pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / marvell / mvpp2.c
blob0a4e81a253fb658d566f68dc6607b0883b33db9e
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
4 * Copyright (C) 2014 Marvell
6 * Marcin Wojtas <mw@semihalf.com>
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <linux/hrtimer.h>
31 #include <linux/ktime.h>
32 #include <uapi/linux/ppp_defs.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
36 /* RX Fifo Registers */
37 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
38 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
39 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
40 #define MVPP2_RX_FIFO_INIT_REG 0x64
42 /* RX DMA Top Registers */
43 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
44 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
45 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
46 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
47 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
48 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
49 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
50 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
51 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
52 #define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
53 #define MVPP2_RXQ_POOL_LONG_OFFS 24
54 #define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
55 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
56 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
57 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
59 /* Parser Registers */
60 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
61 #define MVPP2_PRS_PORT_LU_MAX 0xf
62 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
63 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
64 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
65 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
66 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
67 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
68 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
69 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
71 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
72 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
73 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
74 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
76 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
78 /* Classifier Registers */
79 #define MVPP2_CLS_MODE_REG 0x1800
80 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
81 #define MVPP2_CLS_PORT_WAY_REG 0x1810
82 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
83 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
84 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
85 #define MVPP2_CLS_LKP_TBL_REG 0x1818
86 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
87 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
88 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
89 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
90 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
91 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
92 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
93 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
94 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
95 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
96 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
97 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
99 /* Descriptor Manager Top Registers */
100 #define MVPP2_RXQ_NUM_REG 0x2040
101 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
102 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
103 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
104 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
105 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
106 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
107 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
108 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
109 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
110 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
111 #define MVPP2_RXQ_THRESH_REG 0x204c
112 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
113 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
114 #define MVPP2_RXQ_INDEX_REG 0x2050
115 #define MVPP2_TXQ_NUM_REG 0x2080
116 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
117 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
118 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
119 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
120 #define MVPP2_TXQ_THRESH_REG 0x2094
121 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
122 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
123 #define MVPP2_TXQ_INDEX_REG 0x2098
124 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
125 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
126 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
127 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
128 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
129 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
130 #define MVPP2_TXQ_PENDING_REG 0x20a0
131 #define MVPP2_TXQ_PENDING_MASK 0x3fff
132 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
133 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
134 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
135 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
136 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
137 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
138 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
139 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
140 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
141 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
142 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
143 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
144 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
145 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
146 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
147 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
149 /* MBUS bridge registers */
150 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
151 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
152 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
153 #define MVPP2_BASE_ADDR_ENABLE 0x4060
155 /* Interrupt Cause and Mask registers */
156 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
157 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
158 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
159 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
160 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
161 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
162 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
163 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
164 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
165 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
166 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
167 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
168 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
169 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
170 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
171 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
172 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
173 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
174 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
175 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
177 /* Buffer Manager registers */
178 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
179 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
180 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
181 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
182 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
183 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
184 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
185 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
186 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
187 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
188 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
189 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
190 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
191 #define MVPP2_BM_START_MASK BIT(0)
192 #define MVPP2_BM_STOP_MASK BIT(1)
193 #define MVPP2_BM_STATE_MASK BIT(4)
194 #define MVPP2_BM_LOW_THRESH_OFFS 8
195 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
196 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
197 MVPP2_BM_LOW_THRESH_OFFS)
198 #define MVPP2_BM_HIGH_THRESH_OFFS 16
199 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
200 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
201 MVPP2_BM_HIGH_THRESH_OFFS)
202 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
203 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
204 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
205 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
206 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
207 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
208 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
209 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
210 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
211 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
212 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
213 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
214 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
215 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
216 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
217 #define MVPP2_BM_MC_RLS_REG 0x64c4
218 #define MVPP2_BM_MC_ID_MASK 0xfff
219 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
221 /* TX Scheduler registers */
222 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
223 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
224 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
225 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
226 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
227 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
228 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
229 #define MVPP2_TXP_MTU_MAX 0x7FFFF
230 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
231 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
232 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
233 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
234 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
235 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
236 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
237 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
238 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
239 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
240 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
241 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
242 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
243 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
245 /* TX general registers */
246 #define MVPP2_TX_SNOOP_REG 0x8800
247 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
248 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
250 /* LMS registers */
251 #define MVPP2_SRC_ADDR_MIDDLE 0x24
252 #define MVPP2_SRC_ADDR_HIGH 0x28
253 #define MVPP2_PHY_AN_CFG0_REG 0x34
254 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
255 #define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
256 0x400 + (port) * 0x400)
257 #define MVPP2_MIB_LATE_COLLISION 0x7c
258 #define MVPP2_ISR_SUM_MASK_REG 0x220c
259 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
260 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
262 /* Per-port registers */
263 #define MVPP2_GMAC_CTRL_0_REG 0x0
264 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
265 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
266 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
267 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
268 #define MVPP2_GMAC_CTRL_1_REG 0x4
269 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
270 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
271 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
272 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
273 #define MVPP2_GMAC_SA_LOW_OFFS 7
274 #define MVPP2_GMAC_CTRL_2_REG 0x8
275 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
276 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
277 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
278 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
279 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
280 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
281 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
282 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
283 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
284 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
285 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
286 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
287 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
288 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
289 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
290 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
291 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
292 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
294 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
296 /* Descriptor ring Macros */
297 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
298 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
300 /* Various constants */
302 /* Coalescing */
303 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
304 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
305 #define MVPP2_RX_COAL_PKTS 32
306 #define MVPP2_RX_COAL_USEC 100
308 /* The two bytes Marvell header. Either contains a special value used
309 * by Marvell switches when a specific hardware mode is enabled (not
310 * supported by this driver) or is filled automatically by zeroes on
311 * the RX side. Those two bytes being at the front of the Ethernet
312 * header, they allow to have the IP header aligned on a 4 bytes
313 * boundary automatically: the hardware skips those two bytes on its
314 * own.
316 #define MVPP2_MH_SIZE 2
317 #define MVPP2_ETH_TYPE_LEN 2
318 #define MVPP2_PPPOE_HDR_SIZE 8
319 #define MVPP2_VLAN_TAG_LEN 4
321 /* Lbtd 802.3 type */
322 #define MVPP2_IP_LBDT_TYPE 0xfffa
324 #define MVPP2_TX_CSUM_MAX_SIZE 9800
326 /* Timeout constants */
327 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
328 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
330 #define MVPP2_TX_MTU_MAX 0x7ffff
332 /* Maximum number of T-CONTs of PON port */
333 #define MVPP2_MAX_TCONT 16
335 /* Maximum number of supported ports */
336 #define MVPP2_MAX_PORTS 4
338 /* Maximum number of TXQs used by single port */
339 #define MVPP2_MAX_TXQ 8
341 /* Maximum number of RXQs used by single port */
342 #define MVPP2_MAX_RXQ 8
344 /* Dfault number of RXQs in use */
345 #define MVPP2_DEFAULT_RXQ 4
347 /* Total number of RXQs available to all ports */
348 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
350 /* Max number of Rx descriptors */
351 #define MVPP2_MAX_RXD 128
353 /* Max number of Tx descriptors */
354 #define MVPP2_MAX_TXD 1024
356 /* Amount of Tx descriptors that can be reserved at once by CPU */
357 #define MVPP2_CPU_DESC_CHUNK 64
359 /* Max number of Tx descriptors in each aggregated queue */
360 #define MVPP2_AGGR_TXQ_SIZE 256
362 /* Descriptor aligned size */
363 #define MVPP2_DESC_ALIGNED_SIZE 32
365 /* Descriptor alignment mask */
366 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
368 /* RX FIFO constants */
369 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
370 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
371 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
373 /* RX buffer constants */
374 #define MVPP2_SKB_SHINFO_SIZE \
375 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
377 #define MVPP2_RX_PKT_SIZE(mtu) \
378 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
379 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
381 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
382 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
383 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
384 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
386 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
388 /* IPv6 max L3 address size */
389 #define MVPP2_MAX_L3_ADDR_SIZE 16
391 /* Port flags */
392 #define MVPP2_F_LOOPBACK BIT(0)
394 /* Marvell tag types */
395 enum mvpp2_tag_type {
396 MVPP2_TAG_TYPE_NONE = 0,
397 MVPP2_TAG_TYPE_MH = 1,
398 MVPP2_TAG_TYPE_DSA = 2,
399 MVPP2_TAG_TYPE_EDSA = 3,
400 MVPP2_TAG_TYPE_VLAN = 4,
401 MVPP2_TAG_TYPE_LAST = 5
404 /* Parser constants */
405 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
406 #define MVPP2_PRS_TCAM_WORDS 6
407 #define MVPP2_PRS_SRAM_WORDS 4
408 #define MVPP2_PRS_FLOW_ID_SIZE 64
409 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
410 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
411 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
412 #define MVPP2_PRS_IPV4_HEAD 0x40
413 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
414 #define MVPP2_PRS_IPV4_MC 0xe0
415 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
416 #define MVPP2_PRS_IPV4_BC_MASK 0xff
417 #define MVPP2_PRS_IPV4_IHL 0x5
418 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
419 #define MVPP2_PRS_IPV6_MC 0xff
420 #define MVPP2_PRS_IPV6_MC_MASK 0xff
421 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
422 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
423 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
424 #define MVPP2_PRS_DBL_VLANS_MAX 100
426 /* Tcam structure:
427 * - lookup ID - 4 bits
428 * - port ID - 1 byte
429 * - additional information - 1 byte
430 * - header data - 8 bytes
431 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
433 #define MVPP2_PRS_AI_BITS 8
434 #define MVPP2_PRS_PORT_MASK 0xff
435 #define MVPP2_PRS_LU_MASK 0xf
436 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
437 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
438 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
439 (((offs) * 2) - ((offs) % 2) + 2)
440 #define MVPP2_PRS_TCAM_AI_BYTE 16
441 #define MVPP2_PRS_TCAM_PORT_BYTE 17
442 #define MVPP2_PRS_TCAM_LU_BYTE 20
443 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
444 #define MVPP2_PRS_TCAM_INV_WORD 5
445 /* Tcam entries ID */
446 #define MVPP2_PE_DROP_ALL 0
447 #define MVPP2_PE_FIRST_FREE_TID 1
448 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
449 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
450 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
451 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
452 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
453 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
454 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
455 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
456 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
457 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
458 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
459 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
460 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
461 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
462 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
463 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
464 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
465 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
466 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
467 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
468 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
469 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
470 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
471 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
472 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
474 /* Sram structure
475 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
477 #define MVPP2_PRS_SRAM_RI_OFFS 0
478 #define MVPP2_PRS_SRAM_RI_WORD 0
479 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
480 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
481 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
482 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
483 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
484 #define MVPP2_PRS_SRAM_UDF_OFFS 73
485 #define MVPP2_PRS_SRAM_UDF_BITS 8
486 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
487 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
488 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
489 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
490 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
491 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
492 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
495 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
496 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
497 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
501 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
502 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
503 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
504 #define MVPP2_PRS_SRAM_AI_OFFS 90
505 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
506 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
507 #define MVPP2_PRS_SRAM_AI_MASK 0xff
508 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
509 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
510 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
511 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
513 /* Sram result info bits assignment */
514 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
515 #define MVPP2_PRS_RI_DSA_MASK 0x2
516 #define MVPP2_PRS_RI_VLAN_MASK 0xc
517 #define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
518 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
519 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
520 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
521 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
522 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
523 #define MVPP2_PRS_RI_L2_CAST_MASK 0x600
524 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
525 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
526 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
527 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
528 #define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
529 #define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
530 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
531 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
532 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
533 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
534 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
535 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
536 #define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
537 #define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
538 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
539 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
540 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
541 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
542 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
543 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
544 #define MVPP2_PRS_RI_L4_TCP BIT(22)
545 #define MVPP2_PRS_RI_L4_UDP BIT(23)
546 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
547 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
548 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
549 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
551 /* Sram additional info bits assignment */
552 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
553 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
554 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
555 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
556 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
557 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
558 #define MVPP2_PRS_SINGLE_VLAN_AI 0
559 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
561 /* DSA/EDSA type */
562 #define MVPP2_PRS_TAGGED true
563 #define MVPP2_PRS_UNTAGGED false
564 #define MVPP2_PRS_EDSA true
565 #define MVPP2_PRS_DSA false
567 /* MAC entries, shadow udf */
568 enum mvpp2_prs_udf {
569 MVPP2_PRS_UDF_MAC_DEF,
570 MVPP2_PRS_UDF_MAC_RANGE,
571 MVPP2_PRS_UDF_L2_DEF,
572 MVPP2_PRS_UDF_L2_DEF_COPY,
573 MVPP2_PRS_UDF_L2_USER,
576 /* Lookup ID */
577 enum mvpp2_prs_lookup {
578 MVPP2_PRS_LU_MH,
579 MVPP2_PRS_LU_MAC,
580 MVPP2_PRS_LU_DSA,
581 MVPP2_PRS_LU_VLAN,
582 MVPP2_PRS_LU_L2,
583 MVPP2_PRS_LU_PPPOE,
584 MVPP2_PRS_LU_IP4,
585 MVPP2_PRS_LU_IP6,
586 MVPP2_PRS_LU_FLOWS,
587 MVPP2_PRS_LU_LAST,
590 /* L3 cast enum */
591 enum mvpp2_prs_l3_cast {
592 MVPP2_PRS_L3_UNI_CAST,
593 MVPP2_PRS_L3_MULTI_CAST,
594 MVPP2_PRS_L3_BROAD_CAST
597 /* Classifier constants */
598 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
599 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
600 #define MVPP2_CLS_LKP_TBL_SIZE 64
602 /* BM constants */
603 #define MVPP2_BM_POOLS_NUM 8
604 #define MVPP2_BM_LONG_BUF_NUM 1024
605 #define MVPP2_BM_SHORT_BUF_NUM 2048
606 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
607 #define MVPP2_BM_POOL_PTR_ALIGN 128
608 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
609 #define MVPP2_BM_SWF_SHORT_POOL 3
611 /* BM cookie (32 bits) definition */
612 #define MVPP2_BM_COOKIE_POOL_OFFS 8
613 #define MVPP2_BM_COOKIE_CPU_OFFS 24
615 /* BM short pool packet size
616 * These value assure that for SWF the total number
617 * of bytes allocated for each buffer will be 512
619 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
621 enum mvpp2_bm_type {
622 MVPP2_BM_FREE,
623 MVPP2_BM_SWF_LONG,
624 MVPP2_BM_SWF_SHORT
627 /* Definitions */
629 /* Shared Packet Processor resources */
630 struct mvpp2 {
631 /* Shared registers' base addresses */
632 void __iomem *base;
633 void __iomem *lms_base;
635 /* Common clocks */
636 struct clk *pp_clk;
637 struct clk *gop_clk;
639 /* List of pointers to port structures */
640 struct mvpp2_port **port_list;
642 /* Aggregated TXQs */
643 struct mvpp2_tx_queue *aggr_txqs;
645 /* BM pools */
646 struct mvpp2_bm_pool *bm_pools;
648 /* PRS shadow table */
649 struct mvpp2_prs_shadow *prs_shadow;
650 /* PRS auxiliary table for double vlan entries control */
651 bool *prs_double_vlans;
653 /* Tclk value */
654 u32 tclk;
657 struct mvpp2_pcpu_stats {
658 struct u64_stats_sync syncp;
659 u64 rx_packets;
660 u64 rx_bytes;
