2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
34 #include "mvneta_bm.h"
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127 /* Exception Interrupt Port/Queue Cause register
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
244 /* Various constants */
247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
259 #define MVNETA_MH_SIZE 2
261 #define MVNETA_VLAN_TAG_LEN 4
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
268 #define MVNETA_MAX_DECODE_WIN 6
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
275 #define MVNETA_TX_MTU_MAX 0x3ffff
277 /* The RSS lookup table actually has 256 entries but we do not use
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
304 #define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
311 struct mvneta_statistic
{
312 unsigned short offset
;
314 const char name
[ETH_GSTRING_LEN
];
320 static const struct mvneta_statistic mvneta_statistics
[] = {
321 { 0x3000, T_REG_64
, "good_octets_received", },
322 { 0x3010, T_REG_32
, "good_frames_received", },
323 { 0x3008, T_REG_32
, "bad_octets_received", },
324 { 0x3014, T_REG_32
, "bad_frames_received", },
325 { 0x3018, T_REG_32
, "broadcast_frames_received", },
326 { 0x301c, T_REG_32
, "multicast_frames_received", },
327 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32
, "good_fc_received", },
329 { 0x305c, T_REG_32
, "bad_fc_received", },
330 { 0x3060, T_REG_32
, "undersize_received", },
331 { 0x3064, T_REG_32
, "fragments_received", },
332 { 0x3068, T_REG_32
, "oversize_received", },
333 { 0x306c, T_REG_32
, "jabber_received", },
334 { 0x3070, T_REG_32
, "mac_receive_error", },
335 { 0x3074, T_REG_32
, "bad_crc_event", },
336 { 0x3078, T_REG_32
, "collision", },
337 { 0x307c, T_REG_32
, "late_collision", },
338 { 0x2484, T_REG_32
, "rx_discard", },
339 { 0x2488, T_REG_32
, "rx_overrun", },
340 { 0x3020, T_REG_32
, "frames_64_octets", },
341 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64
, "good_octets_sent", },
347 { 0x3040, T_REG_32
, "good_frames_sent", },
348 { 0x3044, T_REG_32
, "excessive_collision", },
349 { 0x3048, T_REG_32
, "multicast_frames_sent", },
350 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32
, "fc_sent", },
352 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
355 struct mvneta_pcpu_stats
{
356 struct u64_stats_sync syncp
;
363 struct mvneta_pcpu_port
{
364 /* Pointer to the shared port */
365 struct mvneta_port
*pp
;
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi
;
370 /* Cause of the previous interrupt */
376 struct mvneta_pcpu_port __percpu
*ports
;
377 struct mvneta_pcpu_stats __percpu
*stats
;
380 unsigned int frag_size
;
382 struct mvneta_rx_queue
*rxqs
;
383 struct mvneta_tx_queue
*txqs
;
384 struct net_device
*dev
;
385 struct hlist_node node_online
;
386 struct hlist_node node_dead
;
388 /* Protect the access to the percpu interrupt registers,
389 * ensuring that the configuration remains coherent.
402 struct mii_bus
*mii_bus
;
403 phy_interface_t phy_interface
;
404 struct device_node
*phy_node
;
408 unsigned int tx_csum_limit
;
409 unsigned int use_inband_status
:1;
411 struct mvneta_bm
*bm_priv
;
412 struct mvneta_bm_pool
*pool_long
;
413 struct mvneta_bm_pool
*pool_short
;
416 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
418 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422 * layout of the transmit and reception DMA descriptors, and their
423 * layout is therefore defined by the hardware design
426 #define MVNETA_TX_L3_OFF_SHIFT 0
427 #define MVNETA_TX_IP_HLEN_SHIFT 8
428 #define MVNETA_TX_L4_UDP BIT(16)
429 #define MVNETA_TX_L3_IP6 BIT(17)
430 #define MVNETA_TXD_IP_CSUM BIT(18)
431 #define MVNETA_TXD_Z_PAD BIT(19)
432 #define MVNETA_TXD_L_DESC BIT(20)
433 #define MVNETA_TXD_F_DESC BIT(21)
434 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
435 MVNETA_TXD_L_DESC | \
437 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
440 #define MVNETA_RXD_ERR_CRC 0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT 13
442 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
445 #define MVNETA_RXD_ERR_LEN BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4 BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc
{
454 u32 command
; /* Options used by HW for packet transmitting.*/
455 u16 reserverd1
; /* csum_l4 (for future use) */
456 u16 data_size
; /* Data size of transmitted packet in bytes */
457 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
458 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
459 u32 reserved3
[4]; /* Reserved - (for future use) */
462 struct mvneta_rx_desc
{
463 u32 status
; /* Info about received packet */
464 u16 reserved1
; /* pnc_info - (for future use, PnC) */
465 u16 data_size
; /* Size of received packet in bytes */
467 u32 buf_phys_addr
; /* Physical address of the buffer */
468 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
470 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
471 u16 reserved3
; /* prefetch_cmd, for future use */
472 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
474 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
475 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
478 struct mvneta_tx_desc
{
479 u16 data_size
; /* Data size of transmitted packet in bytes */
480 u16 reserverd1
; /* csum_l4 (for future use) */
481 u32 command
; /* Options used by HW for packet transmitting.*/
482 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
483 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
484 u32 reserved3
[4]; /* Reserved - (for future use) */
487 struct mvneta_rx_desc
{
488 u16 data_size
; /* Size of received packet in bytes */
489 u16 reserved1
; /* pnc_info - (for future use, PnC) */
490 u32 status
; /* Info about received packet */
492 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
493 u32 buf_phys_addr
; /* Physical address of the buffer */
495 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
496 u16 reserved3
; /* prefetch_cmd, for future use */
497 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
499 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
500 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
504 struct mvneta_tx_queue
{
505 /* Number of this TX queue, in the range 0-7 */
508 /* Number of TX DMA descriptors in the descriptor ring */
511 /* Number of currently used TX DMA descriptor in the
515 int tx_stop_threshold
;
516 int tx_wake_threshold
;
518 /* Array of transmitted skb */
519 struct sk_buff
**tx_skb
;
521 /* Index of last TX DMA descriptor that was inserted */
524 /* Index of the TX DMA descriptor to be cleaned up */
529 /* Virtual address of the TX DMA descriptors array */
530 struct mvneta_tx_desc
*descs
;
532 /* DMA address of the TX DMA descriptors array */
533 dma_addr_t descs_phys
;
535 /* Index of the last TX DMA descriptor */
538 /* Index of the next TX DMA descriptor to process */
539 int next_desc_to_proc
;
541 /* DMA buffers for TSO headers */
544 /* DMA address of TSO headers */
545 dma_addr_t tso_hdrs_phys
;
547 /* Affinity mask for CPUs*/
548 cpumask_t affinity_mask
;
551 struct mvneta_rx_queue
{
552 /* rx queue number, in the range 0-7 */
555 /* num of rx descriptors in the rx descriptor ring */
558 /* counter of times when mvneta_refill() failed */
564 /* Virtual address of the RX DMA descriptors array */
565 struct mvneta_rx_desc
*descs
;
567 /* DMA address of the RX DMA descriptors array */
568 dma_addr_t descs_phys
;
570 /* Index of the last RX DMA descriptor */
573 /* Index of the next RX DMA descriptor to process */
574 int next_desc_to_proc
;
577 static enum cpuhp_state online_hpstate
;
578 /* The hardware supports eight (8) rx queues, but we are only allowing
579 * the first one to be used. Therefore, let's just allocate one queue.
581 static int rxq_number
= 8;
582 static int txq_number
= 8;
586 static int rx_copybreak __read_mostly
= 256;
588 /* HW BM need that each port be identify by a unique ID */
589 static int global_port_id
;
591 #define MVNETA_DRIVER_NAME "mvneta"
592 #define MVNETA_DRIVER_VERSION "1.0"
594 /* Utility/helper methods */
596 /* Write helper method */
597 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
599 writel(data
, pp
->base
+ offset
);
602 /* Read helper method */
603 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
605 return readl(pp
->base
+ offset
);
608 /* Increment txq get counter */
609 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
611 txq
->txq_get_index
++;
612 if (txq
->txq_get_index
== txq
->size
)
613 txq
->txq_get_index
= 0;
616 /* Increment txq put counter */
617 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
619 txq
->txq_put_index
++;
620 if (txq
->txq_put_index
== txq
->size
)
621 txq
->txq_put_index
= 0;
625 /* Clear all MIB counters */
626 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
631 /* Perform dummy reads from MIB counters */
632 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
633 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
634 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
635 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
638 /* Get System Network Statistics */
639 static struct rtnl_link_stats64
*
640 mvneta_get_stats64(struct net_device
*dev
,
641 struct rtnl_link_stats64
*stats
)
643 struct mvneta_port
*pp
= netdev_priv(dev
);
647 for_each_possible_cpu(cpu
) {
648 struct mvneta_pcpu_stats
*cpu_stats
;
654 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
656 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
657 rx_packets
= cpu_stats
->rx_packets
;
658 rx_bytes
= cpu_stats
->rx_bytes
;
659 tx_packets
= cpu_stats
->tx_packets
;
660 tx_bytes
= cpu_stats
->tx_bytes
;
661 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
663 stats
->rx_packets
+= rx_packets
;
664 stats
->rx_bytes
+= rx_bytes
;
665 stats
->tx_packets
+= tx_packets
;
666 stats
->tx_bytes
+= tx_bytes
;
669 stats
->rx_errors
= dev
->stats
.rx_errors
;
670 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
672 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
677 /* Rx descriptors helper methods */
679 /* Checks whether the RX descriptor having this status is both the first
680 * and the last descriptor for the RX packet. Each RX packet is currently
681 * received through a single RX descriptor, so not having each RX
682 * descriptor with its first and last bits set is an error
684 static int mvneta_rxq_desc_is_first_last(u32 status
)
686 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
687 MVNETA_RXD_FIRST_LAST_DESC
;
690 /* Add number of descriptors ready to receive new packets */
691 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
692 struct mvneta_rx_queue
*rxq
,
695 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
698 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
699 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
700 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
701 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
702 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
705 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
706 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
709 /* Get number of RX descriptors occupied by received packets */
710 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
711 struct mvneta_rx_queue
*rxq
)
715 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
716 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
719 /* Update num of rx desc called upon return from rx path or
720 * from mvneta_rxq_drop_pkts().
