pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob1b29efcab3dc0a8ce46ca9f91e66be157762196c
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 return csum;
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83 struct ext4_inode_info *ei)
85 __u32 provided, calculated;
87 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88 cpu_to_le32(EXT4_OS_LINUX) ||
89 !ext4_has_metadata_csum(inode->i_sb))
90 return 1;
92 provided = le16_to_cpu(raw->i_checksum_lo);
93 calculated = ext4_inode_csum(inode, raw, ei);
94 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 else
98 calculated &= 0xFFFF;
100 return provided == calculated;
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104 struct ext4_inode_info *ei)
106 __u32 csum;
108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109 cpu_to_le32(EXT4_OS_LINUX) ||
110 !ext4_has_metadata_csum(inode->i_sb))
111 return;
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
123 trace_ext4_begin_ordered_truncate(inode, new_size);
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142 int pextents);
145 * Test whether an inode is a fast symlink.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 if (ext4_has_inline_data(inode))
153 return 0;
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 * Restart the transaction associated with *handle. This does a commit,
160 * so before we call here everything must be consistently dirtied against
161 * this transaction.
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 int nblocks)
166 int ret;
169 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
170 * moment, get_block can be called only for blocks inside i_size since
171 * page cache has been already dropped and writes are blocked by
172 * i_mutex. So we can safely drop the i_data_sem here.
174 BUG_ON(EXT4_JOURNAL(inode) == NULL);
175 jbd_debug(2, "restarting handle %p\n", handle);
176 up_write(&EXT4_I(inode)->i_data_sem);
177 ret = ext4_journal_restart(handle, nblocks);
178 down_write(&EXT4_I(inode)->i_data_sem);
179 ext4_discard_preallocations(inode);
181 return ret;
185 * Called at the last iput() if i_nlink is zero.
187 void ext4_evict_inode(struct inode *inode)
189 handle_t *handle;
190 int err;
192 trace_ext4_evict_inode(inode);
194 if (inode->i_nlink) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
224 goto no_delete;
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
263 if (inode->i_blocks)
264 ext4_truncate(inode);
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 return &EXT4_I(inode)->i_reserved_quota;
322 #endif
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EFSCORRUPTED;
385 return 0;
388 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
389 ext4_lblk_t len)
391 int ret;
393 if (ext4_encrypted_inode(inode))
394 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
397 if (ret > 0)
398 ret = 0;
400 return ret;
403 #define check_block_validity(inode, map) \
404 __check_block_validity((inode), __func__, __LINE__, (map))
406 #ifdef ES_AGGRESSIVE_TEST
407 static void ext4_map_blocks_es_recheck(handle_t *handle,
408 struct inode *inode,
409 struct ext4_map_blocks *es_map,
410 struct ext4_map_blocks *map,
411 int flags)
413 int retval;
415 map->m_flags = 0;
417 * There is a race window that the result is not the same.
418 * e.g. xfstests #223 when dioread_nolock enables. The reason
419 * is that we lookup a block mapping in extent status tree with
420 * out taking i_data_sem. So at the time the unwritten extent
421 * could be converted.
423 down_read(&EXT4_I(inode)->i_data_sem);
424 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
425 retval = ext4_ext_map_blocks(handle, inode, map, flags &
426 EXT4_GET_BLOCKS_KEEP_SIZE);
427 } else {
428 retval = ext4_ind_map_blocks(handle, inode, map, flags &
429 EXT4_GET_BLOCKS_KEEP_SIZE);
431 up_read((&EXT4_I(inode)->i_data_sem));
434 * We don't check m_len because extent will be collpased in status
435 * tree. So the m_len might not equal.
437 if (es_map->m_lblk != map->m_lblk ||
438 es_map->m_flags != map->m_flags ||
439 es_map->m_pblk != map->m_pblk) {
440 printk("ES cache assertion failed for inode: %lu "
441 "es_cached ex [%d/%d/%llu/%x] != "
442 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
443 inode->i_ino, es_map->m_lblk, es_map->m_len,
444 es_map->m_pblk, es_map->m_flags, map->m_lblk,
445 map->m_len, map->m_pblk, map->m_flags,
446 retval, flags);
449 #endif /* ES_AGGRESSIVE_TEST */
452 * The ext4_map_blocks() function tries to look up the requested blocks,
453 * and returns if the blocks are already mapped.