661 u64 tx_packets;
662 u64 tx_bytes;
665 /* Per-CPU port control */
666 struct mvpp2_port_pcpu {
667 struct hrtimer tx_done_timer;
668 bool timer_scheduled;
669 /* Tasklet for egress finalization */
670 struct tasklet_struct tx_done_tasklet;
673 struct mvpp2_port {
674 u8 id;
676 int irq;
678 struct mvpp2 *priv;
680 /* Per-port registers' base address */
681 void __iomem *base;
683 struct mvpp2_rx_queue **rxqs;
684 struct mvpp2_tx_queue **txqs;
685 struct net_device *dev;
687 int pkt_size;
689 u32 pending_cause_rx;
690 struct napi_struct napi;
692 /* Per-CPU port control */
693 struct mvpp2_port_pcpu __percpu *pcpu;
695 /* Flags */
696 unsigned long flags;
698 u16 tx_ring_size;
699 u16 rx_ring_size;
700 struct mvpp2_pcpu_stats __percpu *stats;
702 phy_interface_t phy_interface;
703 struct device_node *phy_node;
704 unsigned int link;
705 unsigned int duplex;
706 unsigned int speed;
708 struct mvpp2_bm_pool *pool_long;
709 struct mvpp2_bm_pool *pool_short;
711 /* Index of first port's physical RXQ */
712 u8 first_rxq;
715 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
716 * layout of the transmit and reception DMA descriptors, and their
717 * layout is therefore defined by the hardware design
720 #define MVPP2_TXD_L3_OFF_SHIFT 0
721 #define MVPP2_TXD_IP_HLEN_SHIFT 8
722 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
723 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
724 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
725 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
726 #define MVPP2_TXD_L4_UDP BIT(24)
727 #define MVPP2_TXD_L3_IP6 BIT(26)
728 #define MVPP2_TXD_L_DESC BIT(28)
729 #define MVPP2_TXD_F_DESC BIT(29)
731 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
732 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
733 #define MVPP2_RXD_ERR_CRC 0x0
734 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
735 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
736 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
737 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
738 #define MVPP2_RXD_HWF_SYNC BIT(21)
739 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
740 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
741 #define MVPP2_RXD_L4_TCP BIT(25)
742 #define MVPP2_RXD_L4_UDP BIT(26)
743 #define MVPP2_RXD_L3_IP4 BIT(28)
744 #define MVPP2_RXD_L3_IP6 BIT(30)
745 #define MVPP2_RXD_BUF_HDR BIT(31)
747 struct mvpp2_tx_desc {
748 u32 command; /* Options used by HW for packet transmitting.*/
749 u8 packet_offset; /* the offset from the buffer beginning */
750 u8 phys_txq; /* destination queue ID */
751 u16 data_size; /* data size of transmitted packet in bytes */
752 u32 buf_phys_addr; /* physical addr of transmitted buffer */
753 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
754 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
755 u32 reserved2; /* reserved (for future use) */
758 struct mvpp2_rx_desc {
759 u32 status; /* info about received packet */
760 u16 reserved1; /* parser_info (for future use, PnC) */
761 u16 data_size; /* size of received packet in bytes */
762 u32 buf_phys_addr; /* physical address of the buffer */
763 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
764 u16 reserved2; /* gem_port_id (for future use, PON) */
765 u16 reserved3; /* csum_l4 (for future use, PnC) */
766 u8 reserved4; /* bm_qset (for future use, BM) */
767 u8 reserved5;
768 u16 reserved6; /* classify_info (for future use, PnC) */
769 u32 reserved7; /* flow_id (for future use, PnC) */
770 u32 reserved8;
773 struct mvpp2_txq_pcpu_buf {
774 /* Transmitted SKB */
775 struct sk_buff *skb;
777 /* Physical address of transmitted buffer */
778 dma_addr_t phys;
780 /* Size transmitted */
781 size_t size;
784 /* Per-CPU Tx queue control */
785 struct mvpp2_txq_pcpu {
786 int cpu;
788 /* Number of Tx DMA descriptors in the descriptor ring */
789 int size;
791 /* Number of currently used Tx DMA descriptor in the
792 * descriptor ring
794 int count;
796 /* Number of Tx DMA descriptors reserved for each CPU */
797 int reserved_num;
799 /* Infos about transmitted buffers */
800 struct mvpp2_txq_pcpu_buf *buffs;
802 /* Index of last TX DMA descriptor that was inserted */
803 int txq_put_index;
805 /* Index of the TX DMA descriptor to be cleaned up */
806 int txq_get_index;
809 struct mvpp2_tx_queue {
810 /* Physical number of this Tx queue */
811 u8 id;
813 /* Logical number of this Tx queue */
814 u8 log_id;
816 /* Number of Tx DMA descriptors in the descriptor ring */
817 int size;
819 /* Number of currently used Tx DMA descriptor in the descriptor ring */
820 int count;
822 /* Per-CPU control of physical Tx queues */
823 struct mvpp2_txq_pcpu __percpu *pcpu;
825 /* Array of transmitted skb */
826 struct sk_buff **tx_skb;
828 u32 done_pkts_coal;
830 /* Virtual address of thex Tx DMA descriptors array */
831 struct mvpp2_tx_desc *descs;
833 /* DMA address of the Tx DMA descriptors array */
834 dma_addr_t descs_phys;
836 /* Index of the last Tx DMA descriptor */
837 int last_desc;
839 /* Index of the next Tx DMA descriptor to process */
840 int next_desc_to_proc;
843 struct mvpp2_rx_queue {
844 /* RX queue number, in the range 0-31 for physical RXQs */
845 u8 id;
847 /* Num of rx descriptors in the rx descriptor ring */
848 int size;
850 u32 pkts_coal;
851 u32 time_coal;
853 /* Virtual address of the RX DMA descriptors array */
854 struct mvpp2_rx_desc *descs;
856 /* DMA address of the RX DMA descriptors array */
857 dma_addr_t descs_phys;
859 /* Index of the last RX DMA descriptor */
860 int last_desc;
862 /* Index of the next RX DMA descriptor to process */
863 int next_desc_to_proc;
865 /* ID of port to which physical RXQ is mapped */
866 int port;
868 /* Port's logic RXQ number to which physical RXQ is mapped */
869 int logic_rxq;
872 union mvpp2_prs_tcam_entry {
873 u32 word[MVPP2_PRS_TCAM_WORDS];
874 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
877 union mvpp2_prs_sram_entry {
878 u32 word[MVPP2_PRS_SRAM_WORDS];
879 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
882 struct mvpp2_prs_entry {
883 u32 index;
884 union mvpp2_prs_tcam_entry tcam;
885 union mvpp2_prs_sram_entry sram;
888 struct mvpp2_prs_shadow {
889 bool valid;
890 bool finish;
892 /* Lookup ID */
893 int lu;
895 /* User defined offset */
896 int udf;
898 /* Result info */
899 u32 ri;
900 u32 ri_mask;
903 struct mvpp2_cls_flow_entry {
904 u32 index;
905 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
908 struct mvpp2_cls_lookup_entry {
909 u32 lkpid;
910 u32 way;
911 u32 data;
914 struct mvpp2_bm_pool {
915 /* Pool number in the range 0-7 */
916 int id;
917 enum mvpp2_bm_type type;
919 /* Buffer Pointers Pool External (BPPE) size */
920 int size;
921 /* Number of buffers for this pool */
922 int buf_num;
923 /* Pool buffer size */
924 int buf_size;
925 /* Packet size */
926 int pkt_size;
928 /* BPPE virtual base address */
929 u32 *virt_addr;
930 /* BPPE physical base address */
931 dma_addr_t phys_addr;
933 /* Ports using BM pool */
934 u32 port_map;
936 /* Occupied buffers indicator */
937 atomic_t in_use;
938 int in_use_thresh;
941 struct mvpp2_buff_hdr {
942 u32 next_buff_phys_addr;
943 u32 next_buff_virt_addr;
944 u16 byte_count;
945 u16 info;
946 u8 reserved1; /* bm_qset (for future use, BM) */
949 /* Buffer header info bits */
950 #define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
951 #define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
952 #define MVPP2_B_HDR_INFO_LAST_OFFS 12
953 #define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
954 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
955 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
957 /* Static declaractions */
959 /* Number of RXQs used by single port */
960 static int rxq_number = MVPP2_DEFAULT_RXQ;
961 /* Number of TXQs used by single port */
962 static int txq_number = MVPP2_MAX_TXQ;
964 #define MVPP2_DRIVER_NAME "mvpp2"
965 #define MVPP2_DRIVER_VERSION "1.0"
967 /* Utility/helper methods */
969 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
971 writel(data, priv->base + offset);
974 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
976 return readl(priv->base + offset);
979 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
981 txq_pcpu->txq_get_index++;
982 if (txq_pcpu->txq_get_index == txq_pcpu->size)
983 txq_pcpu->txq_get_index = 0;
986 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
987 struct sk_buff *skb,
988 struct mvpp2_tx_desc *tx_desc)
990 struct mvpp2_txq_pcpu_buf *tx_buf =
991 txq_pcpu->buffs + txq_pcpu->txq_put_index;
992 tx_buf->skb = skb;
993 tx_buf->size = tx_desc->data_size;
994 tx_buf->phys = tx_desc->buf_phys_addr + tx_desc->packet_offset;
995 txq_pcpu->txq_put_index++;
996 if (txq_pcpu->txq_put_index == txq_pcpu->size)
997 txq_pcpu->txq_put_index = 0;
1000 /* Get number of physical egress port */
1001 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1003 return MVPP2_MAX_TCONT + port->id;
1006 /* Get number of physical TXQ */
1007 static inline int mvpp2_txq_phys(int port, int txq)
1009 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1012 /* Parser configuration routines */
1014 /* Update parser tcam and sram hw entries */
1015 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1017 int i;
1019 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1020 return -EINVAL;
1022 /* Clear entry invalidation bit */
1023 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1025 /* Write tcam index - indirect access */
1026 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1027 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1028 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1030 /* Write sram index - indirect access */
1031 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1032 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1033 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1035 return 0;
1038 /* Read tcam entry from hw */
1039 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1041 int i;
1043 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1044 return -EINVAL;
1046 /* Write tcam index - indirect access */
1047 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1049 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1050 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1051 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1052 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1054 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1055 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1057 /* Write sram index - indirect access */
1058 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1059 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1060 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1062 return 0;
1065 /* Invalidate tcam hw entry */
1066 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1068 /* Write index - indirect access */
1069 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1070 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1071 MVPP2_PRS_TCAM_INV_MASK);
1074 /* Enable shadow table entry and set its lookup ID */
1075 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1077 priv->prs_shadow[index].valid = true;
1078 priv->prs_shadow[index].lu = lu;
1081 /* Update ri fields in shadow table entry */
1082 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1083 unsigned int ri, unsigned int ri_mask)
1085 priv->prs_shadow[index].ri_mask = ri_mask;
1086 priv->prs_shadow[index].ri = ri;
1089 /* Update lookup field in tcam sw entry */
1090 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1092 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1094 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1095 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1098 /* Update mask for single port in tcam sw entry */
1099 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1100 unsigned int port, bool add)
1102 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1104 if (add)
1105 pe->tcam.byte[enable_off] &= ~(1 << port);
1106 else
1107 pe->tcam.byte[enable_off] |= 1 << port;
1110 /* Update port map in tcam sw entry */
1111 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1112 unsigned int ports)
1114 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1115 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1117 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1118 pe->tcam.byte[enable_off] &= ~port_mask;
1119 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1122 /* Obtain port map from tcam sw entry */
1123 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1125 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1127 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1130 /* Set byte of data and its enable bits in tcam sw entry */
1131 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1132 unsigned int offs, unsigned char byte,
1133 unsigned char enable)
1135 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1136 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1139 /* Get byte of data and its enable bits from tcam sw entry */
1140 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1141 unsigned int offs, unsigned char *byte,
1142 unsigned char *enable)
1144 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1145 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1148 /* Compare tcam data bytes with a pattern */
1149 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1150 u16 data)
1152 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1153 u16 tcam_data;
1155 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1156 if (tcam_data != data)
1157 return false;
1158 return true;
1161 /* Update ai bits in tcam sw entry */
1162 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1163 unsigned int bits, unsigned int enable)
1165 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1167 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1169 if (!(enable & BIT(i)))
1170 continue;
1172 if (bits & BIT(i))
1173 pe->tcam.byte[ai_idx] |= 1 << i;
1174 else
1175 pe->tcam.byte[ai_idx] &= ~(1 << i);
1178 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1181 /* Get ai bits from tcam sw entry */
1182 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1184 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1187 /* Set ethertype in tcam sw entry */
1188 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1189 unsigned short ethertype)
1191 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1192 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1195 /* Set bits in sram sw entry */
1196 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1197 int val)
1199 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1202 /* Clear bits in sram sw entry */
1203 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1204 int val)
1206 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1209 /* Update ri bits in sram sw entry */
1210 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1211 unsigned int bits, unsigned int mask)
1213 unsigned int i;
1215 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1216 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1218 if (!(mask & BIT(i)))
1219 continue;
1221 if (bits & BIT(i))
1222 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1223 else
1224 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1226 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1230 /* Obtain ri bits from sram sw entry */
1231 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1233 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1236 /* Update ai bits in sram sw entry */
1237 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1238 unsigned int bits, unsigned int mask)
1240 unsigned int i;
1241 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1243 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1245 if (!(mask & BIT(i)))
1246 continue;
1248 if (bits & BIT(i))
1249 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1250 else
1251 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1253 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1257 /* Read ai bits from sram sw entry */
1258 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1260 u8 bits;
1261 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1262 int ai_en_off = ai_off + 1;
1263 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1265 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1266 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1268 return bits;
1271 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1272 * lookup interation
1274 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1275 unsigned int lu)
1277 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1279 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1280 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1281 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1284 /* In the sram sw entry set sign and value of the next lookup offset
1285 * and the offset value generated to the classifier
1287 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1288 unsigned int op)
1290 /* Set sign */
1291 if (shift < 0) {
1292 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1293 shift = 0 - shift;
1294 } else {
1295 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1298 /* Set value */
1299 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1300 (unsigned char)shift;
1302 /* Reset and set operation */
1303 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1304 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1305 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1307 /* Set base offset as current */
1308 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1311 /* In the sram sw entry set sign and value of the user defined offset
1312 * generated to the classifier
1314 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1315 unsigned int type, int offset,
1316 unsigned int op)
1318 /* Set sign */
1319 if (offset < 0) {
1320 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1321 offset = 0 - offset;
1322 } else {
1323 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1326 /* Set value */
1327 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1328 MVPP2_PRS_SRAM_UDF_MASK);
1329 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1330 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1331 MVPP2_PRS_SRAM_UDF_BITS)] &=
1332 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1333 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1334 MVPP2_PRS_SRAM_UDF_BITS)] |=
1335 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1337 /* Set offset type */
1338 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1339 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1340 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1342 /* Set offset operation */
1343 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1344 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1345 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1347 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1348 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1349 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1350 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1352 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1353 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1354 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1356 /* Set base offset as current */
1357 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1360 /* Find parser flow entry */
1361 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1363 struct mvpp2_prs_entry *pe;
1364 int tid;
1366 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1367 if (!pe)
1368 return NULL;
1369 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1371 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1372 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1373 u8 bits;
1375 if (!priv->prs_shadow[tid].valid ||
1376 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1377 continue;
1379 pe->index = tid;
1380 mvpp2_prs_hw_read(priv, pe);
1381 bits = mvpp2_prs_sram_ai_get(pe);
1383 /* Sram store classification lookup ID in AI bits [5:0] */
1384 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1385 return pe;
1387 kfree(pe);
1389 return NULL;
1392 /* Return first free tcam index, seeking from start to end */
1393 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1394 unsigned char end)
1396 int tid;
1398 if (start > end)
1399 swap(start, end);
1401 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1402 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1404 for (tid = start; tid <= end; tid++) {
1405 if (!priv->prs_shadow[tid].valid)
1406 return tid;
1409 return -EINVAL;
1412 /* Enable/disable dropping all mac da's */
1413 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1415 struct mvpp2_prs_entry pe;
1417 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1418 /* Entry exist - update port only */
1419 pe.index = MVPP2_PE_DROP_ALL;
1420 mvpp2_prs_hw_read(priv, &pe);
1421 } else {
1422 /* Entry doesn't exist - create new */
1423 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1424 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1425 pe.index = MVPP2_PE_DROP_ALL;
1427 /* Non-promiscuous mode for all ports - DROP unknown packets */
1428 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1429 MVPP2_PRS_RI_DROP_MASK);
1431 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1432 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1434 /* Update shadow table */
1435 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1437 /* Mask all ports */
1438 mvpp2_prs_tcam_port_map_set(&pe, 0);
1441 /* Update port mask */
1442 mvpp2_prs_tcam_port_set(&pe, port, add);
1444 mvpp2_prs_hw_write(priv, &pe);
1447 /* Set port to promiscuous mode */
1448 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1450 struct mvpp2_prs_entry pe;
1452 /* Promiscuous mode - Accept unknown packets */
1454 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1455 /* Entry exist - update port only */
1456 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1457 mvpp2_prs_hw_read(priv, &pe);
1458 } else {
1459 /* Entry doesn't exist - create new */
1460 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1461 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1462 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1464 /* Continue - set next lookup */
1465 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1467 /* Set result info bits */
1468 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1469 MVPP2_PRS_RI_L2_CAST_MASK);
1471 /* Shift to ethertype */
1472 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1473 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1475 /* Mask all ports */
1476 mvpp2_prs_tcam_port_map_set(&pe, 0);
1478 /* Update shadow table */
1479 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1482 /* Update port mask */
1483 mvpp2_prs_tcam_port_set(&pe, port, add);
1485 mvpp2_prs_hw_write(priv, &pe);
1488 /* Accept multicast */
1489 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1490 bool add)
1492 struct mvpp2_prs_entry pe;
1493 unsigned char da_mc;
1495 /* Ethernet multicast address first byte is
1496 * 0x01 for IPv4 and 0x33 for IPv6
1498 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1500 if (priv->prs_shadow[index].valid) {
1501 /* Entry exist - update port only */
1502 pe.index = index;
1503 mvpp2_prs_hw_read(priv, &pe);
1504 } else {
1505 /* Entry doesn't exist - create new */
1506 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1507 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1508 pe.index = index;
1510 /* Continue - set next lookup */
1511 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1513 /* Set result info bits */
1514 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1515 MVPP2_PRS_RI_L2_CAST_MASK);
1517 /* Update tcam entry data first byte */
1518 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1520 /* Shift to ethertype */
1521 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1522 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1524 /* Mask all ports */
1525 mvpp2_prs_tcam_port_map_set(&pe, 0);
1527 /* Update shadow table */
1528 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1531 /* Update port mask */
1532 mvpp2_prs_tcam_port_set(&pe, port, add);
1534 mvpp2_prs_hw_write(priv, &pe);
1537 /* Set entry for dsa packets */
1538 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1539 bool tagged, bool extend)
1541 struct mvpp2_prs_entry pe;
1542 int tid, shift;
1544 if (extend) {
1545 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1546 shift = 8;
1547 } else {
1548 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1549 shift = 4;
1552 if (priv->prs_shadow[tid].valid) {
1553 /* Entry exist - update port only */
1554 pe.index = tid;
1555 mvpp2_prs_hw_read(priv, &pe);
1556 } else {
1557 /* Entry doesn't exist - create new */
1558 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1559 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1560 pe.index = tid;
1562 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1563 mvpp2_prs_sram_shift_set(&pe, shift,
1564 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1566 /* Update shadow table */
1567 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1569 if (tagged) {
1570 /* Set tagged bit in DSA tag */
1571 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1572 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1573 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1574 /* Clear all ai bits for next iteration */
1575 mvpp2_prs_sram_ai_update(&pe, 0,
1576 MVPP2_PRS_SRAM_AI_MASK);
1577 /* If packet is tagged continue check vlans */
1578 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1579 } else {
1580 /* Set result info bits to 'no vlans' */
1581 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1582 MVPP2_PRS_RI_VLAN_MASK);
1583 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1586 /* Mask all ports */
1587 mvpp2_prs_tcam_port_map_set(&pe, 0);
1590 /* Update port mask */
1591 mvpp2_prs_tcam_port_set(&pe, port, add);
1593 mvpp2_prs_hw_write(priv, &pe);
1596 /* Set entry for dsa ethertype */
1597 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1598 bool add, bool tagged, bool extend)
1600 struct mvpp2_prs_entry pe;
1601 int tid, shift, port_mask;
1603 if (extend) {
1604 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1605 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1606 port_mask = 0;
1607 shift = 8;
1608 } else {
1609 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1610 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1611 port_mask = MVPP2_PRS_PORT_MASK;
1612 shift = 4;
1615 if (priv->prs_shadow[tid].valid) {
1616 /* Entry exist - update port only */
1617 pe.index = tid;
1618 mvpp2_prs_hw_read(priv, &pe);
1619 } else {