722 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
723 struct mvneta_rx_queue
*rxq
,
724 int rx_done
, int rx_filled
)
728 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
730 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
731 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
735 /* Only 255 descriptors can be added at once */
736 while ((rx_done
> 0) || (rx_filled
> 0)) {
737 if (rx_done
<= 0xff) {
744 if (rx_filled
<= 0xff) {
745 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
748 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
751 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
755 /* Get pointer to next RX descriptor to be processed by SW */
756 static struct mvneta_rx_desc
*
757 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
759 int rx_desc
= rxq
->next_desc_to_proc
;
761 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
762 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
763 return rxq
->descs
+ rx_desc
;
766 /* Change maximum receive size of the port. */
767 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
771 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
772 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
773 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
774 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
775 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
779 /* Set rx queue offset */
780 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
781 struct mvneta_rx_queue
*rxq
,
786 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
787 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
790 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
791 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
795 /* Tx descriptors helper methods */
797 /* Update HW with number of TX descriptors to be sent */
798 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
799 struct mvneta_tx_queue
*txq
,
804 /* Only 255 descriptors can be added at once ; Assume caller
805 * process TX desriptors in quanta less than 256
808 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
811 /* Get pointer to next TX descriptor to be processed (send) by HW */
812 static struct mvneta_tx_desc
*
813 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
815 int tx_desc
= txq
->next_desc_to_proc
;
817 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
818 return txq
->descs
+ tx_desc
;
821 /* Release the last allocated TX descriptor. Useful to handle DMA
822 * mapping failures in the TX path.
824 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
826 if (txq
->next_desc_to_proc
== 0)
827 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
829 txq
->next_desc_to_proc
--;
832 /* Set rxq buf size */
833 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
834 struct mvneta_rx_queue
*rxq
,
839 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
841 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
842 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
844 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
847 /* Disable buffer management (BM) */
848 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
849 struct mvneta_rx_queue
*rxq
)
853 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
854 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
855 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
858 /* Enable buffer management (BM) */
859 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
860 struct mvneta_rx_queue
*rxq
)
864 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
865 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
866 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
869 /* Notify HW about port's assignment of pool for bigger packets */
870 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
871 struct mvneta_rx_queue
*rxq
)
875 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
876 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
877 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
879 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
882 /* Notify HW about port's assignment of pool for smaller packets */
883 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
884 struct mvneta_rx_queue
*rxq
)
888 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
889 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
890 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
892 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
895 /* Set port's receive buffer size for assigned BM pool */
896 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
902 if (!IS_ALIGNED(buf_size
, 8)) {
903 dev_warn(pp
->dev
->dev
.parent
,
904 "illegal buf_size value %d, round to %d\n",
905 buf_size
, ALIGN(buf_size
, 8));
906 buf_size
= ALIGN(buf_size
, 8);
909 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
910 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
911 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
914 /* Configure MBUS window in order to enable access BM internal SRAM */
915 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
918 u32 win_enable
, win_protect
;
921 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
923 if (pp
->bm_win_id
< 0) {
924 /* Find first not occupied window */
925 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
926 if (win_enable
& (1 << i
)) {
931 if (i
== MVNETA_MAX_DECODE_WIN
)
937 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
938 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
941 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
943 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
944 (attr
<< 8) | target
);
946 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
948 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
949 win_protect
|= 3 << (2 * i
);
950 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
952 win_enable
&= ~(1 << i
);
953 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
958 /* Assign and initialize pools for port. In case of fail
959 * buffer manager will remain disabled for current port.
961 static int mvneta_bm_port_init(struct platform_device
*pdev
,
962 struct mvneta_port
*pp
)
964 struct device_node
*dn
= pdev
->dev
.of_node
;
965 u32 long_pool_id
, short_pool_id
, wsize
;
969 /* Get BM window information */
970 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
977 /* Open NETA -> BM window */
978 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
981 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
985 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
986 netdev_info(pp
->dev
, "missing long pool id\n");
990 /* Create port's long pool depending on mtu */
991 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
992 MVNETA_BM_LONG
, pp
->id
,
993 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
994 if (!pp
->pool_long
) {
995 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
999 pp
->pool_long
->port_map
|= 1 << pp
->id
;
1001 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1004 /* If short pool id is not defined, assume using single pool */
1005 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1006 short_pool_id
= long_pool_id
;
1008 /* Create port's short pool */
1009 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1010 MVNETA_BM_SHORT
, pp
->id
,
1011 MVNETA_BM_SHORT_PKT_SIZE
);
1012 if (!pp
->pool_short
) {
1013 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1014 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1018 if (short_pool_id
!= long_pool_id
) {
1019 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1020 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1021 pp
->pool_short
->id
);
1027 /* Update settings of a pool for bigger packets */
1028 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1030 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1031 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1034 /* Release all buffers from long pool */
1035 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1036 if (hwbm_pool
->buf_num
) {
1037 WARN(1, "cannot free all buffers in pool %d\n",
1042 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1043 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1044 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1045 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1047 /* Fill entire long pool */
1048 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1049 if (num
!= hwbm_pool
->size
) {
1050 WARN(1, "pool %d: %d of %d allocated\n",
1051 bm_pool
->id
, num
, hwbm_pool
->size
);
1054 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1059 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1060 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1063 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1064 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1067 /* Start the Ethernet port RX and TX activity */
1068 static void mvneta_port_up(struct mvneta_port
*pp
)
1073 /* Enable all initialized TXs. */
1075 for (queue
= 0; queue
< txq_number
; queue
++) {
1076 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1077 if (txq
->descs
!= NULL
)
1078 q_map
|= (1 << queue
);
1080 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1082 /* Enable all initialized RXQs. */
1083 for (queue
= 0; queue
< rxq_number
; queue
++) {
1084 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1086 if (rxq
->descs
!= NULL
)
1087 q_map
|= (1 << queue
);
1089 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1092 /* Stop the Ethernet port activity */
1093 static void mvneta_port_down(struct mvneta_port
*pp
)
1098 /* Stop Rx port activity. Check port Rx activity. */
1099 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1101 /* Issue stop command for active channels only */
1103 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1104 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1106 /* Wait for all Rx activity to terminate. */
1109 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1110 netdev_warn(pp
->dev
,
1111 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1117 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1118 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1120 /* Stop Tx port activity. Check port Tx activity. Issue stop
1121 * command for active channels only
1123 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1126 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1127 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1129 /* Wait for all Tx activity to terminate. */
1132 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1133 netdev_warn(pp
->dev
,
1134 "TIMEOUT for TX stopped status=0x%08x\n",
1140 /* Check TX Command reg that all Txqs are stopped */
1141 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1143 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1145 /* Double check to verify that TX FIFO is empty */
1148 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1149 netdev_warn(pp
->dev
,
1150 "TX FIFO empty timeout status=0x%08x\n",
1156 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1157 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1158 (val
& MVNETA_TX_IN_PRGRS
));
1163 /* Enable the port by setting the port enable bit of the MAC control register */
1164 static void mvneta_port_enable(struct mvneta_port
*pp
)
1169 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1170 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1171 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1174 /* Disable the port and wait for about 200 usec before retuning */
1175 static void mvneta_port_disable(struct mvneta_port
*pp
)
1179 /* Reset the Enable bit in the Serial Control Register */
1180 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1181 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1182 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1187 /* Multicast tables methods */
1189 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1190 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1198 val
= 0x1 | (queue
<< 1);
1199 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1202 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1203 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1206 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1207 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1215 val
= 0x1 | (queue
<< 1);
1216 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1219 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1220 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1224 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1225 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1231 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1234 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1235 val
= 0x1 | (queue
<< 1);
1236 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1239 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1240 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1243 static void mvneta_set_autoneg(struct mvneta_port
*pp
, int enable
)
1248 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1249 val
&= ~(MVNETA_GMAC_FORCE_LINK_PASS
|
1250 MVNETA_GMAC_FORCE_LINK_DOWN
|
1251 MVNETA_GMAC_AN_FLOW_CTRL_EN
);
1252 val
|= MVNETA_GMAC_INBAND_AN_ENABLE
|
1253 MVNETA_GMAC_AN_SPEED_EN
|
1254 MVNETA_GMAC_AN_DUPLEX_EN
;
1255 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1257 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1258 val
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1259 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1261 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1262 val
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
1263 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1265 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
1266 val
&= ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
1267 MVNETA_GMAC_AN_SPEED_EN
|
1268 MVNETA_GMAC_AN_DUPLEX_EN
);
1269 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
1271 val
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
1272 val
&= ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
1273 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, val
);
1275 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
1276 val
&= ~MVNETA_GMAC2_INBAND_AN_ENABLE
;
1277 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, val
);
1281 static void mvneta_percpu_unmask_interrupt(void *arg
)
1283 struct mvneta_port
*pp
= arg
;
1285 /* All the queue are unmasked, but actually only the ones
1286 * mapped to this CPU will be unmasked
1288 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1289 MVNETA_RX_INTR_MASK_ALL
|
1290 MVNETA_TX_INTR_MASK_ALL
|
1291 MVNETA_MISCINTR_INTR_MASK
);
1294 static void mvneta_percpu_mask_interrupt(void *arg
)
1296 struct mvneta_port
*pp
= arg
;
1298 /* All the queue are masked, but actually only the ones
1299 * mapped to this CPU will be masked
1301 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1302 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1303 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1306 static void mvneta_percpu_clear_intr_cause(void *arg
)
1308 struct mvneta_port
*pp
= arg
;
1310 /* All the queue are cleared, but actually only the ones
1311 * mapped to this CPU will be cleared
1313 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1314 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1315 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1318 /* This method sets defaults to the NETA port:
1319 * Clears interrupt Cause and Mask registers.
1320 * Clears all MAC tables.
1321 * Sets defaults to all registers.
1322 * Resets RX and TX descriptor rings.
1324 * This method can be called after mvneta_port_down() to return the port
1325 * settings to defaults.
1327 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1332 int max_cpu
= num_present_cpus();
1334 /* Clear all Cause registers */
1335 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1337 /* Mask all interrupts */
1338 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1339 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1341 /* Enable MBUS Retry bit16 */
1342 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1344 /* Set CPU queue access map. CPUs are assigned to the RX and
1345 * TX queues modulo their number. If there is only one TX
1346 * queue then it is assigned to the CPU associated to the
1349 for_each_present_cpu(cpu
) {
1350 int rxq_map
= 0, txq_map
= 0;
1353 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1354 if ((rxq
% max_cpu
) == cpu
)
1355 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1357 for (txq
= 0; txq
< txq_number
; txq
++)
1358 if ((txq
% max_cpu
) == cpu
)
1359 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1361 /* With only one TX queue we configure a special case
1362 * which will allow to get all the irq on a single
1365 if (txq_number
== 1)
1366 txq_map
= (cpu
== pp
->rxq_def
) ?