455 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
456 * and store the allocated blocks in the result buffer head and mark it
457 * mapped.
459 * If file type is extents based, it will call ext4_ext_map_blocks(),
460 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
461 * based files
463 * On success, it returns the number of blocks being mapped or allocated. if
464 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
465 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467 * It returns 0 if plain look up failed (blocks have not been allocated), in
468 * that case, @map is returned as unmapped but we still do fill map->m_len to
469 * indicate the length of a hole starting at map->m_lblk.
471 * It returns the error in case of allocation failure.
473 int ext4_map_blocks(handle_t *handle, struct inode *inode,
474 struct ext4_map_blocks *map, int flags)
476 struct extent_status es;
477 int retval;
478 int ret = 0;
479 #ifdef ES_AGGRESSIVE_TEST
480 struct ext4_map_blocks orig_map;
482 memcpy(&orig_map, map, sizeof(*map));
483 #endif
485 map->m_flags = 0;
486 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
487 "logical block %lu\n", inode->i_ino, flags, map->m_len,
488 (unsigned long) map->m_lblk);
491 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 if (unlikely(map->m_len > INT_MAX))
494 map->m_len = INT_MAX;
496 /* We can handle the block number less than EXT_MAX_BLOCKS */
497 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
498 return -EFSCORRUPTED;
500 /* Lookup extent status tree firstly */
501 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
502 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
503 map->m_pblk = ext4_es_pblock(&es) +
504 map->m_lblk - es.es_lblk;
505 map->m_flags |= ext4_es_is_written(&es) ?
506 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
507 retval = es.es_len - (map->m_lblk - es.es_lblk);
508 if (retval > map->m_len)
509 retval = map->m_len;
510 map->m_len = retval;
511 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
512 map->m_pblk = 0;
513 retval = es.es_len - (map->m_lblk - es.es_lblk);
514 if (retval > map->m_len)
515 retval = map->m_len;
516 map->m_len = retval;
517 retval = 0;
518 } else {
519 BUG_ON(1);
521 #ifdef ES_AGGRESSIVE_TEST
522 ext4_map_blocks_es_recheck(handle, inode, map,
523 &orig_map, flags);
524 #endif
525 goto found;
529 * Try to see if we can get the block without requesting a new
530 * file system block.
532 down_read(&EXT4_I(inode)->i_data_sem);
533 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
534 retval = ext4_ext_map_blocks(handle, inode, map, flags &
535 EXT4_GET_BLOCKS_KEEP_SIZE);
536 } else {
537 retval = ext4_ind_map_blocks(handle, inode, map, flags &
538 EXT4_GET_BLOCKS_KEEP_SIZE);
540 if (retval > 0) {
541 unsigned int status;
543 if (unlikely(retval != map->m_len)) {
544 ext4_warning(inode->i_sb,
545 "ES len assertion failed for inode "
546 "%lu: retval %d != map->m_len %d",
547 inode->i_ino, retval, map->m_len);
548 WARN_ON(1);
551 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
552 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
553 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
554 !(status & EXTENT_STATUS_WRITTEN) &&
555 ext4_find_delalloc_range(inode, map->m_lblk,
556 map->m_lblk + map->m_len - 1))
557 status |= EXTENT_STATUS_DELAYED;
558 ret = ext4_es_insert_extent(inode, map->m_lblk,
559 map->m_len, map->m_pblk, status);
560 if (ret < 0)
561 retval = ret;
563 up_read((&EXT4_I(inode)->i_data_sem));
565 found:
566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
567 ret = check_block_validity(inode, map);
568 if (ret != 0)
569 return ret;
572 /* If it is only a block(s) look up */
573 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
574 return retval;
577 * Returns if the blocks have already allocated
579 * Note that if blocks have been preallocated
580 * ext4_ext_get_block() returns the create = 0
581 * with buffer head unmapped.