1620 /* Entry doesn't exist - create new */
1621 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1622 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1623 pe.index = tid;
1625 /* Set ethertype */
1626 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1627 mvpp2_prs_match_etype(&pe, 2, 0);
1629 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1630 MVPP2_PRS_RI_DSA_MASK);
1631 /* Shift ethertype + 2 byte reserved + tag*/
1632 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1633 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1635 /* Update shadow table */
1636 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1638 if (tagged) {
1639 /* Set tagged bit in DSA tag */
1640 mvpp2_prs_tcam_data_byte_set(&pe,
1641 MVPP2_ETH_TYPE_LEN + 2 + 3,
1642 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1643 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1644 /* Clear all ai bits for next iteration */
1645 mvpp2_prs_sram_ai_update(&pe, 0,
1646 MVPP2_PRS_SRAM_AI_MASK);
1647 /* If packet is tagged continue check vlans */
1648 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1649 } else {
1650 /* Set result info bits to 'no vlans' */
1651 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1652 MVPP2_PRS_RI_VLAN_MASK);
1653 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1655 /* Mask/unmask all ports, depending on dsa type */
1656 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1659 /* Update port mask */
1660 mvpp2_prs_tcam_port_set(&pe, port, add);
1662 mvpp2_prs_hw_write(priv, &pe);
1665 /* Search for existing single/triple vlan entry */
1666 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1667 unsigned short tpid, int ai)
1669 struct mvpp2_prs_entry *pe;
1670 int tid;
1672 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1673 if (!pe)
1674 return NULL;
1675 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1677 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1678 for (tid = MVPP2_PE_FIRST_FREE_TID;
1679 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1680 unsigned int ri_bits, ai_bits;
1681 bool match;
1683 if (!priv->prs_shadow[tid].valid ||
1684 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1685 continue;
1687 pe->index = tid;
1689 mvpp2_prs_hw_read(priv, pe);
1690 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1691 if (!match)
1692 continue;
1694 /* Get vlan type */
1695 ri_bits = mvpp2_prs_sram_ri_get(pe);
1696 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1698 /* Get current ai value from tcam */
1699 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1700 /* Clear double vlan bit */
1701 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1703 if (ai != ai_bits)
1704 continue;
1706 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1707 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1708 return pe;
1710 kfree(pe);
1712 return NULL;
1715 /* Add/update single/triple vlan entry */
1716 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1717 unsigned int port_map)
1719 struct mvpp2_prs_entry *pe;
1720 int tid_aux, tid;
1721 int ret = 0;
1723 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1725 if (!pe) {
1726 /* Create new tcam entry */
1727 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1728 MVPP2_PE_FIRST_FREE_TID);
1729 if (tid < 0)
1730 return tid;
1732 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1733 if (!pe)
1734 return -ENOMEM;
1736 /* Get last double vlan tid */
1737 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1738 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1739 unsigned int ri_bits;
1741 if (!priv->prs_shadow[tid_aux].valid ||
1742 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1743 continue;
1745 pe->index = tid_aux;
1746 mvpp2_prs_hw_read(priv, pe);
1747 ri_bits = mvpp2_prs_sram_ri_get(pe);
1748 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1749 MVPP2_PRS_RI_VLAN_DOUBLE)
1750 break;
1753 if (tid <= tid_aux) {
1754 ret = -EINVAL;
1755 goto error;
1758 memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1759 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1760 pe->index = tid;
1762 mvpp2_prs_match_etype(pe, 0, tpid);
1764 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1765 /* Shift 4 bytes - skip 1 vlan tag */
1766 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1767 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1768 /* Clear all ai bits for next iteration */
1769 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1771 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1772 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1773 MVPP2_PRS_RI_VLAN_MASK);
1774 } else {
1775 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1776 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1777 MVPP2_PRS_RI_VLAN_MASK);
1779 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1781 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1783 /* Update ports' mask */
1784 mvpp2_prs_tcam_port_map_set(pe, port_map);
1786 mvpp2_prs_hw_write(priv, pe);
1788 error:
1789 kfree(pe);
1791 return ret;
1794 /* Get first free double vlan ai number */
1795 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1797 int i;
1799 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1800 if (!priv->prs_double_vlans[i])
1801 return i;
1804 return -EINVAL;
1807 /* Search for existing double vlan entry */
1808 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1809 unsigned short tpid1,
1810 unsigned short tpid2)
1812 struct mvpp2_prs_entry *pe;
1813 int tid;
1815 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1816 if (!pe)
1817 return NULL;
1818 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1820 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1821 for (tid = MVPP2_PE_FIRST_FREE_TID;
1822 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1823 unsigned int ri_mask;
1824 bool match;
1826 if (!priv->prs_shadow[tid].valid ||
1827 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1828 continue;
1830 pe->index = tid;
1831 mvpp2_prs_hw_read(priv, pe);
1833 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1834 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1836 if (!match)
1837 continue;
1839 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1840 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1841 return pe;
1843 kfree(pe);
1845 return NULL;
1848 /* Add or update double vlan entry */
1849 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1850 unsigned short tpid2,
1851 unsigned int port_map)
1853 struct mvpp2_prs_entry *pe;
1854 int tid_aux, tid, ai, ret = 0;
1856 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1858 if (!pe) {
1859 /* Create new tcam entry */
1860 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1861 MVPP2_PE_LAST_FREE_TID);
1862 if (tid < 0)
1863 return tid;
1865 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1866 if (!pe)
1867 return -ENOMEM;
1869 /* Set ai value for new double vlan entry */
1870 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1871 if (ai < 0) {
1872 ret = ai;
1873 goto error;
1876 /* Get first single/triple vlan tid */
1877 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1878 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1879 unsigned int ri_bits;
1881 if (!priv->prs_shadow[tid_aux].valid ||
1882 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1883 continue;
1885 pe->index = tid_aux;
1886 mvpp2_prs_hw_read(priv, pe);
1887 ri_bits = mvpp2_prs_sram_ri_get(pe);
1888 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1889 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1890 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1891 break;
1894 if (tid >= tid_aux) {
1895 ret = -ERANGE;
1896 goto error;
1899 memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1900 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1901 pe->index = tid;
1903 priv->prs_double_vlans[ai] = true;
1905 mvpp2_prs_match_etype(pe, 0, tpid1);
1906 mvpp2_prs_match_etype(pe, 4, tpid2);
1908 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1909 /* Shift 8 bytes - skip 2 vlan tags */
1910 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1911 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1912 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1913 MVPP2_PRS_RI_VLAN_MASK);
1914 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1915 MVPP2_PRS_SRAM_AI_MASK);
1917 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1920 /* Update ports' mask */
1921 mvpp2_prs_tcam_port_map_set(pe, port_map);
1922 mvpp2_prs_hw_write(priv, pe);
1924 error:
1925 kfree(pe);
1926 return ret;
1929 /* IPv4 header parsing for fragmentation and L4 offset */
1930 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1931 unsigned int ri, unsigned int ri_mask)
1933 struct mvpp2_prs_entry pe;
1934 int tid;
1936 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1937 (proto != IPPROTO_IGMP))
1938 return -EINVAL;
1940 /* Fragmented packet */
1941 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1942 MVPP2_PE_LAST_FREE_TID);
1943 if (tid < 0)
1944 return tid;
1946 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1947 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1948 pe.index = tid;
1950 /* Set next lu to IPv4 */
1951 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1952 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1953 /* Set L4 offset */
1954 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1955 sizeof(struct iphdr) - 4,
1956 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1957 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1958 MVPP2_PRS_IPV4_DIP_AI_BIT);
1959 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1960 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1962 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1963 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1964 /* Unmask all ports */
1965 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1967 /* Update shadow table and hw entry */
1968 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1969 mvpp2_prs_hw_write(priv, &pe);
1971 /* Not fragmented packet */
1972 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1973 MVPP2_PE_LAST_FREE_TID);
1974 if (tid < 0)
1975 return tid;
1977 pe.index = tid;
1978 /* Clear ri before updating */
1979 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1980 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1981 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1983 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1984 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1986 /* Update shadow table and hw entry */
1987 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1988 mvpp2_prs_hw_write(priv, &pe);
1990 return 0;
1993 /* IPv4 L3 multicast or broadcast */
1994 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1996 struct mvpp2_prs_entry pe;
1997 int mask, tid;
1999 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2000 MVPP2_PE_LAST_FREE_TID);
2001 if (tid < 0)
2002 return tid;
2004 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2005 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2006 pe.index = tid;
2008 switch (l3_cast) {
2009 case MVPP2_PRS_L3_MULTI_CAST:
2010 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2011 MVPP2_PRS_IPV4_MC_MASK);
2012 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2013 MVPP2_PRS_RI_L3_ADDR_MASK);
2014 break;
2015 case MVPP2_PRS_L3_BROAD_CAST:
2016 mask = MVPP2_PRS_IPV4_BC_MASK;
2017 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2018 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2019 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2020 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2021 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2022 MVPP2_PRS_RI_L3_ADDR_MASK);
2023 break;
2024 default:
2025 return -EINVAL;
2028 /* Finished: go to flowid generation */
2029 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2030 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2032 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2033 MVPP2_PRS_IPV4_DIP_AI_BIT);
2034 /* Unmask all ports */
2035 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2037 /* Update shadow table and hw entry */
2038 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2039 mvpp2_prs_hw_write(priv, &pe);
2041 return 0;
2044 /* Set entries for protocols over IPv6 */
2045 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2046 unsigned int ri, unsigned int ri_mask)
2048 struct mvpp2_prs_entry pe;
2049 int tid;
2051 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2052 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2053 return -EINVAL;
2055 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2056 MVPP2_PE_LAST_FREE_TID);
2057 if (tid < 0)
2058 return tid;
2060 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2061 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2062 pe.index = tid;
2064 /* Finished: go to flowid generation */
2065 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2066 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2067 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2068 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2069 sizeof(struct ipv6hdr) - 6,
2070 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2072 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2073 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2074 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2075 /* Unmask all ports */
2076 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2078 /* Write HW */
2079 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2080 mvpp2_prs_hw_write(priv, &pe);
2082 return 0;
2085 /* IPv6 L3 multicast entry */
2086 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2088 struct mvpp2_prs_entry pe;
2089 int tid;
2091 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2092 return -EINVAL;
2094 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2095 MVPP2_PE_LAST_FREE_TID);
2096 if (tid < 0)
2097 return tid;
2099 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2100 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2101 pe.index = tid;
2103 /* Finished: go to flowid generation */
2104 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2105 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2106 MVPP2_PRS_RI_L3_ADDR_MASK);
2107 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2108 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2109 /* Shift back to IPv6 NH */
2110 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2112 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2113 MVPP2_PRS_IPV6_MC_MASK);
2114 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2115 /* Unmask all ports */
2116 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2118 /* Update shadow table and hw entry */
2119 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2120 mvpp2_prs_hw_write(priv, &pe);
2122 return 0;
2125 /* Parser per-port initialization */
2126 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2127 int lu_max, int offset)
2129 u32 val;
2131 /* Set lookup ID */
2132 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2133 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2134 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2135 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2137 /* Set maximum number of loops for packet received from port */
2138 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2139 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2140 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2141 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2143 /* Set initial offset for packet header extraction for the first
2144 * searching loop
2146 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2147 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2148 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2149 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2152 /* Default flow entries initialization for all ports */
2153 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2155 struct mvpp2_prs_entry pe;
2156 int port;
2158 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2159 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2160 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2161 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2163 /* Mask all ports */
2164 mvpp2_prs_tcam_port_map_set(&pe, 0);
2166 /* Set flow ID*/
2167 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2168 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2170 /* Update shadow table and hw entry */
2171 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2172 mvpp2_prs_hw_write(priv, &pe);
2176 /* Set default entry for Marvell Header field */
2177 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2179 struct mvpp2_prs_entry pe;
2181 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2183 pe.index = MVPP2_PE_MH_DEFAULT;
2184 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2185 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2186 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2187 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2189 /* Unmask all ports */
2190 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2192 /* Update shadow table and hw entry */
2193 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2194 mvpp2_prs_hw_write(priv, &pe);
2197 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2198 * multicast MAC addresses
2200 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2202 struct mvpp2_prs_entry pe;
2204 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2206 /* Non-promiscuous mode for all ports - DROP unknown packets */
2207 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2208 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2210 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2211 MVPP2_PRS_RI_DROP_MASK);
2212 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2213 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2215 /* Unmask all ports */
2216 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2218 /* Update shadow table and hw entry */
2219 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2220 mvpp2_prs_hw_write(priv, &pe);
2222 /* place holders only - no ports */
2223 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2224 mvpp2_prs_mac_promisc_set(priv, 0, false);
2225 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2226 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2229 /* Set default entries for various types of dsa packets */
2230 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2232 struct mvpp2_prs_entry pe;
2234 /* None tagged EDSA entry - place holder */
2235 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2236 MVPP2_PRS_EDSA);
2238 /* Tagged EDSA entry - place holder */
2239 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2241 /* None tagged DSA entry - place holder */
2242 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2243 MVPP2_PRS_DSA);
2245 /* Tagged DSA entry - place holder */
2246 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2248 /* None tagged EDSA ethertype entry - place holder*/
2249 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2250 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2252 /* Tagged EDSA ethertype entry - place holder*/
2253 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2254 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2256 /* None tagged DSA ethertype entry */
2257 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2258 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2260 /* Tagged DSA ethertype entry */
2261 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2262 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2264 /* Set default entry, in case DSA or EDSA tag not found */
2265 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2266 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2267 pe.index = MVPP2_PE_DSA_DEFAULT;
2268 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2270 /* Shift 0 bytes */
2271 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2272 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2274 /* Clear all sram ai bits for next iteration */
2275 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2277 /* Unmask all ports */
2278 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2280 mvpp2_prs_hw_write(priv, &pe);
2283 /* Match basic ethertypes */
2284 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2286 struct mvpp2_prs_entry pe;
2287 int tid;
2289 /* Ethertype: PPPoE */
2290 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2291 MVPP2_PE_LAST_FREE_TID);
2292 if (tid < 0)
2293 return tid;
2295 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2296 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2297 pe.index = tid;
2299 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2301 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2302 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2303 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2304 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2305 MVPP2_PRS_RI_PPPOE_MASK);
2307 /* Update shadow table and hw entry */
2308 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2309 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2310 priv->prs_shadow[pe.index].finish = false;
2311 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2312 MVPP2_PRS_RI_PPPOE_MASK);
2313 mvpp2_prs_hw_write(priv, &pe);
2315 /* Ethertype: ARP */
2316 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2317 MVPP2_PE_LAST_FREE_TID);
2318 if (tid < 0)
2319 return tid;
2321 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2322 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2323 pe.index = tid;
2325 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2327 /* Generate flow in the next iteration*/
2328 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2329 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2330 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2331 MVPP2_PRS_RI_L3_PROTO_MASK);
2332 /* Set L3 offset */
2333 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2334 MVPP2_ETH_TYPE_LEN,
2335 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2337 /* Update shadow table and hw entry */
2338 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2339 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2340 priv->prs_shadow[pe.index].finish = true;
2341 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2342 MVPP2_PRS_RI_L3_PROTO_MASK);
2343 mvpp2_prs_hw_write(priv, &pe);
2345 /* Ethertype: LBTD */
2346 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2347 MVPP2_PE_LAST_FREE_TID);
2348 if (tid < 0)
2349 return tid;
2351 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2352 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2353 pe.index = tid;
2355 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2357 /* Generate flow in the next iteration*/
2358 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2359 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2360 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2361 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2362 MVPP2_PRS_RI_CPU_CODE_MASK |
2363 MVPP2_PRS_RI_UDF3_MASK);
2364 /* Set L3 offset */
2365 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2366 MVPP2_ETH_TYPE_LEN,
2367 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2369 /* Update shadow table and hw entry */
2370 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2371 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2372 priv->prs_shadow[pe.index].finish = true;
2373 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2374 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2375 MVPP2_PRS_RI_CPU_CODE_MASK |
2376 MVPP2_PRS_RI_UDF3_MASK);
2377 mvpp2_prs_hw_write(priv, &pe);
2379 /* Ethertype: IPv4 without options */
2380 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2381 MVPP2_PE_LAST_FREE_TID);
2382 if (tid < 0)
2383 return tid;
2385 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2386 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2387 pe.index = tid;
2389 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2390 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2391 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2392 MVPP2_PRS_IPV4_HEAD_MASK |
2393 MVPP2_PRS_IPV4_IHL_MASK);
2395 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2396 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2397 MVPP2_PRS_RI_L3_PROTO_MASK);
2398 /* Skip eth_type + 4 bytes of IP header */
2399 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2400 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2401 /* Set L3 offset */
2402 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2403 MVPP2_ETH_TYPE_LEN,
2404 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2406 /* Update shadow table and hw entry */
2407 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2408 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2409 priv->prs_shadow[pe.index].finish = false;
2410 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2411 MVPP2_PRS_RI_L3_PROTO_MASK);
2412 mvpp2_prs_hw_write(priv, &pe);
2414 /* Ethertype: IPv4 with options */
2415 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2416 MVPP2_PE_LAST_FREE_TID);
2417 if (tid < 0)
2418 return tid;
2420 pe.index = tid;
2422 /* Clear tcam data before updating */
2423 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2424 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2426 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2427 MVPP2_PRS_IPV4_HEAD,
2428 MVPP2_PRS_IPV4_HEAD_MASK);
2430 /* Clear ri before updating */
2431 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2432 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2433 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2434 MVPP2_PRS_RI_L3_PROTO_MASK);
2436 /* Update shadow table and hw entry */
2437 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2438 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2439 priv->prs_shadow[pe.index].finish = false;
2440 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2441 MVPP2_PRS_RI_L3_PROTO_MASK);
2442 mvpp2_prs_hw_write(priv, &pe);
2444 /* Ethertype: IPv6 without options */
2445 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2446 MVPP2_PE_LAST_FREE_TID);
2447 if (tid < 0)
2448 return tid;
2450 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2451 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2452 pe.index = tid;
2454 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2456 /* Skip DIP of IPV6 header */
2457 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2458 MVPP2_MAX_L3_ADDR_SIZE,
2459 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2460 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2461 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2462 MVPP2_PRS_RI_L3_PROTO_MASK);
