pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / regulator / core.c
blob9faccfceb53c66c08ec166b5961746f0f4e2c13a
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
61 static struct class regulator_class;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
117 return container_of(dev, struct regulator_dev, dev);
120 static const char *rdev_get_name(struct regulator_dev *rdev)
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
130 static bool have_full_constraints(void)
132 return has_full_constraints || of_have_populated_dt();
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
139 return false;
142 if (rdev->constraints->valid_ops_mask & ops)
143 return true;
145 return false;
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
153 return NULL;
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
160 static void regulator_lock_supply(struct regulator_dev *rdev)
162 int i;
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
174 struct regulator *supply;
176 while (1) {
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
180 if (!rdev->supply)
181 return;
183 rdev = supply->rdev;
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
194 * returns NULL.
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
206 if (!regnode) {
207 dev_dbg(dev, "Looking up %s property in node %s failed",
208 prop_name, dev->of_node->full_name);
209 return NULL;
211 return regnode;
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
218 BUG_ON(*min_uV > *max_uV);
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
222 return -EPERM;
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 *min_uV, *max_uV);
233 return -EINVAL;
236 return 0;
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
245 struct regulator *regulator;
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
252 if (!regulator->min_uV && !regulator->max_uV)
253 continue;
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 *min_uV, *max_uV);
264 return -EINVAL;
267 return 0;
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
274 BUG_ON(*min_uA > *max_uA);
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
278 return -EPERM;
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 *min_uA, *max_uA);
289 return -EINVAL;
292 return 0;
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
298 switch (*mode) {
299 case REGULATOR_MODE_FAST:
300 case REGULATOR_MODE_NORMAL:
301 case REGULATOR_MODE_IDLE:
302 case REGULATOR_MODE_STANDBY:
303 break;
304 default:
305 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 return -EINVAL;
309 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310 rdev_err(rdev, "mode operation not allowed\n");
311 return -EPERM;
314 /* The modes are bitmasks, the most power hungry modes having
315 * the lowest values. If the requested mode isn't supported
316 * try higher modes. */
317 while (*mode) {
318 if (rdev->constraints->valid_modes_mask & *mode)
319 return 0;
320 *mode /= 2;
323 return -EINVAL;
326 static ssize_t regulator_uV_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330 ssize_t ret;
332 mutex_lock(&rdev->mutex);
333 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334 mutex_unlock(&rdev->mutex);
336 return ret;
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340 static ssize_t regulator_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
345 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350 char *buf)
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 static DEVICE_ATTR_RO(name);
358 static ssize_t regulator_print_opmode(char *buf, int mode)
360 switch (mode) {
361 case REGULATOR_MODE_FAST:
362 return sprintf(buf, "fast\n");
363 case REGULATOR_MODE_NORMAL:
364 return sprintf(buf, "normal\n");
365 case REGULATOR_MODE_IDLE:
366 return sprintf(buf, "idle\n");
367 case REGULATOR_MODE_STANDBY:
368 return sprintf(buf, "standby\n");
370 return sprintf(buf, "unknown\n");
373 static ssize_t regulator_opmode_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
378 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382 static ssize_t regulator_print_state(char *buf, int state)
384 if (state > 0)
385 return sprintf(buf, "enabled\n");
386 else if (state == 0)
387 return sprintf(buf, "disabled\n");
388 else
389 return sprintf(buf, "unknown\n");
392 static ssize_t regulator_state_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 ssize_t ret;
398 mutex_lock(&rdev->mutex);
399 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400 mutex_unlock(&rdev->mutex);
402 return ret;
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406 static ssize_t regulator_status_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
409 struct regulator_dev *rdev = dev_get_drvdata(dev);
410 int status;
411 char *label;
413 status = rdev->desc->ops->get_status(rdev);
414 if (status < 0)
415 return status;
417 switch (status) {
418 case REGULATOR_STATUS_OFF:
419 label = "off";
420 break;
421 case REGULATOR_STATUS_ON:
422 label = "on";
423 break;
424 case REGULATOR_STATUS_ERROR:
425 label = "error";
426 break;
427 case REGULATOR_STATUS_FAST:
428 label = "fast";
429 break;
430 case REGULATOR_STATUS_NORMAL:
431 label = "normal";
432 break;
433 case REGULATOR_STATUS_IDLE:
434 label = "idle";
435 break;
436 case REGULATOR_STATUS_STANDBY:
437 label = "standby";
438 break;
439 case REGULATOR_STATUS_BYPASS:
440 label = "bypass";
441 break;
442 case REGULATOR_STATUS_UNDEFINED:
443 label = "undefined";
444 break;
445 default:
446 return -ERANGE;
449 return sprintf(buf, "%s\n", label);
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453 static ssize_t regulator_min_uA_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
461 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465 static ssize_t regulator_max_uA_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
473 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477 static ssize_t regulator_min_uV_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
485 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489 static ssize_t regulator_max_uV_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
497 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501 static ssize_t regulator_total_uA_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 struct regulator *regulator;
506 int uA = 0;
508 mutex_lock(&rdev->mutex);
509 list_for_each_entry(regulator, &rdev->consumer_list, list)
510 uA += regulator->uA_load;
511 mutex_unlock(&rdev->mutex);
512 return sprintf(buf, "%d\n", uA);
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517 char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520 return sprintf(buf, "%d\n", rdev->use_count);
522 static DEVICE_ATTR_RO(num_users);
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525 char *buf)
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 switch (rdev->desc->type) {
530 case REGULATOR_VOLTAGE:
531 return sprintf(buf, "voltage\n");
532 case REGULATOR_CURRENT:
533 return sprintf(buf, "current\n");
535 return sprintf(buf, "unknown\n");
537 static DEVICE_ATTR_RO(type);
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540 struct device_attribute *attr, char *buf)
542 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547 regulator_suspend_mem_uV_show, NULL);
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550 struct device_attribute *attr, char *buf)
552 struct regulator_dev *rdev = dev_get_drvdata(dev);
554 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557 regulator_suspend_disk_uV_show, NULL);
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
564 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567 regulator_suspend_standby_uV_show, NULL);
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_mem.mode);
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578 regulator_suspend_mem_mode_show, NULL);
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
585 return regulator_print_opmode(buf,
586 rdev->constraints->state_disk.mode);
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589 regulator_suspend_disk_mode_show, NULL);
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 return regulator_print_opmode(buf,
597 rdev->constraints->state_standby.mode);
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600 regulator_suspend_standby_mode_show, NULL);
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
607 return regulator_print_state(buf,
608 rdev->constraints->state_mem.enabled);
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611 regulator_suspend_mem_state_show, NULL);
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
618 return regulator_print_state(buf,
619 rdev->constraints->state_disk.enabled);
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622 regulator_suspend_disk_state_show, NULL);
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625 struct device_attribute *attr, char *buf)
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
629 return regulator_print_state(buf,
630 rdev->constraints->state_standby.enabled);
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633 regulator_suspend_standby_state_show, NULL);
635 static ssize_t regulator_bypass_show(struct device *dev,
636 struct device_attribute *attr, char *buf)
638 struct regulator_dev *rdev = dev_get_drvdata(dev);
639 const char *report;
640 bool bypass;
641 int ret;
643 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645 if (ret != 0)
646 report = "unknown";
647 else if (bypass)
648 report = "enabled";
649 else
650 report = "disabled";
652 return sprintf(buf, "%s\n", report);
654 static DEVICE_ATTR(bypass, 0444,
655 regulator_bypass_show, NULL);
657 /* Calculate the new optimum regulator operating mode based on the new total
658 * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
661 struct regulator *sibling;
662 int current_uA = 0, output_uV, input_uV, err;
663 unsigned int mode;
665 lockdep_assert_held_once(&rdev->mutex);
668 * first check to see if we can set modes at all, otherwise just
669 * tell the consumer everything is OK.
671 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 return 0;
674 if (!rdev->desc->ops->get_optimum_mode &&
675 !rdev->desc->ops->set_load)
676 return 0;
678 if (!rdev->desc->ops->set_mode &&
679 !rdev->desc->ops->set_load)
680 return -EINVAL;
682 /* calc total requested load */
683 list_for_each_entry(sibling, &rdev->consumer_list, list)
684 current_uA += sibling->uA_load;
686 current_uA += rdev->constraints->system_load;
688 if (rdev->desc->ops->set_load) {
689 /* set the optimum mode for our new total regulator load */
690 err = rdev->desc->ops->set_load(rdev, current_uA);
691 if (err < 0)
692 rdev_err(rdev, "failed to set load %d\n", current_uA);
693 } else {
694 /* get output voltage */
695 output_uV = _regulator_get_voltage(rdev);
696 if (output_uV <= 0) {
697 rdev_err(rdev, "invalid output voltage found\n");
698 return -EINVAL;
701 /* get input voltage */
702 input_uV = 0;
703 if (rdev->supply)
704 input_uV = regulator_get_voltage(rdev->supply);
705 if (input_uV <= 0)
706 input_uV = rdev->constraints->input_uV;
707 if (input_uV <= 0) {
708 rdev_err(rdev, "invalid input voltage found\n");
709 return -EINVAL;
712 /* now get the optimum mode for our new total regulator load */
713 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714 output_uV, current_uA);
716 /* check the new mode is allowed */
717 err = regulator_mode_constrain(rdev, &mode);
718 if (err < 0) {
719 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720 current_uA, input_uV, output_uV);
721 return err;
724 err = rdev->desc->ops->set_mode(rdev, mode);
725 if (err < 0)
726 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
729 return err;
732 static int suspend_set_state(struct regulator_dev *rdev,
733 struct regulator_state *rstate)
735 int ret = 0;
737 /* If we have no suspend mode configration don't set anything;
738 * only warn if the driver implements set_suspend_voltage or
739 * set_suspend_mode callback.
741 if (!rstate->enabled && !rstate->disabled) {
742 if (rdev->desc->ops->set_suspend_voltage ||
743 rdev->desc->ops->set_suspend_mode)
744 rdev_warn(rdev, "No configuration\n");
745 return 0;
748 if (rstate->enabled && rstate->disabled) {
749 rdev_err(rdev, "invalid configuration\n");
750 return -EINVAL;
753 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754 ret = rdev->desc->ops->set_suspend_enable(rdev);
755 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756 ret = rdev->desc->ops->set_suspend_disable(rdev);
757 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758 ret = 0;
760 if (ret < 0) {
761 rdev_err(rdev, "failed to enabled/disable\n");
762 return ret;
765 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767 if (ret < 0) {
768 rdev_err(rdev, "failed to set voltage\n");
769 return ret;
773 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775 if (ret < 0) {
776 rdev_err(rdev, "failed to set mode\n");
777 return ret;
780 return ret;
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 if (!rdev->constraints)
787 return -EINVAL;
789 switch (state) {
790 case PM_SUSPEND_STANDBY:
791 return suspend_set_state(rdev,
792 &rdev->constraints->state_standby);
793 case PM_SUSPEND_MEM:
794 return suspend_set_state(rdev,
795 &rdev->constraints->state_mem);
796 case PM_SUSPEND_MAX:
797 return suspend_set_state(rdev,
798 &rdev->constraints->state_disk);
799 default:
800 return -EINVAL;
804 static void print_constraints(struct regulator_dev *rdev)
806 struct regulation_constraints *constraints = rdev->constraints;
807 char buf[160] = "";
808 size_t len = sizeof(buf) - 1;
809 int count = 0;
810 int ret;
812 if (constraints->min_uV && constraints->max_uV) {
813 if (constraints->min_uV == constraints->max_uV)
814 count += scnprintf(buf + count, len - count, "%d mV ",
815 constraints->min_uV / 1000);
816 else
817 count += scnprintf(buf + count, len - count,
818 "%d <--> %d mV ",
819 constraints->min_uV / 1000,
820 constraints->max_uV / 1000);
823 if (!constraints->min_uV ||
824 constraints->min_uV != constraints->max_uV) {
825 ret = _regulator_get_voltage(rdev);
826 if (ret > 0)
827 count += scnprintf(buf + count, len - count,
828 "at %d mV ", ret / 1000);
831 if (constraints->uV_offset)
832 count += scnprintf(buf + count, len - count, "%dmV offset ",
833 constraints->uV_offset / 1000);
835 if (constraints->min_uA && constraints->max_uA) {
836 if (constraints->min_uA == constraints->max_uA)
837 count += scnprintf(buf + count, len - count, "%d mA ",
838 constraints->min_uA / 1000);
839 else
840 count += scnprintf(buf + count, len - count,
841 "%d <--> %d mA ",
842 constraints->min_uA / 1000,
843 constraints->max_uA / 1000);
846 if (!constraints->min_uA ||
847 constraints->min_uA != constraints->max_uA) {
848 ret = _regulator_get_current_limit(rdev);
849 if (ret > 0)
850 count += scnprintf(buf + count, len - count,
851 "at %d mA ", ret / 1000);
854 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855 count += scnprintf(buf + count, len - count, "fast ");
856 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857 count += scnprintf(buf + count, len - count, "normal ");
858 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859 count += scnprintf(buf + count, len - count, "idle ");
860 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861 count += scnprintf(buf + count, len - count, "standby");
863 if (!count)
864 scnprintf(buf, len, "no parameters");
866 rdev_dbg(rdev, "%s\n", buf);
868 if ((constraints->min_uV != constraints->max_uV) &&
869 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870 rdev_warn(rdev,
871 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875 struct regulation_constraints *constraints)
877 const struct regulator_ops *ops = rdev->desc->ops;
878 int ret;
880 /* do we need to apply the constraint voltage */
881 if (rdev->constraints->apply_uV &&
882 rdev->constraints->min_uV && rdev->constraints->max_uV) {
883 int target_min, target_max;
884 int current_uV = _regulator_get_voltage(rdev);
885 if (current_uV < 0) {
886 rdev_err(rdev,
887 "failed to get the current voltage(%d)\n",
888 current_uV);
889 return current_uV;
893 * If we're below the minimum voltage move up to the
894 * minimum voltage, if we're above the maximum voltage
895 * then move down to the maximum.