583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 * If we need to convert extent to unwritten
586 * we continue and do the actual work in
587 * ext4_ext_map_blocks()
589 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
590 return retval;
593 * Here we clear m_flags because after allocating an new extent,
594 * it will be set again.
596 map->m_flags &= ~EXT4_MAP_FLAGS;
599 * New blocks allocate and/or writing to unwritten extent
600 * will possibly result in updating i_data, so we take
601 * the write lock of i_data_sem, and call get_block()
602 * with create == 1 flag.
604 down_write(&EXT4_I(inode)->i_data_sem);
607 * We need to check for EXT4 here because migrate
608 * could have changed the inode type in between
610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611 retval = ext4_ext_map_blocks(handle, inode, map, flags);
612 } else {
613 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 * We allocated new blocks which will result in
618 * i_data's format changing. Force the migrate
619 * to fail by clearing migrate flags
621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
625 * Update reserved blocks/metadata blocks after successful
626 * block allocation which had been deferred till now. We don't
627 * support fallocate for non extent files. So we can update
628 * reserve space here.
630 if ((retval > 0) &&
631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632 ext4_da_update_reserve_space(inode, retval, 1);
635 if (retval > 0) {
636 unsigned int status;
638 if (unlikely(retval != map->m_len)) {
639 ext4_warning(inode->i_sb,
640 "ES len assertion failed for inode "
641 "%lu: retval %d != map->m_len %d",
642 inode->i_ino, retval, map->m_len);
643 WARN_ON(1);
647 * We have to zeroout blocks before inserting them into extent
648 * status tree. Otherwise someone could look them up there and
649 * use them before they are really zeroed. We also have to
650 * unmap metadata before zeroing as otherwise writeback can
651 * overwrite zeros with stale data from block device.
653 if (flags & EXT4_GET_BLOCKS_ZERO &&
654 map->m_flags & EXT4_MAP_MAPPED &&
655 map->m_flags & EXT4_MAP_NEW) {
656 ext4_lblk_t i;
658 for (i = 0; i < map->m_len; i++) {
659 unmap_underlying_metadata(inode->i_sb->s_bdev,
660 map->m_pblk + i);
662 ret = ext4_issue_zeroout(inode, map->m_lblk,
663 map->m_pblk, map->m_len);
664 if (ret) {
665 retval = ret;
666 goto out_sem;
671 * If the extent has been zeroed out, we don't need to update
672 * extent status tree.
674 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
675 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
676 if (ext4_es_is_written(&es))
677 goto out_sem;
679 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
680 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
681 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
682 !(status & EXTENT_STATUS_WRITTEN) &&
683 ext4_find_delalloc_range(inode, map->m_lblk,
684 map->m_lblk + map->m_len - 1))
685 status |= EXTENT_STATUS_DELAYED;
686 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
687 map->m_pblk, status);
688 if (ret < 0) {
689 retval = ret;
690 goto out_sem;
694 out_sem:
695 up_write((&EXT4_I(inode)->i_data_sem));
696 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
697 ret = check_block_validity(inode, map);
698 if (ret != 0)
699 return ret;
702 * Inodes with freshly allocated blocks where contents will be
703 * visible after transaction commit must be on transaction's
704 * ordered data list.
706 if (map->m_flags & EXT4_MAP_NEW &&
707 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
708 !(flags & EXT4_GET_BLOCKS_ZERO) &&
709 !IS_NOQUOTA(inode) &&
710 ext4_should_order_data(inode)) {
711 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
712 ret = ext4_jbd2_inode_add_wait(handle, inode);
713 else
714 ret = ext4_jbd2_inode_add_write(handle, inode);
715 if (ret)
716 return ret;
719 return retval;
723 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
724 * we have to be careful as someone else may be manipulating b_state as well.