1367 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1369 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1372 /* Reset RX and TX DMAs */
1373 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1374 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1376 /* Disable Legacy WRR, Disable EJP, Release from reset */
1377 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1378 for (queue
= 0; queue
< txq_number
; queue
++) {
1379 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1380 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1383 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1384 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1386 /* Set Port Acceleration Mode */
1388 /* HW buffer management + legacy parser */
1389 val
= MVNETA_ACC_MODE_EXT2
;
1391 /* SW buffer management + legacy parser */
1392 val
= MVNETA_ACC_MODE_EXT1
;
1393 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1396 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1398 /* Update val of portCfg register accordingly with all RxQueue types */
1399 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1400 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1403 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1404 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1406 /* Build PORT_SDMA_CONFIG_REG */
1409 /* Default burst size */
1410 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1411 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1412 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1414 #if defined(__BIG_ENDIAN)
1415 val
|= MVNETA_DESC_SWAP
;
1418 /* Assign port SDMA configuration */
1419 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1421 /* Disable PHY polling in hardware, since we're using the
1422 * kernel phylib to do this.
1424 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1425 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1426 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1428 mvneta_set_autoneg(pp
, pp
->use_inband_status
);
1429 mvneta_set_ucast_table(pp
, -1);
1430 mvneta_set_special_mcast_table(pp
, -1);
1431 mvneta_set_other_mcast_table(pp
, -1);
1433 /* Set port interrupt enable register - default enable all */
1434 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1435 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1436 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1438 mvneta_mib_counters_clear(pp
);
1441 /* Set max sizes for tx queues */
1442 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1448 mtu
= max_tx_size
* 8;
1449 if (mtu
> MVNETA_TX_MTU_MAX
)
1450 mtu
= MVNETA_TX_MTU_MAX
;
1453 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1454 val
&= ~MVNETA_TX_MTU_MAX
;
1456 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1458 /* TX token size and all TXQs token size must be larger that MTU */
1459 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1461 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1464 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1466 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1468 for (queue
= 0; queue
< txq_number
; queue
++) {
1469 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1471 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1474 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1476 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1481 /* Set unicast address */
1482 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1485 unsigned int unicast_reg
;
1486 unsigned int tbl_offset
;
1487 unsigned int reg_offset
;
1489 /* Locate the Unicast table entry */
1490 last_nibble
= (0xf & last_nibble
);
1492 /* offset from unicast tbl base */
1493 tbl_offset
= (last_nibble
/ 4) * 4;
1495 /* offset within the above reg */
1496 reg_offset
= last_nibble
% 4;
1498 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1501 /* Clear accepts frame bit at specified unicast DA tbl entry */
1502 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1504 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1505 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1508 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1511 /* Set mac address */
1512 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1519 mac_l
= (addr
[4] << 8) | (addr
[5]);
1520 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1521 (addr
[2] << 8) | (addr
[3] << 0);
1523 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1524 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1527 /* Accept frames of this address */
1528 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1531 /* Set the number of packets that will be received before RX interrupt
1532 * will be generated by HW.
1534 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1535 struct mvneta_rx_queue
*rxq
, u32 value
)
1537 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1538 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1539 rxq
->pkts_coal
= value
;
1542 /* Set the time delay in usec before RX interrupt will be generated by
1545 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1546 struct mvneta_rx_queue
*rxq
, u32 value
)
1549 unsigned long clk_rate
;
1551 clk_rate
= clk_get_rate(pp
->clk
);
1552 val
= (clk_rate
/ 1000000) * value
;
1554 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1555 rxq
->time_coal
= value
;
1558 /* Set threshold for TX_DONE pkts coalescing */
1559 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1560 struct mvneta_tx_queue
*txq
, u32 value
)
1564 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1566 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1567 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1569 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1571 txq
->done_pkts_coal
= value
;
1574 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1575 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1576 u32 phys_addr
, u32 cookie
)
1578 rx_desc
->buf_cookie
= cookie
;
1579 rx_desc
->buf_phys_addr
= phys_addr
;
1582 /* Decrement sent descriptors counter */
1583 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1584 struct mvneta_tx_queue
*txq
,
1589 /* Only 255 TX descriptors can be updated at once */
1590 while (sent_desc
> 0xff) {
1591 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1592 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1593 sent_desc
= sent_desc
- 0xff;
1596 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1597 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1600 /* Get number of TX descriptors already sent by HW */
1601 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1602 struct mvneta_tx_queue
*txq
)
1607 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1608 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1609 MVNETA_TXQ_SENT_DESC_SHIFT
;
1614 /* Get number of sent descriptors and decrement counter.
1615 * The number of sent descriptors is returned.
1617 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1618 struct mvneta_tx_queue
*txq
)
1622 /* Get number of sent descriptors */
1623 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1625 /* Decrement sent descriptors counter */
1627 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1632 /* Set TXQ descriptors fields relevant for CSUM calculation */
1633 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1634 int ip_hdr_len
, int l4_proto
)
1638 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1639 * G_L4_chk, L4_type; required only for checksum
1642 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1643 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1645 if (l3_proto
== htons(ETH_P_IP
))
1646 command
|= MVNETA_TXD_IP_CSUM
;
1648 command
|= MVNETA_TX_L3_IP6
;
1650 if (l4_proto
== IPPROTO_TCP
)
1651 command
|= MVNETA_TX_L4_CSUM_FULL
;
1652 else if (l4_proto
== IPPROTO_UDP
)
1653 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1655 command
|= MVNETA_TX_L4_CSUM_NOT
;
1661 /* Display more error info */
1662 static void mvneta_rx_error(struct mvneta_port
*pp
,
1663 struct mvneta_rx_desc
*rx_desc
)
1665 u32 status
= rx_desc
->status
;
1667 if (!mvneta_rxq_desc_is_first_last(status
)) {
1669 "bad rx status %08x (buffer oversize), size=%d\n",
1670 status
, rx_desc
->data_size
);
1674 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1675 case MVNETA_RXD_ERR_CRC
:
1676 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1677 status
, rx_desc
->data_size
);
1679 case MVNETA_RXD_ERR_OVERRUN
:
1680 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1681 status
, rx_desc
->data_size
);
1683 case MVNETA_RXD_ERR_LEN
:
1684 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1685 status
, rx_desc
->data_size
);
1687 case MVNETA_RXD_ERR_RESOURCE
:
1688 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1689 status
, rx_desc
->data_size
);
1694 /* Handle RX checksum offload based on the descriptor's status */
1695 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1696 struct sk_buff
*skb
)
1698 if ((status
& MVNETA_RXD_L3_IP4
) &&
1699 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1701 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1705 skb
->ip_summed
= CHECKSUM_NONE
;
1708 /* Return tx queue pointer (find last set bit) according to <cause> returned
1709 * form tx_done reg. <cause> must not be null. The return value is always a
1710 * valid queue for matching the first one found in <cause>.
1712 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1715 int queue
= fls(cause
) - 1;
1717 return &pp
->txqs
[queue
];
1720 /* Free tx queue skbuffs */
1721 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1722 struct mvneta_tx_queue
*txq
, int num
)
1726 for (i
= 0; i
< num
; i
++) {
1727 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1729 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1731 mvneta_txq_inc_get(txq
);
1733 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1734 dma_unmap_single(pp
->dev
->dev
.parent
,
1735 tx_desc
->buf_phys_addr
,
1736 tx_desc
->data_size
, DMA_TO_DEVICE
);
1739 dev_kfree_skb_any(skb
);
1743 /* Handle end of transmission */
1744 static void mvneta_txq_done(struct mvneta_port
*pp
,
1745 struct mvneta_tx_queue
*txq
)
1747 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1750 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1754 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
1756 txq
->count
-= tx_done
;
1758 if (netif_tx_queue_stopped(nq
)) {
1759 if (txq
->count
<= txq
->tx_wake_threshold
)
1760 netif_tx_wake_queue(nq
);
1764 void *mvneta_frag_alloc(unsigned int frag_size
)
1766 if (likely(frag_size
<= PAGE_SIZE
))
1767 return netdev_alloc_frag(frag_size
);
1769 return kmalloc(frag_size
, GFP_ATOMIC
);
1771 EXPORT_SYMBOL_GPL(mvneta_frag_alloc
);
1773 void mvneta_frag_free(unsigned int frag_size
, void *data
)
1775 if (likely(frag_size
<= PAGE_SIZE
))
1776 skb_free_frag(data
);
1780 EXPORT_SYMBOL_GPL(mvneta_frag_free
);
1782 /* Refill processing for SW buffer management */
1783 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1784 struct mvneta_rx_desc
*rx_desc
)
1787 dma_addr_t phys_addr
;
1790 data
= mvneta_frag_alloc(pp
->frag_size
);
1794 phys_addr
= dma_map_single(pp
->dev
->dev
.parent
, data
,
1795 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1797 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1798 mvneta_frag_free(pp
->frag_size
, data
);
1802 mvneta_rx_desc_fill(rx_desc
, phys_addr
, (u32
)data
);
1806 /* Handle tx checksum */
1807 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1809 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1811 __be16 l3_proto
= vlan_get_protocol(skb
);
1814 if (l3_proto
== htons(ETH_P_IP
)) {
1815 struct iphdr
*ip4h
= ip_hdr(skb
);
1817 /* Calculate IPv4 checksum and L4 checksum */
1818 ip_hdr_len
= ip4h
->ihl
;
1819 l4_proto
= ip4h
->protocol
;
1820 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1821 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1823 /* Read l4_protocol from one of IPv6 extra headers */
1824 if (skb_network_header_len(skb
) > 0)
1825 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1826 l4_proto
= ip6h
->nexthdr
;
1828 return MVNETA_TX_L4_CSUM_NOT
;
1830 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1831 l3_proto
, ip_hdr_len
, l4_proto
);
1834 return MVNETA_TX_L4_CSUM_NOT
;
1837 /* Drop packets received by the RXQ and free buffers */
1838 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1839 struct mvneta_rx_queue
*rxq
)
1843 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1845 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1848 for (i
= 0; i
< rx_done
; i
++) {
1849 struct mvneta_rx_desc
*rx_desc
=
1850 mvneta_rxq_next_desc_get(rxq
);
1851 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1852 struct mvneta_bm_pool
*bm_pool
;
1854 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1855 /* Return dropped buffer to the pool */
1856 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1857 rx_desc
->buf_phys_addr
);
1862 for (i
= 0; i
< rxq
->size
; i
++) {
1863 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1864 void *data
= (void *)rx_desc
->buf_cookie
;
1866 dma_unmap_single(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1867 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1868 mvneta_frag_free(pp
->frag_size
, data
);
1872 /* Main rx processing when using software buffer management */
1873 static int mvneta_rx_swbm(struct mvneta_port
*pp
, int rx_todo
,
1874 struct mvneta_rx_queue
*rxq
)
1876 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1877 struct net_device
*dev
= pp
->dev
;
1882 /* Get number of received packets */
1883 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1885 if (rx_todo
> rx_done
)
1890 /* Fairness NAPI loop */
1891 while (rx_done
< rx_todo
) {
1892 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1893 struct sk_buff
*skb
;
1894 unsigned char *data
;
1895 dma_addr_t phys_addr
;
1896 u32 rx_status
, frag_size
;
1900 rx_status
= rx_desc
->status
;
1901 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1902 data
= (unsigned char *)rx_desc
->buf_cookie
;
1903 phys_addr
= rx_desc
->buf_phys_addr
;
1905 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
1906 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
1908 dev
->stats
.rx_errors
++;
1909 mvneta_rx_error(pp
, rx_desc
);
1910 /* leave the descriptor untouched */
1914 if (rx_bytes
<= rx_copybreak
) {
1915 /* better copy a small frame and not unmap the DMA region */
1916 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
1918 goto err_drop_frame
;
1920 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
1921 rx_desc
->buf_phys_addr
,
1922 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1925 memcpy(skb_put(skb
, rx_bytes
),
1926 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1929 skb
->protocol
= eth_type_trans(skb
, dev
);
1930 mvneta_rx_csum(pp
, rx_status
, skb
);
1931 napi_gro_receive(&port
->napi
, skb
);
1934 rcvd_bytes
+= rx_bytes
;
1936 /* leave the descriptor and buffer untouched */
1940 /* Refill processing */
1941 err
= mvneta_rx_refill(pp
, rx_desc
);
1943 netdev_err(dev
, "Linux processing - Can't refill\n");
1945 goto err_drop_frame
;
1948 frag_size
= pp
->frag_size
;
1950 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
1952 /* After refill old buffer has to be unmapped regardless
1953 * the skb is successfully built or not.