897 target_min = current_uV;
898 target_max = current_uV;
900 if (current_uV < rdev->constraints->min_uV) {
901 target_min = rdev->constraints->min_uV;
902 target_max = rdev->constraints->min_uV;
905 if (current_uV > rdev->constraints->max_uV) {
906 target_min = rdev->constraints->max_uV;
907 target_max = rdev->constraints->max_uV;
910 if (target_min != current_uV || target_max != current_uV) {
911 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912 current_uV, target_min, target_max);
913 ret = _regulator_do_set_voltage(
914 rdev, target_min, target_max);
915 if (ret < 0) {
916 rdev_err(rdev,
917 "failed to apply %d-%duV constraint(%d)\n",
918 target_min, target_max, ret);
919 return ret;
924 /* constrain machine-level voltage specs to fit
925 * the actual range supported by this regulator.
927 if (ops->list_voltage && rdev->desc->n_voltages) {
928 int count = rdev->desc->n_voltages;
929 int i;
930 int min_uV = INT_MAX;
931 int max_uV = INT_MIN;
932 int cmin = constraints->min_uV;
933 int cmax = constraints->max_uV;
935 /* it's safe to autoconfigure fixed-voltage supplies
936 and the constraints are used by list_voltage. */
937 if (count == 1 && !cmin) {
938 cmin = 1;
939 cmax = INT_MAX;
940 constraints->min_uV = cmin;
941 constraints->max_uV = cmax;
944 /* voltage constraints are optional */
945 if ((cmin == 0) && (cmax == 0))
946 return 0;
948 /* else require explicit machine-level constraints */
949 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950 rdev_err(rdev, "invalid voltage constraints\n");
951 return -EINVAL;
954 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955 for (i = 0; i < count; i++) {
956 int value;
958 value = ops->list_voltage(rdev, i);
959 if (value <= 0)
960 continue;
962 /* maybe adjust [min_uV..max_uV] */
963 if (value >= cmin && value < min_uV)
964 min_uV = value;
965 if (value <= cmax && value > max_uV)
966 max_uV = value;
969 /* final: [min_uV..max_uV] valid iff constraints valid */
970 if (max_uV < min_uV) {
971 rdev_err(rdev,
972 "unsupportable voltage constraints %u-%uuV\n",
973 min_uV, max_uV);
974 return -EINVAL;
977 /* use regulator's subset of machine constraints */
978 if (constraints->min_uV < min_uV) {
979 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980 constraints->min_uV, min_uV);
981 constraints->min_uV = min_uV;
983 if (constraints->max_uV > max_uV) {
984 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985 constraints->max_uV, max_uV);
986 constraints->max_uV = max_uV;
990 return 0;
993 static int machine_constraints_current(struct regulator_dev *rdev,
994 struct regulation_constraints *constraints)
996 const struct regulator_ops *ops = rdev->desc->ops;
997 int ret;
999 if (!constraints->min_uA && !constraints->max_uA)
1000 return 0;
1002 if (constraints->min_uA > constraints->max_uA) {
1003 rdev_err(rdev, "Invalid current constraints\n");
1004 return -EINVAL;
1007 if (!ops->set_current_limit || !ops->get_current_limit) {
1008 rdev_warn(rdev, "Operation of current configuration missing\n");
1009 return 0;
1012 /* Set regulator current in constraints range */
1013 ret = ops->set_current_limit(rdev, constraints->min_uA,
1014 constraints->max_uA);
1015 if (ret < 0) {
1016 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017 return ret;
1020 return 0;
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1026 * set_machine_constraints - sets regulator constraints
1027 * @rdev: regulator source
1028 * @constraints: constraints to apply
1030 * Allows platform initialisation code to define and constrain
1031 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1032 * Constraints *must* be set by platform code in order for some
1033 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034 * set_mode.
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037 const struct regulation_constraints *constraints)
1039 int ret = 0;
1040 const struct regulator_ops *ops = rdev->desc->ops;
1042 if (constraints)
1043 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044 GFP_KERNEL);
1045 else
1046 rdev->constraints = kzalloc(sizeof(*constraints),
1047 GFP_KERNEL);
1048 if (!rdev->constraints)
1049 return -ENOMEM;
1051 ret = machine_constraints_voltage(rdev, rdev->constraints);
1052 if (ret != 0)
1053 return ret;
1055 ret = machine_constraints_current(rdev, rdev->constraints);
1056 if (ret != 0)
1057 return ret;
1059 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060 ret = ops->set_input_current_limit(rdev,
1061 rdev->constraints->ilim_uA);
1062 if (ret < 0) {
1063 rdev_err(rdev, "failed to set input limit\n");
1064 return ret;
1068 /* do we need to setup our suspend state */
1069 if (rdev->constraints->initial_state) {
1070 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set suspend state\n");
1073 return ret;
1077 if (rdev->constraints->initial_mode) {
1078 if (!ops->set_mode) {
1079 rdev_err(rdev, "no set_mode operation\n");
1080 return -EINVAL;
1083 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084 if (ret < 0) {
1085 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086 return ret;
1090 /* If the constraints say the regulator should be on at this point
1091 * and we have control then make sure it is enabled.
1093 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094 ret = _regulator_do_enable(rdev);
1095 if (ret < 0 && ret != -EINVAL) {
1096 rdev_err(rdev, "failed to enable\n");
1097 return ret;
1101 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102 && ops->set_ramp_delay) {
1103 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104 if (ret < 0) {
1105 rdev_err(rdev, "failed to set ramp_delay\n");
1106 return ret;
1110 if (rdev->constraints->pull_down && ops->set_pull_down) {
1111 ret = ops->set_pull_down(rdev);
1112 if (ret < 0) {
1113 rdev_err(rdev, "failed to set pull down\n");
1114 return ret;
1118 if (rdev->constraints->soft_start && ops->set_soft_start) {
1119 ret = ops->set_soft_start(rdev);
1120 if (ret < 0) {
1121 rdev_err(rdev, "failed to set soft start\n");
1122 return ret;
1126 if (rdev->constraints->over_current_protection
1127 && ops->set_over_current_protection) {
1128 ret = ops->set_over_current_protection(rdev);
1129 if (ret < 0) {
1130 rdev_err(rdev, "failed to set over current protection\n");
1131 return ret;
1135 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136 bool ad_state = (rdev->constraints->active_discharge ==
1137 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139 ret = ops->set_active_discharge(rdev, ad_state);
1140 if (ret < 0) {
1141 rdev_err(rdev, "failed to set active discharge\n");
1142 return ret;
1146 print_constraints(rdev);
1147 return 0;
1151 * set_supply - set regulator supply regulator
1152 * @rdev: regulator name
1153 * @supply_rdev: supply regulator name
1155 * Called by platform initialisation code to set the supply regulator for this
1156 * regulator. This ensures that a regulators supply will also be enabled by the
1157 * core if it's child is enabled.
1159 static int set_supply(struct regulator_dev *rdev,
1160 struct regulator_dev *supply_rdev)
1162 int err;
1164 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166 if (!try_module_get(supply_rdev->owner))
1167 return -ENODEV;
1169 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 if (rdev->supply == NULL) {
1171 err = -ENOMEM;
1172 return err;
1174 supply_rdev->open_count++;
1176 return 0;
1180 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181 * @rdev: regulator source
1182 * @consumer_dev_name: dev_name() string for device supply applies to
1183 * @supply: symbolic name for supply
1185 * Allows platform initialisation code to map physical regulator
1186 * sources to symbolic names for supplies for use by devices. Devices
1187 * should use these symbolic names to request regulators, avoiding the
1188 * need to provide board-specific regulator names as platform data.
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 const char *consumer_dev_name,
1192 const char *supply)
1194 struct regulator_map *node;
1195 int has_dev;
1197 if (supply == NULL)
1198 return -EINVAL;
1200 if (consumer_dev_name != NULL)
1201 has_dev = 1;
1202 else
1203 has_dev = 0;
1205 list_for_each_entry(node, &regulator_map_list, list) {
1206 if (node->dev_name && consumer_dev_name) {
1207 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208 continue;
1209 } else if (node->dev_name || consumer_dev_name) {
1210 continue;
1213 if (strcmp(node->supply, supply) != 0)
1214 continue;
1216 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217 consumer_dev_name,
1218 dev_name(&node->regulator->dev),
1219 node->regulator->desc->name,
1220 supply,
1221 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 return -EBUSY;
1225 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 if (node == NULL)
1227 return -ENOMEM;
1229 node->regulator = rdev;
1230 node->supply = supply;
1232 if (has_dev) {
1233 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234 if (node->dev_name == NULL) {
1235 kfree(node);
1236 return -ENOMEM;
1240 list_add(&node->list, &regulator_map_list);
1241 return 0;
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 struct regulator_map *node, *n;
1248 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249 if (rdev == node->regulator) {
1250 list_del(&node->list);
1251 kfree(node->dev_name);
1252 kfree(node);
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259 char __user *user_buf,
1260 size_t count, loff_t *ppos)
1262 const struct regulator *regulator = file->private_data;
1263 const struct regulation_constraints *c = regulator->rdev->constraints;
1264 char *buf;
1265 ssize_t ret;
1267 if (!c)
1268 return 0;
1270 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271 if (!buf)
1272 return -ENOMEM;
1274 ret = snprintf(buf, PAGE_SIZE,
1275 "always_on: %u\n"
1276 "boot_on: %u\n"
1277 "apply_uV: %u\n"
1278 "ramp_disable: %u\n"
1279 "soft_start: %u\n"
1280 "pull_down: %u\n"
1281 "over_current_protection: %u\n",
1282 c->always_on,
1283 c->boot_on,
1284 c->apply_uV,
1285 c->ramp_disable,
1286 c->soft_start,
1287 c->pull_down,
1288 c->over_current_protection);
1290 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291 kfree(buf);
1293 return ret;
1296 #endif
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300 .open = simple_open,
1301 .read = constraint_flags_read_file,
1302 .llseek = default_llseek,
1303 #endif
1306 #define REG_STR_SIZE 64
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309 struct device *dev,
1310 const char *supply_name)
1312 struct regulator *regulator;
1313 char buf[REG_STR_SIZE];
1314 int err, size;
1316 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317 if (regulator == NULL)
1318 return NULL;
1320 mutex_lock(&rdev->mutex);
1321 regulator->rdev = rdev;
1322 list_add(&regulator->list, &rdev->consumer_list);
1324 if (dev) {
1325 regulator->dev = dev;
1327 /* Add a link to the device sysfs entry */
1328 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329 dev->kobj.name, supply_name);
1330 if (size >= REG_STR_SIZE)
1331 goto overflow_err;
1333 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334 if (regulator->supply_name == NULL)
1335 goto overflow_err;
1337 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338 buf);
1339 if (err) {
1340 rdev_dbg(rdev, "could not add device link %s err %d\n",
1341 dev->kobj.name, err);
1342 /* non-fatal */
1344 } else {
1345 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346 if (regulator->supply_name == NULL)
1347 goto overflow_err;
1350 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351 rdev->debugfs);
1352 if (!regulator->debugfs) {
1353 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354 } else {
1355 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356 &regulator->uA_load);
1357 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358 &regulator->min_uV);
1359 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360 &regulator->max_uV);
1361 debugfs_create_file("constraint_flags", 0444,
1362 regulator->debugfs, regulator,
1363 &constraint_flags_fops);
1367 * Check now if the regulator is an always on regulator - if
1368 * it is then we don't need to do nearly so much work for
1369 * enable/disable calls.
1371 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372 _regulator_is_enabled(rdev))
1373 regulator->always_on = true;
1375 mutex_unlock(&rdev->mutex);
1376 return regulator;
1377 overflow_err:
1378 list_del(&regulator->list);
1379 kfree(regulator);
1380 mutex_unlock(&rdev->mutex);
1381 return NULL;
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 if (rdev->constraints && rdev->constraints->enable_time)
1387 return rdev->constraints->enable_time;
1388 if (!rdev->desc->ops->enable_time)
1389 return rdev->desc->enable_time;
1390 return rdev->desc->ops->enable_time(rdev);
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394 struct device *dev, const char *supply)
1396 struct regulator_supply_alias *map;
1398 list_for_each_entry(map, &regulator_supply_alias_list, list)
1399 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400 return map;
1402 return NULL;
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 struct regulator_supply_alias *map;
1409 map = regulator_find_supply_alias(*dev, *supply);
1410 if (map) {
1411 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412 *supply, map->alias_supply,
1413 dev_name(map->alias_dev));
1414 *dev = map->alias_dev;
1415 *supply = map->alias_supply;
1419 static int of_node_match(struct device *dev, const void *data)
1421 return dev->of_node == data;
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 struct device *dev;
1428 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430 return dev ? dev_to_rdev(dev) : NULL;
1433 static int regulator_match(struct device *dev, const void *data)
1435 struct regulator_dev *r = dev_to_rdev(dev);
1437 return strcmp(rdev_get_name(r), data) == 0;
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 struct device *dev;
1444 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446 return dev ? dev_to_rdev(dev) : NULL;
1450 * regulator_dev_lookup - lookup a regulator device.