2463 /* Set L3 offset */
2464 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2465 MVPP2_ETH_TYPE_LEN,
2466 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2468 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2469 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2470 priv->prs_shadow[pe.index].finish = false;
2471 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2472 MVPP2_PRS_RI_L3_PROTO_MASK);
2473 mvpp2_prs_hw_write(priv, &pe);
2475 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2476 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2477 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2478 pe.index = MVPP2_PE_ETH_TYPE_UN;
2480 /* Unmask all ports */
2481 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2483 /* Generate flow in the next iteration*/
2484 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2485 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2486 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2487 MVPP2_PRS_RI_L3_PROTO_MASK);
2488 /* Set L3 offset even it's unknown L3 */
2489 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2490 MVPP2_ETH_TYPE_LEN,
2491 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2493 /* Update shadow table and hw entry */
2494 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2495 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2496 priv->prs_shadow[pe.index].finish = true;
2497 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2498 MVPP2_PRS_RI_L3_PROTO_MASK);
2499 mvpp2_prs_hw_write(priv, &pe);
2501 return 0;
2504 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2505 * Possible options:
2506 * 0x8100, 0x88A8
2507 * 0x8100, 0x8100
2508 * 0x8100
2509 * 0x88A8
2511 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2513 struct mvpp2_prs_entry pe;
2514 int err;
2516 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2517 MVPP2_PRS_DBL_VLANS_MAX,
2518 GFP_KERNEL);
2519 if (!priv->prs_double_vlans)
2520 return -ENOMEM;
2522 /* Double VLAN: 0x8100, 0x88A8 */
2523 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2524 MVPP2_PRS_PORT_MASK);
2525 if (err)
2526 return err;
2528 /* Double VLAN: 0x8100, 0x8100 */
2529 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2530 MVPP2_PRS_PORT_MASK);
2531 if (err)
2532 return err;
2534 /* Single VLAN: 0x88a8 */
2535 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2536 MVPP2_PRS_PORT_MASK);
2537 if (err)
2538 return err;
2540 /* Single VLAN: 0x8100 */
2541 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2542 MVPP2_PRS_PORT_MASK);
2543 if (err)
2544 return err;
2546 /* Set default double vlan entry */
2547 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2548 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2549 pe.index = MVPP2_PE_VLAN_DBL;
2551 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2552 /* Clear ai for next iterations */
2553 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2554 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2555 MVPP2_PRS_RI_VLAN_MASK);
2557 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2558 MVPP2_PRS_DBL_VLAN_AI_BIT);
2559 /* Unmask all ports */
2560 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2562 /* Update shadow table and hw entry */
2563 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2564 mvpp2_prs_hw_write(priv, &pe);
2566 /* Set default vlan none entry */
2567 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2568 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2569 pe.index = MVPP2_PE_VLAN_NONE;
2571 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2572 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2573 MVPP2_PRS_RI_VLAN_MASK);
2575 /* Unmask all ports */
2576 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2578 /* Update shadow table and hw entry */
2579 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2580 mvpp2_prs_hw_write(priv, &pe);
2582 return 0;
2585 /* Set entries for PPPoE ethertype */
2586 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2588 struct mvpp2_prs_entry pe;
2589 int tid;
2591 /* IPv4 over PPPoE with options */
2592 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2593 MVPP2_PE_LAST_FREE_TID);
2594 if (tid < 0)
2595 return tid;
2597 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2598 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2599 pe.index = tid;
2601 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2603 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2604 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2605 MVPP2_PRS_RI_L3_PROTO_MASK);
2606 /* Skip eth_type + 4 bytes of IP header */
2607 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2608 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2609 /* Set L3 offset */
2610 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2611 MVPP2_ETH_TYPE_LEN,
2612 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2614 /* Update shadow table and hw entry */
2615 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2616 mvpp2_prs_hw_write(priv, &pe);
2618 /* IPv4 over PPPoE without options */
2619 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2620 MVPP2_PE_LAST_FREE_TID);
2621 if (tid < 0)
2622 return tid;
2624 pe.index = tid;
2626 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2627 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2628 MVPP2_PRS_IPV4_HEAD_MASK |
2629 MVPP2_PRS_IPV4_IHL_MASK);
2631 /* Clear ri before updating */
2632 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2633 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2634 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2635 MVPP2_PRS_RI_L3_PROTO_MASK);
2637 /* Update shadow table and hw entry */
2638 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2639 mvpp2_prs_hw_write(priv, &pe);
2641 /* IPv6 over PPPoE */
2642 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2643 MVPP2_PE_LAST_FREE_TID);
2644 if (tid < 0)
2645 return tid;
2647 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2648 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2649 pe.index = tid;
2651 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2653 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2654 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2655 MVPP2_PRS_RI_L3_PROTO_MASK);
2656 /* Skip eth_type + 4 bytes of IPv6 header */
2657 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2658 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2659 /* Set L3 offset */
2660 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2661 MVPP2_ETH_TYPE_LEN,
2662 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2664 /* Update shadow table and hw entry */
2665 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2666 mvpp2_prs_hw_write(priv, &pe);
2668 /* Non-IP over PPPoE */
2669 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2670 MVPP2_PE_LAST_FREE_TID);
2671 if (tid < 0)
2672 return tid;
2674 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2675 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2676 pe.index = tid;
2678 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2679 MVPP2_PRS_RI_L3_PROTO_MASK);
2681 /* Finished: go to flowid generation */
2682 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2683 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2684 /* Set L3 offset even if it's unknown L3 */
2685 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2686 MVPP2_ETH_TYPE_LEN,
2687 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2689 /* Update shadow table and hw entry */
2690 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2691 mvpp2_prs_hw_write(priv, &pe);
2693 return 0;
2696 /* Initialize entries for IPv4 */
2697 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2699 struct mvpp2_prs_entry pe;
2700 int err;
2702 /* Set entries for TCP, UDP and IGMP over IPv4 */
2703 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2704 MVPP2_PRS_RI_L4_PROTO_MASK);
2705 if (err)
2706 return err;
2708 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2709 MVPP2_PRS_RI_L4_PROTO_MASK);
2710 if (err)
2711 return err;
2713 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2714 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2715 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2716 MVPP2_PRS_RI_CPU_CODE_MASK |
2717 MVPP2_PRS_RI_UDF3_MASK);
2718 if (err)
2719 return err;
2721 /* IPv4 Broadcast */
2722 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2723 if (err)
2724 return err;
2726 /* IPv4 Multicast */
2727 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2728 if (err)
2729 return err;
2731 /* Default IPv4 entry for unknown protocols */
2732 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2733 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2734 pe.index = MVPP2_PE_IP4_PROTO_UN;
2736 /* Set next lu to IPv4 */
2737 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2738 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2739 /* Set L4 offset */
2740 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2741 sizeof(struct iphdr) - 4,
2742 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2743 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2744 MVPP2_PRS_IPV4_DIP_AI_BIT);
2745 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2746 MVPP2_PRS_RI_L4_PROTO_MASK);
2748 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2749 /* Unmask all ports */
2750 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2752 /* Update shadow table and hw entry */
2753 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2754 mvpp2_prs_hw_write(priv, &pe);
2756 /* Default IPv4 entry for unicast address */
2757 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2758 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2759 pe.index = MVPP2_PE_IP4_ADDR_UN;
2761 /* Finished: go to flowid generation */
2762 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2763 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2764 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2765 MVPP2_PRS_RI_L3_ADDR_MASK);
2767 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2768 MVPP2_PRS_IPV4_DIP_AI_BIT);
2769 /* Unmask all ports */
2770 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2772 /* Update shadow table and hw entry */
2773 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2774 mvpp2_prs_hw_write(priv, &pe);
2776 return 0;
2779 /* Initialize entries for IPv6 */
2780 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2782 struct mvpp2_prs_entry pe;
2783 int tid, err;
2785 /* Set entries for TCP, UDP and ICMP over IPv6 */
2786 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2787 MVPP2_PRS_RI_L4_TCP,
2788 MVPP2_PRS_RI_L4_PROTO_MASK);
2789 if (err)
2790 return err;
2792 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2793 MVPP2_PRS_RI_L4_UDP,
2794 MVPP2_PRS_RI_L4_PROTO_MASK);
2795 if (err)
2796 return err;
2798 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2799 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2800 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2801 MVPP2_PRS_RI_CPU_CODE_MASK |
2802 MVPP2_PRS_RI_UDF3_MASK);
2803 if (err)
2804 return err;
2806 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2807 /* Result Info: UDF7=1, DS lite */
2808 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2809 MVPP2_PRS_RI_UDF7_IP6_LITE,
2810 MVPP2_PRS_RI_UDF7_MASK);
2811 if (err)
2812 return err;
2814 /* IPv6 multicast */
2815 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2816 if (err)
2817 return err;
2819 /* Entry for checking hop limit */
2820 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2821 MVPP2_PE_LAST_FREE_TID);
2822 if (tid < 0)
2823 return tid;
2825 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2826 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2827 pe.index = tid;
2829 /* Finished: go to flowid generation */
2830 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2831 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2832 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2833 MVPP2_PRS_RI_DROP_MASK,
2834 MVPP2_PRS_RI_L3_PROTO_MASK |
2835 MVPP2_PRS_RI_DROP_MASK);
2837 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2838 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2839 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2841 /* Update shadow table and hw entry */
2842 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2843 mvpp2_prs_hw_write(priv, &pe);
2845 /* Default IPv6 entry for unknown protocols */
2846 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2847 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2848 pe.index = MVPP2_PE_IP6_PROTO_UN;
2850 /* Finished: go to flowid generation */
2851 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2852 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2853 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2854 MVPP2_PRS_RI_L4_PROTO_MASK);
2855 /* Set L4 offset relatively to our current place */
2856 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2857 sizeof(struct ipv6hdr) - 4,
2858 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2860 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2861 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2862 /* Unmask all ports */
2863 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2865 /* Update shadow table and hw entry */
2866 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2867 mvpp2_prs_hw_write(priv, &pe);
2869 /* Default IPv6 entry for unknown ext protocols */
2870 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2871 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2872 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2874 /* Finished: go to flowid generation */
2875 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2876 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2877 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2878 MVPP2_PRS_RI_L4_PROTO_MASK);
2880 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2881 MVPP2_PRS_IPV6_EXT_AI_BIT);
2882 /* Unmask all ports */
2883 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2885 /* Update shadow table and hw entry */
2886 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2887 mvpp2_prs_hw_write(priv, &pe);
2889 /* Default IPv6 entry for unicast address */
2890 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2891 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2892 pe.index = MVPP2_PE_IP6_ADDR_UN;
2894 /* Finished: go to IPv6 again */
2895 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2896 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2897 MVPP2_PRS_RI_L3_ADDR_MASK);
2898 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2899 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2900 /* Shift back to IPV6 NH */
2901 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2903 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2904 /* Unmask all ports */
2905 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2907 /* Update shadow table and hw entry */
2908 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2909 mvpp2_prs_hw_write(priv, &pe);
2911 return 0;
2914 /* Parser default initialization */
2915 static int mvpp2_prs_default_init(struct platform_device *pdev,
2916 struct mvpp2 *priv)
2918 int err, index, i;
2920 /* Enable tcam table */
2921 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2923 /* Clear all tcam and sram entries */
2924 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2925 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2926 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2927 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2929 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2930 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2931 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2934 /* Invalidate all tcam entries */
2935 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2936 mvpp2_prs_hw_inv(priv, index);
2938 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2939 sizeof(struct mvpp2_prs_shadow),
2940 GFP_KERNEL);
2941 if (!priv->prs_shadow)
2942 return -ENOMEM;
2944 /* Always start from lookup = 0 */
2945 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2946 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2947 MVPP2_PRS_PORT_LU_MAX, 0);
2949 mvpp2_prs_def_flow_init(priv);
2951 mvpp2_prs_mh_init(priv);
2953 mvpp2_prs_mac_init(priv);
2955 mvpp2_prs_dsa_init(priv);
2957 err = mvpp2_prs_etype_init(priv);
2958 if (err)
2959 return err;
2961 err = mvpp2_prs_vlan_init(pdev, priv);
2962 if (err)
2963 return err;
2965 err = mvpp2_prs_pppoe_init(priv);
2966 if (err)
2967 return err;
2969 err = mvpp2_prs_ip6_init(priv);
2970 if (err)
2971 return err;
2973 err = mvpp2_prs_ip4_init(priv);
2974 if (err)
2975 return err;
2977 return 0;
2980 /* Compare MAC DA with tcam entry data */
2981 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2982 const u8 *da, unsigned char *mask)
2984 unsigned char tcam_byte, tcam_mask;
2985 int index;
2987 for (index = 0; index < ETH_ALEN; index++) {
2988 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2989 if (tcam_mask != mask[index])
2990 return false;
2992 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2993 return false;
2996 return true;
2999 /* Find tcam entry with matched pair <MAC DA, port> */
3000 static struct mvpp2_prs_entry *
3001 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
3002 unsigned char *mask, int udf_type)
3004 struct mvpp2_prs_entry *pe;
3005 int tid;
3007 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3008 if (!pe)
3009 return NULL;
3010 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3012 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3013 for (tid = MVPP2_PE_FIRST_FREE_TID;
3014 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3015 unsigned int entry_pmap;
3017 if (!priv->prs_shadow[tid].valid ||
3018 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3019 (priv->prs_shadow[tid].udf != udf_type))
3020 continue;
3022 pe->index = tid;
3023 mvpp2_prs_hw_read(priv, pe);
3024 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3026 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3027 entry_pmap == pmap)
3028 return pe;
3030 kfree(pe);
3032 return NULL;
3035 /* Update parser's mac da entry */
3036 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3037 const u8 *da, bool add)
3039 struct mvpp2_prs_entry *pe;
3040 unsigned int pmap, len, ri;
3041 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3042 int tid;
3044 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3045 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3046 MVPP2_PRS_UDF_MAC_DEF);
3048 /* No such entry */
3049 if (!pe) {
3050 if (!add)
3051 return 0;
3053 /* Create new TCAM entry */
3054 /* Find first range mac entry*/
3055 for (tid = MVPP2_PE_FIRST_FREE_TID;
3056 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3057 if (priv->prs_shadow[tid].valid &&
3058 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3059 (priv->prs_shadow[tid].udf ==
3060 MVPP2_PRS_UDF_MAC_RANGE))
3061 break;
3063 /* Go through the all entries from first to last */
3064 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3065 tid - 1);
3066 if (tid < 0)
3067 return tid;
3069 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3070 if (!pe)
3071 return -ENOMEM;
3072 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3073 pe->index = tid;
3075 /* Mask all ports */
3076 mvpp2_prs_tcam_port_map_set(pe, 0);
3079 /* Update port mask */
3080 mvpp2_prs_tcam_port_set(pe, port, add);
3082 /* Invalidate the entry if no ports are left enabled */
3083 pmap = mvpp2_prs_tcam_port_map_get(pe);
3084 if (pmap == 0) {
3085 if (add) {
3086 kfree(pe);
3087 return -EINVAL;
3089 mvpp2_prs_hw_inv(priv, pe->index);
3090 priv->prs_shadow[pe->index].valid = false;
3091 kfree(pe);
3092 return 0;
3095 /* Continue - set next lookup */
3096 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3098 /* Set match on DA */
3099 len = ETH_ALEN;
3100 while (len--)
3101 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3103 /* Set result info bits */
3104 if (is_broadcast_ether_addr(da))
3105 ri = MVPP2_PRS_RI_L2_BCAST;
3106 else if (is_multicast_ether_addr(da))
3107 ri = MVPP2_PRS_RI_L2_MCAST;
3108 else
3109 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3111 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3112 MVPP2_PRS_RI_MAC_ME_MASK);
3113 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3114 MVPP2_PRS_RI_MAC_ME_MASK);
3116 /* Shift to ethertype */
3117 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3118 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3120 /* Update shadow table and hw entry */
3121 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3122 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3123 mvpp2_prs_hw_write(priv, pe);
3125 kfree(pe);
3127 return 0;
3130 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3132 struct mvpp2_port *port = netdev_priv(dev);
3133 int err;
3135 /* Remove old parser entry */
3136 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3137 false);
3138 if (err)
3139 return err;
3141 /* Add new parser entry */
3142 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3143 if (err)
3144 return err;
3146 /* Set addr in the device */
3147 ether_addr_copy(dev->dev_addr, da);
3149 return 0;
3152 /* Delete all port's multicast simple (not range) entries */
3153 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3155 struct mvpp2_prs_entry pe;
3156 int index, tid;
3158 for (tid = MVPP2_PE_FIRST_FREE_TID;
3159 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3160 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3162 if (!priv->prs_shadow[tid].valid ||
3163 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3164 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3165 continue;
3167 /* Only simple mac entries */
3168 pe.index = tid;
3169 mvpp2_prs_hw_read(priv, &pe);
3171 /* Read mac addr from entry */
3172 for (index = 0; index < ETH_ALEN; index++)
3173 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3174 &da_mask[index]);
3176 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3177 /* Delete this entry */
3178 mvpp2_prs_mac_da_accept(priv, port, da, false);
3182 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3184 switch (type) {
3185 case MVPP2_TAG_TYPE_EDSA:
3186 /* Add port to EDSA entries */
3187 mvpp2_prs_dsa_tag_set(priv, port, true,
3188 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3189 mvpp2_prs_dsa_tag_set(priv, port, true,
3190 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3191 /* Remove port from DSA entries */
3192 mvpp2_prs_dsa_tag_set(priv, port, false,
3193 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3194 mvpp2_prs_dsa_tag_set(priv, port, false,
3195 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3196 break;
3198 case MVPP2_TAG_TYPE_DSA:
3199 /* Add port to DSA entries */
3200 mvpp2_prs_dsa_tag_set(priv, port, true,
3201 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3202 mvpp2_prs_dsa_tag_set(priv, port, true,
3203 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3204 /* Remove port from EDSA entries */
3205 mvpp2_prs_dsa_tag_set(priv, port, false,
3206 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3207 mvpp2_prs_dsa_tag_set(priv, port, false,
3208 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3209 break;
3211 case MVPP2_TAG_TYPE_MH:
3212 case MVPP2_TAG_TYPE_NONE:
3213 /* Remove port form EDSA and DSA entries */
3214 mvpp2_prs_dsa_tag_set(priv, port, false,
3215 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3216 mvpp2_prs_dsa_tag_set(priv, port, false,
3217 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3218 mvpp2_prs_dsa_tag_set(priv, port, false,
3219 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3220 mvpp2_prs_dsa_tag_set(priv, port, false,
3221 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3222 break;
3224 default:
3225 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3226 return -EINVAL;
3229 return 0;
3232 /* Set prs flow for the port */
3233 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3235 struct mvpp2_prs_entry *pe;
3236 int tid;
3238 pe = mvpp2_prs_flow_find(port->priv, port->id);
3240 /* Such entry not exist */
3241 if (!pe) {
3242 /* Go through the all entires from last to first */
3243 tid = mvpp2_prs_tcam_first_free(port->priv,
3244 MVPP2_PE_LAST_FREE_TID,
3245 MVPP2_PE_FIRST_FREE_TID);
3246 if (tid < 0)
3247 return tid;
3249 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3250 if (!pe)
3251 return -ENOMEM;
3253 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3254 pe->index = tid;
3256 /* Set flow ID*/
3257 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3258 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3260 /* Update shadow table */
3261 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3264 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3265 mvpp2_prs_hw_write(port->priv, pe);
3266 kfree(pe);
3268 return 0;
3271 /* Classifier configuration routines */
3273 /* Update classification flow table registers */
3274 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3275 struct mvpp2_cls_flow_entry *fe)
3277 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3278 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3279 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3280 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3283 /* Update classification lookup table register */
3284 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3285 struct mvpp2_cls_lookup_entry *le)
3287 u32 val;
3289 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3290 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3291 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3294 /* Classifier default initialization */
3295 static void mvpp2_cls_init(struct mvpp2 *priv)
3297 struct mvpp2_cls_lookup_entry le;
3298 struct mvpp2_cls_flow_entry fe;
3299 int index;
3301 /* Enable classifier */
3302 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3304 /* Clear classifier flow table */
3305 memset(&fe.data, 0, sizeof(fe.data));
3306 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3307 fe.index = index;
3308 mvpp2_cls_flow_write(priv, &fe);
3311 /* Clear classifier lookup table */
3312 le.data = 0;
3313 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3314 le.lkpid = index;
3315 le.way = 0;
3316 mvpp2_cls_lookup_write(priv, &le);
3318 le.way = 1;
3319 mvpp2_cls_lookup_write(priv, &le);
3323 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3325 struct mvpp2_cls_lookup_entry le;
3326 u32 val;
3328 /* Set way for the port */
3329 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3330 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3331 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3333 /* Pick the entry to be accessed in lookup ID decoding table
3334 * according to the way and lkpid.