1955 dma_unmap_single(dev
->dev
.parent
, phys_addr
,
1956 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1960 goto err_drop_frame
;
1963 rcvd_bytes
+= rx_bytes
;
1965 /* Linux processing */
1966 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
1967 skb_put(skb
, rx_bytes
);
1969 skb
->protocol
= eth_type_trans(skb
, dev
);
1971 mvneta_rx_csum(pp
, rx_status
, skb
);
1973 napi_gro_receive(&port
->napi
, skb
);
1977 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1979 u64_stats_update_begin(&stats
->syncp
);
1980 stats
->rx_packets
+= rcvd_pkts
;
1981 stats
->rx_bytes
+= rcvd_bytes
;
1982 u64_stats_update_end(&stats
->syncp
);
1985 /* Update rxq management counters */
1986 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1991 /* Main rx processing when using hardware buffer management */
1992 static int mvneta_rx_hwbm(struct mvneta_port
*pp
, int rx_todo
,
1993 struct mvneta_rx_queue
*rxq
)
1995 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
1996 struct net_device
*dev
= pp
->dev
;
2001 /* Get number of received packets */
2002 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2004 if (rx_todo
> rx_done
)
2009 /* Fairness NAPI loop */
2010 while (rx_done
< rx_todo
) {
2011 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2012 struct mvneta_bm_pool
*bm_pool
= NULL
;
2013 struct sk_buff
*skb
;
2014 unsigned char *data
;
2015 dma_addr_t phys_addr
;
2016 u32 rx_status
, frag_size
;
2021 rx_status
= rx_desc
->status
;
2022 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2023 data
= (unsigned char *)rx_desc
->buf_cookie
;
2024 phys_addr
= rx_desc
->buf_phys_addr
;
2025 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2026 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2028 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2029 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2030 err_drop_frame_ret_pool
:
2031 /* Return the buffer to the pool */
2032 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2033 rx_desc
->buf_phys_addr
);
2035 dev
->stats
.rx_errors
++;
2036 mvneta_rx_error(pp
, rx_desc
);
2037 /* leave the descriptor untouched */
2041 if (rx_bytes
<= rx_copybreak
) {
2042 /* better copy a small frame and not unmap the DMA region */
2043 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2045 goto err_drop_frame_ret_pool
;
2047 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2048 rx_desc
->buf_phys_addr
,
2049 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2052 memcpy(skb_put(skb
, rx_bytes
),
2053 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2056 skb
->protocol
= eth_type_trans(skb
, dev
);
2057 mvneta_rx_csum(pp
, rx_status
, skb
);
2058 napi_gro_receive(&port
->napi
, skb
);
2061 rcvd_bytes
+= rx_bytes
;
2063 /* Return the buffer to the pool */
2064 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2065 rx_desc
->buf_phys_addr
);
2067 /* leave the descriptor and buffer untouched */
2071 /* Refill processing */
2072 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2074 netdev_err(dev
, "Linux processing - Can't refill\n");
2076 goto err_drop_frame_ret_pool
;
2079 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2081 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2083 /* After refill old buffer has to be unmapped regardless
2084 * the skb is successfully built or not.
2086 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2087 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2089 goto err_drop_frame
;
2092 rcvd_bytes
+= rx_bytes
;
2094 /* Linux processing */
2095 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2096 skb_put(skb
, rx_bytes
);
2098 skb
->protocol
= eth_type_trans(skb
, dev
);
2100 mvneta_rx_csum(pp
, rx_status
, skb
);
2102 napi_gro_receive(&port
->napi
, skb
);
2106 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2108 u64_stats_update_begin(&stats
->syncp
);
2109 stats
->rx_packets
+= rcvd_pkts
;
2110 stats
->rx_bytes
+= rcvd_bytes
;
2111 u64_stats_update_end(&stats
->syncp
);
2114 /* Update rxq management counters */
2115 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2121 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2122 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2124 struct mvneta_tx_desc
*tx_desc
;
2125 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2127 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2128 tx_desc
= mvneta_txq_next_desc_get(txq
);
2129 tx_desc
->data_size
= hdr_len
;
2130 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2131 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2132 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2133 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2134 mvneta_txq_inc_put(txq
);
2138 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2139 struct sk_buff
*skb
, char *data
, int size
,
2140 bool last_tcp
, bool is_last
)
2142 struct mvneta_tx_desc
*tx_desc
;
2144 tx_desc
= mvneta_txq_next_desc_get(txq
);
2145 tx_desc
->data_size
= size
;
2146 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2147 size
, DMA_TO_DEVICE
);
2148 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2149 tx_desc
->buf_phys_addr
))) {
2150 mvneta_txq_desc_put(txq
);
2154 tx_desc
->command
= 0;
2155 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2158 /* last descriptor in the TCP packet */
2159 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2161 /* last descriptor in SKB */
2163 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2165 mvneta_txq_inc_put(txq
);
2169 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2170 struct mvneta_tx_queue
*txq
)
2172 int total_len
, data_left
;
2174 struct mvneta_port
*pp
= netdev_priv(dev
);
2176 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2179 /* Count needed descriptors */
2180 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2183 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2184 pr_info("*** Is this even possible???!?!?\n");
2188 /* Initialize the TSO handler, and prepare the first payload */
2189 tso_start(skb
, &tso
);
2191 total_len
= skb
->len
- hdr_len
;
2192 while (total_len
> 0) {
2195 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2196 total_len
-= data_left
;
2199 /* prepare packet headers: MAC + IP + TCP */
2200 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2201 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2203 mvneta_tso_put_hdr(skb
, pp
, txq
);
2205 while (data_left
> 0) {
2209 size
= min_t(int, tso
.size
, data_left
);
2211 if (mvneta_tso_put_data(dev
, txq
, skb
,
2218 tso_build_data(skb
, &tso
, size
);
2225 /* Release all used data descriptors; header descriptors must not
2228 for (i
= desc_count
- 1; i
>= 0; i
--) {
2229 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2230 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2231 dma_unmap_single(pp
->dev
->dev
.parent
,
2232 tx_desc
->buf_phys_addr
,
2235 mvneta_txq_desc_put(txq
);
2240 /* Handle tx fragmentation processing */
2241 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2242 struct mvneta_tx_queue
*txq
)
2244 struct mvneta_tx_desc
*tx_desc
;
2245 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2247 for (i
= 0; i
< nr_frags
; i
++) {
2248 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2249 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2251 tx_desc
= mvneta_txq_next_desc_get(txq
);
2252 tx_desc
->data_size
= frag
->size
;
2254 tx_desc
->buf_phys_addr
=
2255 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2256 tx_desc
->data_size
, DMA_TO_DEVICE
);
2258 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2259 tx_desc
->buf_phys_addr
)) {
2260 mvneta_txq_desc_put(txq
);
2264 if (i
== nr_frags
- 1) {
2265 /* Last descriptor */
2266 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2267 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2269 /* Descriptor in the middle: Not First, Not Last */
2270 tx_desc
->command
= 0;
2271 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2273 mvneta_txq_inc_put(txq
);
2279 /* Release all descriptors that were used to map fragments of
2280 * this packet, as well as the corresponding DMA mappings
2282 for (i
= i
- 1; i
>= 0; i
--) {
2283 tx_desc
= txq
->descs
+ i
;
2284 dma_unmap_single(pp
->dev
->dev
.parent
,
2285 tx_desc
->buf_phys_addr
,
2288 mvneta_txq_desc_put(txq
);
2294 /* Main tx processing */
2295 static int mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2297 struct mvneta_port
*pp
= netdev_priv(dev
);
2298 u16 txq_id
= skb_get_queue_mapping(skb
);
2299 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2300 struct mvneta_tx_desc
*tx_desc
;
2305 if (!netif_running(dev
))
2308 if (skb_is_gso(skb
)) {
2309 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2313 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2315 /* Get a descriptor for the first part of the packet */
2316 tx_desc
= mvneta_txq_next_desc_get(txq
);
2318 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2320 tx_desc
->data_size
= skb_headlen(skb
);
2322 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2325 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2326 tx_desc
->buf_phys_addr
))) {
2327 mvneta_txq_desc_put(txq
);
2333 /* First and Last descriptor */
2334 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2335 tx_desc
->command
= tx_cmd
;
2336 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2337 mvneta_txq_inc_put(txq
);
2339 /* First but not Last */
2340 tx_cmd
|= MVNETA_TXD_F_DESC
;
2341 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2342 mvneta_txq_inc_put(txq
);
2343 tx_desc
->command
= tx_cmd
;
2344 /* Continue with other skb fragments */
2345 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2346 dma_unmap_single(dev
->dev
.parent
,
2347 tx_desc
->buf_phys_addr
,
2350 mvneta_txq_desc_put(txq
);
2358 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2359 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2361 txq
->count
+= frags
;
2362 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2364 if (txq
->count
>= txq
->tx_stop_threshold
)
2365 netif_tx_stop_queue(nq
);
2367 u64_stats_update_begin(&stats
->syncp
);
2368 stats
->tx_packets
++;
2369 stats
->tx_bytes
+= len
;
2370 u64_stats_update_end(&stats
->syncp
);
2372 dev
->stats
.tx_dropped
++;
2373 dev_kfree_skb_any(skb
);
2376 return NETDEV_TX_OK
;
2380 /* Free tx resources, when resetting a port */
2381 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2382 struct mvneta_tx_queue
*txq
)
2385 int tx_done
= txq
->count
;
2387 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
2391 txq
->txq_put_index
= 0;
2392 txq
->txq_get_index
= 0;
2395 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2396 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2398 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2400 struct mvneta_tx_queue
*txq
;
2401 struct netdev_queue
*nq
;
2403 while (cause_tx_done
) {
2404 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2406 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2407 __netif_tx_lock(nq
, smp_processor_id());
2410 mvneta_txq_done(pp
, txq
);
2412 __netif_tx_unlock(nq
);
2413 cause_tx_done
&= ~((1 << txq
->id
));
2417 /* Compute crc8 of the specified address, using a unique algorithm ,
2418 * according to hw spec, different than generic crc8 algorithm
2420 static int mvneta_addr_crc(unsigned char *addr
)
2425 for (i
= 0; i
< ETH_ALEN
; i
++) {
2428 crc
= (crc
^ addr
[i
]) << 8;
2429 for (j
= 7; j
>= 0; j
--) {
2430 if (crc
& (0x100 << j
))
2438 /* This method controls the net device special MAC multicast support.