1451 * @dev: device for regulator "consumer".
1452 * @supply: Supply name or regulator ID.
1453 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454 * lookup could succeed in the future.
1456 * If successful, returns a struct regulator_dev that corresponds to the name
1457 * @supply and with the embedded struct device refcount incremented by one,
1458 * or NULL on failure. The refcount must be dropped by calling put_device().
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461 const char *supply,
1462 int *ret)
1464 struct regulator_dev *r;
1465 struct device_node *node;
1466 struct regulator_map *map;
1467 const char *devname = NULL;
1469 regulator_supply_alias(&dev, &supply);
1471 /* first do a dt based lookup */
1472 if (dev && dev->of_node) {
1473 node = of_get_regulator(dev, supply);
1474 if (node) {
1475 r = of_find_regulator_by_node(node);
1476 if (r)
1477 return r;
1478 *ret = -EPROBE_DEFER;
1479 return NULL;
1480 } else {
1482 * If we couldn't even get the node then it's
1483 * not just that the device didn't register
1484 * yet, there's no node and we'll never
1485 * succeed.
1487 *ret = -ENODEV;
1491 /* if not found, try doing it non-dt way */
1492 if (dev)
1493 devname = dev_name(dev);
1495 r = regulator_lookup_by_name(supply);
1496 if (r)
1497 return r;
1499 mutex_lock(&regulator_list_mutex);
1500 list_for_each_entry(map, &regulator_map_list, list) {
1501 /* If the mapping has a device set up it must match */
1502 if (map->dev_name &&
1503 (!devname || strcmp(map->dev_name, devname)))
1504 continue;
1506 if (strcmp(map->supply, supply) == 0 &&
1507 get_device(&map->regulator->dev)) {
1508 mutex_unlock(&regulator_list_mutex);
1509 return map->regulator;
1512 mutex_unlock(&regulator_list_mutex);
1514 return NULL;
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 struct regulator_dev *r;
1520 struct device *dev = rdev->dev.parent;
1521 int ret;
1523 /* No supply to resovle? */
1524 if (!rdev->supply_name)
1525 return 0;
1527 /* Supply already resolved? */
1528 if (rdev->supply)
1529 return 0;
1531 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532 if (!r) {
1533 if (ret == -ENODEV) {
1535 * No supply was specified for this regulator and
1536 * there will never be one.
1538 return 0;
1541 /* Did the lookup explicitly defer for us? */
1542 if (ret == -EPROBE_DEFER)
1543 return ret;
1545 if (have_full_constraints()) {
1546 r = dummy_regulator_rdev;
1547 get_device(&r->dev);
1548 } else {
1549 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550 rdev->supply_name, rdev->desc->name);
1551 return -EPROBE_DEFER;
1555 /* Recursively resolve the supply of the supply */
1556 ret = regulator_resolve_supply(r);
1557 if (ret < 0) {
1558 put_device(&r->dev);
1559 return ret;
1562 ret = set_supply(rdev, r);
1563 if (ret < 0) {
1564 put_device(&r->dev);
1565 return ret;
1568 /* Cascade always-on state to supply */
1569 if (_regulator_is_enabled(rdev)) {
1570 ret = regulator_enable(rdev->supply);
1571 if (ret < 0) {
1572 _regulator_put(rdev->supply);
1573 rdev->supply = NULL;
1574 return ret;
1578 return 0;
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583 bool exclusive, bool allow_dummy)
1585 struct regulator_dev *rdev;
1586 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587 const char *devname = NULL;
1588 int ret;
1590 if (id == NULL) {
1591 pr_err("get() with no identifier\n");
1592 return ERR_PTR(-EINVAL);
1595 if (dev)
1596 devname = dev_name(dev);
1598 if (have_full_constraints())
1599 ret = -ENODEV;
1600 else
1601 ret = -EPROBE_DEFER;
1603 rdev = regulator_dev_lookup(dev, id, &ret);
1604 if (rdev)
1605 goto found;
1607 regulator = ERR_PTR(ret);
1610 * If we have return value from dev_lookup fail, we do not expect to
1611 * succeed, so, quit with appropriate error value
1613 if (ret && ret != -ENODEV)
1614 return regulator;
1616 if (!devname)
1617 devname = "deviceless";
1620 * Assume that a regulator is physically present and enabled
1621 * even if it isn't hooked up and just provide a dummy.
1623 if (have_full_constraints() && allow_dummy) {
1624 pr_warn("%s supply %s not found, using dummy regulator\n",
1625 devname, id);
1627 rdev = dummy_regulator_rdev;
1628 get_device(&rdev->dev);
1629 goto found;
1630 /* Don't log an error when called from regulator_get_optional() */
1631 } else if (!have_full_constraints() || exclusive) {
1632 dev_warn(dev, "dummy supplies not allowed\n");
1635 return regulator;
1637 found:
1638 if (rdev->exclusive) {
1639 regulator = ERR_PTR(-EPERM);
1640 put_device(&rdev->dev);
1641 return regulator;
1644 if (exclusive && rdev->open_count) {
1645 regulator = ERR_PTR(-EBUSY);
1646 put_device(&rdev->dev);
1647 return regulator;
1650 ret = regulator_resolve_supply(rdev);
1651 if (ret < 0) {
1652 regulator = ERR_PTR(ret);
1653 put_device(&rdev->dev);
1654 return regulator;
1657 if (!try_module_get(rdev->owner)) {
1658 put_device(&rdev->dev);
1659 return regulator;
1662 regulator = create_regulator(rdev, dev, id);
1663 if (regulator == NULL) {
1664 regulator = ERR_PTR(-ENOMEM);
1665 put_device(&rdev->dev);
1666 module_put(rdev->owner);
1667 return regulator;
1670 rdev->open_count++;
1671 if (exclusive) {
1672 rdev->exclusive = 1;
1674 ret = _regulator_is_enabled(rdev);
1675 if (ret > 0)
1676 rdev->use_count = 1;
1677 else
1678 rdev->use_count = 0;
1681 return regulator;
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged. It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1699 return _regulator_get(dev, id, false, true);
1701 EXPORT_SYMBOL_GPL(regulator_get);
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno. Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1717 * controlling.
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged. It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726 return _regulator_get(dev, id, true, false);
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1743 * supplies.
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged. It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752 return _regulator_get(dev, id, false, false);
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1759 struct regulator_dev *rdev;
1761 if (IS_ERR_OR_NULL(regulator))
1762 return;
1764 lockdep_assert_held_once(&regulator_list_mutex);
1766 rdev = regulator->rdev;
1768 debugfs_remove_recursive(regulator->debugfs);
1770 /* remove any sysfs entries */
1771 if (regulator->dev)
1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 mutex_lock(&rdev->mutex);
1774 list_del(&regulator->list);
1776 rdev->open_count--;
1777 rdev->exclusive = 0;
1778 put_device(&rdev->dev);
1779 mutex_unlock(&rdev->mutex);
1781 kfree(regulator->supply_name);
1782 kfree(regulator);
1784 module_put(rdev->owner);
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1793 * this function.
1795 void regulator_put(struct regulator *regulator)
1797 mutex_lock(&regulator_list_mutex);
1798 _regulator_put(regulator);
1799 mutex_unlock(&regulator_list_mutex);
1801 EXPORT_SYMBOL_GPL(regulator_put);
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1810 * supply
1812 * All lookups for id on dev will instead be conducted for alias_id on
1813 * alias_dev.
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 struct device *alias_dev,
1817 const char *alias_id)
1819 struct regulator_supply_alias *map;
1821 map = regulator_find_supply_alias(dev, id);
1822 if (map)
1823 return -EEXIST;
1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 if (!map)
1827 return -ENOMEM;
1829 map->src_dev = dev;
1830 map->src_supply = id;
1831 map->alias_dev = alias_dev;
1832 map->alias_supply = alias_id;
1834 list_add(&map->list, &regulator_supply_alias_list);
1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 id, dev_name(dev), alias_id, dev_name(alias_dev));
1839 return 0;
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1844 * regulator_unregister_supply_alias - Remove device alias
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1849 * Remove a lookup alias if one exists for id on dev.
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853 struct regulator_supply_alias *map;
1855 map = regulator_find_supply_alias(dev, id);
1856 if (map) {
1857 list_del(&map->list);
1858 kfree(map);
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1870 * lookup the supply
1871 * @num_id: Number of aliases to register
1873 * @return 0 on success, an errno on failure.
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation. If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 const char *const *id,
1882 struct device *alias_dev,
1883 const char *const *alias_id,
1884 int num_id)
1886 int i;
1887 int ret;
1889 for (i = 0; i < num_id; ++i) {
1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 alias_id[i]);
1892 if (ret < 0)
1893 goto err;
1896 return 0;
1898 err:
1899 dev_err(dev,
1900 "Failed to create supply alias %s,%s -> %s,%s\n",
1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903 while (--i >= 0)
1904 regulator_unregister_supply_alias(dev, id[i]);
1906 return ret;
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 const char *const *id,
1922 int num_id)
1924 int i;
1926 for (i = 0; i < num_id; ++i)
1927 regulator_unregister_supply_alias(dev, id[i]);
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 const struct regulator_config *config)
1936 struct regulator_enable_gpio *pin;
1937 struct gpio_desc *gpiod;
1938 int ret;
1940 gpiod = gpio_to_desc(config->ena_gpio);
1942 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 if (pin->gpiod == gpiod) {
1944 rdev_dbg(rdev, "GPIO %d is already used\n",
1945 config->ena_gpio);
1946 goto update_ena_gpio_to_rdev;
1950 ret = gpio_request_one(config->ena_gpio,
1951 GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 rdev_get_name(rdev));
1953 if (ret)
1954 return ret;
1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 if (pin == NULL) {
1958 gpio_free(config->ena_gpio);
1959 return -ENOMEM;
1962 pin->gpiod = gpiod;
1963 pin->ena_gpio_invert = config->ena_gpio_invert;
1964 list_add(&pin->list, &regulator_ena_gpio_list);
1966 update_ena_gpio_to_rdev:
1967 pin->request_count++;
1968 rdev->ena_pin = pin;
1969 return 0;
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974 struct regulator_enable_gpio *pin, *n;
1976 if (!rdev->ena_pin)
1977 return;
1979 /* Free the GPIO only in case of no use */
1980 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 if (pin->request_count <= 1) {
1983 pin->request_count = 0;
1984 gpiod_put(pin->gpiod);
1985 list_del(&pin->list);
1986 kfree(pin);
1987 rdev->ena_pin = NULL;
1988 return;
1989 } else {
1990 pin->request_count--;
1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998 * @rdev: regulator_dev structure
1999 * @enable: enable GPIO at initial use?
2001 * GPIO is enabled in case of initial use. (enable_count is 0)
2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006 struct regulator_enable_gpio *pin = rdev->ena_pin;
2008 if (!pin)
2009 return -EINVAL;
2011 if (enable) {
2012 /* Enable GPIO at initial use */
2013 if (pin->enable_count == 0)
2014 gpiod_set_value_cansleep(pin->gpiod,
2015 !pin->ena_gpio_invert);
2017 pin->enable_count++;
2018 } else {
2019 if (pin->enable_count > 1) {
2020 pin->enable_count--;
2021 return 0;
2024 /* Disable GPIO if not used */
2025 if (pin->enable_count <= 1) {
2026 gpiod_set_value_cansleep(pin->gpiod,
2027 pin->ena_gpio_invert);
2028 pin->enable_count = 0;
2032 return 0;
2036 * _regulator_enable_delay - a delay helper function
2037 * @delay: time to delay in microseconds
2039 * Delay for the requested amount of time as per the guidelines in:
2041 * Documentation/timers/timers-howto.txt
2043 * The assumption here is that regulators will never be enabled in
2044 * atomic context and therefore sleeping functions can be used.
2046 static void _regulator_enable_delay(unsigned int delay)
2048 unsigned int ms = delay / 1000;
2049 unsigned int us = delay % 1000;
2051 if (ms > 0) {
2053 * For small enough values, handle super-millisecond
2054 * delays in the usleep_range() call below.
2056 if (ms < 20)
2057 us += ms * 1000;
2058 else
2059 msleep(ms);
2063 * Give the scheduler some room to coalesce with any other
2064 * wakeup sources. For delays shorter than 10 us, don't even
2065 * bother setting up high-resolution timers and just busy-
2066 * loop.