3336 le.lkpid = port->id;
3337 le.way = 0;
3338 le.data = 0;
3340 /* Set initial CPU queue for receiving packets */
3341 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3342 le.data |= port->first_rxq;
3344 /* Disable classification engines */
3345 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3347 /* Update lookup ID table entry */
3348 mvpp2_cls_lookup_write(port->priv, &le);
3351 /* Set CPU queue number for oversize packets */
3352 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3354 u32 val;
3356 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3357 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3359 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3360 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3362 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3363 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3364 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3367 /* Buffer Manager configuration routines */
3369 /* Create pool */
3370 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3371 struct mvpp2 *priv,
3372 struct mvpp2_bm_pool *bm_pool, int size)
3374 int size_bytes;
3375 u32 val;
3377 size_bytes = sizeof(u32) * size;
3378 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3379 &bm_pool->phys_addr,
3380 GFP_KERNEL);
3381 if (!bm_pool->virt_addr)
3382 return -ENOMEM;
3384 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3385 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3386 bm_pool->phys_addr);
3387 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3388 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3389 return -ENOMEM;
3392 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3393 bm_pool->phys_addr);
3394 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3396 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3397 val |= MVPP2_BM_START_MASK;
3398 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3400 bm_pool->type = MVPP2_BM_FREE;
3401 bm_pool->size = size;
3402 bm_pool->pkt_size = 0;
3403 bm_pool->buf_num = 0;
3404 atomic_set(&bm_pool->in_use, 0);
3406 return 0;
3409 /* Set pool buffer size */
3410 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3411 struct mvpp2_bm_pool *bm_pool,
3412 int buf_size)
3414 u32 val;
3416 bm_pool->buf_size = buf_size;
3418 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3419 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3422 /* Free all buffers from the pool */
3423 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3424 struct mvpp2_bm_pool *bm_pool)
3426 int i;
3428 for (i = 0; i < bm_pool->buf_num; i++) {
3429 dma_addr_t buf_phys_addr;
3430 u32 vaddr;
3432 /* Get buffer virtual address (indirect access) */
3433 buf_phys_addr = mvpp2_read(priv,
3434 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3435 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3437 dma_unmap_single(dev, buf_phys_addr,
3438 bm_pool->buf_size, DMA_FROM_DEVICE);
3440 if (!vaddr)
3441 break;
3442 dev_kfree_skb_any((struct sk_buff *)vaddr);
3445 /* Update BM driver with number of buffers removed from pool */
3446 bm_pool->buf_num -= i;
3449 /* Cleanup pool */
3450 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3451 struct mvpp2 *priv,
3452 struct mvpp2_bm_pool *bm_pool)
3454 u32 val;
3456 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3457 if (bm_pool->buf_num) {
3458 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3459 return 0;
3462 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3463 val |= MVPP2_BM_STOP_MASK;
3464 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3466 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3467 bm_pool->virt_addr,
3468 bm_pool->phys_addr);
3469 return 0;
3472 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3473 struct mvpp2 *priv)
3475 int i, err, size;
3476 struct mvpp2_bm_pool *bm_pool;
3478 /* Create all pools with maximum size */
3479 size = MVPP2_BM_POOL_SIZE_MAX;
3480 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3481 bm_pool = &priv->bm_pools[i];
3482 bm_pool->id = i;
3483 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3484 if (err)
3485 goto err_unroll_pools;
3486 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3488 return 0;
3490 err_unroll_pools:
3491 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3492 for (i = i - 1; i >= 0; i--)
3493 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3494 return err;
3497 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3499 int i, err;
3501 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3502 /* Mask BM all interrupts */
3503 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3504 /* Clear BM cause register */
3505 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3508 /* Allocate and initialize BM pools */
3509 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3510 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3511 if (!priv->bm_pools)
3512 return -ENOMEM;
3514 err = mvpp2_bm_pools_init(pdev, priv);
3515 if (err < 0)
3516 return err;
3517 return 0;
3520 /* Attach long pool to rxq */
3521 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3522 int lrxq, int long_pool)
3524 u32 val;
3525 int prxq;
3527 /* Get queue physical ID */
3528 prxq = port->rxqs[lrxq]->id;
3530 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3531 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3532 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3533 MVPP2_RXQ_POOL_LONG_MASK);
3535 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3538 /* Attach short pool to rxq */
3539 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3540 int lrxq, int short_pool)
3542 u32 val;
3543 int prxq;
3545 /* Get queue physical ID */
3546 prxq = port->rxqs[lrxq]->id;
3548 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3549 val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3550 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3551 MVPP2_RXQ_POOL_SHORT_MASK);
3553 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3556 /* Allocate skb for BM pool */
3557 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3558 struct mvpp2_bm_pool *bm_pool,
3559 dma_addr_t *buf_phys_addr,
3560 gfp_t gfp_mask)
3562 struct sk_buff *skb;
3563 dma_addr_t phys_addr;
3565 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3566 if (!skb)
3567 return NULL;
3569 phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3570 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3571 DMA_FROM_DEVICE);
3572 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3573 dev_kfree_skb_any(skb);
3574 return NULL;
3576 *buf_phys_addr = phys_addr;
3578 return skb;
3581 /* Set pool number in a BM cookie */
3582 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3584 u32 bm;
3586 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3587 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3589 return bm;
3592 /* Get pool number from a BM cookie */
3593 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3595 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3598 /* Release buffer to BM */
3599 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3600 u32 buf_phys_addr, u32 buf_virt_addr)
3602 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3603 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3606 /* Release multicast buffer */
3607 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3608 u32 buf_phys_addr, u32 buf_virt_addr,
3609 int mc_id)
3611 u32 val = 0;
3613 val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3614 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3616 mvpp2_bm_pool_put(port, pool,
3617 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3618 buf_virt_addr);
3621 /* Refill BM pool */
3622 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3623 u32 phys_addr, u32 cookie)
3625 int pool = mvpp2_bm_cookie_pool_get(bm);
3627 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3630 /* Allocate buffers for the pool */
3631 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3632 struct mvpp2_bm_pool *bm_pool, int buf_num)
3634 struct sk_buff *skb;
3635 int i, buf_size, total_size;
3636 u32 bm;
3637 dma_addr_t phys_addr;
3639 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3640 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3642 if (buf_num < 0 ||
3643 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3644 netdev_err(port->dev,
3645 "cannot allocate %d buffers for pool %d\n",
3646 buf_num, bm_pool->id);
3647 return 0;
3650 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3651 for (i = 0; i < buf_num; i++) {
3652 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3653 if (!skb)
3654 break;
3656 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3659 /* Update BM driver with number of buffers added to pool */
3660 bm_pool->buf_num += i;
3661 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3663 netdev_dbg(port->dev,
3664 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3665 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3666 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3668 netdev_dbg(port->dev,
3669 "%s pool %d: %d of %d buffers added\n",
3670 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3671 bm_pool->id, i, buf_num);
3672 return i;
3675 /* Notify the driver that BM pool is being used as specific type and return the
3676 * pool pointer on success
3678 static struct mvpp2_bm_pool *
3679 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3680 int pkt_size)
3682 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3683 int num;
3685 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3686 netdev_err(port->dev, "mixing pool types is forbidden\n");
3687 return NULL;
3690 if (new_pool->type == MVPP2_BM_FREE)
3691 new_pool->type = type;
3693 /* Allocate buffers in case BM pool is used as long pool, but packet
3694 * size doesn't match MTU or BM pool hasn't being used yet
3696 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3697 (new_pool->pkt_size == 0)) {
3698 int pkts_num;
3700 /* Set default buffer number or free all the buffers in case
3701 * the pool is not empty
3703 pkts_num = new_pool->buf_num;
3704 if (pkts_num == 0)
3705 pkts_num = type == MVPP2_BM_SWF_LONG ?
3706 MVPP2_BM_LONG_BUF_NUM :
3707 MVPP2_BM_SHORT_BUF_NUM;
3708 else
3709 mvpp2_bm_bufs_free(port->dev->dev.parent,
3710 port->priv, new_pool);
3712 new_pool->pkt_size = pkt_size;
3714 /* Allocate buffers for this pool */
3715 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3716 if (num != pkts_num) {
3717 WARN(1, "pool %d: %d of %d allocated\n",
3718 new_pool->id, num, pkts_num);
3719 return NULL;
3723 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3724 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3726 return new_pool;
3729 /* Initialize pools for swf */
3730 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3732 int rxq;
3734 if (!port->pool_long) {
3735 port->pool_long =
3736 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3737 MVPP2_BM_SWF_LONG,
3738 port->pkt_size);
3739 if (!port->pool_long)
3740 return -ENOMEM;
3742 port->pool_long->port_map |= (1 << port->id);
3744 for (rxq = 0; rxq < rxq_number; rxq++)
3745 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3748 if (!port->pool_short) {
3749 port->pool_short =
3750 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3751 MVPP2_BM_SWF_SHORT,
3752 MVPP2_BM_SHORT_PKT_SIZE);
3753 if (!port->pool_short)
3754 return -ENOMEM;
3756 port->pool_short->port_map |= (1 << port->id);
3758 for (rxq = 0; rxq < rxq_number; rxq++)
3759 mvpp2_rxq_short_pool_set(port, rxq,
3760 port->pool_short->id);
3763 return 0;
3766 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3768 struct mvpp2_port *port = netdev_priv(dev);
3769 struct mvpp2_bm_pool *port_pool = port->pool_long;
3770 int num, pkts_num = port_pool->buf_num;
3771 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3773 /* Update BM pool with new buffer size */
3774 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3775 if (port_pool->buf_num) {
3776 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3777 return -EIO;
3780 port_pool->pkt_size = pkt_size;
3781 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3782 if (num != pkts_num) {
3783 WARN(1, "pool %d: %d of %d allocated\n",
3784 port_pool->id, num, pkts_num);
3785 return -EIO;
3788 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3789 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3790 dev->mtu = mtu;
3791 netdev_update_features(dev);
3792 return 0;
3795 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3797 int cpu, cpu_mask = 0;
3799 for_each_present_cpu(cpu)
3800 cpu_mask |= 1 << cpu;
3801 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3802 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3805 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3807 int cpu, cpu_mask = 0;
3809 for_each_present_cpu(cpu)
3810 cpu_mask |= 1 << cpu;
3811 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3812 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3815 /* Mask the current CPU's Rx/Tx interrupts */
3816 static void mvpp2_interrupts_mask(void *arg)
3818 struct mvpp2_port *port = arg;
3820 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3823 /* Unmask the current CPU's Rx/Tx interrupts */
3824 static void mvpp2_interrupts_unmask(void *arg)
3826 struct mvpp2_port *port = arg;
3828 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3829 (MVPP2_CAUSE_MISC_SUM_MASK |
3830 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3833 /* Port configuration routines */
3835 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3837 u32 val;
3839 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3841 switch (port->phy_interface) {
3842 case PHY_INTERFACE_MODE_SGMII:
3843 val |= MVPP2_GMAC_INBAND_AN_MASK;
3844 break;
3845 case PHY_INTERFACE_MODE_RGMII:
3846 val |= MVPP2_GMAC_PORT_RGMII_MASK;
3847 default:
3848 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3851 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3854 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3856 u32 val;
3858 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3859 val |= MVPP2_GMAC_FC_ADV_EN;
3860 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3863 static void mvpp2_port_enable(struct mvpp2_port *port)
3865 u32 val;
3867 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3868 val |= MVPP2_GMAC_PORT_EN_MASK;
3869 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3870 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3873 static void mvpp2_port_disable(struct mvpp2_port *port)
3875 u32 val;
3877 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3878 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3879 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3882 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3883 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3885 u32 val;
3887 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3888 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3889 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3892 /* Configure loopback port */
3893 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3895 u32 val;
3897 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3899 if (port->speed == 1000)
3900 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3901 else
3902 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3904 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3905 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3906 else
3907 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3909 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3912 static void mvpp2_port_reset(struct mvpp2_port *port)
3914 u32 val;
3916 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3917 ~MVPP2_GMAC_PORT_RESET_MASK;
3918 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3920 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3921 MVPP2_GMAC_PORT_RESET_MASK)
3922 continue;
3925 /* Change maximum receive size of the port */
3926 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3928 u32 val;
3930 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3931 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3932 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3933 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3934 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3937 /* Set defaults to the MVPP2 port */
3938 static void mvpp2_defaults_set(struct mvpp2_port *port)
3940 int tx_port_num, val, queue, ptxq, lrxq;
3942 /* Configure port to loopback if needed */
3943 if (port->flags & MVPP2_F_LOOPBACK)
3944 mvpp2_port_loopback_set(port);
3946 /* Update TX FIFO MIN Threshold */
3947 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3948 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3949 /* Min. TX threshold must be less than minimal packet length */
3950 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3951 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3953 /* Disable Legacy WRR, Disable EJP, Release from reset */
3954 tx_port_num = mvpp2_egress_port(port);
3955 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3956 tx_port_num);
3957 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3959 /* Close bandwidth for all queues */
3960 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3961 ptxq = mvpp2_txq_phys(port->id, queue);
3962 mvpp2_write(port->priv,
3963 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3966 /* Set refill period to 1 usec, refill tokens
3967 * and bucket size to maximum
3969 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3970 port->priv->tclk / USEC_PER_SEC);
3971 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3972 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3973 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3974 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3975 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3976 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3977 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3979 /* Set MaximumLowLatencyPacketSize value to 256 */
3980 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3981 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3982 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3984 /* Enable Rx cache snoop */
3985 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3986 queue = port->rxqs[lrxq]->id;
3987 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3988 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3989 MVPP2_SNOOP_BUF_HDR_MASK;
3990 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3993 /* At default, mask all interrupts to all present cpus */
3994 mvpp2_interrupts_disable(port);
3997 /* Enable/disable receiving packets */
3998 static void mvpp2_ingress_enable(struct mvpp2_port *port)
4000 u32 val;
4001 int lrxq, queue;
4003 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4004 queue = port->rxqs[lrxq]->id;
4005 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4006 val &= ~MVPP2_RXQ_DISABLE_MASK;
4007 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4011 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4013 u32 val;
4014 int lrxq, queue;
4016 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4017 queue = port->rxqs[lrxq]->id;
4018 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4019 val |= MVPP2_RXQ_DISABLE_MASK;
4020 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4024 /* Enable transmit via physical egress queue
4025 * - HW starts take descriptors from DRAM
4027 static void mvpp2_egress_enable(struct mvpp2_port *port)
4029 u32 qmap;
4030 int queue;
4031 int tx_port_num = mvpp2_egress_port(port);
4033 /* Enable all initialized TXs. */
4034 qmap = 0;
4035 for (queue = 0; queue < txq_number; queue++) {
4036 struct mvpp2_tx_queue *txq = port->txqs[queue];
4038 if (txq->descs != NULL)
4039 qmap |= (1 << queue);
4042 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4043 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4046 /* Disable transmit via physical egress queue
4047 * - HW doesn't take descriptors from DRAM
4049 static void mvpp2_egress_disable(struct mvpp2_port *port)
4051 u32 reg_data;
4052 int delay;
4053 int tx_port_num = mvpp2_egress_port(port);
4055 /* Issue stop command for active channels only */
4056 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4057 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4058 MVPP2_TXP_SCHED_ENQ_MASK;
4059 if (reg_data != 0)
4060 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4061 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4063 /* Wait for all Tx activity to terminate. */
4064 delay = 0;
4065 do {
4066 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4067 netdev_warn(port->dev,
4068 "Tx stop timed out, status=0x%08x\n",
4069 reg_data);
4070 break;
4072 mdelay(1);
4073 delay++;
4075 /* Check port TX Command register that all
4076 * Tx queues are stopped
4078 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4079 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4082 /* Rx descriptors helper methods */
4084 /* Get number of Rx descriptors occupied by received packets */
4085 static inline int
4086 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4088 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4090 return val & MVPP2_RXQ_OCCUPIED_MASK;
4093 /* Update Rx queue status with the number of occupied and available
4094 * Rx descriptor slots.
4096 static inline void
4097 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4098 int used_count, int free_count)
4100 /* Decrement the number of used descriptors and increment count
4101 * increment the number of free descriptors.
4103 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4105 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4108 /* Get pointer to next RX descriptor to be processed by SW */
4109 static inline struct mvpp2_rx_desc *
4110 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4112 int rx_desc = rxq->next_desc_to_proc;
4114 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4115 prefetch(rxq->descs + rxq->next_desc_to_proc);
4116 return rxq->descs + rx_desc;
4119 /* Set rx queue offset */
4120 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4121 int prxq, int offset)
4123 u32 val;
4125 /* Convert offset from bytes to units of 32 bytes */
4126 offset = offset >> 5;
4128 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4129 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4131 /* Offset is in */
4132 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4133 MVPP2_RXQ_PACKET_OFFSET_MASK);
4135 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4138 /* Obtain BM cookie information from descriptor */
4139 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4141 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4142 MVPP2_RXD_BM_POOL_ID_OFFS;
4143 int cpu = smp_processor_id();
4145 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4146 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4149 /* Tx descriptors helper methods */
4151 /* Get number of Tx descriptors waiting to be transmitted by HW */
4152 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4153 struct mvpp2_tx_queue *txq)
4155 u32 val;
4157 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4158 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4160 return val & MVPP2_TXQ_PENDING_MASK;
4163 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4164 static struct mvpp2_tx_desc *
4165 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4167 int tx_desc = txq->next_desc_to_proc;
4169 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4170 return txq->descs + tx_desc;
4173 /* Update HW with number of aggregated Tx descriptors to be sent */
4174 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4176 /* aggregated access - relevant TXQ number is written in TX desc */
4177 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4181 /* Check if there are enough free descriptors in aggregated txq.
4182 * If not, update the number of occupied descriptors and repeat the check.
4184 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4185 struct mvpp2_tx_queue *aggr_txq, int num)
4187 if ((aggr_txq->count + num) > aggr_txq->size) {
4188 /* Update number of occupied aggregated Tx descriptors */
4189 int cpu = smp_processor_id();
4190 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4192 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4195 if ((aggr_txq->count + num) > aggr_txq->size)
4196 return -ENOMEM;
4198 return 0;
4201 /* Reserved Tx descriptors allocation request */
4202 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4203 struct mvpp2_tx_queue *txq, int num)
4205 u32 val;
4207 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4208 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4210 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4212 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4215 /* Check if there are enough reserved descriptors for transmission.
4216 * If not, request chunk of reserved descriptors and check again.
4218 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4219 struct mvpp2_tx_queue *txq,
4220 struct mvpp2_txq_pcpu *txq_pcpu,
4221 int num)
4223 int req, cpu, desc_count;
4225 if (txq_pcpu->reserved_num >= num)
4226 return 0;
4228 /* Not enough descriptors reserved! Update the reserved descriptor
4229 * count and check again.
4232 desc_count = 0;
4233 /* Compute total of used descriptors */
4234 for_each_present_cpu(cpu) {
4235 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4237 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4238 desc_count += txq_pcpu_aux->count;
4239 desc_count += txq_pcpu_aux->reserved_num;
4242 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4243 desc_count += req;
4245 if (desc_count >
4246 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4247 return -ENOMEM;
4249 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4251 /* OK, the descriptor cound has been updated: check again. */
4252 if (txq_pcpu->reserved_num < num)
4253 return -ENOMEM;
4254 return 0;
4257 /* Release the last allocated Tx descriptor. Useful to handle DMA
4258 * mapping failures in the Tx path.
4260 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4262 if (txq->next_desc_to_proc == 0)
4263 txq->next_desc_to_proc = txq->last_desc - 1;
4264 else
4265 txq->next_desc_to_proc--;
4268 /* Set Tx descriptors fields relevant for CSUM calculation */
4269 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4270 int ip_hdr_len, int l4_proto)
4272 u32 command;
4274 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4275 * G_L4_chk, L4_type required only for checksum calculation
4277 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4278 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4279 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4281 if (l3_proto == swab16(ETH_P_IP)) {
4282 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4283 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4284 } else {
4285 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4288 if (l4_proto == IPPROTO_TCP) {
4289 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4290 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4291 } else if (l4_proto == IPPROTO_UDP) {
4292 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4293 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4294 } else {
4295 command |= MVPP2_TXD_L4_CSUM_NOT;
4298 return command;
4301 /* Get number of sent descriptors and decrement counter.