726 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 unsigned long old_state;
729 unsigned long new_state;
731 flags &= EXT4_MAP_FLAGS;
733 /* Dummy buffer_head? Set non-atomically. */
734 if (!bh->b_page) {
735 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
736 return;
739 * Someone else may be modifying b_state. Be careful! This is ugly but
740 * once we get rid of using bh as a container for mapping information
741 * to pass to / from get_block functions, this can go away.
743 do {
744 old_state = READ_ONCE(bh->b_state);
745 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
746 } while (unlikely(
747 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
750 static int _ext4_get_block(struct inode *inode, sector_t iblock,
751 struct buffer_head *bh, int flags)
753 struct ext4_map_blocks map;
754 int ret = 0;
756 if (ext4_has_inline_data(inode))
757 return -ERANGE;
759 map.m_lblk = iblock;
760 map.m_len = bh->b_size >> inode->i_blkbits;
762 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
763 flags);
764 if (ret > 0) {
765 map_bh(bh, inode->i_sb, map.m_pblk);
766 ext4_update_bh_state(bh, map.m_flags);
767 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
768 ret = 0;
770 return ret;
773 int ext4_get_block(struct inode *inode, sector_t iblock,
774 struct buffer_head *bh, int create)
776 return _ext4_get_block(inode, iblock, bh,
777 create ? EXT4_GET_BLOCKS_CREATE : 0);
781 * Get block function used when preparing for buffered write if we require
782 * creating an unwritten extent if blocks haven't been allocated. The extent
783 * will be converted to written after the IO is complete.
785 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
786 struct buffer_head *bh_result, int create)
788 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
789 inode->i_ino, create);
790 return _ext4_get_block(inode, iblock, bh_result,
791 EXT4_GET_BLOCKS_IO_CREATE_EXT);
794 /* Maximum number of blocks we map for direct IO at once. */
795 #define DIO_MAX_BLOCKS 4096
798 * Get blocks function for the cases that need to start a transaction -
799 * generally difference cases of direct IO and DAX IO. It also handles retries
800 * in case of ENOSPC.
802 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
803 struct buffer_head *bh_result, int flags)
805 int dio_credits;
806 handle_t *handle;
807 int retries = 0;
808 int ret;
810 /* Trim mapping request to maximum we can map at once for DIO */
811 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
812 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
813 dio_credits = ext4_chunk_trans_blocks(inode,
814 bh_result->b_size >> inode->i_blkbits);
815 retry:
816 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
817 if (IS_ERR(handle))
818 return PTR_ERR(handle);
820 ret = _ext4_get_block(inode, iblock, bh_result, flags);
821 ext4_journal_stop(handle);
823 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
824 goto retry;
825 return ret;
828 /* Get block function for DIO reads and writes to inodes without extents */
829 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
830 struct buffer_head *bh, int create)
832 /* We don't expect handle for direct IO */
833 WARN_ON_ONCE(ext4_journal_current_handle());
835 if (!create)
836 return _ext4_get_block(inode, iblock, bh, 0);
837 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
841 * Get block function for AIO DIO writes when we create unwritten extent if
842 * blocks are not allocated yet. The extent will be converted to written
843 * after IO is complete.
845 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
846 sector_t iblock, struct buffer_head *bh_result, int create)
848 int ret;
850 /* We don't expect handle for direct IO */
851 WARN_ON_ONCE(ext4_journal_current_handle());
853 ret = ext4_get_block_trans(inode, iblock, bh_result,
854 EXT4_GET_BLOCKS_IO_CREATE_EXT);
857 * When doing DIO using unwritten extents, we need io_end to convert
858 * unwritten extents to written on IO completion. We allocate io_end
859 * once we spot unwritten extent and store it in b_private. Generic
860 * DIO code keeps b_private set and furthermore passes the value to
861 * our completion callback in 'private' argument.