2068 if (us >= 10)
2069 usleep_range(us, us + 100);
2070 else
2071 udelay(us);
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2076 int ret, delay;
2078 /* Query before enabling in case configuration dependent. */
2079 ret = _regulator_get_enable_time(rdev);
2080 if (ret >= 0) {
2081 delay = ret;
2082 } else {
2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 delay = 0;
2087 trace_regulator_enable(rdev_get_name(rdev));
2089 if (rdev->desc->off_on_delay) {
2090 /* if needed, keep a distance of off_on_delay from last time
2091 * this regulator was disabled.
2093 unsigned long start_jiffy = jiffies;
2094 unsigned long intended, max_delay, remaining;
2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 intended = rdev->last_off_jiffy + max_delay;
2099 if (time_before(start_jiffy, intended)) {
2100 /* calc remaining jiffies to deal with one-time
2101 * timer wrapping.
2102 * in case of multiple timer wrapping, either it can be
2103 * detected by out-of-range remaining, or it cannot be
2104 * detected and we gets a panelty of
2105 * _regulator_enable_delay().
2107 remaining = intended - start_jiffy;
2108 if (remaining <= max_delay)
2109 _regulator_enable_delay(
2110 jiffies_to_usecs(remaining));
2114 if (rdev->ena_pin) {
2115 if (!rdev->ena_gpio_state) {
2116 ret = regulator_ena_gpio_ctrl(rdev, true);
2117 if (ret < 0)
2118 return ret;
2119 rdev->ena_gpio_state = 1;
2121 } else if (rdev->desc->ops->enable) {
2122 ret = rdev->desc->ops->enable(rdev);
2123 if (ret < 0)
2124 return ret;
2125 } else {
2126 return -EINVAL;
2129 /* Allow the regulator to ramp; it would be useful to extend
2130 * this for bulk operations so that the regulators can ramp
2131 * together. */
2132 trace_regulator_enable_delay(rdev_get_name(rdev));
2134 _regulator_enable_delay(delay);
2136 trace_regulator_enable_complete(rdev_get_name(rdev));
2138 return 0;
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2144 int ret;
2146 lockdep_assert_held_once(&rdev->mutex);
2148 /* check voltage and requested load before enabling */
2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 drms_uA_update(rdev);
2152 if (rdev->use_count == 0) {
2153 /* The regulator may on if it's not switchable or left on */
2154 ret = _regulator_is_enabled(rdev);
2155 if (ret == -EINVAL || ret == 0) {
2156 if (!regulator_ops_is_valid(rdev,
2157 REGULATOR_CHANGE_STATUS))
2158 return -EPERM;
2160 ret = _regulator_do_enable(rdev);
2161 if (ret < 0)
2162 return ret;
2164 } else if (ret < 0) {
2165 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166 return ret;
2168 /* Fallthrough on positive return values - already enabled */
2171 rdev->use_count++;
2173 return 0;
2177 * regulator_enable - enable regulator output
2178 * @regulator: regulator source
2180 * Request that the regulator be enabled with the regulator output at
2181 * the predefined voltage or current value. Calls to regulator_enable()
2182 * must be balanced with calls to regulator_disable().
2184 * NOTE: the output value can be set by other drivers, boot loader or may be
2185 * hardwired in the regulator.
2187 int regulator_enable(struct regulator *regulator)
2189 struct regulator_dev *rdev = regulator->rdev;
2190 int ret = 0;
2192 if (regulator->always_on)
2193 return 0;
2195 if (rdev->supply) {
2196 ret = regulator_enable(rdev->supply);
2197 if (ret != 0)
2198 return ret;
2201 mutex_lock(&rdev->mutex);
2202 ret = _regulator_enable(rdev);
2203 mutex_unlock(&rdev->mutex);
2205 if (ret != 0 && rdev->supply)
2206 regulator_disable(rdev->supply);
2208 return ret;
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2214 int ret;
2216 trace_regulator_disable(rdev_get_name(rdev));
2218 if (rdev->ena_pin) {
2219 if (rdev->ena_gpio_state) {
2220 ret = regulator_ena_gpio_ctrl(rdev, false);
2221 if (ret < 0)
2222 return ret;
2223 rdev->ena_gpio_state = 0;
2226 } else if (rdev->desc->ops->disable) {
2227 ret = rdev->desc->ops->disable(rdev);
2228 if (ret != 0)
2229 return ret;
2232 /* cares about last_off_jiffy only if off_on_delay is required by
2233 * device.
2235 if (rdev->desc->off_on_delay)
2236 rdev->last_off_jiffy = jiffies;
2238 trace_regulator_disable_complete(rdev_get_name(rdev));
2240 return 0;
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2246 int ret = 0;
2248 lockdep_assert_held_once(&rdev->mutex);
2250 if (WARN(rdev->use_count <= 0,
2251 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252 return -EIO;
2254 /* are we the last user and permitted to disable ? */
2255 if (rdev->use_count == 1 &&
2256 (rdev->constraints && !rdev->constraints->always_on)) {
2258 /* we are last user */
2259 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260 ret = _notifier_call_chain(rdev,
2261 REGULATOR_EVENT_PRE_DISABLE,
2262 NULL);
2263 if (ret & NOTIFY_STOP_MASK)
2264 return -EINVAL;
2266 ret = _regulator_do_disable(rdev);
2267 if (ret < 0) {
2268 rdev_err(rdev, "failed to disable\n");
2269 _notifier_call_chain(rdev,
2270 REGULATOR_EVENT_ABORT_DISABLE,
2271 NULL);
2272 return ret;
2274 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275 NULL);
2278 rdev->use_count = 0;
2279 } else if (rdev->use_count > 1) {
2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281 drms_uA_update(rdev);
2283 rdev->use_count--;
2286 return ret;
2290 * regulator_disable - disable regulator output
2291 * @regulator: regulator source
2293 * Disable the regulator output voltage or current. Calls to
2294 * regulator_enable() must be balanced with calls to
2295 * regulator_disable().
2297 * NOTE: this will only disable the regulator output if no other consumer
2298 * devices have it enabled, the regulator device supports disabling and
2299 * machine constraints permit this operation.
2301 int regulator_disable(struct regulator *regulator)
2303 struct regulator_dev *rdev = regulator->rdev;
2304 int ret = 0;
2306 if (regulator->always_on)
2307 return 0;
2309 mutex_lock(&rdev->mutex);
2310 ret = _regulator_disable(rdev);
2311 mutex_unlock(&rdev->mutex);
2313 if (ret == 0 && rdev->supply)
2314 regulator_disable(rdev->supply);
2316 return ret;
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2323 int ret = 0;
2325 lockdep_assert_held_once(&rdev->mutex);
2327 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328 REGULATOR_EVENT_PRE_DISABLE, NULL);
2329 if (ret & NOTIFY_STOP_MASK)
2330 return -EINVAL;
2332 ret = _regulator_do_disable(rdev);
2333 if (ret < 0) {
2334 rdev_err(rdev, "failed to force disable\n");
2335 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337 return ret;
2340 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 REGULATOR_EVENT_DISABLE, NULL);
2343 return 0;
2347 * regulator_force_disable - force disable regulator output
2348 * @regulator: regulator source
2350 * Forcibly disable the regulator output voltage or current.
2351 * NOTE: this *will* disable the regulator output even if other consumer
2352 * devices have it enabled. This should be used for situations when device
2353 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355 int regulator_force_disable(struct regulator *regulator)
2357 struct regulator_dev *rdev = regulator->rdev;
2358 int ret;
2360 mutex_lock(&rdev->mutex);
2361 regulator->uA_load = 0;
2362 ret = _regulator_force_disable(regulator->rdev);
2363 mutex_unlock(&rdev->mutex);
2365 if (rdev->supply)
2366 while (rdev->open_count--)
2367 regulator_disable(rdev->supply);
2369 return ret;
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2373 static void regulator_disable_work(struct work_struct *work)
2375 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376 disable_work.work);
2377 int count, i, ret;
2379 mutex_lock(&rdev->mutex);
2381 BUG_ON(!rdev->deferred_disables);
2383 count = rdev->deferred_disables;
2384 rdev->deferred_disables = 0;
2386 for (i = 0; i < count; i++) {
2387 ret = _regulator_disable(rdev);
2388 if (ret != 0)
2389 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2392 mutex_unlock(&rdev->mutex);
2394 if (rdev->supply) {
2395 for (i = 0; i < count; i++) {
2396 ret = regulator_disable(rdev->supply);
2397 if (ret != 0) {
2398 rdev_err(rdev,
2399 "Supply disable failed: %d\n", ret);
2406 * regulator_disable_deferred - disable regulator output with delay
2407 * @regulator: regulator source
2408 * @ms: miliseconds until the regulator is disabled
2410 * Execute regulator_disable() on the regulator after a delay. This
2411 * is intended for use with devices that require some time to quiesce.
2413 * NOTE: this will only disable the regulator output if no other consumer
2414 * devices have it enabled, the regulator device supports disabling and
2415 * machine constraints permit this operation.
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2419 struct regulator_dev *rdev = regulator->rdev;
2421 if (regulator->always_on)
2422 return 0;
2424 if (!ms)
2425 return regulator_disable(regulator);
2427 mutex_lock(&rdev->mutex);
2428 rdev->deferred_disables++;
2429 mutex_unlock(&rdev->mutex);
2431 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432 msecs_to_jiffies(ms));
2433 return 0;
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2439 /* A GPIO control always takes precedence */
2440 if (rdev->ena_pin)
2441 return rdev->ena_gpio_state;
2443 /* If we don't know then assume that the regulator is always on */
2444 if (!rdev->desc->ops->is_enabled)
2445 return 1;
2447 return rdev->desc->ops->is_enabled(rdev);
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451 unsigned selector, int lock)
2453 struct regulator_dev *rdev = regulator->rdev;
2454 const struct regulator_ops *ops = rdev->desc->ops;
2455 int ret;
2457 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458 return rdev->desc->fixed_uV;
2460 if (ops->list_voltage) {
2461 if (selector >= rdev->desc->n_voltages)
2462 return -EINVAL;
2463 if (lock)
2464 mutex_lock(&rdev->mutex);
2465 ret = ops->list_voltage(rdev, selector);
2466 if (lock)
2467 mutex_unlock(&rdev->mutex);
2468 } else if (rdev->supply) {
2469 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470 } else {
2471 return -EINVAL;
2474 if (ret > 0) {
2475 if (ret < rdev->constraints->min_uV)
2476 ret = 0;
2477 else if (ret > rdev->constraints->max_uV)
2478 ret = 0;
2481 return ret;
2485 * regulator_is_enabled - is the regulator output enabled
2486 * @regulator: regulator source
2488 * Returns positive if the regulator driver backing the source/client
2489 * has requested that the device be enabled, zero if it hasn't, else a
2490 * negative errno code.
2492 * Note that the device backing this regulator handle can have multiple
2493 * users, so it might be enabled even if regulator_enable() was never
2494 * called for this particular source.
2496 int regulator_is_enabled(struct regulator *regulator)
2498 int ret;
2500 if (regulator->always_on)
2501 return 1;
2503 mutex_lock(&regulator->rdev->mutex);
2504 ret = _regulator_is_enabled(regulator->rdev);
2505 mutex_unlock(&regulator->rdev->mutex);
2507 return ret;
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2512 * regulator_count_voltages - count regulator_list_voltage() selectors
2513 * @regulator: regulator source
2515 * Returns number of selectors, or negative errno. Selectors are
2516 * numbered starting at zero, and typically correspond to bitfields
2517 * in hardware registers.
2519 int regulator_count_voltages(struct regulator *regulator)
2521 struct regulator_dev *rdev = regulator->rdev;
2523 if (rdev->desc->n_voltages)
2524 return rdev->desc->n_voltages;
2526 if (!rdev->supply)
2527 return -EINVAL;
2529 return regulator_count_voltages(rdev->supply);
2531 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2534 * regulator_list_voltage - enumerate supported voltages
2535 * @regulator: regulator source
2536 * @selector: identify voltage to list
2537 * Context: can sleep
2539 * Returns a voltage that can be passed to @regulator_set_voltage(),
2540 * zero if this selector code can't be used on this system, or a
2541 * negative errno.
2543 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545 return _regulator_list_voltage(regulator, selector, 1);
2547 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2550 * regulator_get_regmap - get the regulator's register map
2551 * @regulator: regulator source
2553 * Returns the register map for the given regulator, or an ERR_PTR value
2554 * if the regulator doesn't use regmap.
2556 struct regmap *regulator_get_regmap(struct regulator *regulator)
2558 struct regmap *map = regulator->rdev->regmap;
2560 return map ? map : ERR_PTR(-EOPNOTSUPP);
2564 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2565 * @regulator: regulator source
2566 * @vsel_reg: voltage selector register, output parameter
2567 * @vsel_mask: mask for voltage selector bitfield, output parameter
2569 * Returns the hardware register offset and bitmask used for setting the
2570 * regulator voltage. This might be useful when configuring voltage-scaling
2571 * hardware or firmware that can make I2C requests behind the kernel's back,
2572 * for example.
2574 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2575 * and 0 is returned, otherwise a negative errno is returned.