4302 * The number of sent descriptors is returned.
4303 * Per-CPU access
4305 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4306 struct mvpp2_tx_queue *txq)
4308 u32 val;
4310 /* Reading status reg resets transmitted descriptor counter */
4311 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4313 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4314 MVPP2_TRANSMITTED_COUNT_OFFSET;
4317 static void mvpp2_txq_sent_counter_clear(void *arg)
4319 struct mvpp2_port *port = arg;
4320 int queue;
4322 for (queue = 0; queue < txq_number; queue++) {
4323 int id = port->txqs[queue]->id;
4325 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4329 /* Set max sizes for Tx queues */
4330 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4332 u32 val, size, mtu;
4333 int txq, tx_port_num;
4335 mtu = port->pkt_size * 8;
4336 if (mtu > MVPP2_TXP_MTU_MAX)
4337 mtu = MVPP2_TXP_MTU_MAX;
4339 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4340 mtu = 3 * mtu;
4342 /* Indirect access to registers */
4343 tx_port_num = mvpp2_egress_port(port);
4344 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4346 /* Set MTU */
4347 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4348 val &= ~MVPP2_TXP_MTU_MAX;
4349 val |= mtu;
4350 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4352 /* TXP token size and all TXQs token size must be larger that MTU */
4353 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4354 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4355 if (size < mtu) {
4356 size = mtu;
4357 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4358 val |= size;
4359 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4362 for (txq = 0; txq < txq_number; txq++) {
4363 val = mvpp2_read(port->priv,
4364 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4365 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4367 if (size < mtu) {
4368 size = mtu;
4369 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4370 val |= size;
4371 mvpp2_write(port->priv,
4372 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4373 val);
4378 /* Set the number of packets that will be received before Rx interrupt
4379 * will be generated by HW.
4381 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4382 struct mvpp2_rx_queue *rxq, u32 pkts)
4384 u32 val;
4386 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4387 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4388 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4390 rxq->pkts_coal = pkts;
4393 /* Set the time delay in usec before Rx interrupt */
4394 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4395 struct mvpp2_rx_queue *rxq, u32 usec)
4397 u32 val;
4399 val = (port->priv->tclk / USEC_PER_SEC) * usec;
4400 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4402 rxq->time_coal = usec;
4405 /* Free Tx queue skbuffs */
4406 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4407 struct mvpp2_tx_queue *txq,
4408 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4410 int i;
4412 for (i = 0; i < num; i++) {
4413 struct mvpp2_txq_pcpu_buf *tx_buf =
4414 txq_pcpu->buffs + txq_pcpu->txq_get_index;
4416 mvpp2_txq_inc_get(txq_pcpu);
4418 dma_unmap_single(port->dev->dev.parent, tx_buf->phys,
4419 tx_buf->size, DMA_TO_DEVICE);
4420 if (!tx_buf->skb)
4421 continue;
4422 dev_kfree_skb_any(tx_buf->skb);
4426 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4427 u32 cause)
4429 int queue = fls(cause) - 1;
4431 return port->rxqs[queue];
4434 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4435 u32 cause)
4437 int queue = fls(cause) - 1;
4439 return port->txqs[queue];
4442 /* Handle end of transmission */
4443 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4444 struct mvpp2_txq_pcpu *txq_pcpu)
4446 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4447 int tx_done;
4449 if (txq_pcpu->cpu != smp_processor_id())
4450 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4452 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4453 if (!tx_done)
4454 return;
4455 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4457 txq_pcpu->count -= tx_done;
4459 if (netif_tx_queue_stopped(nq))
4460 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4461 netif_tx_wake_queue(nq);
4464 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4466 struct mvpp2_tx_queue *txq;
4467 struct mvpp2_txq_pcpu *txq_pcpu;
4468 unsigned int tx_todo = 0;
4470 while (cause) {
4471 txq = mvpp2_get_tx_queue(port, cause);
4472 if (!txq)
4473 break;
4475 txq_pcpu = this_cpu_ptr(txq->pcpu);
4477 if (txq_pcpu->count) {
4478 mvpp2_txq_done(port, txq, txq_pcpu);
4479 tx_todo += txq_pcpu->count;
4482 cause &= ~(1 << txq->log_id);
4484 return tx_todo;
4487 /* Rx/Tx queue initialization/cleanup methods */
4489 /* Allocate and initialize descriptors for aggr TXQ */
4490 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4491 struct mvpp2_tx_queue *aggr_txq,
4492 int desc_num, int cpu,
4493 struct mvpp2 *priv)
4495 /* Allocate memory for TX descriptors */
4496 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4497 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4498 &aggr_txq->descs_phys, GFP_KERNEL);
4499 if (!aggr_txq->descs)
4500 return -ENOMEM;
4502 aggr_txq->last_desc = aggr_txq->size - 1;
4504 /* Aggr TXQ no reset WA */
4505 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4506 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4508 /* Set Tx descriptors queue starting address */
4509 /* indirect access */
4510 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4511 aggr_txq->descs_phys);
4512 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4514 return 0;
4517 /* Create a specified Rx queue */
4518 static int mvpp2_rxq_init(struct mvpp2_port *port,
4519 struct mvpp2_rx_queue *rxq)
4522 rxq->size = port->rx_ring_size;
4524 /* Allocate memory for RX descriptors */
4525 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4526 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4527 &rxq->descs_phys, GFP_KERNEL);
4528 if (!rxq->descs)
4529 return -ENOMEM;
4531 rxq->last_desc = rxq->size - 1;
4533 /* Zero occupied and non-occupied counters - direct access */
4534 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4536 /* Set Rx descriptors queue starting address - indirect access */
4537 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4538 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4539 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4540 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4542 /* Set Offset */
4543 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4545 /* Set coalescing pkts and time */
4546 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4547 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4549 /* Add number of descriptors ready for receiving packets */
4550 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4552 return 0;
4555 /* Push packets received by the RXQ to BM pool */
4556 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4557 struct mvpp2_rx_queue *rxq)
4559 int rx_received, i;
4561 rx_received = mvpp2_rxq_received(port, rxq->id);
4562 if (!rx_received)
4563 return;
4565 for (i = 0; i < rx_received; i++) {
4566 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4567 u32 bm = mvpp2_bm_cookie_build(rx_desc);
4569 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4570 rx_desc->buf_cookie);
4572 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4575 /* Cleanup Rx queue */
4576 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4577 struct mvpp2_rx_queue *rxq)
4579 mvpp2_rxq_drop_pkts(port, rxq);
4581 if (rxq->descs)
4582 dma_free_coherent(port->dev->dev.parent,
4583 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4584 rxq->descs,
4585 rxq->descs_phys);
4587 rxq->descs = NULL;
4588 rxq->last_desc = 0;
4589 rxq->next_desc_to_proc = 0;
4590 rxq->descs_phys = 0;
4592 /* Clear Rx descriptors queue starting address and size;
4593 * free descriptor number
4595 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4596 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4597 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4598 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4601 /* Create and initialize a Tx queue */
4602 static int mvpp2_txq_init(struct mvpp2_port *port,
4603 struct mvpp2_tx_queue *txq)
4605 u32 val;
4606 int cpu, desc, desc_per_txq, tx_port_num;
4607 struct mvpp2_txq_pcpu *txq_pcpu;
4609 txq->size = port->tx_ring_size;
4611 /* Allocate memory for Tx descriptors */
4612 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4613 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4614 &txq->descs_phys, GFP_KERNEL);
4615 if (!txq->descs)
4616 return -ENOMEM;
4618 txq->last_desc = txq->size - 1;
4620 /* Set Tx descriptors queue starting address - indirect access */
4621 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4622 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4623 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4624 MVPP2_TXQ_DESC_SIZE_MASK);
4625 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4626 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4627 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4628 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4629 val &= ~MVPP2_TXQ_PENDING_MASK;
4630 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4632 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4633 * for each existing TXQ.
4634 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4635 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4637 desc_per_txq = 16;
4638 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4639 (txq->log_id * desc_per_txq);
4641 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4642 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4643 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4645 /* WRR / EJP configuration - indirect access */
4646 tx_port_num = mvpp2_egress_port(port);
4647 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4649 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4650 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4651 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4652 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4653 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4655 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4656 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4657 val);
4659 for_each_present_cpu(cpu) {
4660 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4661 txq_pcpu->size = txq->size;
4662 txq_pcpu->buffs = kmalloc(txq_pcpu->size *
4663 sizeof(struct mvpp2_txq_pcpu_buf),
4664 GFP_KERNEL);
4665 if (!txq_pcpu->buffs)
4666 goto error;
4668 txq_pcpu->count = 0;
4669 txq_pcpu->reserved_num = 0;
4670 txq_pcpu->txq_put_index = 0;
4671 txq_pcpu->txq_get_index = 0;
4674 return 0;
4676 error:
4677 for_each_present_cpu(cpu) {
4678 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4679 kfree(txq_pcpu->buffs);
4682 dma_free_coherent(port->dev->dev.parent,
4683 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4684 txq->descs, txq->descs_phys);
4686 return -ENOMEM;
4689 /* Free allocated TXQ resources */
4690 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4691 struct mvpp2_tx_queue *txq)
4693 struct mvpp2_txq_pcpu *txq_pcpu;
4694 int cpu;
4696 for_each_present_cpu(cpu) {
4697 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4698 kfree(txq_pcpu->buffs);
4701 if (txq->descs)
4702 dma_free_coherent(port->dev->dev.parent,
4703 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4704 txq->descs, txq->descs_phys);
4706 txq->descs = NULL;
4707 txq->last_desc = 0;
4708 txq->next_desc_to_proc = 0;
4709 txq->descs_phys = 0;
4711 /* Set minimum bandwidth for disabled TXQs */
4712 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4714 /* Set Tx descriptors queue starting address and size */
4715 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4716 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4717 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4720 /* Cleanup Tx ports */
4721 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4723 struct mvpp2_txq_pcpu *txq_pcpu;
4724 int delay, pending, cpu;
4725 u32 val;
4727 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4729 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4730 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4732 /* The napi queue has been stopped so wait for all packets
4733 * to be transmitted.
4735 delay = 0;
4736 do {
4737 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4738 netdev_warn(port->dev,
4739 "port %d: cleaning queue %d timed out\n",
4740 port->id, txq->log_id);
4741 break;
4743 mdelay(1);
4744 delay++;
4746 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4747 } while (pending);
4749 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4750 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4752 for_each_present_cpu(cpu) {
4753 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4755 /* Release all packets */
4756 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4758 /* Reset queue */
4759 txq_pcpu->count = 0;
4760 txq_pcpu->txq_put_index = 0;
4761 txq_pcpu->txq_get_index = 0;
4765 /* Cleanup all Tx queues */
4766 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4768 struct mvpp2_tx_queue *txq;
4769 int queue;
4770 u32 val;
4772 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4774 /* Reset Tx ports and delete Tx queues */
4775 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4776 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4778 for (queue = 0; queue < txq_number; queue++) {
4779 txq = port->txqs[queue];
4780 mvpp2_txq_clean(port, txq);
4781 mvpp2_txq_deinit(port, txq);
4784 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4786 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4787 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4790 /* Cleanup all Rx queues */
4791 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4793 int queue;
4795 for (queue = 0; queue < rxq_number; queue++)
4796 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4799 /* Init all Rx queues for port */
4800 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4802 int queue, err;
4804 for (queue = 0; queue < rxq_number; queue++) {
4805 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4806 if (err)
4807 goto err_cleanup;
4809 return 0;
4811 err_cleanup:
4812 mvpp2_cleanup_rxqs(port);
4813 return err;
4816 /* Init all tx queues for port */
4817 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4819 struct mvpp2_tx_queue *txq;
4820 int queue, err;
4822 for (queue = 0; queue < txq_number; queue++) {
4823 txq = port->txqs[queue];
4824 err = mvpp2_txq_init(port, txq);
4825 if (err)
4826 goto err_cleanup;
4829 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4830 return 0;
4832 err_cleanup:
4833 mvpp2_cleanup_txqs(port);
4834 return err;
4837 /* The callback for per-port interrupt */
4838 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4840 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4842 mvpp2_interrupts_disable(port);
4844 napi_schedule(&port->napi);
4846 return IRQ_HANDLED;
4849 /* Adjust link */
4850 static void mvpp2_link_event(struct net_device *dev)
4852 struct mvpp2_port *port = netdev_priv(dev);
4853 struct phy_device *phydev = dev->phydev;
4854 int status_change = 0;
4855 u32 val;
4857 if (phydev->link) {
4858 if ((port->speed != phydev->speed) ||
4859 (port->duplex != phydev->duplex)) {
4860 u32 val;
4862 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4863 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4864 MVPP2_GMAC_CONFIG_GMII_SPEED |
4865 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4866 MVPP2_GMAC_AN_SPEED_EN |
4867 MVPP2_GMAC_AN_DUPLEX_EN);
4869 if (phydev->duplex)
4870 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4872 if (phydev->speed == SPEED_1000)
4873 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4874 else if (phydev->speed == SPEED_100)
4875 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4877 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4879 port->duplex = phydev->duplex;
4880 port->speed = phydev->speed;
4884 if (phydev->link != port->link) {
4885 if (!phydev->link) {
4886 port->duplex = -1;
4887 port->speed = 0;
4890 port->link = phydev->link;
4891 status_change = 1;
4894 if (status_change) {
4895 if (phydev->link) {
4896 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4897 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4898 MVPP2_GMAC_FORCE_LINK_DOWN);
4899 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4900 mvpp2_egress_enable(port);
4901 mvpp2_ingress_enable(port);
4902 } else {
4903 mvpp2_ingress_disable(port);
4904 mvpp2_egress_disable(port);
4906 phy_print_status(phydev);
4910 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4912 ktime_t interval;
4914 if (!port_pcpu->timer_scheduled) {
4915 port_pcpu->timer_scheduled = true;
4916 interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4917 hrtimer_start(&port_pcpu->tx_done_timer, interval,
4918 HRTIMER_MODE_REL_PINNED);
4922 static void mvpp2_tx_proc_cb(unsigned long data)
4924 struct net_device *dev = (struct net_device *)data;
4925 struct mvpp2_port *port = netdev_priv(dev);
4926 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4927 unsigned int tx_todo, cause;
4929 if (!netif_running(dev))
4930 return;
4931 port_pcpu->timer_scheduled = false;
4933 /* Process all the Tx queues */
4934 cause = (1 << txq_number) - 1;
4935 tx_todo = mvpp2_tx_done(port, cause);
4937 /* Set the timer in case not all the packets were processed */
4938 if (tx_todo)
4939 mvpp2_timer_set(port_pcpu);
4942 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4944 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4945 struct mvpp2_port_pcpu,
4946 tx_done_timer);
4948 tasklet_schedule(&port_pcpu->tx_done_tasklet);
4950 return HRTIMER_NORESTART;
4953 /* Main RX/TX processing routines */
4955 /* Display more error info */
4956 static void mvpp2_rx_error(struct mvpp2_port *port,
4957 struct mvpp2_rx_desc *rx_desc)
4959 u32 status = rx_desc->status;
4961 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4962 case MVPP2_RXD_ERR_CRC:
4963 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4964 status, rx_desc->data_size);
4965 break;
4966 case MVPP2_RXD_ERR_OVERRUN:
4967 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4968 status, rx_desc->data_size);
4969 break;
4970 case MVPP2_RXD_ERR_RESOURCE:
4971 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4972 status, rx_desc->data_size);
4973 break;
4977 /* Handle RX checksum offload */
4978 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4979 struct sk_buff *skb)
4981 if (((status & MVPP2_RXD_L3_IP4) &&
4982 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4983 (status & MVPP2_RXD_L3_IP6))
4984 if (((status & MVPP2_RXD_L4_UDP) ||
4985 (status & MVPP2_RXD_L4_TCP)) &&
4986 (status & MVPP2_RXD_L4_CSUM_OK)) {
4987 skb->csum = 0;
4988 skb->ip_summed = CHECKSUM_UNNECESSARY;
4989 return;
4992 skb->ip_summed = CHECKSUM_NONE;
4995 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4996 static int mvpp2_rx_refill(struct mvpp2_port *port,
4997 struct mvpp2_bm_pool *bm_pool,
4998 u32 bm, int is_recycle)
5000 struct sk_buff *skb;
5001 dma_addr_t phys_addr;
5003 if (is_recycle &&
5004 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5005 return 0;
5007 /* No recycle or too many buffers are in use, so allocate a new skb */
5008 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5009 if (!skb)
5010 return -ENOMEM;
5012 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5013 atomic_dec(&bm_pool->in_use);
5014 return 0;
5017 /* Handle tx checksum */
5018 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5020 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5021 int ip_hdr_len = 0;
5022 u8 l4_proto;
5024 if (skb->protocol == htons(ETH_P_IP)) {
5025 struct iphdr *ip4h = ip_hdr(skb);
5027 /* Calculate IPv4 checksum and L4 checksum */
5028 ip_hdr_len = ip4h->ihl;
5029 l4_proto = ip4h->protocol;
5030 } else if (skb->protocol == htons(ETH_P_IPV6)) {
5031 struct ipv6hdr *ip6h = ipv6_hdr(skb);
5033 /* Read l4_protocol from one of IPv6 extra headers */
5034 if (skb_network_header_len(skb) > 0)
5035 ip_hdr_len = (skb_network_header_len(skb) >> 2);
5036 l4_proto = ip6h->nexthdr;
5037 } else {
5038 return MVPP2_TXD_L4_CSUM_NOT;
5041 return mvpp2_txq_desc_csum(skb_network_offset(skb),
5042 skb->protocol, ip_hdr_len, l4_proto);
5045 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5048 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5049 struct mvpp2_rx_desc *rx_desc)
5051 struct mvpp2_buff_hdr *buff_hdr;
5052 struct sk_buff *skb;
5053 u32 rx_status = rx_desc->status;
5054 u32 buff_phys_addr;
5055 u32 buff_virt_addr;
5056 u32 buff_phys_addr_next;
5057 u32 buff_virt_addr_next;
5058 int mc_id;
5059 int pool_id;
5061 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5062 MVPP2_RXD_BM_POOL_ID_OFFS;
5063 buff_phys_addr = rx_desc->buf_phys_addr;
5064 buff_virt_addr = rx_desc->buf_cookie;
5066 do {
5067 skb = (struct sk_buff *)buff_virt_addr;
5068 buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5070 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5072 buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5073 buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5075 /* Release buffer */
5076 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5077 buff_virt_addr, mc_id);
5079 buff_phys_addr = buff_phys_addr_next;
5080 buff_virt_addr = buff_virt_addr_next;
5082 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5085 /* Main rx processing */
5086 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5087 struct mvpp2_rx_queue *rxq)
5089 struct net_device *dev = port->dev;
5090 int rx_received;
5091 int rx_done = 0;
5092 u32 rcvd_pkts = 0;
5093 u32 rcvd_bytes = 0;
5095 /* Get number of received packets and clamp the to-do */
5096 rx_received = mvpp2_rxq_received(port, rxq->id);
5097 if (rx_todo > rx_received)
5098 rx_todo = rx_received;
5100 while (rx_done < rx_todo) {
5101 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5102 struct mvpp2_bm_pool *bm_pool;
5103 struct sk_buff *skb;
5104 dma_addr_t phys_addr;
5105 u32 bm, rx_status;
5106 int pool, rx_bytes, err;
5108 rx_done++;
5109 rx_status = rx_desc->status;
5110 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5111 phys_addr = rx_desc->buf_phys_addr;
5113 bm = mvpp2_bm_cookie_build(rx_desc);
5114 pool = mvpp2_bm_cookie_pool_get(bm);
5115 bm_pool = &port->priv->bm_pools[pool];
5116 /* Check if buffer header is used */
5117 if (rx_status & MVPP2_RXD_BUF_HDR) {
5118 mvpp2_buff_hdr_rx(port, rx_desc);
5119 continue;
5122 /* In case of an error, release the requested buffer pointer
5123 * to the Buffer Manager. This request process is controlled
5124 * by the hardware, and the information about the buffer is
5125 * comprised by the RX descriptor.