863 if (!ret && buffer_unwritten(bh_result)) {
864 if (!bh_result->b_private) {
865 ext4_io_end_t *io_end;
867 io_end = ext4_init_io_end(inode, GFP_KERNEL);
868 if (!io_end)
869 return -ENOMEM;
870 bh_result->b_private = io_end;
871 ext4_set_io_unwritten_flag(inode, io_end);
873 set_buffer_defer_completion(bh_result);
876 return ret;
880 * Get block function for non-AIO DIO writes when we create unwritten extent if
881 * blocks are not allocated yet. The extent will be converted to written
882 * after IO is complete from ext4_ext_direct_IO() function.
884 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
885 sector_t iblock, struct buffer_head *bh_result, int create)
887 int ret;
889 /* We don't expect handle for direct IO */
890 WARN_ON_ONCE(ext4_journal_current_handle());
892 ret = ext4_get_block_trans(inode, iblock, bh_result,
893 EXT4_GET_BLOCKS_IO_CREATE_EXT);
896 * Mark inode as having pending DIO writes to unwritten extents.
897 * ext4_ext_direct_IO() checks this flag and converts extents to
898 * written.
900 if (!ret && buffer_unwritten(bh_result))
901 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903 return ret;
906 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
907 struct buffer_head *bh_result, int create)
909 int ret;
911 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
912 inode->i_ino, create);
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
916 ret = _ext4_get_block(inode, iblock, bh_result, 0);
918 * Blocks should have been preallocated! ext4_file_write_iter() checks
919 * that.
921 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923 return ret;
928 * `handle' can be NULL if create is zero
930 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
931 ext4_lblk_t block, int map_flags)
933 struct ext4_map_blocks map;
934 struct buffer_head *bh;
935 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
936 int err;
938 J_ASSERT(handle != NULL || create == 0);
940 map.m_lblk = block;
941 map.m_len = 1;
942 err = ext4_map_blocks(handle, inode, &map, map_flags);
944 if (err == 0)
945 return create ? ERR_PTR(-ENOSPC) : NULL;
946 if (err < 0)
947 return ERR_PTR(err);
949 bh = sb_getblk(inode->i_sb, map.m_pblk);
950 if (unlikely(!bh))
951 return ERR_PTR(-ENOMEM);
952 if (map.m_flags & EXT4_MAP_NEW) {
953 J_ASSERT(create != 0);
954 J_ASSERT(handle != NULL);
957 * Now that we do not always journal data, we should
958 * keep in mind whether this should always journal the
959 * new buffer as metadata. For now, regular file
960 * writes use ext4_get_block instead, so it's not a
961 * problem.
963 lock_buffer(bh);
964 BUFFER_TRACE(bh, "call get_create_access");
965 err = ext4_journal_get_create_access(handle, bh);
966 if (unlikely(err)) {
967 unlock_buffer(bh);
968 goto errout;
970 if (!buffer_uptodate(bh)) {
971 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
972 set_buffer_uptodate(bh);
974 unlock_buffer(bh);
975 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
976 err = ext4_handle_dirty_metadata(handle, inode, bh);
977 if (unlikely(err))
978 goto errout;
979 } else
980 BUFFER_TRACE(bh, "not a new buffer");
981 return bh;
982 errout:
983 brelse(bh);
984 return ERR_PTR(err);
987 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
988 ext4_lblk_t block, int map_flags)
990 struct buffer_head *bh;
992 bh = ext4_getblk(handle, inode, block, map_flags);
993 if (IS_ERR(bh))
994 return bh;
995 if (!bh || buffer_uptodate(bh))
996 return bh;
997 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
998 wait_on_buffer(bh);
999 if (buffer_uptodate(bh))
1000 return bh;
1001 put_bh(bh);
1002 return ERR_PTR(-EIO);
1005 int ext4_walk_page_buffers(handle_t *handle,
1006 struct buffer_head *head,
1007 unsigned from,
1008 unsigned to,
1009 int *partial,
1010 int (*fn)(handle_t *handle,
1011 struct buffer_head *bh))
1013 struct buffer_head *bh;
1014 unsigned block_start, block_end;
1015 unsigned blocksize = head->b_size;
1016 int err, ret = 0;
1017 struct buffer_head *next;
1019 for (bh = head, block_start = 0;
1020 ret == 0 && (bh != head || !block_start);
1021 block_start = block_end, bh = next) {
1022 next = bh->b_this_page;
1023 block_end = block_start + blocksize;
1024 if (block_end <= from || block_start >= to) {
1025 if (partial && !buffer_uptodate(bh))
1026 *partial = 1;
1027 continue;
1029 err = (*fn)(handle, bh);
1030 if (!ret)
1031 ret = err;
1033 return ret;
1037 * To preserve ordering, it is essential that the hole instantiation and
1038 * the data write be encapsulated in a single transaction. We cannot
1039 * close off a transaction and start a new one between the ext4_get_block()
1040 * and the commit_write(). So doing the jbd2_journal_start at the start of
1041 * prepare_write() is the right place.