2577 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2578 unsigned *vsel_reg,
2579 unsigned *vsel_mask)
2581 struct regulator_dev *rdev = regulator->rdev;
2582 const struct regulator_ops *ops = rdev->desc->ops;
2584 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2585 return -EOPNOTSUPP;
2587 *vsel_reg = rdev->desc->vsel_reg;
2588 *vsel_mask = rdev->desc->vsel_mask;
2590 return 0;
2592 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2595 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2596 * @regulator: regulator source
2597 * @selector: identify voltage to list
2599 * Converts the selector to a hardware-specific voltage selector that can be
2600 * directly written to the regulator registers. The address of the voltage
2601 * register can be determined by calling @regulator_get_hardware_vsel_register.
2603 * On error a negative errno is returned.
2605 int regulator_list_hardware_vsel(struct regulator *regulator,
2606 unsigned selector)
2608 struct regulator_dev *rdev = regulator->rdev;
2609 const struct regulator_ops *ops = rdev->desc->ops;
2611 if (selector >= rdev->desc->n_voltages)
2612 return -EINVAL;
2613 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2614 return -EOPNOTSUPP;
2616 return selector;
2618 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2621 * regulator_get_linear_step - return the voltage step size between VSEL values
2622 * @regulator: regulator source
2624 * Returns the voltage step size between VSEL values for linear
2625 * regulators, or return 0 if the regulator isn't a linear regulator.
2627 unsigned int regulator_get_linear_step(struct regulator *regulator)
2629 struct regulator_dev *rdev = regulator->rdev;
2631 return rdev->desc->uV_step;
2633 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2636 * regulator_is_supported_voltage - check if a voltage range can be supported
2638 * @regulator: Regulator to check.
2639 * @min_uV: Minimum required voltage in uV.
2640 * @max_uV: Maximum required voltage in uV.
2642 * Returns a boolean or a negative error code.
2644 int regulator_is_supported_voltage(struct regulator *regulator,
2645 int min_uV, int max_uV)
2647 struct regulator_dev *rdev = regulator->rdev;
2648 int i, voltages, ret;
2650 /* If we can't change voltage check the current voltage */
2651 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652 ret = regulator_get_voltage(regulator);
2653 if (ret >= 0)
2654 return min_uV <= ret && ret <= max_uV;
2655 else
2656 return ret;
2659 /* Any voltage within constrains range is fine? */
2660 if (rdev->desc->continuous_voltage_range)
2661 return min_uV >= rdev->constraints->min_uV &&
2662 max_uV <= rdev->constraints->max_uV;
2664 ret = regulator_count_voltages(regulator);
2665 if (ret < 0)
2666 return ret;
2667 voltages = ret;
2669 for (i = 0; i < voltages; i++) {
2670 ret = regulator_list_voltage(regulator, i);
2672 if (ret >= min_uV && ret <= max_uV)
2673 return 1;
2676 return 0;
2678 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2681 int max_uV)
2683 const struct regulator_desc *desc = rdev->desc;
2685 if (desc->ops->map_voltage)
2686 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2689 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2692 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2697 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2698 int min_uV, int max_uV,
2699 unsigned *selector)
2701 struct pre_voltage_change_data data;
2702 int ret;
2704 data.old_uV = _regulator_get_voltage(rdev);
2705 data.min_uV = min_uV;
2706 data.max_uV = max_uV;
2707 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2708 &data);
2709 if (ret & NOTIFY_STOP_MASK)
2710 return -EINVAL;
2712 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2713 if (ret >= 0)
2714 return ret;
2716 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2717 (void *)data.old_uV);
2719 return ret;
2722 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2723 int uV, unsigned selector)
2725 struct pre_voltage_change_data data;
2726 int ret;
2728 data.old_uV = _regulator_get_voltage(rdev);
2729 data.min_uV = uV;
2730 data.max_uV = uV;
2731 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2732 &data);
2733 if (ret & NOTIFY_STOP_MASK)
2734 return -EINVAL;
2736 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2737 if (ret >= 0)
2738 return ret;
2740 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2741 (void *)data.old_uV);
2743 return ret;
2746 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2747 int old_uV, int new_uV)
2749 unsigned int ramp_delay = 0;
2751 if (rdev->constraints->ramp_delay)
2752 ramp_delay = rdev->constraints->ramp_delay;
2753 else if (rdev->desc->ramp_delay)
2754 ramp_delay = rdev->desc->ramp_delay;
2756 if (ramp_delay == 0) {
2757 rdev_dbg(rdev, "ramp_delay not set\n");
2758 return 0;
2761 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2764 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2765 int min_uV, int max_uV)
2767 int ret;
2768 int delay = 0;
2769 int best_val = 0;
2770 unsigned int selector;
2771 int old_selector = -1;
2772 const struct regulator_ops *ops = rdev->desc->ops;
2773 int old_uV = _regulator_get_voltage(rdev);
2775 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777 min_uV += rdev->constraints->uV_offset;
2778 max_uV += rdev->constraints->uV_offset;
2781 * If we can't obtain the old selector there is not enough
2782 * info to call set_voltage_time_sel().
2784 if (_regulator_is_enabled(rdev) &&
2785 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2786 old_selector = ops->get_voltage_sel(rdev);
2787 if (old_selector < 0)
2788 return old_selector;
2791 if (ops->set_voltage) {
2792 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2793 &selector);
2795 if (ret >= 0) {
2796 if (ops->list_voltage)
2797 best_val = ops->list_voltage(rdev,
2798 selector);
2799 else
2800 best_val = _regulator_get_voltage(rdev);
2803 } else if (ops->set_voltage_sel) {
2804 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2805 if (ret >= 0) {
2806 best_val = ops->list_voltage(rdev, ret);
2807 if (min_uV <= best_val && max_uV >= best_val) {
2808 selector = ret;
2809 if (old_selector == selector)
2810 ret = 0;
2811 else
2812 ret = _regulator_call_set_voltage_sel(
2813 rdev, best_val, selector);
2814 } else {
2815 ret = -EINVAL;
2818 } else {
2819 ret = -EINVAL;
2822 if (ret)
2823 goto out;
2825 if (ops->set_voltage_time_sel) {
2827 * Call set_voltage_time_sel if successfully obtained
2828 * old_selector
2830 if (old_selector >= 0 && old_selector != selector)
2831 delay = ops->set_voltage_time_sel(rdev, old_selector,
2832 selector);
2833 } else {
2834 if (old_uV != best_val) {
2835 if (ops->set_voltage_time)
2836 delay = ops->set_voltage_time(rdev, old_uV,
2837 best_val);
2838 else
2839 delay = _regulator_set_voltage_time(rdev,
2840 old_uV,
2841 best_val);
2845 if (delay < 0) {
2846 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2847 delay = 0;
2850 /* Insert any necessary delays */
2851 if (delay >= 1000) {
2852 mdelay(delay / 1000);
2853 udelay(delay % 1000);
2854 } else if (delay) {
2855 udelay(delay);
2858 if (best_val >= 0) {
2859 unsigned long data = best_val;
2861 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2862 (void *)data);
2865 out:
2866 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868 return ret;
2871 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2872 int min_uV, int max_uV)
2874 struct regulator_dev *rdev = regulator->rdev;
2875 int ret = 0;
2876 int old_min_uV, old_max_uV;
2877 int current_uV;
2878 int best_supply_uV = 0;
2879 int supply_change_uV = 0;
2881 /* If we're setting the same range as last time the change
2882 * should be a noop (some cpufreq implementations use the same
2883 * voltage for multiple frequencies, for example).
2885 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2886 goto out;
2888 /* If we're trying to set a range that overlaps the current voltage,
2889 * return successfully even though the regulator does not support
2890 * changing the voltage.
2892 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2893 current_uV = _regulator_get_voltage(rdev);
2894 if (min_uV <= current_uV && current_uV <= max_uV) {
2895 regulator->min_uV = min_uV;
2896 regulator->max_uV = max_uV;
2897 goto out;
2901 /* sanity check */
2902 if (!rdev->desc->ops->set_voltage &&
2903 !rdev->desc->ops->set_voltage_sel) {
2904 ret = -EINVAL;
2905 goto out;
2908 /* constraints check */
2909 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2910 if (ret < 0)
2911 goto out;
2913 /* restore original values in case of error */
2914 old_min_uV = regulator->min_uV;
2915 old_max_uV = regulator->max_uV;
2916 regulator->min_uV = min_uV;
2917 regulator->max_uV = max_uV;
2919 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2920 if (ret < 0)
2921 goto out2;
2923 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2924 !rdev->desc->ops->get_voltage)) {
2925 int current_supply_uV;
2926 int selector;
2928 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2929 if (selector < 0) {
2930 ret = selector;
2931 goto out2;
2934 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2935 if (best_supply_uV < 0) {
2936 ret = best_supply_uV;
2937 goto out2;
2940 best_supply_uV += rdev->desc->min_dropout_uV;
2942 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2943 if (current_supply_uV < 0) {
2944 ret = current_supply_uV;
2945 goto out2;
2948 supply_change_uV = best_supply_uV - current_supply_uV;
2951 if (supply_change_uV > 0) {
2952 ret = regulator_set_voltage_unlocked(rdev->supply,
2953 best_supply_uV, INT_MAX);
2954 if (ret) {
2955 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2956 ret);
2957 goto out2;
2961 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2962 if (ret < 0)
2963 goto out2;
2965 if (supply_change_uV < 0) {
2966 ret = regulator_set_voltage_unlocked(rdev->supply,
2967 best_supply_uV, INT_MAX);
2968 if (ret)
2969 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2970 ret);
2971 /* No need to fail here */
2972 ret = 0;
2975 out:
2976 return ret;
2977 out2:
2978 regulator->min_uV = old_min_uV;
2979 regulator->max_uV = old_max_uV;
2981 return ret;
2985 * regulator_set_voltage - set regulator output voltage
2986 * @regulator: regulator source
2987 * @min_uV: Minimum required voltage in uV
2988 * @max_uV: Maximum acceptable voltage in uV
2990 * Sets a voltage regulator to the desired output voltage. This can be set
2991 * during any regulator state. IOW, regulator can be disabled or enabled.
2993 * If the regulator is enabled then the voltage will change to the new value
2994 * immediately otherwise if the regulator is disabled the regulator will
2995 * output at the new voltage when enabled.
2997 * NOTE: If the regulator is shared between several devices then the lowest
2998 * request voltage that meets the system constraints will be used.
2999 * Regulator system constraints must be set for this regulator before
3000 * calling this function otherwise this call will fail.
3002 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004 int ret = 0;
3006 regulator_lock_supply(regulator->rdev);
3008 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010 regulator_unlock_supply(regulator->rdev);
3012 return ret;
3014 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3017 * regulator_set_voltage_time - get raise/fall time
3018 * @regulator: regulator source
3019 * @old_uV: starting voltage in microvolts
3020 * @new_uV: target voltage in microvolts
3022 * Provided with the starting and ending voltage, this function attempts to
3023 * calculate the time in microseconds required to rise or fall to this new
3024 * voltage.
3026 int regulator_set_voltage_time(struct regulator *regulator,
3027 int old_uV, int new_uV)
3029 struct regulator_dev *rdev = regulator->rdev;
3030 const struct regulator_ops *ops = rdev->desc->ops;
3031 int old_sel = -1;
3032 int new_sel = -1;
3033 int voltage;
3034 int i;
3036 if (ops->set_voltage_time)
3037 return ops->set_voltage_time(rdev, old_uV, new_uV);
3038 else if (!ops->set_voltage_time_sel)
3039 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041 /* Currently requires operations to do this */
3042 if (!ops->list_voltage || !rdev->desc->n_voltages)
3043 return -EINVAL;
3045 for (i = 0; i < rdev->desc->n_voltages; i++) {
3046 /* We only look for exact voltage matches here */
3047 voltage = regulator_list_voltage(regulator, i);
3048 if (voltage < 0)
3049 return -EINVAL;
3050 if (voltage == 0)
3051 continue;
3052 if (voltage == old_uV)
3053 old_sel = i;
3054 if (voltage == new_uV)
3055 new_sel = i;
3058 if (old_sel < 0 || new_sel < 0)
3059 return -EINVAL;
3061 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3066 * regulator_set_voltage_time_sel - get raise/fall time
3067 * @rdev: regulator source device
3068 * @old_selector: selector for starting voltage
3069 * @new_selector: selector for target voltage
3071 * Provided with the starting and target voltage selectors, this function
3072 * returns time in microseconds required to rise or fall to this new voltage
3074 * Drivers providing ramp_delay in regulation_constraints can use this as their
3075 * set_voltage_time_sel() operation.
3077 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3078 unsigned int old_selector,
3079 unsigned int new_selector)
3081 int old_volt, new_volt;
3083 /* sanity check */
3084 if (!rdev->desc->ops->list_voltage)
3085 return -EINVAL;
3087 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3088 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090 if (rdev->desc->ops->set_voltage_time)
3091 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3092 new_volt);
3093 else
3094 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3099 * regulator_sync_voltage - re-apply last regulator output voltage
3100 * @regulator: regulator source
3102 * Re-apply the last configured voltage. This is intended to be used
3103 * where some external control source the consumer is cooperating with
3104 * has caused the configured voltage to change.