2439 * The Special Multicast Table for MAC addresses supports MAC of the form
2440 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2441 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2442 * Table entries in the DA-Filter table. This method set the Special
2443 * Multicast Table appropriate entry.
2445 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2446 unsigned char last_byte
,
2449 unsigned int smc_table_reg
;
2450 unsigned int tbl_offset
;
2451 unsigned int reg_offset
;
2453 /* Register offset from SMC table base */
2454 tbl_offset
= (last_byte
/ 4);
2455 /* Entry offset within the above reg */
2456 reg_offset
= last_byte
% 4;
2458 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2462 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2464 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2465 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2468 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2472 /* This method controls the network device Other MAC multicast support.
2473 * The Other Multicast Table is used for multicast of another type.
2474 * A CRC-8 is used as an index to the Other Multicast Table entries
2475 * in the DA-Filter table.
2476 * The method gets the CRC-8 value from the calling routine and
2477 * sets the Other Multicast Table appropriate entry according to the
2480 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2484 unsigned int omc_table_reg
;
2485 unsigned int tbl_offset
;
2486 unsigned int reg_offset
;
2488 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2489 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2491 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2494 /* Clear accepts frame bit at specified Other DA table entry */
2495 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2497 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2498 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2501 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2504 /* The network device supports multicast using two tables:
2505 * 1) Special Multicast Table for MAC addresses of the form
2506 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2507 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2508 * Table entries in the DA-Filter table.
2509 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2510 * is used as an index to the Other Multicast Table entries in the
2513 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2516 unsigned char crc_result
= 0;
2518 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2519 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2523 crc_result
= mvneta_addr_crc(p_addr
);
2525 if (pp
->mcast_count
[crc_result
] == 0) {
2526 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2531 pp
->mcast_count
[crc_result
]--;
2532 if (pp
->mcast_count
[crc_result
] != 0) {
2533 netdev_info(pp
->dev
,
2534 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2535 pp
->mcast_count
[crc_result
], crc_result
);
2539 pp
->mcast_count
[crc_result
]++;
2541 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2546 /* Configure Fitering mode of Ethernet port */
2547 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2550 u32 port_cfg_reg
, val
;
2552 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2554 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2556 /* Set / Clear UPM bit in port configuration register */
2558 /* Accept all Unicast addresses */
2559 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2560 val
|= MVNETA_FORCE_UNI
;
2561 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2562 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2564 /* Reject all Unicast addresses */
2565 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2566 val
&= ~MVNETA_FORCE_UNI
;
2569 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2570 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2573 /* register unicast and multicast addresses */
2574 static void mvneta_set_rx_mode(struct net_device
*dev
)
2576 struct mvneta_port
*pp
= netdev_priv(dev
);
2577 struct netdev_hw_addr
*ha
;
2579 if (dev
->flags
& IFF_PROMISC
) {
2580 /* Accept all: Multicast + Unicast */
2581 mvneta_rx_unicast_promisc_set(pp
, 1);
2582 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2583 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2584 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2586 /* Accept single Unicast */
2587 mvneta_rx_unicast_promisc_set(pp
, 0);
2588 mvneta_set_ucast_table(pp
, -1);
2589 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2591 if (dev
->flags
& IFF_ALLMULTI
) {
2592 /* Accept all multicast */
2593 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2594 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2596 /* Accept only initialized multicast */
2597 mvneta_set_special_mcast_table(pp
, -1);
2598 mvneta_set_other_mcast_table(pp
, -1);
2600 if (!netdev_mc_empty(dev
)) {
2601 netdev_for_each_mc_addr(ha
, dev
) {
2602 mvneta_mcast_addr_set(pp
, ha
->addr
,
2610 /* Interrupt handling - the callback for request_irq() */
2611 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2613 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2615 disable_percpu_irq(port
->pp
->dev
->irq
);
2616 napi_schedule(&port
->napi
);
2621 static int mvneta_fixed_link_update(struct mvneta_port
*pp
,
2622 struct phy_device
*phy
)
2624 struct fixed_phy_status status
;
2625 struct fixed_phy_status changed
= {};
2626 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2628 status
.link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
2629 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
2630 status
.speed
= SPEED_1000
;
2631 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
2632 status
.speed
= SPEED_100
;
2634 status
.speed
= SPEED_10
;
2635 status
.duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
2639 fixed_phy_update_state(phy
, &status
, &changed
);
2644 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2645 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2646 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2647 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2648 * Each CPU has its own causeRxTx register
2650 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2655 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2656 struct net_device
*ndev
= pp
->dev
;
2657 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2659 if (!netif_running(pp
->dev
)) {
2660 napi_complete(&port
->napi
);
2664 /* Read cause register */
2665 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2666 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2667 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2669 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2670 if (pp
->use_inband_status
&& (cause_misc
&
2671 (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2672 MVNETA_CAUSE_LINK_CHANGE
|
2673 MVNETA_CAUSE_PSC_SYNC_CHANGE
))) {
2674 mvneta_fixed_link_update(pp
, ndev
->phydev
);
2678 /* Release Tx descriptors */
2679 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2680 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2681 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2684 /* For the case where the last mvneta_poll did not process all
2687 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2689 cause_rx_tx
|= port
->cause_rx_tx
;
2692 rx_queue
= rx_queue
- 1;
2694 rx_done
= mvneta_rx_hwbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2696 rx_done
= mvneta_rx_swbm(pp
, budget
, &pp
->rxqs
[rx_queue
]);
2703 napi_complete(&port
->napi
);
2704 enable_percpu_irq(pp
->dev
->irq
, 0);
2707 port
->cause_rx_tx
= cause_rx_tx
;
2711 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2712 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2717 for (i
= 0; i
< num
; i
++) {
2718 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2719 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
) != 0) {
2720 netdev_err(pp
->dev
, "%s:rxq %d, %d of %d buffs filled\n",
2721 __func__
, rxq
->id
, i
, num
);
2726 /* Add this number of RX descriptors as non occupied (ready to
2729 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2734 /* Free all packets pending transmit from all TXQs and reset TX port */
2735 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2739 /* free the skb's in the tx ring */
2740 for (queue
= 0; queue
< txq_number
; queue
++)
2741 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2743 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2744 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2747 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2749 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2750 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2753 /* Rx/Tx queue initialization/cleanup methods */
2755 /* Create a specified RX queue */
2756 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2757 struct mvneta_rx_queue
*rxq
)
2760 rxq
->size
= pp
->rx_ring_size
;
2762 /* Allocate memory for RX descriptors */
2763 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2764 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2765 &rxq
->descs_phys
, GFP_KERNEL
);
2766 if (rxq
->descs
== NULL
)
2769 rxq
->last_desc
= rxq
->size
- 1;
2771 /* Set Rx descriptors queue starting address */
2772 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2773 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2776 mvneta_rxq_offset_set(pp
, rxq
, NET_SKB_PAD
);
2778 /* Set coalescing pkts and time */
2779 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2780 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2783 /* Fill RXQ with buffers from RX pool */
2784 mvneta_rxq_buf_size_set(pp
, rxq
,
2785 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2786 mvneta_rxq_bm_disable(pp
, rxq
);
2788 mvneta_rxq_bm_enable(pp
, rxq
);
2789 mvneta_rxq_long_pool_set(pp
, rxq
);
2790 mvneta_rxq_short_pool_set(pp
, rxq
);
2793 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2798 /* Cleanup Rx queue */
2799 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2800 struct mvneta_rx_queue
*rxq
)
2802 mvneta_rxq_drop_pkts(pp
, rxq
);
2805 dma_free_coherent(pp
->dev
->dev
.parent
,
2806 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2812 rxq
->next_desc_to_proc
= 0;
2813 rxq
->descs_phys
= 0;
2816 /* Create and initialize a tx queue */
2817 static int mvneta_txq_init(struct mvneta_port
*pp
,
2818 struct mvneta_tx_queue
*txq
)
2822 txq
->size
= pp
->tx_ring_size
;
2824 /* A queue must always have room for at least one skb.
2825 * Therefore, stop the queue when the free entries reaches
2826 * the maximum number of descriptors per skb.