5127 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5128 err_drop_frame:
5129 dev->stats.rx_errors++;
5130 mvpp2_rx_error(port, rx_desc);
5131 /* Return the buffer to the pool */
5132 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5133 rx_desc->buf_cookie);
5134 continue;
5137 skb = (struct sk_buff *)rx_desc->buf_cookie;
5139 err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5140 if (err) {
5141 netdev_err(port->dev, "failed to refill BM pools\n");
5142 goto err_drop_frame;
5145 dma_unmap_single(dev->dev.parent, phys_addr,
5146 bm_pool->buf_size, DMA_FROM_DEVICE);
5148 rcvd_pkts++;
5149 rcvd_bytes += rx_bytes;
5150 atomic_inc(&bm_pool->in_use);
5152 skb_reserve(skb, MVPP2_MH_SIZE);
5153 skb_put(skb, rx_bytes);
5154 skb->protocol = eth_type_trans(skb, dev);
5155 mvpp2_rx_csum(port, rx_status, skb);
5157 napi_gro_receive(&port->napi, skb);
5160 if (rcvd_pkts) {
5161 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5163 u64_stats_update_begin(&stats->syncp);
5164 stats->rx_packets += rcvd_pkts;
5165 stats->rx_bytes += rcvd_bytes;
5166 u64_stats_update_end(&stats->syncp);
5169 /* Update Rx queue management counters */
5170 wmb();
5171 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5173 return rx_todo;
5176 static inline void
5177 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5178 struct mvpp2_tx_desc *desc)
5180 dma_unmap_single(dev, desc->buf_phys_addr,
5181 desc->data_size, DMA_TO_DEVICE);
5182 mvpp2_txq_desc_put(txq);
5185 /* Handle tx fragmentation processing */
5186 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5187 struct mvpp2_tx_queue *aggr_txq,
5188 struct mvpp2_tx_queue *txq)
5190 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5191 struct mvpp2_tx_desc *tx_desc;
5192 int i;
5193 dma_addr_t buf_phys_addr;
5195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5197 void *addr = page_address(frag->page.p) + frag->page_offset;
5199 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5200 tx_desc->phys_txq = txq->id;
5201 tx_desc->data_size = frag->size;
5203 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5204 tx_desc->data_size,
5205 DMA_TO_DEVICE);
5206 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5207 mvpp2_txq_desc_put(txq);
5208 goto error;
5211 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5212 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5214 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5215 /* Last descriptor */
5216 tx_desc->command = MVPP2_TXD_L_DESC;
5217 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5218 } else {
5219 /* Descriptor in the middle: Not First, Not Last */
5220 tx_desc->command = 0;
5221 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5225 return 0;
5227 error:
5228 /* Release all descriptors that were used to map fragments of
5229 * this packet, as well as the corresponding DMA mappings
5231 for (i = i - 1; i >= 0; i--) {
5232 tx_desc = txq->descs + i;
5233 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5236 return -ENOMEM;
5239 /* Main tx processing */
5240 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5242 struct mvpp2_port *port = netdev_priv(dev);
5243 struct mvpp2_tx_queue *txq, *aggr_txq;
5244 struct mvpp2_txq_pcpu *txq_pcpu;
5245 struct mvpp2_tx_desc *tx_desc;
5246 dma_addr_t buf_phys_addr;
5247 int frags = 0;
5248 u16 txq_id;
5249 u32 tx_cmd;
5251 txq_id = skb_get_queue_mapping(skb);
5252 txq = port->txqs[txq_id];
5253 txq_pcpu = this_cpu_ptr(txq->pcpu);
5254 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5256 frags = skb_shinfo(skb)->nr_frags + 1;
5258 /* Check number of available descriptors */
5259 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5260 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5261 txq_pcpu, frags)) {
5262 frags = 0;
5263 goto out;
5266 /* Get a descriptor for the first part of the packet */
5267 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5268 tx_desc->phys_txq = txq->id;
5269 tx_desc->data_size = skb_headlen(skb);
5271 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5272 tx_desc->data_size, DMA_TO_DEVICE);
5273 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5274 mvpp2_txq_desc_put(txq);
5275 frags = 0;
5276 goto out;
5278 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5279 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5281 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5283 if (frags == 1) {
5284 /* First and Last descriptor */
5285 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5286 tx_desc->command = tx_cmd;
5287 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5288 } else {
5289 /* First but not Last */
5290 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5291 tx_desc->command = tx_cmd;
5292 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5294 /* Continue with other skb fragments */
5295 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5296 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5297 frags = 0;
5298 goto out;
5302 txq_pcpu->reserved_num -= frags;
5303 txq_pcpu->count += frags;
5304 aggr_txq->count += frags;
5306 /* Enable transmit */
5307 wmb();
5308 mvpp2_aggr_txq_pend_desc_add(port, frags);
5310 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5311 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5313 netif_tx_stop_queue(nq);
5315 out:
5316 if (frags > 0) {
5317 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5319 u64_stats_update_begin(&stats->syncp);
5320 stats->tx_packets++;
5321 stats->tx_bytes += skb->len;
5322 u64_stats_update_end(&stats->syncp);
5323 } else {
5324 dev->stats.tx_dropped++;
5325 dev_kfree_skb_any(skb);
5328 /* Finalize TX processing */
5329 if (txq_pcpu->count >= txq->done_pkts_coal)
5330 mvpp2_txq_done(port, txq, txq_pcpu);
5332 /* Set the timer in case not all frags were processed */
5333 if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5334 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5336 mvpp2_timer_set(port_pcpu);
5339 return NETDEV_TX_OK;
5342 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5344 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5345 netdev_err(dev, "FCS error\n");
5346 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5347 netdev_err(dev, "rx fifo overrun error\n");
5348 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5349 netdev_err(dev, "tx fifo underrun error\n");
5352 static int mvpp2_poll(struct napi_struct *napi, int budget)
5354 u32 cause_rx_tx, cause_rx, cause_misc;
5355 int rx_done = 0;
5356 struct mvpp2_port *port = netdev_priv(napi->dev);
5358 /* Rx/Tx cause register
5360 * Bits 0-15: each bit indicates received packets on the Rx queue
5361 * (bit 0 is for Rx queue 0).
5363 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5364 * (bit 16 is for Tx queue 0).
5366 * Each CPU has its own Rx/Tx cause register
5368 cause_rx_tx = mvpp2_read(port->priv,
5369 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5370 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5371 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5373 if (cause_misc) {
5374 mvpp2_cause_error(port->dev, cause_misc);
5376 /* Clear the cause register */
5377 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5378 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5379 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5382 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5384 /* Process RX packets */
5385 cause_rx |= port->pending_cause_rx;
5386 while (cause_rx && budget > 0) {
5387 int count;
5388 struct mvpp2_rx_queue *rxq;
5390 rxq = mvpp2_get_rx_queue(port, cause_rx);
5391 if (!rxq)
5392 break;
5394 count = mvpp2_rx(port, budget, rxq);
5395 rx_done += count;
5396 budget -= count;
5397 if (budget > 0) {
5398 /* Clear the bit associated to this Rx queue
5399 * so that next iteration will continue from
5400 * the next Rx queue.
5402 cause_rx &= ~(1 << rxq->logic_rxq);
5406 if (budget > 0) {
5407 cause_rx = 0;
5408 napi_complete(napi);
5410 mvpp2_interrupts_enable(port);
5412 port->pending_cause_rx = cause_rx;
5413 return rx_done;
5416 /* Set hw internals when starting port */
5417 static void mvpp2_start_dev(struct mvpp2_port *port)
5419 struct net_device *ndev = port->dev;
5421 mvpp2_gmac_max_rx_size_set(port);
5422 mvpp2_txp_max_tx_size_set(port);
5424 napi_enable(&port->napi);
5426 /* Enable interrupts on all CPUs */
5427 mvpp2_interrupts_enable(port);
5429 mvpp2_port_enable(port);
5430 phy_start(ndev->phydev);
5431 netif_tx_start_all_queues(port->dev);
5434 /* Set hw internals when stopping port */
5435 static void mvpp2_stop_dev(struct mvpp2_port *port)
5437 struct net_device *ndev = port->dev;
5439 /* Stop new packets from arriving to RXQs */
5440 mvpp2_ingress_disable(port);
5442 mdelay(10);
5444 /* Disable interrupts on all CPUs */
5445 mvpp2_interrupts_disable(port);
5447 napi_disable(&port->napi);
5449 netif_carrier_off(port->dev);
5450 netif_tx_stop_all_queues(port->dev);
5452 mvpp2_egress_disable(port);
5453 mvpp2_port_disable(port);
5454 phy_stop(ndev->phydev);
5457 /* Return positive if MTU is valid */
5458 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5460 if (mtu < 68) {
5461 netdev_err(dev, "cannot change mtu to less than 68\n");
5462 return -EINVAL;
5465 /* 9676 == 9700 - 20 and rounding to 8 */
5466 if (mtu > 9676) {
5467 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5468 mtu = 9676;
5471 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5472 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5473 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5474 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5477 return mtu;
5480 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5481 struct ethtool_ringparam *ring)
5483 u16 new_rx_pending = ring->rx_pending;
5484 u16 new_tx_pending = ring->tx_pending;
5486 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5487 return -EINVAL;
5489 if (ring->rx_pending > MVPP2_MAX_RXD)
5490 new_rx_pending = MVPP2_MAX_RXD;
5491 else if (!IS_ALIGNED(ring->rx_pending, 16))
5492 new_rx_pending = ALIGN(ring->rx_pending, 16);
5494 if (ring->tx_pending > MVPP2_MAX_TXD)
5495 new_tx_pending = MVPP2_MAX_TXD;
5496 else if (!IS_ALIGNED(ring->tx_pending, 32))
5497 new_tx_pending = ALIGN(ring->tx_pending, 32);
5499 if (ring->rx_pending != new_rx_pending) {
5500 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5501 ring->rx_pending, new_rx_pending);
5502 ring->rx_pending = new_rx_pending;
5505 if (ring->tx_pending != new_tx_pending) {
5506 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5507 ring->tx_pending, new_tx_pending);
5508 ring->tx_pending = new_tx_pending;
5511 return 0;
5514 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5516 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5518 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5519 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5520 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5521 addr[0] = (mac_addr_h >> 24) & 0xFF;
5522 addr[1] = (mac_addr_h >> 16) & 0xFF;
5523 addr[2] = (mac_addr_h >> 8) & 0xFF;
5524 addr[3] = mac_addr_h & 0xFF;
5525 addr[4] = mac_addr_m & 0xFF;
5526 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5529 static int mvpp2_phy_connect(struct mvpp2_port *port)
5531 struct phy_device *phy_dev;
5533 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5534 port->phy_interface);
5535 if (!phy_dev) {
5536 netdev_err(port->dev, "cannot connect to phy\n");
5537 return -ENODEV;
5539 phy_dev->supported &= PHY_GBIT_FEATURES;
5540 phy_dev->advertising = phy_dev->supported;
5542 port->link = 0;
5543 port->duplex = 0;
5544 port->speed = 0;
5546 return 0;
5549 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5551 struct net_device *ndev = port->dev;
5553 phy_disconnect(ndev->phydev);
5556 static int mvpp2_open(struct net_device *dev)
5558 struct mvpp2_port *port = netdev_priv(dev);
5559 unsigned char mac_bcast[ETH_ALEN] = {
5560 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5561 int err;
5563 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5564 if (err) {
5565 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5566 return err;
5568 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5569 dev->dev_addr, true);
5570 if (err) {
5571 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5572 return err;
5574 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5575 if (err) {
5576 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5577 return err;
5579 err = mvpp2_prs_def_flow(port);
5580 if (err) {
5581 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5582 return err;
5585 /* Allocate the Rx/Tx queues */
5586 err = mvpp2_setup_rxqs(port);
5587 if (err) {
5588 netdev_err(port->dev, "cannot allocate Rx queues\n");
5589 return err;
5592 err = mvpp2_setup_txqs(port);
5593 if (err) {
5594 netdev_err(port->dev, "cannot allocate Tx queues\n");
5595 goto err_cleanup_rxqs;
5598 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5599 if (err) {
5600 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5601 goto err_cleanup_txqs;
5604 /* In default link is down */
5605 netif_carrier_off(port->dev);
5607 err = mvpp2_phy_connect(port);
5608 if (err < 0)
5609 goto err_free_irq;
5611 /* Unmask interrupts on all CPUs */
5612 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5614 mvpp2_start_dev(port);
5616 return 0;
5618 err_free_irq:
5619 free_irq(port->irq, port);
5620 err_cleanup_txqs:
5621 mvpp2_cleanup_txqs(port);
5622 err_cleanup_rxqs:
5623 mvpp2_cleanup_rxqs(port);
5624 return err;
5627 static int mvpp2_stop(struct net_device *dev)
5629 struct mvpp2_port *port = netdev_priv(dev);
5630 struct mvpp2_port_pcpu *port_pcpu;
5631 int cpu;
5633 mvpp2_stop_dev(port);
5634 mvpp2_phy_disconnect(port);
5636 /* Mask interrupts on all CPUs */
5637 on_each_cpu(mvpp2_interrupts_mask, port, 1);
5639 free_irq(port->irq, port);
5640 for_each_present_cpu(cpu) {
5641 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5643 hrtimer_cancel(&port_pcpu->tx_done_timer);
5644 port_pcpu->timer_scheduled = false;
5645 tasklet_kill(&port_pcpu->tx_done_tasklet);
5647 mvpp2_cleanup_rxqs(port);
5648 mvpp2_cleanup_txqs(port);
5650 return 0;
5653 static void mvpp2_set_rx_mode(struct net_device *dev)
5655 struct mvpp2_port *port = netdev_priv(dev);
5656 struct mvpp2 *priv = port->priv;
5657 struct netdev_hw_addr *ha;
5658 int id = port->id;
5659 bool allmulti = dev->flags & IFF_ALLMULTI;
5661 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5662 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5663 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5665 /* Remove all port->id's mcast enries */
5666 mvpp2_prs_mcast_del_all(priv, id);
5668 if (allmulti && !netdev_mc_empty(dev)) {
5669 netdev_for_each_mc_addr(ha, dev)
5670 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5674 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5676 struct mvpp2_port *port = netdev_priv(dev);
5677 const struct sockaddr *addr = p;
5678 int err;
5680 if (!is_valid_ether_addr(addr->sa_data)) {
5681 err = -EADDRNOTAVAIL;
5682 goto error;
5685 if (!netif_running(dev)) {
5686 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5687 if (!err)
5688 return 0;
5689 /* Reconfigure parser to accept the original MAC address */
5690 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5691 if (err)
5692 goto error;
5695 mvpp2_stop_dev(port);
5697 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5698 if (!err)
5699 goto out_start;
5701 /* Reconfigure parser accept the original MAC address */
5702 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5703 if (err)
5704 goto error;
5705 out_start:
5706 mvpp2_start_dev(port);
5707 mvpp2_egress_enable(port);
5708 mvpp2_ingress_enable(port);
5709 return 0;
5711 error:
5712 netdev_err(dev, "fail to change MAC address\n");
5713 return err;
5716 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5718 struct mvpp2_port *port = netdev_priv(dev);
5719 int err;
5721 mtu = mvpp2_check_mtu_valid(dev, mtu);
5722 if (mtu < 0) {
5723 err = mtu;
5724 goto error;
5727 if (!netif_running(dev)) {
5728 err = mvpp2_bm_update_mtu(dev, mtu);
5729 if (!err) {
5730 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5731 return 0;
5734 /* Reconfigure BM to the original MTU */
5735 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5736 if (err)
5737 goto error;
5740 mvpp2_stop_dev(port);
5742 err = mvpp2_bm_update_mtu(dev, mtu);
5743 if (!err) {
5744 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5745 goto out_start;
5748 /* Reconfigure BM to the original MTU */
5749 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5750 if (err)
5751 goto error;
5753 out_start:
5754 mvpp2_start_dev(port);
5755 mvpp2_egress_enable(port);
5756 mvpp2_ingress_enable(port);
5758 return 0;
5760 error:
5761 netdev_err(dev, "fail to change MTU\n");
5762 return err;
5765 static struct rtnl_link_stats64 *
5766 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5768 struct mvpp2_port *port = netdev_priv(dev);
5769 unsigned int start;
5770 int cpu;
5772 for_each_possible_cpu(cpu) {
5773 struct mvpp2_pcpu_stats *cpu_stats;
5774 u64 rx_packets;
5775 u64 rx_bytes;
5776 u64 tx_packets;
5777 u64 tx_bytes;
5779 cpu_stats = per_cpu_ptr(port->stats, cpu);
5780 do {
5781 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5782 rx_packets = cpu_stats->rx_packets;
5783 rx_bytes = cpu_stats->rx_bytes;
5784 tx_packets = cpu_stats->tx_packets;
5785 tx_bytes = cpu_stats->tx_bytes;
5786 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5788 stats->rx_packets += rx_packets;
5789 stats->rx_bytes += rx_bytes;
5790 stats->tx_packets += tx_packets;
5791 stats->tx_bytes += tx_bytes;
5794 stats->rx_errors = dev->stats.rx_errors;
5795 stats->rx_dropped = dev->stats.rx_dropped;
5796 stats->tx_dropped = dev->stats.tx_dropped;
5798 return stats;
5801 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5803 int ret;
5805 if (!dev->phydev)
5806 return -ENOTSUPP;
5808 ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
5809 if (!ret)
5810 mvpp2_link_event(dev);
5812 return ret;
5815 /* Ethtool methods */
5817 /* Set interrupt coalescing for ethtools */
5818 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5819 struct ethtool_coalesce *c)
5821 struct mvpp2_port *port = netdev_priv(dev);
5822 int queue;
5824 for (queue = 0; queue < rxq_number; queue++) {
5825 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5827 rxq->time_coal = c->rx_coalesce_usecs;
5828 rxq->pkts_coal = c->rx_max_coalesced_frames;
5829 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5830 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5833 for (queue = 0; queue < txq_number; queue++) {
5834 struct mvpp2_tx_queue *txq = port->txqs[queue];
5836 txq->done_pkts_coal = c->tx_max_coalesced_frames;
5839 return 0;
5842 /* get coalescing for ethtools */
5843 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5844 struct ethtool_coalesce *c)
5846 struct mvpp2_port *port = netdev_priv(dev);
5848 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
5849 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
5850 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
5851 return 0;
5854 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5855 struct ethtool_drvinfo *drvinfo)
5857 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5858 sizeof(drvinfo->driver));
5859 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5860 sizeof(drvinfo->version));
5861 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5862 sizeof(drvinfo->bus_info));
5865 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5866 struct ethtool_ringparam *ring)
5868 struct mvpp2_port *port = netdev_priv(dev);
5870 ring->rx_max_pending = MVPP2_MAX_RXD;
5871 ring->tx_max_pending = MVPP2_MAX_TXD;
5872 ring->rx_pending = port->rx_ring_size;
5873 ring->tx_pending = port->tx_ring_size;
5876 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5877 struct ethtool_ringparam *ring)
5879 struct mvpp2_port *port = netdev_priv(dev);
5880 u16 prev_rx_ring_size = port->rx_ring_size;
5881 u16 prev_tx_ring_size = port->tx_ring_size;
5882 int err;
5884 err = mvpp2_check_ringparam_valid(dev, ring);
5885 if (err)
5886 return err;
5888 if (!netif_running(dev)) {
5889 port->rx_ring_size = ring->rx_pending;
5890 port->tx_ring_size = ring->tx_pending;
5891 return 0;
5894 /* The interface is running, so we have to force a
5895 * reallocation of the queues
5897 mvpp2_stop_dev(port);
5898 mvpp2_cleanup_rxqs(port);
5899 mvpp2_cleanup_txqs(port);
5901 port->rx_ring_size = ring->rx_pending;
5902 port->tx_ring_size = ring->tx_pending;
5904 err = mvpp2_setup_rxqs(port);
5905 if (err) {
5906 /* Reallocate Rx queues with the original ring size */
5907 port->rx_ring_size = prev_rx_ring_size;
5908 ring->rx_pending = prev_rx_ring_size;
5909 err = mvpp2_setup_rxqs(port);
5910 if (err)
5911 goto err_out;
5913 err = mvpp2_setup_txqs(port);
5914 if (err) {
5915 /* Reallocate Tx queues with the original ring size */
5916 port->tx_ring_size = prev_tx_ring_size;
5917 ring->tx_pending = prev_tx_ring_size;
5918 err = mvpp2_setup_txqs(port);
5919 if (err)
5920 goto err_clean_rxqs;
5923 mvpp2_start_dev(port);
5924 mvpp2_egress_enable(port);
5925 mvpp2_ingress_enable(port);
5927 return 0;
5929 err_clean_rxqs:
5930 mvpp2_cleanup_rxqs(port);
5931 err_out:
5932 netdev_err(dev, "fail to change ring parameters");
5933 return err;
5936 /* Device ops */
5938 static const struct net_device_ops mvpp2_netdev_ops = {
5939 .ndo_open = mvpp2_open,
5940 .ndo_stop = mvpp2_stop,
5941 .ndo_start_xmit = mvpp2_tx,
5942 .ndo_set_rx_mode = mvpp2_set_rx_mode,
5943 .ndo_set_mac_address = mvpp2_set_mac_address,
5944 .ndo_change_mtu = mvpp2_change_mtu,
5945 .ndo_get_stats64 = mvpp2_get_stats64,
5946 .ndo_do_ioctl = mvpp2_ioctl,
5949 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5950 .get_link = ethtool_op_get_link,
5951 .set_coalesce = mvpp2_ethtool_set_coalesce,
5952 .get_coalesce = mvpp2_ethtool_get_coalesce,
5953 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
5954 .get_ringparam = mvpp2_ethtool_get_ringparam,
5955 .set_ringparam = mvpp2_ethtool_set_ringparam,
5956 .get_link_ksettings = phy_ethtool_get_link_ksettings,
5957 .set_link_ksettings = phy_ethtool_set_link_ksettings,
5960 /* Driver initialization */
5962 static void mvpp2_port_power_up(struct mvpp2_port *port)
5964 mvpp2_port_mii_set(port);
5965 mvpp2_port_periodic_xon_disable(port);
5966 mvpp2_port_fc_adv_enable(port);
5967 mvpp2_port_reset(port);
5970 /* Initialize port HW */
5971 static int mvpp2_port_init(struct mvpp2_port *port)
5973 struct device *dev = port->dev->dev.parent;
5974 struct mvpp2 *priv = port->priv;
5975 struct mvpp2_txq_pcpu *txq_pcpu;
5976 int queue, cpu, err;
5978 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5979 return -EINVAL;
5981 /* Disable port */
5982 mvpp2_egress_disable(port);
5983 mvpp2_port_disable(port);
5985 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5986 GFP_KERNEL);
5987 if (!port->txqs)
5988 return -ENOMEM;
5990 /* Associate physical Tx queues to this port and initialize.