3106 int regulator_sync_voltage(struct regulator *regulator)
3108 struct regulator_dev *rdev = regulator->rdev;
3109 int ret, min_uV, max_uV;
3111 mutex_lock(&rdev->mutex);
3113 if (!rdev->desc->ops->set_voltage &&
3114 !rdev->desc->ops->set_voltage_sel) {
3115 ret = -EINVAL;
3116 goto out;
3119 /* This is only going to work if we've had a voltage configured. */
3120 if (!regulator->min_uV && !regulator->max_uV) {
3121 ret = -EINVAL;
3122 goto out;
3125 min_uV = regulator->min_uV;
3126 max_uV = regulator->max_uV;
3128 /* This should be a paranoia check... */
3129 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3130 if (ret < 0)
3131 goto out;
3133 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3134 if (ret < 0)
3135 goto out;
3137 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139 out:
3140 mutex_unlock(&rdev->mutex);
3141 return ret;
3143 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145 static int _regulator_get_voltage(struct regulator_dev *rdev)
3147 int sel, ret;
3148 bool bypassed;
3150 if (rdev->desc->ops->get_bypass) {
3151 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3152 if (ret < 0)
3153 return ret;
3154 if (bypassed) {
3155 /* if bypassed the regulator must have a supply */
3156 if (!rdev->supply) {
3157 rdev_err(rdev,
3158 "bypassed regulator has no supply!\n");
3159 return -EPROBE_DEFER;
3162 return _regulator_get_voltage(rdev->supply->rdev);
3166 if (rdev->desc->ops->get_voltage_sel) {
3167 sel = rdev->desc->ops->get_voltage_sel(rdev);
3168 if (sel < 0)
3169 return sel;
3170 ret = rdev->desc->ops->list_voltage(rdev, sel);
3171 } else if (rdev->desc->ops->get_voltage) {
3172 ret = rdev->desc->ops->get_voltage(rdev);
3173 } else if (rdev->desc->ops->list_voltage) {
3174 ret = rdev->desc->ops->list_voltage(rdev, 0);
3175 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3176 ret = rdev->desc->fixed_uV;
3177 } else if (rdev->supply) {
3178 ret = _regulator_get_voltage(rdev->supply->rdev);
3179 } else {
3180 return -EINVAL;
3183 if (ret < 0)
3184 return ret;
3185 return ret - rdev->constraints->uV_offset;
3189 * regulator_get_voltage - get regulator output voltage
3190 * @regulator: regulator source
3192 * This returns the current regulator voltage in uV.
3194 * NOTE: If the regulator is disabled it will return the voltage value. This
3195 * function should not be used to determine regulator state.
3197 int regulator_get_voltage(struct regulator *regulator)
3199 int ret;
3201 regulator_lock_supply(regulator->rdev);
3203 ret = _regulator_get_voltage(regulator->rdev);
3205 regulator_unlock_supply(regulator->rdev);
3207 return ret;
3209 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3212 * regulator_set_current_limit - set regulator output current limit
3213 * @regulator: regulator source
3214 * @min_uA: Minimum supported current in uA
3215 * @max_uA: Maximum supported current in uA
3217 * Sets current sink to the desired output current. This can be set during
3218 * any regulator state. IOW, regulator can be disabled or enabled.
3220 * If the regulator is enabled then the current will change to the new value
3221 * immediately otherwise if the regulator is disabled the regulator will
3222 * output at the new current when enabled.
3224 * NOTE: Regulator system constraints must be set for this regulator before
3225 * calling this function otherwise this call will fail.
3227 int regulator_set_current_limit(struct regulator *regulator,
3228 int min_uA, int max_uA)
3230 struct regulator_dev *rdev = regulator->rdev;
3231 int ret;
3233 mutex_lock(&rdev->mutex);
3235 /* sanity check */
3236 if (!rdev->desc->ops->set_current_limit) {
3237 ret = -EINVAL;
3238 goto out;
3241 /* constraints check */
3242 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3243 if (ret < 0)
3244 goto out;
3246 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3247 out:
3248 mutex_unlock(&rdev->mutex);
3249 return ret;
3251 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255 int ret;
3257 mutex_lock(&rdev->mutex);
3259 /* sanity check */
3260 if (!rdev->desc->ops->get_current_limit) {
3261 ret = -EINVAL;
3262 goto out;
3265 ret = rdev->desc->ops->get_current_limit(rdev);
3266 out:
3267 mutex_unlock(&rdev->mutex);
3268 return ret;
3272 * regulator_get_current_limit - get regulator output current
3273 * @regulator: regulator source
3275 * This returns the current supplied by the specified current sink in uA.
3277 * NOTE: If the regulator is disabled it will return the current value. This
3278 * function should not be used to determine regulator state.
3280 int regulator_get_current_limit(struct regulator *regulator)
3282 return _regulator_get_current_limit(regulator->rdev);
3284 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3287 * regulator_set_mode - set regulator operating mode
3288 * @regulator: regulator source
3289 * @mode: operating mode - one of the REGULATOR_MODE constants
3291 * Set regulator operating mode to increase regulator efficiency or improve
3292 * regulation performance.
3294 * NOTE: Regulator system constraints must be set for this regulator before
3295 * calling this function otherwise this call will fail.
3297 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299 struct regulator_dev *rdev = regulator->rdev;
3300 int ret;
3301 int regulator_curr_mode;
3303 mutex_lock(&rdev->mutex);
3305 /* sanity check */
3306 if (!rdev->desc->ops->set_mode) {
3307 ret = -EINVAL;
3308 goto out;
3311 /* return if the same mode is requested */
3312 if (rdev->desc->ops->get_mode) {
3313 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3314 if (regulator_curr_mode == mode) {
3315 ret = 0;
3316 goto out;
3320 /* constraints check */
3321 ret = regulator_mode_constrain(rdev, &mode);
3322 if (ret < 0)
3323 goto out;
3325 ret = rdev->desc->ops->set_mode(rdev, mode);
3326 out:
3327 mutex_unlock(&rdev->mutex);
3328 return ret;
3330 EXPORT_SYMBOL_GPL(regulator_set_mode);
3332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334 int ret;
3336 mutex_lock(&rdev->mutex);
3338 /* sanity check */
3339 if (!rdev->desc->ops->get_mode) {
3340 ret = -EINVAL;
3341 goto out;
3344 ret = rdev->desc->ops->get_mode(rdev);
3345 out:
3346 mutex_unlock(&rdev->mutex);
3347 return ret;
3351 * regulator_get_mode - get regulator operating mode
3352 * @regulator: regulator source
3354 * Get the current regulator operating mode.
3356 unsigned int regulator_get_mode(struct regulator *regulator)
3358 return _regulator_get_mode(regulator->rdev);
3360 EXPORT_SYMBOL_GPL(regulator_get_mode);
3363 * regulator_set_load - set regulator load
3364 * @regulator: regulator source
3365 * @uA_load: load current
3367 * Notifies the regulator core of a new device load. This is then used by
3368 * DRMS (if enabled by constraints) to set the most efficient regulator
3369 * operating mode for the new regulator loading.
3371 * Consumer devices notify their supply regulator of the maximum power
3372 * they will require (can be taken from device datasheet in the power
3373 * consumption tables) when they change operational status and hence power
3374 * state. Examples of operational state changes that can affect power
3375 * consumption are :-
3377 * o Device is opened / closed.
3378 * o Device I/O is about to begin or has just finished.
3379 * o Device is idling in between work.
3381 * This information is also exported via sysfs to userspace.
3383 * DRMS will sum the total requested load on the regulator and change
3384 * to the most efficient operating mode if platform constraints allow.
3386 * On error a negative errno is returned.
3388 int regulator_set_load(struct regulator *regulator, int uA_load)
3390 struct regulator_dev *rdev = regulator->rdev;
3391 int ret;
3393 mutex_lock(&rdev->mutex);
3394 regulator->uA_load = uA_load;
3395 ret = drms_uA_update(rdev);
3396 mutex_unlock(&rdev->mutex);
3398 return ret;
3400 EXPORT_SYMBOL_GPL(regulator_set_load);
3403 * regulator_allow_bypass - allow the regulator to go into bypass mode
3405 * @regulator: Regulator to configure
3406 * @enable: enable or disable bypass mode
3408 * Allow the regulator to go into bypass mode if all other consumers
3409 * for the regulator also enable bypass mode and the machine
3410 * constraints allow this. Bypass mode means that the regulator is
3411 * simply passing the input directly to the output with no regulation.
3413 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3415 struct regulator_dev *rdev = regulator->rdev;
3416 int ret = 0;
3418 if (!rdev->desc->ops->set_bypass)
3419 return 0;
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3422 return 0;
3424 mutex_lock(&rdev->mutex);
3426 if (enable && !regulator->bypass) {
3427 rdev->bypass_count++;
3429 if (rdev->bypass_count == rdev->open_count) {
3430 ret = rdev->desc->ops->set_bypass(rdev, enable);
3431 if (ret != 0)
3432 rdev->bypass_count--;
3435 } else if (!enable && regulator->bypass) {
3436 rdev->bypass_count--;
3438 if (rdev->bypass_count != rdev->open_count) {
3439 ret = rdev->desc->ops->set_bypass(rdev, enable);
3440 if (ret != 0)
3441 rdev->bypass_count++;
3445 if (ret == 0)
3446 regulator->bypass = enable;
3448 mutex_unlock(&rdev->mutex);
3450 return ret;
3452 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3455 * regulator_register_notifier - register regulator event notifier
3456 * @regulator: regulator source
3457 * @nb: notifier block
3459 * Register notifier block to receive regulator events.
3461 int regulator_register_notifier(struct regulator *regulator,
3462 struct notifier_block *nb)
3464 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3465 nb);
3467 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3470 * regulator_unregister_notifier - unregister regulator event notifier
3471 * @regulator: regulator source
3472 * @nb: notifier block
3474 * Unregister regulator event notifier block.
3476 int regulator_unregister_notifier(struct regulator *regulator,
3477 struct notifier_block *nb)
3479 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3480 nb);
3482 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3484 /* notify regulator consumers and downstream regulator consumers.
3485 * Note mutex must be held by caller.
3487 static int _notifier_call_chain(struct regulator_dev *rdev,
3488 unsigned long event, void *data)
3490 /* call rdev chain first */
3491 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3495 * regulator_bulk_get - get multiple regulator consumers
3497 * @dev: Device to supply
3498 * @num_consumers: Number of consumers to register
3499 * @consumers: Configuration of consumers; clients are stored here.
3501 * @return 0 on success, an errno on failure.
3503 * This helper function allows drivers to get several regulator
3504 * consumers in one operation. If any of the regulators cannot be
3505 * acquired then any regulators that were allocated will be freed
3506 * before returning to the caller.
3508 int regulator_bulk_get(struct device *dev, int num_consumers,
3509 struct regulator_bulk_data *consumers)
3511 int i;
3512 int ret;
3514 for (i = 0; i < num_consumers; i++)
3515 consumers[i].consumer = NULL;
3517 for (i = 0; i < num_consumers; i++) {
3518 consumers[i].consumer = regulator_get(dev,
3519 consumers[i].supply);
3520 if (IS_ERR(consumers[i].consumer)) {
3521 ret = PTR_ERR(consumers[i].consumer);
3522 dev_err(dev, "Failed to get supply '%s': %d\n",
3523 consumers[i].supply, ret);
3524 consumers[i].consumer = NULL;
3525 goto err;
3529 return 0;
3531 err:
3532 while (--i >= 0)
3533 regulator_put(consumers[i].consumer);
3535 return ret;
3537 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3539 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3541 struct regulator_bulk_data *bulk = data;
3543 bulk->ret = regulator_enable(bulk->consumer);
3547 * regulator_bulk_enable - enable multiple regulator consumers
3549 * @num_consumers: Number of consumers
3550 * @consumers: Consumer data; clients are stored here.
3551 * @return 0 on success, an errno on failure
3553 * This convenience API allows consumers to enable multiple regulator
3554 * clients in a single API call. If any consumers cannot be enabled
3555 * then any others that were enabled will be disabled again prior to
3556 * return.
3558 int regulator_bulk_enable(int num_consumers,
3559 struct regulator_bulk_data *consumers)
3561 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3562 int i;
3563 int ret = 0;
3565 for (i = 0; i < num_consumers; i++) {
3566 if (consumers[i].consumer->always_on)
3567 consumers[i].ret = 0;
3568 else
3569 async_schedule_domain(regulator_bulk_enable_async,
3570 &consumers[i], &async_domain);
3573 async_synchronize_full_domain(&async_domain);
3575 /* If any consumer failed we need to unwind any that succeeded */
3576 for (i = 0; i < num_consumers; i++) {
3577 if (consumers[i].ret != 0) {
3578 ret = consumers[i].ret;
3579 goto err;
3583 return 0;
3585 err:
3586 for (i = 0; i < num_consumers; i++) {
3587 if (consumers[i].ret < 0)
3588 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3589 consumers[i].ret);
3590 else
3591 regulator_disable(consumers[i].consumer);
3594 return ret;
3596 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3599 * regulator_bulk_disable - disable multiple regulator consumers
3601 * @num_consumers: Number of consumers
3602 * @consumers: Consumer data; clients are stored here.
3603 * @return 0 on success, an errno on failure
3605 * This convenience API allows consumers to disable multiple regulator
3606 * clients in a single API call. If any consumers cannot be disabled
3607 * then any others that were disabled will be enabled again prior to
3608 * return.