2828 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2829 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2832 /* Allocate memory for TX descriptors */
2833 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2834 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2835 &txq
->descs_phys
, GFP_KERNEL
);
2836 if (txq
->descs
== NULL
)
2839 txq
->last_desc
= txq
->size
- 1;
2841 /* Set maximum bandwidth for enabled TXQs */
2842 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
2843 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
2845 /* Set Tx descriptors queue starting address */
2846 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
2847 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
2849 txq
->tx_skb
= kmalloc(txq
->size
* sizeof(*txq
->tx_skb
), GFP_KERNEL
);
2850 if (txq
->tx_skb
== NULL
) {
2851 dma_free_coherent(pp
->dev
->dev
.parent
,
2852 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2853 txq
->descs
, txq
->descs_phys
);
2857 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2858 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2859 txq
->size
* TSO_HEADER_SIZE
,
2860 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
2861 if (txq
->tso_hdrs
== NULL
) {
2863 dma_free_coherent(pp
->dev
->dev
.parent
,
2864 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2865 txq
->descs
, txq
->descs_phys
);
2868 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2870 /* Setup XPS mapping */
2872 cpu
= txq
->id
% num_present_cpus();
2874 cpu
= pp
->rxq_def
% num_present_cpus();
2875 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
2876 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
2881 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2882 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
2883 struct mvneta_tx_queue
*txq
)
2888 dma_free_coherent(pp
->dev
->dev
.parent
,
2889 txq
->size
* TSO_HEADER_SIZE
,
2890 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
2892 dma_free_coherent(pp
->dev
->dev
.parent
,
2893 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2894 txq
->descs
, txq
->descs_phys
);
2898 txq
->next_desc_to_proc
= 0;
2899 txq
->descs_phys
= 0;
2901 /* Set minimum bandwidth for disabled TXQs */
2902 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
2903 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
2905 /* Set Tx descriptors queue starting address and size */
2906 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
2907 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
2910 /* Cleanup all Tx queues */
2911 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
2915 for (queue
= 0; queue
< txq_number
; queue
++)
2916 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
2919 /* Cleanup all Rx queues */
2920 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
2924 for (queue
= 0; queue
< txq_number
; queue
++)
2925 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
2929 /* Init all Rx queues */
2930 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
2934 for (queue
= 0; queue
< rxq_number
; queue
++) {
2935 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
2938 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
2940 mvneta_cleanup_rxqs(pp
);
2948 /* Init all tx queues */
2949 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
2953 for (queue
= 0; queue
< txq_number
; queue
++) {
2954 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
2956 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
2958 mvneta_cleanup_txqs(pp
);
2966 static void mvneta_start_dev(struct mvneta_port
*pp
)
2969 struct net_device
*ndev
= pp
->dev
;
2971 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
2972 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
2974 /* start the Rx/Tx activity */
2975 mvneta_port_enable(pp
);
2977 /* Enable polling on the port */
2978 for_each_online_cpu(cpu
) {
2979 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
2981 napi_enable(&port
->napi
);
2984 /* Unmask interrupts. It has to be done from each CPU */
2985 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
2987 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
2988 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2989 MVNETA_CAUSE_LINK_CHANGE
|
2990 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
2992 phy_start(ndev
->phydev
);
2993 netif_tx_start_all_queues(pp
->dev
);
2996 static void mvneta_stop_dev(struct mvneta_port
*pp
)
2999 struct net_device
*ndev
= pp
->dev
;
3001 phy_stop(ndev
->phydev
);
3003 for_each_online_cpu(cpu
) {
3004 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3006 napi_disable(&port
->napi
);
3009 netif_carrier_off(pp
->dev
);
3011 mvneta_port_down(pp
);
3012 netif_tx_stop_all_queues(pp
->dev
);
3014 /* Stop the port activity */
3015 mvneta_port_disable(pp
);
3017 /* Clear all ethernet port interrupts */
3018 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3020 /* Mask all ethernet port interrupts */
3021 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3023 mvneta_tx_reset(pp
);
3024 mvneta_rx_reset(pp
);
3027 /* Return positive if MTU is valid */
3028 static int mvneta_check_mtu_valid(struct net_device
*dev
, int mtu
)
3031 netdev_err(dev
, "cannot change mtu to less than 68\n");
3035 /* 9676 == 9700 - 20 and rounding to 8 */
3037 netdev_info(dev
, "Illegal MTU value %d, round to 9676\n", mtu
);
3041 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3042 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3043 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3044 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3050 static void mvneta_percpu_enable(void *arg
)
3052 struct mvneta_port
*pp
= arg
;
3054 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3057 static void mvneta_percpu_disable(void *arg
)
3059 struct mvneta_port
*pp
= arg
;
3061 disable_percpu_irq(pp
->dev
->irq
);
3064 /* Change the device mtu */
3065 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3067 struct mvneta_port
*pp
= netdev_priv(dev
);
3070 mtu
= mvneta_check_mtu_valid(dev
, mtu
);
3076 if (!netif_running(dev
)) {
3078 mvneta_bm_update_mtu(pp
, mtu
);
3080 netdev_update_features(dev
);
3084 /* The interface is running, so we have to force a
3085 * reallocation of the queues
3087 mvneta_stop_dev(pp
);
3088 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3090 mvneta_cleanup_txqs(pp
);
3091 mvneta_cleanup_rxqs(pp
);
3094 mvneta_bm_update_mtu(pp
, mtu
);
3096 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3097 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3098 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3100 ret
= mvneta_setup_rxqs(pp
);
3102 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3106 ret
= mvneta_setup_txqs(pp
);
3108 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3112 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3113 mvneta_start_dev(pp
);
3116 netdev_update_features(dev
);
3121 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3122 netdev_features_t features
)
3124 struct mvneta_port
*pp
= netdev_priv(dev
);
3126 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3127 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3129 "Disable IP checksum for MTU greater than %dB\n",
3136 /* Get mac address */
3137 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3139 u32 mac_addr_l
, mac_addr_h
;
3141 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3142 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3143 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3144 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3145 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3146 addr
[3] = mac_addr_h
& 0xFF;
3147 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3148 addr
[5] = mac_addr_l
& 0xFF;
3151 /* Handle setting mac address */
3152 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3154 struct mvneta_port
*pp
= netdev_priv(dev
);
3155 struct sockaddr
*sockaddr
= addr
;
3158 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3161 /* Remove previous address table entry */
3162 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3164 /* Set new addr in hw */
3165 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3167 eth_commit_mac_addr_change(dev
, addr
);
3171 static void mvneta_adjust_link(struct net_device
*ndev
)
3173 struct mvneta_port
*pp
= netdev_priv(ndev
);
3174 struct phy_device
*phydev
= ndev
->phydev
;
3175 int status_change
= 0;
3178 if ((pp
->speed
!= phydev
->speed
) ||
3179 (pp
->duplex
!= phydev
->duplex
)) {
3182 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3183 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3184 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3185 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3188 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3190 if (phydev
->speed
== SPEED_1000
)
3191 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3192 else if (phydev
->speed
== SPEED_100
)
3193 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3195 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3197 pp
->duplex
= phydev
->duplex
;
3198 pp
->speed
= phydev
->speed
;
3202 if (phydev
->link
!= pp
->link
) {
3203 if (!phydev
->link
) {
3208 pp
->link
= phydev
->link
;
3212 if (status_change
) {
3214 if (!pp
->use_inband_status
) {
3215 u32 val
= mvreg_read(pp
,
3216 MVNETA_GMAC_AUTONEG_CONFIG
);
3217 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3218 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3219 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3224 if (!pp
->use_inband_status
) {
3225 u32 val
= mvreg_read(pp
,
3226 MVNETA_GMAC_AUTONEG_CONFIG
);
3227 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3228 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3229 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3232 mvneta_port_down(pp
);
3234 phy_print_status(phydev
);
3238 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3240 struct phy_device
*phy_dev
;
3242 phy_dev
= of_phy_connect(pp
->dev
, pp
->phy_node
, mvneta_adjust_link
, 0,
3245 netdev_err(pp
->dev
, "could not find the PHY\n");
3249 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
3250 phy_dev
->advertising
= phy_dev
->supported
;
3259 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3261 struct net_device
*ndev
= pp
->dev
;
3263 phy_disconnect(ndev
->phydev
);
3266 /* Electing a CPU must be done in an atomic way: it should be done
3267 * after or before the removal/insertion of a CPU and this function is
3270 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3272 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3274 /* Use the cpu associated to the rxq when it is online, in all
3275 * the other cases, use the cpu 0 which can't be offline.
3277 if (cpu_online(pp
->rxq_def
))
3278 elected_cpu
= pp
->rxq_def
;
3280 max_cpu
= num_present_cpus();
3282 for_each_online_cpu(cpu
) {
3283 int rxq_map
= 0, txq_map
= 0;
3286 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3287 if ((rxq
% max_cpu
) == cpu
)
3288 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3290 if (cpu
== elected_cpu
)
3291 /* Map the default receive queue queue to the
3294 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3296 /* We update the TX queue map only if we have one
3297 * queue. In this case we associate the TX queue to
3298 * the CPU bound to the default RX queue
3300 if (txq_number
== 1)
3301 txq_map
= (cpu
== elected_cpu
) ?
3302 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3304 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3305 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3307 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3309 /* Update the interrupt mask on each CPU according the
3312 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3319 static int mvneta_cpu_online(unsigned int cpu
, struct hlist_node
*node
)
3322 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3324 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3327 spin_lock(&pp
->lock
);
3329 * Configuring the driver for a new CPU while the driver is
3330 * stopping is racy, so just avoid it.