5991 * The mapping is predefined.
5993 for (queue = 0; queue < txq_number; queue++) {
5994 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5995 struct mvpp2_tx_queue *txq;
5997 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5998 if (!txq)
5999 return -ENOMEM;
6001 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6002 if (!txq->pcpu) {
6003 err = -ENOMEM;
6004 goto err_free_percpu;
6007 txq->id = queue_phy_id;
6008 txq->log_id = queue;
6009 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6010 for_each_present_cpu(cpu) {
6011 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6012 txq_pcpu->cpu = cpu;
6015 port->txqs[queue] = txq;
6018 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6019 GFP_KERNEL);
6020 if (!port->rxqs) {
6021 err = -ENOMEM;
6022 goto err_free_percpu;
6025 /* Allocate and initialize Rx queue for this port */
6026 for (queue = 0; queue < rxq_number; queue++) {
6027 struct mvpp2_rx_queue *rxq;
6029 /* Map physical Rx queue to port's logical Rx queue */
6030 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6031 if (!rxq) {
6032 err = -ENOMEM;
6033 goto err_free_percpu;
6035 /* Map this Rx queue to a physical queue */
6036 rxq->id = port->first_rxq + queue;
6037 rxq->port = port->id;
6038 rxq->logic_rxq = queue;
6040 port->rxqs[queue] = rxq;
6043 /* Configure Rx queue group interrupt for this port */
6044 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6046 /* Create Rx descriptor rings */
6047 for (queue = 0; queue < rxq_number; queue++) {
6048 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6050 rxq->size = port->rx_ring_size;
6051 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6052 rxq->time_coal = MVPP2_RX_COAL_USEC;
6055 mvpp2_ingress_disable(port);
6057 /* Port default configuration */
6058 mvpp2_defaults_set(port);
6060 /* Port's classifier configuration */
6061 mvpp2_cls_oversize_rxq_set(port);
6062 mvpp2_cls_port_config(port);
6064 /* Provide an initial Rx packet size */
6065 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6067 /* Initialize pools for swf */
6068 err = mvpp2_swf_bm_pool_init(port);
6069 if (err)
6070 goto err_free_percpu;
6072 return 0;
6074 err_free_percpu:
6075 for (queue = 0; queue < txq_number; queue++) {
6076 if (!port->txqs[queue])
6077 continue;
6078 free_percpu(port->txqs[queue]->pcpu);
6080 return err;
6083 /* Ports initialization */
6084 static int mvpp2_port_probe(struct platform_device *pdev,
6085 struct device_node *port_node,
6086 struct mvpp2 *priv,
6087 int *next_first_rxq)
6089 struct device_node *phy_node;
6090 struct mvpp2_port *port;
6091 struct mvpp2_port_pcpu *port_pcpu;
6092 struct net_device *dev;
6093 struct resource *res;
6094 const char *dt_mac_addr;
6095 const char *mac_from;
6096 char hw_mac_addr[ETH_ALEN];
6097 u32 id;
6098 int features;
6099 int phy_mode;
6100 int priv_common_regs_num = 2;
6101 int err, i, cpu;
6103 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6104 rxq_number);
6105 if (!dev)
6106 return -ENOMEM;
6108 phy_node = of_parse_phandle(port_node, "phy", 0);
6109 if (!phy_node) {
6110 dev_err(&pdev->dev, "missing phy\n");
6111 err = -ENODEV;
6112 goto err_free_netdev;
6115 phy_mode = of_get_phy_mode(port_node);
6116 if (phy_mode < 0) {
6117 dev_err(&pdev->dev, "incorrect phy mode\n");
6118 err = phy_mode;
6119 goto err_free_netdev;
6122 if (of_property_read_u32(port_node, "port-id", &id)) {
6123 err = -EINVAL;
6124 dev_err(&pdev->dev, "missing port-id value\n");
6125 goto err_free_netdev;
6128 dev->tx_queue_len = MVPP2_MAX_TXD;
6129 dev->watchdog_timeo = 5 * HZ;
6130 dev->netdev_ops = &mvpp2_netdev_ops;
6131 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6133 port = netdev_priv(dev);
6135 port->irq = irq_of_parse_and_map(port_node, 0);
6136 if (port->irq <= 0) {
6137 err = -EINVAL;
6138 goto err_free_netdev;
6141 if (of_property_read_bool(port_node, "marvell,loopback"))
6142 port->flags |= MVPP2_F_LOOPBACK;
6144 port->priv = priv;
6145 port->id = id;
6146 port->first_rxq = *next_first_rxq;
6147 port->phy_node = phy_node;
6148 port->phy_interface = phy_mode;
6150 res = platform_get_resource(pdev, IORESOURCE_MEM,
6151 priv_common_regs_num + id);
6152 port->base = devm_ioremap_resource(&pdev->dev, res);
6153 if (IS_ERR(port->base)) {
6154 err = PTR_ERR(port->base);
6155 goto err_free_irq;
6158 /* Alloc per-cpu stats */
6159 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6160 if (!port->stats) {
6161 err = -ENOMEM;
6162 goto err_free_irq;
6165 dt_mac_addr = of_get_mac_address(port_node);
6166 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6167 mac_from = "device tree";
6168 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6169 } else {
6170 mvpp2_get_mac_address(port, hw_mac_addr);
6171 if (is_valid_ether_addr(hw_mac_addr)) {
6172 mac_from = "hardware";
6173 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6174 } else {
6175 mac_from = "random";
6176 eth_hw_addr_random(dev);
6180 port->tx_ring_size = MVPP2_MAX_TXD;
6181 port->rx_ring_size = MVPP2_MAX_RXD;
6182 port->dev = dev;
6183 SET_NETDEV_DEV(dev, &pdev->dev);
6185 err = mvpp2_port_init(port);
6186 if (err < 0) {
6187 dev_err(&pdev->dev, "failed to init port %d\n", id);
6188 goto err_free_stats;
6190 mvpp2_port_power_up(port);
6192 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6193 if (!port->pcpu) {
6194 err = -ENOMEM;
6195 goto err_free_txq_pcpu;
6198 for_each_present_cpu(cpu) {
6199 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6201 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6202 HRTIMER_MODE_REL_PINNED);
6203 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6204 port_pcpu->timer_scheduled = false;
6206 tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6207 (unsigned long)dev);
6210 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6211 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6212 dev->features = features | NETIF_F_RXCSUM;
6213 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6214 dev->vlan_features |= features;
6216 err = register_netdev(dev);
6217 if (err < 0) {
6218 dev_err(&pdev->dev, "failed to register netdev\n");
6219 goto err_free_port_pcpu;
6221 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6223 /* Increment the first Rx queue number to be used by the next port */
6224 *next_first_rxq += rxq_number;
6225 priv->port_list[id] = port;
6226 return 0;
6228 err_free_port_pcpu:
6229 free_percpu(port->pcpu);
6230 err_free_txq_pcpu:
6231 for (i = 0; i < txq_number; i++)
6232 free_percpu(port->txqs[i]->pcpu);
6233 err_free_stats:
6234 free_percpu(port->stats);
6235 err_free_irq:
6236 irq_dispose_mapping(port->irq);
6237 err_free_netdev:
6238 of_node_put(phy_node);
6239 free_netdev(dev);
6240 return err;
6243 /* Ports removal routine */
6244 static void mvpp2_port_remove(struct mvpp2_port *port)
6246 int i;
6248 unregister_netdev(port->dev);
6249 of_node_put(port->phy_node);
6250 free_percpu(port->pcpu);
6251 free_percpu(port->stats);
6252 for (i = 0; i < txq_number; i++)
6253 free_percpu(port->txqs[i]->pcpu);
6254 irq_dispose_mapping(port->irq);
6255 free_netdev(port->dev);
6258 /* Initialize decoding windows */
6259 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6260 struct mvpp2 *priv)
6262 u32 win_enable;
6263 int i;
6265 for (i = 0; i < 6; i++) {
6266 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6267 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6269 if (i < 4)
6270 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6273 win_enable = 0;
6275 for (i = 0; i < dram->num_cs; i++) {
6276 const struct mbus_dram_window *cs = dram->cs + i;
6278 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6279 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6280 dram->mbus_dram_target_id);
6282 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6283 (cs->size - 1) & 0xffff0000);
6285 win_enable |= (1 << i);
6288 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6291 /* Initialize Rx FIFO's */
6292 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6294 int port;
6296 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6297 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6298 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6299 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6300 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6303 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6304 MVPP2_RX_FIFO_PORT_MIN_PKT);
6305 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6308 /* Initialize network controller common part HW */
6309 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6311 const struct mbus_dram_target_info *dram_target_info;
6312 int err, i;
6313 u32 val;
6315 /* Checks for hardware constraints */
6316 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6317 (txq_number > MVPP2_MAX_TXQ)) {
6318 dev_err(&pdev->dev, "invalid queue size parameter\n");
6319 return -EINVAL;
6322 /* MBUS windows configuration */
6323 dram_target_info = mv_mbus_dram_info();
6324 if (dram_target_info)
6325 mvpp2_conf_mbus_windows(dram_target_info, priv);
6327 /* Disable HW PHY polling */
6328 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6329 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6330 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6332 /* Allocate and initialize aggregated TXQs */
6333 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6334 sizeof(struct mvpp2_tx_queue),
6335 GFP_KERNEL);
6336 if (!priv->aggr_txqs)
6337 return -ENOMEM;
6339 for_each_present_cpu(i) {
6340 priv->aggr_txqs[i].id = i;
6341 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6342 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6343 MVPP2_AGGR_TXQ_SIZE, i, priv);
6344 if (err < 0)
6345 return err;
6348 /* Rx Fifo Init */
6349 mvpp2_rx_fifo_init(priv);
6351 /* Reset Rx queue group interrupt configuration */
6352 for (i = 0; i < MVPP2_MAX_PORTS; i++)
6353 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6355 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6356 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6358 /* Allow cache snoop when transmiting packets */
6359 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6361 /* Buffer Manager initialization */
6362 err = mvpp2_bm_init(pdev, priv);
6363 if (err < 0)
6364 return err;
6366 /* Parser default initialization */
6367 err = mvpp2_prs_default_init(pdev, priv);
6368 if (err < 0)
6369 return err;
6371 /* Classifier default initialization */
6372 mvpp2_cls_init(priv);
6374 return 0;
6377 static int mvpp2_probe(struct platform_device *pdev)
6379 struct device_node *dn = pdev->dev.of_node;
6380 struct device_node *port_node;
6381 struct mvpp2 *priv;
6382 struct resource *res;
6383 int port_count, first_rxq;
6384 int err;
6386 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6387 if (!priv)
6388 return -ENOMEM;
6390 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6391 priv->base = devm_ioremap_resource(&pdev->dev, res);
6392 if (IS_ERR(priv->base))
6393 return PTR_ERR(priv->base);
6395 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6396 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6397 if (IS_ERR(priv->lms_base))
6398 return PTR_ERR(priv->lms_base);
6400 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6401 if (IS_ERR(priv->pp_clk))
6402 return PTR_ERR(priv->pp_clk);
6403 err = clk_prepare_enable(priv->pp_clk);
6404 if (err < 0)
6405 return err;
6407 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6408 if (IS_ERR(priv->gop_clk)) {
6409 err = PTR_ERR(priv->gop_clk);
6410 goto err_pp_clk;
6412 err = clk_prepare_enable(priv->gop_clk);
6413 if (err < 0)
6414 goto err_pp_clk;
6416 /* Get system's tclk rate */
6417 priv->tclk = clk_get_rate(priv->pp_clk);
6419 /* Initialize network controller */
6420 err = mvpp2_init(pdev, priv);
6421 if (err < 0) {
6422 dev_err(&pdev->dev, "failed to initialize controller\n");
6423 goto err_gop_clk;
6426 port_count = of_get_available_child_count(dn);
6427 if (port_count == 0) {
6428 dev_err(&pdev->dev, "no ports enabled\n");
6429 err = -ENODEV;
6430 goto err_gop_clk;
6433 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6434 sizeof(struct mvpp2_port *),
6435 GFP_KERNEL);
6436 if (!priv->port_list) {
6437 err = -ENOMEM;
6438 goto err_gop_clk;
6441 /* Initialize ports */
6442 first_rxq = 0;
6443 for_each_available_child_of_node(dn, port_node) {
6444 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6445 if (err < 0)
6446 goto err_gop_clk;
6449 platform_set_drvdata(pdev, priv);
6450 return 0;
6452 err_gop_clk:
6453 clk_disable_unprepare(priv->gop_clk);
6454 err_pp_clk:
6455 clk_disable_unprepare(priv->pp_clk);
6456 return err;
6459 static int mvpp2_remove(struct platform_device *pdev)
6461 struct mvpp2 *priv = platform_get_drvdata(pdev);
6462 struct device_node *dn = pdev->dev.of_node;
6463 struct device_node *port_node;
6464 int i = 0;
6466 for_each_available_child_of_node(dn, port_node) {
6467 if (priv->port_list[i])
6468 mvpp2_port_remove(priv->port_list[i]);
6469 i++;
6472 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6473 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6475 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6478 for_each_present_cpu(i) {
6479 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6481 dma_free_coherent(&pdev->dev,
6482 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6483 aggr_txq->descs,
6484 aggr_txq->descs_phys);
6487 clk_disable_unprepare(priv->pp_clk);
6488 clk_disable_unprepare(priv->gop_clk);
6490 return 0;
6493 static const struct of_device_id mvpp2_match[] = {
6494 { .compatible = "marvell,armada-375-pp2" },
6497 MODULE_DEVICE_TABLE(of, mvpp2_match);
6499 static struct platform_driver mvpp2_driver = {
6500 .probe = mvpp2_probe,
6501 .remove = mvpp2_remove,
6502 .driver = {
6503 .name = MVPP2_DRIVER_NAME,
6504 .of_match_table = mvpp2_match,
6508 module_platform_driver(mvpp2_driver);
6510 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6511 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6512 MODULE_LICENSE("GPL v2");