3610 int regulator_bulk_disable(int num_consumers,
3611 struct regulator_bulk_data *consumers)
3613 int i;
3614 int ret, r;
3616 for (i = num_consumers - 1; i >= 0; --i) {
3617 ret = regulator_disable(consumers[i].consumer);
3618 if (ret != 0)
3619 goto err;
3622 return 0;
3624 err:
3625 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3626 for (++i; i < num_consumers; ++i) {
3627 r = regulator_enable(consumers[i].consumer);
3628 if (r != 0)
3629 pr_err("Failed to reename %s: %d\n",
3630 consumers[i].supply, r);
3633 return ret;
3635 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3638 * regulator_bulk_force_disable - force disable multiple regulator consumers
3640 * @num_consumers: Number of consumers
3641 * @consumers: Consumer data; clients are stored here.
3642 * @return 0 on success, an errno on failure
3644 * This convenience API allows consumers to forcibly disable multiple regulator
3645 * clients in a single API call.
3646 * NOTE: This should be used for situations when device damage will
3647 * likely occur if the regulators are not disabled (e.g. over temp).
3648 * Although regulator_force_disable function call for some consumers can
3649 * return error numbers, the function is called for all consumers.
3651 int regulator_bulk_force_disable(int num_consumers,
3652 struct regulator_bulk_data *consumers)
3654 int i;
3655 int ret;
3657 for (i = 0; i < num_consumers; i++)
3658 consumers[i].ret =
3659 regulator_force_disable(consumers[i].consumer);
3661 for (i = 0; i < num_consumers; i++) {
3662 if (consumers[i].ret != 0) {
3663 ret = consumers[i].ret;
3664 goto out;
3668 return 0;
3669 out:
3670 return ret;
3672 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3675 * regulator_bulk_free - free multiple regulator consumers
3677 * @num_consumers: Number of consumers
3678 * @consumers: Consumer data; clients are stored here.
3680 * This convenience API allows consumers to free multiple regulator
3681 * clients in a single API call.
3683 void regulator_bulk_free(int num_consumers,
3684 struct regulator_bulk_data *consumers)
3686 int i;
3688 for (i = 0; i < num_consumers; i++) {
3689 regulator_put(consumers[i].consumer);
3690 consumers[i].consumer = NULL;
3693 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3696 * regulator_notifier_call_chain - call regulator event notifier
3697 * @rdev: regulator source
3698 * @event: notifier block
3699 * @data: callback-specific data.
3701 * Called by regulator drivers to notify clients a regulator event has
3702 * occurred. We also notify regulator clients downstream.
3703 * Note lock must be held by caller.
3705 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3706 unsigned long event, void *data)
3708 lockdep_assert_held_once(&rdev->mutex);
3710 _notifier_call_chain(rdev, event, data);
3711 return NOTIFY_DONE;
3714 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3717 * regulator_mode_to_status - convert a regulator mode into a status
3719 * @mode: Mode to convert
3721 * Convert a regulator mode into a status.
3723 int regulator_mode_to_status(unsigned int mode)
3725 switch (mode) {
3726 case REGULATOR_MODE_FAST:
3727 return REGULATOR_STATUS_FAST;
3728 case REGULATOR_MODE_NORMAL:
3729 return REGULATOR_STATUS_NORMAL;
3730 case REGULATOR_MODE_IDLE:
3731 return REGULATOR_STATUS_IDLE;
3732 case REGULATOR_MODE_STANDBY:
3733 return REGULATOR_STATUS_STANDBY;
3734 default:
3735 return REGULATOR_STATUS_UNDEFINED;
3738 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3740 static struct attribute *regulator_dev_attrs[] = {
3741 &dev_attr_name.attr,
3742 &dev_attr_num_users.attr,
3743 &dev_attr_type.attr,
3744 &dev_attr_microvolts.attr,
3745 &dev_attr_microamps.attr,
3746 &dev_attr_opmode.attr,
3747 &dev_attr_state.attr,
3748 &dev_attr_status.attr,
3749 &dev_attr_bypass.attr,
3750 &dev_attr_requested_microamps.attr,
3751 &dev_attr_min_microvolts.attr,
3752 &dev_attr_max_microvolts.attr,
3753 &dev_attr_min_microamps.attr,
3754 &dev_attr_max_microamps.attr,
3755 &dev_attr_suspend_standby_state.attr,
3756 &dev_attr_suspend_mem_state.attr,
3757 &dev_attr_suspend_disk_state.attr,
3758 &dev_attr_suspend_standby_microvolts.attr,
3759 &dev_attr_suspend_mem_microvolts.attr,
3760 &dev_attr_suspend_disk_microvolts.attr,
3761 &dev_attr_suspend_standby_mode.attr,
3762 &dev_attr_suspend_mem_mode.attr,
3763 &dev_attr_suspend_disk_mode.attr,
3764 NULL
3768 * To avoid cluttering sysfs (and memory) with useless state, only
3769 * create attributes that can be meaningfully displayed.
3771 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3772 struct attribute *attr, int idx)
3774 struct device *dev = kobj_to_dev(kobj);
3775 struct regulator_dev *rdev = dev_to_rdev(dev);
3776 const struct regulator_ops *ops = rdev->desc->ops;
3777 umode_t mode = attr->mode;
3779 /* these three are always present */
3780 if (attr == &dev_attr_name.attr ||
3781 attr == &dev_attr_num_users.attr ||
3782 attr == &dev_attr_type.attr)
3783 return mode;
3785 /* some attributes need specific methods to be displayed */
3786 if (attr == &dev_attr_microvolts.attr) {
3787 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3788 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3789 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3790 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3791 return mode;
3792 return 0;
3795 if (attr == &dev_attr_microamps.attr)
3796 return ops->get_current_limit ? mode : 0;
3798 if (attr == &dev_attr_opmode.attr)
3799 return ops->get_mode ? mode : 0;
3801 if (attr == &dev_attr_state.attr)
3802 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3804 if (attr == &dev_attr_status.attr)
3805 return ops->get_status ? mode : 0;
3807 if (attr == &dev_attr_bypass.attr)
3808 return ops->get_bypass ? mode : 0;
3810 /* some attributes are type-specific */
3811 if (attr == &dev_attr_requested_microamps.attr)
3812 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3814 /* constraints need specific supporting methods */
3815 if (attr == &dev_attr_min_microvolts.attr ||
3816 attr == &dev_attr_max_microvolts.attr)
3817 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3819 if (attr == &dev_attr_min_microamps.attr ||
3820 attr == &dev_attr_max_microamps.attr)
3821 return ops->set_current_limit ? mode : 0;
3823 if (attr == &dev_attr_suspend_standby_state.attr ||
3824 attr == &dev_attr_suspend_mem_state.attr ||
3825 attr == &dev_attr_suspend_disk_state.attr)
3826 return mode;
3828 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3829 attr == &dev_attr_suspend_mem_microvolts.attr ||
3830 attr == &dev_attr_suspend_disk_microvolts.attr)
3831 return ops->set_suspend_voltage ? mode : 0;
3833 if (attr == &dev_attr_suspend_standby_mode.attr ||
3834 attr == &dev_attr_suspend_mem_mode.attr ||
3835 attr == &dev_attr_suspend_disk_mode.attr)
3836 return ops->set_suspend_mode ? mode : 0;
3838 return mode;
3841 static const struct attribute_group regulator_dev_group = {
3842 .attrs = regulator_dev_attrs,
3843 .is_visible = regulator_attr_is_visible,
3846 static const struct attribute_group *regulator_dev_groups[] = {
3847 &regulator_dev_group,
3848 NULL
3851 static void regulator_dev_release(struct device *dev)
3853 struct regulator_dev *rdev = dev_get_drvdata(dev);
3855 kfree(rdev->constraints);
3856 of_node_put(rdev->dev.of_node);
3857 kfree(rdev);
3860 static struct class regulator_class = {
3861 .name = "regulator",
3862 .dev_release = regulator_dev_release,
3863 .dev_groups = regulator_dev_groups,
3866 static void rdev_init_debugfs(struct regulator_dev *rdev)
3868 struct device *parent = rdev->dev.parent;
3869 const char *rname = rdev_get_name(rdev);
3870 char name[NAME_MAX];
3872 /* Avoid duplicate debugfs directory names */
3873 if (parent && rname == rdev->desc->name) {
3874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3875 rname);
3876 rname = name;
3879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3880 if (!rdev->debugfs) {
3881 rdev_warn(rdev, "Failed to create debugfs directory\n");
3882 return;
3885 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3886 &rdev->use_count);
3887 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3888 &rdev->open_count);
3889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3890 &rdev->bypass_count);
3893 static int regulator_register_resolve_supply(struct device *dev, void *data)
3895 struct regulator_dev *rdev = dev_to_rdev(dev);
3897 if (regulator_resolve_supply(rdev))
3898 rdev_dbg(rdev, "unable to resolve supply\n");
3900 return 0;
3904 * regulator_register - register regulator
3905 * @regulator_desc: regulator to register
3906 * @cfg: runtime configuration for regulator
3908 * Called by regulator drivers to register a regulator.
3909 * Returns a valid pointer to struct regulator_dev on success
3910 * or an ERR_PTR() on error.
3912 struct regulator_dev *
3913 regulator_register(const struct regulator_desc *regulator_desc,
3914 const struct regulator_config *cfg)
3916 const struct regulation_constraints *constraints = NULL;
3917 const struct regulator_init_data *init_data;
3918 struct regulator_config *config = NULL;
3919 static atomic_t regulator_no = ATOMIC_INIT(-1);
3920 struct regulator_dev *rdev;
3921 struct device *dev;
3922 int ret, i;
3924 if (regulator_desc == NULL || cfg == NULL)
3925 return ERR_PTR(-EINVAL);
3927 dev = cfg->dev;
3928 WARN_ON(!dev);
3930 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3931 return ERR_PTR(-EINVAL);
3933 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3934 regulator_desc->type != REGULATOR_CURRENT)
3935 return ERR_PTR(-EINVAL);
3937 /* Only one of each should be implemented */
3938 WARN_ON(regulator_desc->ops->get_voltage &&
3939 regulator_desc->ops->get_voltage_sel);
3940 WARN_ON(regulator_desc->ops->set_voltage &&
3941 regulator_desc->ops->set_voltage_sel);
3943 /* If we're using selectors we must implement list_voltage. */
3944 if (regulator_desc->ops->get_voltage_sel &&
3945 !regulator_desc->ops->list_voltage) {
3946 return ERR_PTR(-EINVAL);
3948 if (regulator_desc->ops->set_voltage_sel &&
3949 !regulator_desc->ops->list_voltage) {
3950 return ERR_PTR(-EINVAL);
3953 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3954 if (rdev == NULL)
3955 return ERR_PTR(-ENOMEM);
3958 * Duplicate the config so the driver could override it after
3959 * parsing init data.
3961 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3962 if (config == NULL) {
3963 kfree(rdev);
3964 return ERR_PTR(-ENOMEM);
3967 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3968 &rdev->dev.of_node);
3969 if (!init_data) {
3970 init_data = config->init_data;
3971 rdev->dev.of_node = of_node_get(config->of_node);
3974 mutex_init(&rdev->mutex);
3975 rdev->reg_data = config->driver_data;
3976 rdev->owner = regulator_desc->owner;
3977 rdev->desc = regulator_desc;
3978 if (config->regmap)
3979 rdev->regmap = config->regmap;
3980 else if (dev_get_regmap(dev, NULL))
3981 rdev->regmap = dev_get_regmap(dev, NULL);
3982 else if (dev->parent)
3983 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3984 INIT_LIST_HEAD(&rdev->consumer_list);
3985 INIT_LIST_HEAD(&rdev->list);
3986 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3987 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3989 /* preform any regulator specific init */
3990 if (init_data && init_data->regulator_init) {
3991 ret = init_data->regulator_init(rdev->reg_data);
3992 if (ret < 0)
3993 goto clean;
3996 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3997 gpio_is_valid(config->ena_gpio)) {
3998 mutex_lock(&regulator_list_mutex);
3999 ret = regulator_ena_gpio_request(rdev, config);
4000 mutex_unlock(&regulator_list_mutex);
4001 if (ret != 0) {
4002 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4003 config->ena_gpio, ret);
4004 goto clean;
4008 /* register with sysfs */
4009 rdev->dev.class = &regulator_class;
4010 rdev->dev.parent = dev;
4011 dev_set_name(&rdev->dev, "regulator.%lu",
4012 (unsigned long) atomic_inc_return(&regulator_no));
4014 /* set regulator constraints */
4015 if (init_data)
4016 constraints = &init_data->constraints;
4018 if (init_data && init_data->supply_regulator)
4019 rdev->supply_name = init_data->supply_regulator;
4020 else if (regulator_desc->supply_name)
4021 rdev->supply_name = regulator_desc->supply_name;
4024 * Attempt to resolve the regulator supply, if specified,
4025 * but don't return an error if we fail because we will try
4026 * to resolve it again later as more regulators are added.