3332 if (pp
->is_stopped
) {
3333 spin_unlock(&pp
->lock
);
3336 netif_tx_stop_all_queues(pp
->dev
);
3339 * We have to synchronise on tha napi of each CPU except the one
3340 * just being woken up
3342 for_each_online_cpu(other_cpu
) {
3343 if (other_cpu
!= cpu
) {
3344 struct mvneta_pcpu_port
*other_port
=
3345 per_cpu_ptr(pp
->ports
, other_cpu
);
3347 napi_synchronize(&other_port
->napi
);
3351 /* Mask all ethernet port interrupts */
3352 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3353 napi_enable(&port
->napi
);
3356 * Enable per-CPU interrupts on the CPU that is
3359 mvneta_percpu_enable(pp
);
3362 * Enable per-CPU interrupt on the one CPU we care
3365 mvneta_percpu_elect(pp
);
3367 /* Unmask all ethernet port interrupts */
3368 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3369 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3370 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3371 MVNETA_CAUSE_LINK_CHANGE
|
3372 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3373 netif_tx_start_all_queues(pp
->dev
);
3374 spin_unlock(&pp
->lock
);
3378 static int mvneta_cpu_down_prepare(unsigned int cpu
, struct hlist_node
*node
)
3380 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3382 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3385 * Thanks to this lock we are sure that any pending cpu election is
3388 spin_lock(&pp
->lock
);
3389 /* Mask all ethernet port interrupts */
3390 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3391 spin_unlock(&pp
->lock
);
3393 napi_synchronize(&port
->napi
);
3394 napi_disable(&port
->napi
);
3395 /* Disable per-CPU interrupts on the CPU that is brought down. */
3396 mvneta_percpu_disable(pp
);
3400 static int mvneta_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
3402 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3405 /* Check if a new CPU must be elected now this on is down */
3406 spin_lock(&pp
->lock
);
3407 mvneta_percpu_elect(pp
);
3408 spin_unlock(&pp
->lock
);
3409 /* Unmask all ethernet port interrupts */
3410 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3411 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3412 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3413 MVNETA_CAUSE_LINK_CHANGE
|
3414 MVNETA_CAUSE_PSC_SYNC_CHANGE
);
3415 netif_tx_start_all_queues(pp
->dev
);
3419 static int mvneta_open(struct net_device
*dev
)
3421 struct mvneta_port
*pp
= netdev_priv(dev
);
3424 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3425 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
3426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3428 ret
= mvneta_setup_rxqs(pp
);
3432 ret
= mvneta_setup_txqs(pp
);
3434 goto err_cleanup_rxqs
;
3436 /* Connect to port interrupt line */
3437 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_isr
,
3438 MVNETA_DRIVER_NAME
, pp
->ports
);
3440 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3441 goto err_cleanup_txqs
;
3444 /* Enable per-CPU interrupt on all the CPU to handle our RX
3447 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3449 pp
->is_stopped
= false;
3450 /* Register a CPU notifier to handle the case where our CPU
3451 * might be taken offline.
3453 ret
= cpuhp_state_add_instance_nocalls(online_hpstate
,
3458 ret
= cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3461 goto err_free_online_hp
;
3463 /* In default link is down */
3464 netif_carrier_off(pp
->dev
);
3466 ret
= mvneta_mdio_probe(pp
);
3468 netdev_err(dev
, "cannot probe MDIO bus\n");
3469 goto err_free_dead_hp
;
3472 mvneta_start_dev(pp
);
3477 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3480 cpuhp_state_remove_instance_nocalls(online_hpstate
, &pp
->node_online
);
3482 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3483 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3485 mvneta_cleanup_txqs(pp
);
3487 mvneta_cleanup_rxqs(pp
);
3491 /* Stop the port, free port interrupt line */
3492 static int mvneta_stop(struct net_device
*dev
)
3494 struct mvneta_port
*pp
= netdev_priv(dev
);
3496 /* Inform that we are stopping so we don't want to setup the
3497 * driver for new CPUs in the notifiers. The code of the
3498 * notifier for CPU online is protected by the same spinlock,
3499 * so when we get the lock, the notifer work is done.
3501 spin_lock(&pp
->lock
);
3502 pp
->is_stopped
= true;
3503 spin_unlock(&pp
->lock
);
3505 mvneta_stop_dev(pp
);
3506 mvneta_mdio_remove(pp
);
3508 cpuhp_state_remove_instance_nocalls(online_hpstate
, &pp
->node_online
);
3509 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3511 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3512 free_percpu_irq(dev
->irq
, pp
->ports
);
3513 mvneta_cleanup_rxqs(pp
);
3514 mvneta_cleanup_txqs(pp
);
3519 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3524 return phy_mii_ioctl(dev
->phydev
, ifr
, cmd
);
3527 /* Ethtool methods */
3529 /* Set link ksettings (phy address, speed) for ethtools */
3531 mvneta_ethtool_set_link_ksettings(struct net_device
*ndev
,
3532 const struct ethtool_link_ksettings
*cmd
)
3534 struct mvneta_port
*pp
= netdev_priv(ndev
);
3535 struct phy_device
*phydev
= ndev
->phydev
;
3540 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) != pp
->use_inband_status
) {
3543 mvneta_set_autoneg(pp
, cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3545 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
) {
3546 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3547 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
3548 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3549 MVNETA_GMAC_CONFIG_FULL_DUPLEX
);
3552 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3554 if (phydev
->speed
== SPEED_1000
)
3555 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3556 else if (phydev
->speed
== SPEED_100
)
3557 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3559 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3562 pp
->use_inband_status
= (cmd
->base
.autoneg
== AUTONEG_ENABLE
);
3563 netdev_info(pp
->dev
, "autoneg status set to %i\n",
3564 pp
->use_inband_status
);
3566 if (netif_running(ndev
)) {
3567 mvneta_port_down(pp
);
3572 return phy_ethtool_ksettings_set(ndev
->phydev
, cmd
);
3575 /* Set interrupt coalescing for ethtools */
3576 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3577 struct ethtool_coalesce
*c
)
3579 struct mvneta_port
*pp
= netdev_priv(dev
);
3582 for (queue
= 0; queue
< rxq_number
; queue
++) {
3583 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3584 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3585 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3586 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3587 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3590 for (queue
= 0; queue
< txq_number
; queue
++) {
3591 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3592 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3593 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3599 /* get coalescing for ethtools */
3600 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3601 struct ethtool_coalesce
*c
)
3603 struct mvneta_port
*pp
= netdev_priv(dev
);
3605 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3606 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3608 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3613 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3614 struct ethtool_drvinfo
*drvinfo
)
3616 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3617 sizeof(drvinfo
->driver
));
3618 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3619 sizeof(drvinfo
->version
));
3620 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
3621 sizeof(drvinfo
->bus_info
));
3625 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
3626 struct ethtool_ringparam
*ring
)
3628 struct mvneta_port
*pp
= netdev_priv(netdev
);
3630 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
3631 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
3632 ring
->rx_pending
= pp
->rx_ring_size
;
3633 ring
->tx_pending
= pp
->tx_ring_size
;
3636 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
3637 struct ethtool_ringparam
*ring
)
3639 struct mvneta_port
*pp
= netdev_priv(dev
);
3641 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
3643 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
3644 ring
->rx_pending
: MVNETA_MAX_RXD
;
3646 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
3647 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
3648 if (pp
->tx_ring_size
!= ring
->tx_pending
)
3649 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
3650 pp
->tx_ring_size
, ring
->tx_pending
);
3652 if (netif_running(dev
)) {
3654 if (mvneta_open(dev
)) {
3656 "error on opening device after ring param change\n");
3664 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
3667 if (sset
== ETH_SS_STATS
) {
3670 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3671 memcpy(data
+ i
* ETH_GSTRING_LEN
,
3672 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
3676 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
3678 const struct mvneta_statistic
*s
;
3679 void __iomem
*base
= pp
->base
;
3684 for (i
= 0, s
= mvneta_statistics
;
3685 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
3689 val
= readl_relaxed(base
+ s
->offset
);
3690 pp
->ethtool_stats
[i
] += val
;
3693 /* Docs say to read low 32-bit then high */
3694 low
= readl_relaxed(base
+ s
->offset
);
3695 high
= readl_relaxed(base
+ s
->offset
+ 4);
3696 val64
= (u64
)high
<< 32 | low
;
3697 pp
->ethtool_stats
[i
] += val64
;
3703 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
3704 struct ethtool_stats
*stats
, u64
*data
)
3706 struct mvneta_port
*pp
= netdev_priv(dev
);
3709 mvneta_ethtool_update_stats(pp
);
3711 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
3712 *data
++ = pp
->ethtool_stats
[i
];
3715 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
3717 if (sset
== ETH_SS_STATS
)
3718 return ARRAY_SIZE(mvneta_statistics
);
3722 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
3724 return MVNETA_RSS_LU_TABLE_SIZE
;
3727 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
3728 struct ethtool_rxnfc
*info
,
3729 u32
*rules __always_unused
)
3731 switch (info
->cmd
) {
3732 case ETHTOOL_GRXRINGS
:
3733 info
->data
= rxq_number
;
3742 static int mvneta_config_rss(struct mvneta_port
*pp
)
3747 netif_tx_stop_all_queues(pp
->dev
);
3749 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3751 /* We have to synchronise on the napi of each CPU */
3752 for_each_online_cpu(cpu
) {
3753 struct mvneta_pcpu_port
*pcpu_port
=
3754 per_cpu_ptr(pp
->ports
, cpu
);
3756 napi_synchronize(&pcpu_port
->napi
);
3757 napi_disable(&pcpu_port
->napi
);
3760 pp
->rxq_def
= pp
->indir
[0];
3762 /* Update unicast mapping */
3763 mvneta_set_rx_mode(pp
->dev
);
3765 /* Update val of portCfg register accordingly with all RxQueue types */
3766 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
3767 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
3769 /* Update the elected CPU matching the new rxq_def */
3770 spin_lock(&pp
->lock
);
3771 mvneta_percpu_elect(pp
);
3772 spin_unlock(&pp
->lock
);
3774 /* We have to synchronise on the napi of each CPU */
3775 for_each_online_cpu(cpu
) {
3776 struct mvneta_pcpu_port
*pcpu_port
=
3777 per_cpu_ptr(pp
->ports
, cpu
);
3779 napi_enable(&pcpu_port
->napi
);
3782 netif_tx_start_all_queues(pp
->dev
);
3787 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
3788 const u8
*key
, const u8 hfunc
)
3790 struct mvneta_port
*pp
= netdev_priv(dev
);
3791 /* We require at least one supported parameter to be changed
3792 * and no change in any of the unsupported parameters
3795 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3801 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3803 return mvneta_config_rss(pp
);
3806 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
3809 struct mvneta_port
*pp
