goto probe_err_dma_rx;
1136 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1137 lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1138 if (!lp->tx_dma_regs) {
1139 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1140 rc = -ENXIO;
1141 goto probe_err_dma_tx;
1144 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1145 if (!lp->td_ring) {
1146 rc = -ENXIO;
1147 goto probe_err_td_ring;
1150 dma_cache_inv((unsigned long)(lp->td_ring),
1151 TD_RING_SIZE + RD_RING_SIZE);
1153 /* now convert TD_RING pointer to KSEG1 */
1154 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1155 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1157 spin_lock_init(&lp->lock);
1158 /* just use the rx dma irq */
1159 dev->irq = lp->rx_irq;
1160 lp->dev = dev;
1162 dev->netdev_ops = &korina_netdev_ops;
1163 dev->ethtool_ops = &netdev_ethtool_ops;
1164 dev->watchdog_timeo = TX_TIMEOUT;
1165 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1167 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1168 lp->mii_if.dev = dev;
1169 lp->mii_if.mdio_read = mdio_read;
1170 lp->mii_if.mdio_write = mdio_write;
1171 lp->mii_if.phy_id = lp->phy_addr;
1172 lp->mii_if.phy_id_mask = 0x1f;
1173 lp->mii_if.reg_num_mask = 0x1f;
1175 rc = register_netdev(dev);
1176 if (rc < 0) {
1177 printk(KERN_ERR DRV_NAME
1178 ": cannot register net device: %d\n", rc);
1179 goto probe_err_register;
1181 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1183 INIT_WORK(&lp->restart_task, korina_restart_task);
1185 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1186 dev->name);
1187 out:
1188 return rc;
1190 probe_err_register:
1191 kfree(lp->td_ring);
1192 probe_err_td_ring:
1193 iounmap(lp->tx_dma_regs);
1194 probe_err_dma_tx:
1195 iounmap(lp->rx_dma_regs);
1196 probe_err_dma_rx:
1197 iounmap(lp->eth_regs);
1198 probe_err_out:
1199 free_netdev(dev);
1200 goto out;
1203 static int korina_remove(struct platform_device *pdev)
1205 struct korina_device *bif = platform_get_drvdata(pdev);
1206 struct korina_private *lp = netdev_priv(bif->dev);
1208 iounmap(lp->eth_regs);
1209 iounmap(lp->rx_dma_regs);
1210 iounmap(lp->tx_dma_regs);
1212 unregister_netdev(bif->dev);
1213 free_netdev(bif->dev);
1215 return 0;
1218 static struct platform_driver korina_driver = {
1219 .driver.name = "korina",
1220 .probe = korina_probe,
1221 .remove = korina_remove,
1224 module_platform_driver(korina_driver);
1226 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1227 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1228 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1229 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1230 MODULE_LICENSE("GPL");