4028 if (regulator_resolve_supply(rdev))
4029 rdev_dbg(rdev, "unable to resolve supply\n");
4031 ret = set_machine_constraints(rdev, constraints);
4032 if (ret < 0)
4033 goto wash;
4035 /* add consumers devices */
4036 if (init_data) {
4037 mutex_lock(&regulator_list_mutex);
4038 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4039 ret = set_consumer_device_supply(rdev,
4040 init_data->consumer_supplies[i].dev_name,
4041 init_data->consumer_supplies[i].supply);
4042 if (ret < 0) {
4043 mutex_unlock(&regulator_list_mutex);
4044 dev_err(dev, "Failed to set supply %s\n",
4045 init_data->consumer_supplies[i].supply);
4046 goto unset_supplies;
4049 mutex_unlock(&regulator_list_mutex);
4052 ret = device_register(&rdev->dev);
4053 if (ret != 0) {
4054 put_device(&rdev->dev);
4055 goto unset_supplies;
4058 dev_set_drvdata(&rdev->dev, rdev);
4059 rdev_init_debugfs(rdev);
4061 /* try to resolve regulators supply since a new one was registered */
4062 class_for_each_device(&regulator_class, NULL, NULL,
4063 regulator_register_resolve_supply);
4064 kfree(config);
4065 return rdev;
4067 unset_supplies:
4068 mutex_lock(&regulator_list_mutex);
4069 unset_regulator_supplies(rdev);
4070 mutex_unlock(&regulator_list_mutex);
4071 wash:
4072 kfree(rdev->constraints);
4073 mutex_lock(&regulator_list_mutex);
4074 regulator_ena_gpio_free(rdev);
4075 mutex_unlock(&regulator_list_mutex);
4076 clean:
4077 kfree(rdev);
4078 kfree(config);
4079 return ERR_PTR(ret);
4081 EXPORT_SYMBOL_GPL(regulator_register);
4084 * regulator_unregister - unregister regulator
4085 * @rdev: regulator to unregister
4087 * Called by regulator drivers to unregister a regulator.
4089 void regulator_unregister(struct regulator_dev *rdev)
4091 if (rdev == NULL)
4092 return;
4094 if (rdev->supply) {
4095 while (rdev->use_count--)
4096 regulator_disable(rdev->supply);
4097 regulator_put(rdev->supply);
4099 mutex_lock(&regulator_list_mutex);
4100 debugfs_remove_recursive(rdev->debugfs);
4101 flush_work(&rdev->disable_work.work);
4102 WARN_ON(rdev->open_count);
4103 unset_regulator_supplies(rdev);
4104 list_del(&rdev->list);
4105 regulator_ena_gpio_free(rdev);
4106 mutex_unlock(&regulator_list_mutex);
4107 device_unregister(&rdev->dev);
4109 EXPORT_SYMBOL_GPL(regulator_unregister);
4111 static int _regulator_suspend_prepare(struct device *dev, void *data)
4113 struct regulator_dev *rdev = dev_to_rdev(dev);
4114 const suspend_state_t *state = data;
4115 int ret;
4117 mutex_lock(&rdev->mutex);
4118 ret = suspend_prepare(rdev, *state);
4119 mutex_unlock(&rdev->mutex);
4121 return ret;
4125 * regulator_suspend_prepare - prepare regulators for system wide suspend
4126 * @state: system suspend state
4128 * Configure each regulator with it's suspend operating parameters for state.
4129 * This will usually be called by machine suspend code prior to supending.
4131 int regulator_suspend_prepare(suspend_state_t state)
4133 /* ON is handled by regulator active state */
4134 if (state == PM_SUSPEND_ON)
4135 return -EINVAL;
4137 return class_for_each_device(&regulator_class, NULL, &state,
4138 _regulator_suspend_prepare);
4140 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4142 static int _regulator_suspend_finish(struct device *dev, void *data)
4144 struct regulator_dev *rdev = dev_to_rdev(dev);
4145 int ret;
4147 mutex_lock(&rdev->mutex);
4148 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4149 if (!_regulator_is_enabled(rdev)) {
4150 ret = _regulator_do_enable(rdev);
4151 if (ret)
4152 dev_err(dev,
4153 "Failed to resume regulator %d\n",
4154 ret);
4156 } else {
4157 if (!have_full_constraints())
4158 goto unlock;
4159 if (!_regulator_is_enabled(rdev))
4160 goto unlock;
4162 ret = _regulator_do_disable(rdev);
4163 if (ret)
4164 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4166 unlock:
4167 mutex_unlock(&rdev->mutex);
4169 /* Keep processing regulators in spite of any errors */
4170 return 0;
4174 * regulator_suspend_finish - resume regulators from system wide suspend
4176 * Turn on regulators that might be turned off by regulator_suspend_prepare
4177 * and that should be turned on according to the regulators properties.
4179 int regulator_suspend_finish(void)
4181 return class_for_each_device(&regulator_class, NULL, NULL,
4182 _regulator_suspend_finish);
4184 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4187 * regulator_has_full_constraints - the system has fully specified constraints
4189 * Calling this function will cause the regulator API to disable all
4190 * regulators which have a zero use count and don't have an always_on
4191 * constraint in a late_initcall.
4193 * The intention is that this will become the default behaviour in a
4194 * future kernel release so users are encouraged to use this facility
4195 * now.
4197 void regulator_has_full_constraints(void)
4199 has_full_constraints = 1;
4201 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4204 * rdev_get_drvdata - get rdev regulator driver data
4205 * @rdev: regulator
4207 * Get rdev regulator driver private data. This call can be used in the
4208 * regulator driver context.
4210 void *rdev_get_drvdata(struct regulator_dev *rdev)
4212 return rdev->reg_data;
4214 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4217 * regulator_get_drvdata - get regulator driver data
4218 * @regulator: regulator
4220 * Get regulator driver private data. This call can be used in the consumer
4221 * driver context when non API regulator specific functions need to be called.
4223 void *regulator_get_drvdata(struct regulator *regulator)
4225 return regulator->rdev->reg_data;
4227 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4230 * regulator_set_drvdata - set regulator driver data
4231 * @regulator: regulator
4232 * @data: data
4234 void regulator_set_drvdata(struct regulator *regulator, void *data)
4236 regulator->rdev->reg_data = data;
4238 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4241 * regulator_get_id - get regulator ID
4242 * @rdev: regulator
4244 int rdev_get_id(struct regulator_dev *rdev)
4246 return rdev->desc->id;
4248 EXPORT_SYMBOL_GPL(rdev_get_id);
4250 struct device *rdev_get_dev(struct regulator_dev *rdev)
4252 return &rdev->dev;
4254 EXPORT_SYMBOL_GPL(rdev_get_dev);
4256 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4258 return reg_init_data->driver_data;
4260 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4262 #ifdef CONFIG_DEBUG_FS
4263 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4264 size_t count, loff_t *ppos)
4266 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4267 ssize_t len, ret = 0;
4268 struct regulator_map *map;
4270 if (!buf)
4271 return -ENOMEM;
4273 list_for_each_entry(map, &regulator_map_list, list) {
4274 len = snprintf(buf + ret, PAGE_SIZE - ret,
4275 "%s -> %s.%s\n",
4276 rdev_get_name(map->regulator), map->dev_name,
4277 map->supply);
4278 if (len >= 0)
4279 ret += len;
4280 if (ret > PAGE_SIZE) {
4281 ret = PAGE_SIZE;
4282 break;
4286 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4288 kfree(buf);
4290 return ret;
4292 #endif
4294 static const struct file_operations supply_map_fops = {
4295 #ifdef CONFIG_DEBUG_FS
4296 .read = supply_map_read_file,
4297 .llseek = default_llseek,
4298 #endif
4301 #ifdef CONFIG_DEBUG_FS
4302 struct summary_data {
4303 struct seq_file *s;
4304 struct regulator_dev *parent;
4305 int level;
4308 static void regulator_summary_show_subtree(struct seq_file *s,
4309 struct regulator_dev *rdev,
4310 int level);
4312 static int regulator_summary_show_children(struct device *dev, void *data)
4314 struct regulator_dev *rdev = dev_to_rdev(dev);
4315 struct summary_data *summary_data = data;
4317 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4318 regulator_summary_show_subtree(summary_data->s, rdev,
4319 summary_data->level + 1);
4321 return 0;
4324 static void regulator_summary_show_subtree(struct seq_file *s,
4325 struct regulator_dev *rdev,
4326 int level)
4328 struct regulation_constraints *c;
4329 struct regulator *consumer;
4330 struct summary_data summary_data;
4332 if (!rdev)
4333 return;
4335 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4336 level * 3 + 1, "",
4337 30 - level * 3, rdev_get_name(rdev),
4338 rdev->use_count, rdev->open_count, rdev->bypass_count);
4340 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4341 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4343 c = rdev->constraints;
4344 if (c) {
4345 switch (rdev->desc->type) {
4346 case REGULATOR_VOLTAGE:
4347 seq_printf(s, "%5dmV %5dmV ",
4348 c->min_uV / 1000, c->max_uV / 1000);
4349 break;
4350 case REGULATOR_CURRENT:
4351 seq_printf(s, "%5dmA %5dmA ",
4352 c->min_uA / 1000, c->max_uA / 1000);
4353 break;
4357 seq_puts(s, "\n");
4359 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4360 if (consumer->dev && consumer->dev->class == &regulator_class)
4361 continue;
4363 seq_printf(s, "%*s%-*s ",
4364 (level + 1) * 3 + 1, "",
4365 30 - (level + 1) * 3,
4366 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4368 switch (rdev->desc->type) {
4369 case REGULATOR_VOLTAGE:
4370 seq_printf(s, "%37dmV %5dmV",
4371 consumer->min_uV / 1000,
4372 consumer->max_uV / 1000);
4373 break;
4374 case REGULATOR_CURRENT:
4375 break;
4378 seq_puts(s, "\n");
4381 summary_data.s = s;
4382 summary_data.level = level;
4383 summary_data.parent = rdev;
4385 class_for_each_device(&regulator_class, NULL, &summary_data,
4386 regulator_summary_show_children);
4389 static int regulator_summary_show_roots(struct device *dev, void *data)
4391 struct regulator_dev *rdev = dev_to_rdev(dev);
4392 struct seq_file *s = data;
4394 if (!rdev->supply)
4395 regulator_summary_show_subtree(s, rdev, 0);
4397 return 0;
4400 static int regulator_summary_show(struct seq_file *s, void *data)
4402 seq_puts(s, " regulator use open bypass voltage current min max\n");
4403 seq_puts(s, "-------------------------------------------------------------------------------\n");
4405 class_for_each_device(&regulator_class, NULL, s,
4406 regulator_summary_show_roots);
4408 return 0;
4411 static int regulator_summary_open(struct inode *inode, struct file *file)
4413 return single_open(file, regulator_summary_show, inode->i_private);
4415 #endif
4417 static const struct file_operations regulator_summary_fops = {
4418 #ifdef CONFIG_DEBUG_FS
4419 .open = regulator_summary_open,
4420 .read = seq_read,
4421 .llseek = seq_lseek,
4422 .release = single_release,
4423 #endif
4426 static int __init regulator_init(void)
4428 int ret;
4430 ret = class_register(&regulator_class);
4432 debugfs_root = debugfs_create_dir("regulator", NULL);
4433 if (!debugfs_root)
4434 pr_warn("regulator: Failed to create debugfs directory\n");
4436 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4437 &supply_map_fops);
4439 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4440 NULL, &regulator_summary_fops);
4442 regulator_dummy_init();
4444 return ret;
4447 /* init early to allow our consumers to complete system booting */
4448 core_initcall(regulator_init);
4450 static int __init regulator_late_cleanup(struct device *dev, void *data)
4452 struct regulator_dev *rdev = dev_to_rdev(dev);
4453 const struct regulator_ops *ops = rdev->desc->ops;
4454 struct regulation_constraints *c = rdev->constraints;
4455 int enabled, ret;
4457 if (c && c->always_on)
4458 return 0;
4460 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4461 return 0;
4463 mutex_lock(&rdev->mutex);
4465 if (rdev->use_count)
4466 goto unlock;
4468 /* If we can't read the status assume it's on. */
4469 if (ops->is_enabled)
4470 enabled = ops->is_enabled(rdev);
4471 else
4472 enabled = 1;
4474 if (!enabled)
4475 goto unlock;
4477 if (have_full_constraints()) {
4478 /* We log since this may kill the system if it goes
4479 * wrong. */
4480 rdev_info(rdev, "disabling\n");
4481 ret = _regulator_do_disable(rdev);
4482 if (ret != 0)
4483 rdev_err(rdev, "couldn't disable: %d\n", ret);
4484 } else {
4485 /* The intention is that in future we will
4486 * assume that full constraints are provided
4487 * so warn even if we aren't going to do
4488 * anything here.
4490 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4493 unlock:
4494 mutex_unlock(&rdev->mutex);
4496 return 0;
4499 static int __init regulator_init_complete(void)
4502 * Since DT doesn't provide an idiomatic mechanism for
4503 * enabling full constraints and since it's much more natural
4504 * with DT to provide them just assume that a DT enabled
4505 * system has full constraints.
4507 if (of_have_populated_dt())
4508 has_full_constraints = true;
4510 /* If we have a full configuration then disable any regulators
4511 * we have permission to change the status for and which are
4512 * not in use or always_on. This is effectively the default
4513 * for DT and ACPI as they have full constraints.
4515 class_for_each_device(&regulator_class, NULL, NULL,
4516 regulator_late_cleanup);
4518 return 0;
4520 late_initcall_sync(regulator_init_complete);