= netdev_priv(dev
);
3812 *hfunc
= ETH_RSS_HASH_TOP
;
3817 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
3822 static const struct net_device_ops mvneta_netdev_ops
= {
3823 .ndo_open
= mvneta_open
,
3824 .ndo_stop
= mvneta_stop
,
3825 .ndo_start_xmit
= mvneta_tx
,
3826 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
3827 .ndo_set_mac_address
= mvneta_set_mac_addr
,
3828 .ndo_change_mtu
= mvneta_change_mtu
,
3829 .ndo_fix_features
= mvneta_fix_features
,
3830 .ndo_get_stats64
= mvneta_get_stats64
,
3831 .ndo_do_ioctl
= mvneta_ioctl
,
3834 const struct ethtool_ops mvneta_eth_tool_ops
= {
3835 .get_link
= ethtool_op_get_link
,
3836 .set_coalesce
= mvneta_ethtool_set_coalesce
,
3837 .get_coalesce
= mvneta_ethtool_get_coalesce
,
3838 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
3839 .get_ringparam
= mvneta_ethtool_get_ringparam
,
3840 .set_ringparam
= mvneta_ethtool_set_ringparam
,
3841 .get_strings
= mvneta_ethtool_get_strings
,
3842 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
3843 .get_sset_count
= mvneta_ethtool_get_sset_count
,
3844 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
3845 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
3846 .get_rxfh
= mvneta_ethtool_get_rxfh
,
3847 .set_rxfh
= mvneta_ethtool_set_rxfh
,
3848 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
3849 .set_link_ksettings
= mvneta_ethtool_set_link_ksettings
,
3853 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
3858 mvneta_port_disable(pp
);
3860 /* Set port default values */
3861 mvneta_defaults_set(pp
);
3863 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(struct mvneta_tx_queue
),
3868 /* Initialize TX descriptor rings */
3869 for (queue
= 0; queue
< txq_number
; queue
++) {
3870 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3872 txq
->size
= pp
->tx_ring_size
;
3873 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
3876 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(struct mvneta_rx_queue
),
3881 /* Create Rx descriptor rings */
3882 for (queue
= 0; queue
< rxq_number
; queue
++) {
3883 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3885 rxq
->size
= pp
->rx_ring_size
;
3886 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
3887 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
3893 /* platform glue : initialize decoding windows */
3894 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
3895 const struct mbus_dram_target_info
*dram
)
3901 for (i
= 0; i
< 6; i
++) {
3902 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
3903 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
3906 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
3912 for (i
= 0; i
< dram
->num_cs
; i
++) {
3913 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3914 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (cs
->base
& 0xffff0000) |
3915 (cs
->mbus_attr
<< 8) | dram
->mbus_dram_target_id
);
3917 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
3918 (cs
->size
- 1) & 0xffff0000);
3920 win_enable
&= ~(1 << i
);
3921 win_protect
|= 3 << (2 * i
);
3924 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
3925 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
3928 /* Power up the port */
3929 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
3933 /* MAC Cause register should be cleared */
3934 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
3936 ctrl
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
3938 /* Even though it might look weird, when we're configured in
3939 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3942 case PHY_INTERFACE_MODE_QSGMII
:
3943 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
3944 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
3946 case PHY_INTERFACE_MODE_SGMII
:
3947 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
3948 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
3950 case PHY_INTERFACE_MODE_RGMII
:
3951 case PHY_INTERFACE_MODE_RGMII_ID
:
3952 ctrl
|= MVNETA_GMAC2_PORT_RGMII
;
3958 /* Cancel Port Reset */
3959 ctrl
&= ~MVNETA_GMAC2_PORT_RESET
;
3960 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, ctrl
);
3962 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
3963 MVNETA_GMAC2_PORT_RESET
) != 0)
3969 /* Device initialization routine */
3970 static int mvneta_probe(struct platform_device
*pdev
)
3972 const struct mbus_dram_target_info
*dram_target_info
;
3973 struct resource
*res
;
3974 struct device_node
*dn
= pdev
->dev
.of_node
;
3975 struct device_node
*phy_node
;
3976 struct device_node
*bm_node
;
3977 struct mvneta_port
*pp
;
3978 struct net_device
*dev
;
3979 const char *dt_mac_addr
;
3980 char hw_mac_addr
[ETH_ALEN
];
3981 const char *mac_from
;
3982 const char *managed
;
3988 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
3992 dev
->irq
= irq_of_parse_and_map(dn
, 0);
3993 if (dev
->irq
== 0) {
3995 goto err_free_netdev
;
3998 phy_node
= of_parse_phandle(dn
, "phy", 0);
4000 if (!of_phy_is_fixed_link(dn
)) {
4001 dev_err(&pdev
->dev
, "no PHY specified\n");
4006 err
= of_phy_register_fixed_link(dn
);
4008 dev_err(&pdev
->dev
, "cannot register fixed PHY\n");
4012 /* In the case of a fixed PHY, the DT node associated
4013 * to the PHY is the Ethernet MAC DT node.
4015 phy_node
= of_node_get(dn
);
4018 phy_mode
= of_get_phy_mode(dn
);
4020 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4022 goto err_put_phy_node
;
4025 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4026 dev
->watchdog_timeo
= 5 * HZ
;
4027 dev
->netdev_ops
= &mvneta_netdev_ops
;
4029 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4031 pp
= netdev_priv(dev
);
4032 spin_lock_init(&pp
->lock
);
4033 pp
->phy_node
= phy_node
;
4034 pp
->phy_interface
= phy_mode
;
4036 err
= of_property_read_string(dn
, "managed", &managed
);
4037 pp
->use_inband_status
= (err
== 0 &&
4038 strcmp(managed
, "in-band-status") == 0);
4040 pp
->rxq_def
= rxq_def
;
4042 pp
->indir
[0] = rxq_def
;
4044 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4045 if (IS_ERR(pp
->clk
))
4046 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4047 if (IS_ERR(pp
->clk
)) {
4048 err
= PTR_ERR(pp
->clk
);
4049 goto err_put_phy_node
;
4052 clk_prepare_enable(pp
->clk
);
4054 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4055 if (!IS_ERR(pp
->clk_bus
))
4056 clk_prepare_enable(pp
->clk_bus
);
4058 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4059 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4060 if (IS_ERR(pp
->base
)) {
4061 err
= PTR_ERR(pp
->base
);
4065 /* Alloc per-cpu port structure */
4066 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4072 /* Alloc per-cpu stats */
4073 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4076 goto err_free_ports
;
4079 dt_mac_addr
= of_get_mac_address(dn
);
4081 mac_from
= "device tree";
4082 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4084 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4085 if (is_valid_ether_addr(hw_mac_addr
)) {
4086 mac_from
= "hardware";
4087 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4089 mac_from
= "random";
4090 eth_hw_addr_random(dev
);
4094 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4095 if (tx_csum_limit
< 0 ||
4096 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4097 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4098 dev_info(&pdev
->dev
,
4099 "Wrong TX csum limit in DT, set to %dB\n",
4100 MVNETA_TX_CSUM_DEF_SIZE
);
4102 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4103 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4105 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4108 pp
->tx_csum_limit
= tx_csum_limit
;
4110 dram_target_info
= mv_mbus_dram_info();
4111 if (dram_target_info
)
4112 mvneta_conf_mbus_windows(pp
, dram_target_info
);
4114 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4115 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4118 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4120 pp
->id
= global_port_id
++;
4122 /* Obtain access to BM resources if enabled and already initialized */
4123 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4124 if (bm_node
&& bm_node
->data
) {
4125 pp
->bm_priv
= bm_node
->data
;
4126 err
= mvneta_bm_port_init(pdev
, pp
);
4128 dev_info(&pdev
->dev
, "use SW buffer management\n");
4132 of_node_put(bm_node
);
4134 err
= mvneta_init(&pdev
->dev
, pp
);
4138 err
= mvneta_port_power_up(pp
, phy_mode
);
4140 dev_err(&pdev
->dev
, "can't power up port\n");
4144 for_each_present_cpu(cpu
) {
4145 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
4147 netif_napi_add(dev
, &port
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4151 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
4152 dev
->hw_features
|= dev
->features
;
4153 dev
->vlan_features
|= dev
->features
;
4154 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
4155 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4157 err
= register_netdev(dev
);
4159 dev_err(&pdev
->dev
, "failed to register\n");
4160 goto err_free_stats
;
4163 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4166 platform_set_drvdata(pdev
, pp
->dev
);
4168 if (pp
->use_inband_status
) {
4169 struct phy_device
*phy
= of_phy_find_device(dn
);
4171 mvneta_fixed_link_update(pp
, phy
);
4173 put_device(&phy
->mdio
.dev
);
4179 unregister_netdev(dev
);
4181 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4182 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4186 free_percpu(pp
->stats
);
4188 free_percpu(pp
->ports
);
4190 clk_disable_unprepare(pp
->clk_bus
);
4191 clk_disable_unprepare(pp
->clk
);
4193 of_node_put(phy_node
);
4194 if (of_phy_is_fixed_link(dn
))
4195 of_phy_deregister_fixed_link(dn
);
4197 irq_dispose_mapping(dev
->irq
);
4203 /* Device removal routine */
4204 static int mvneta_remove(struct platform_device
*pdev
)
4206 struct net_device
*dev
= platform_get_drvdata(pdev
);
4207 struct device_node
*dn
= pdev
->dev
.of_node
;
4208 struct mvneta_port
*pp
= netdev_priv(dev
);
4210 unregister_netdev(dev
);
4211 clk_disable_unprepare(pp
->clk_bus
);
4212 clk_disable_unprepare(pp
->clk
);
4213 free_percpu(pp
->ports
);
4214 free_percpu(pp
->stats
);
4215 if (of_phy_is_fixed_link(dn
))
4216 of_phy_deregister_fixed_link(dn
);
4217 irq_dispose_mapping(dev
->irq
);
4218 of_node_put(pp
->phy_node
);
4222 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4223 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4230 static const struct of_device_id mvneta_match
[] = {
4231 { .compatible
= "marvell,armada-370-neta" },
4232 { .compatible
= "marvell,armada-xp-neta" },
4235 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4237 static struct platform_driver mvneta_driver
= {
4238 .probe
= mvneta_probe
,
4239 .remove
= mvneta_remove
,
4241 .name
= MVNETA_DRIVER_NAME
,
4242 .of_match_table
= mvneta_match
,
4246 static int __init
mvneta_driver_init(void)
4250 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, "net/mvmeta:online",
4252 mvneta_cpu_down_prepare
);
4255 online_hpstate
= ret
;
4256 ret
= cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD
, "net/mvneta:dead",
4257 NULL
, mvneta_cpu_dead
);
4261 ret
= platform_driver_register(&mvneta_driver
);
4267 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4269 cpuhp_remove_multi_state(online_hpstate
);
4273 module_init(mvneta_driver_init
);
4275 static void __exit
mvneta_driver_exit(void)
4277 platform_driver_unregister(&mvneta_driver
);
4278 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4279 cpuhp_remove_multi_state(online_hpstate
);
4281 module_exit(mvneta_driver_exit
);
4283 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4284 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4285 MODULE_LICENSE("GPL");
4287 module_param(rxq_number
, int, S_IRUGO
);
4288 module_param(txq_number
, int, S_IRUGO
);
4290 module_param(rxq_def
, int, S_IRUGO
);
4291 module_param(rx_copybreak
, int, S_IRUGO
| S_IWUSR
);