1043 * Also, this function can nest inside ext4_writepage(). In that case, we
1044 * *know* that ext4_writepage() has generated enough buffer credits to do the
1045 * whole page. So we won't block on the journal in that case, which is good,
1046 * because the caller may be PF_MEMALLOC.
1048 * By accident, ext4 can be reentered when a transaction is open via
1049 * quota file writes. If we were to commit the transaction while thus
1050 * reentered, there can be a deadlock - we would be holding a quota
1051 * lock, and the commit would never complete if another thread had a
1052 * transaction open and was blocking on the quota lock - a ranking
1053 * violation.
1055 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1056 * will _not_ run commit under these circumstances because handle->h_ref
1057 * is elevated. We'll still have enough credits for the tiny quotafile
1058 * write.
1060 int do_journal_get_write_access(handle_t *handle,
1061 struct buffer_head *bh)
1063 int dirty = buffer_dirty(bh);
1064 int ret;
1066 if (!buffer_mapped(bh) || buffer_freed(bh))
1067 return 0;
1069 * __block_write_begin() could have dirtied some buffers. Clean
1070 * the dirty bit as jbd2_journal_get_write_access() could complain
1071 * otherwise about fs integrity issues. Setting of the dirty bit
1072 * by __block_write_begin() isn't a real problem here as we clear
1073 * the bit before releasing a page lock and thus writeback cannot
1074 * ever write the buffer.
1076 if (dirty)
1077 clear_buffer_dirty(bh);
1078 BUFFER_TRACE(bh, "get write access");
1079 ret = ext4_journal_get_write_access(handle, bh);
1080 if (!ret && dirty)
1081 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1082 return ret;
1085 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1086 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1087 get_block_t *get_block)
1089 unsigned from = pos & (PAGE_SIZE - 1);
1090 unsigned to = from + len;
1091 struct inode *inode = page->mapping->host;
1092 unsigned block_start, block_end;
1093 sector_t block;
1094 int err = 0;
1095 unsigned blocksize = inode->i_sb->s_blocksize;
1096 unsigned bbits;
1097 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1098 bool decrypt = false;
1100 BUG_ON(!PageLocked(page));
1101 BUG_ON(from > PAGE_SIZE);
1102 BUG_ON(to > PAGE_SIZE);
1103 BUG_ON(from > to);
1105 if (!page_has_buffers(page))
1106 create_empty_buffers(page, blocksize, 0);
1107 head = page_buffers(page);
1108 bbits = ilog2(blocksize);
1109 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111 for (bh = head, block_start = 0; bh != head || !block_start;
1112 block++, block_start = block_end, bh = bh->b_this_page) {
1113 block_end = block_start + blocksize;
1114 if (block_end <= from || block_start >= to) {
1115 if (PageUptodate(page)) {
1116 if (!buffer_uptodate(bh))
1117 set_buffer_uptodate(bh);
1119 continue;
1121 if (buffer_new(bh))
1122 clear_buffer_new(bh);
1123 if (!buffer_mapped(bh)) {
1124 WARN_ON(bh->b_size != blocksize);
1125 err = get_block(inode, block, bh, 1);
1126 if (err)
1127 break;
1128 if (buffer_new(bh)) {
1129 unmap_underlying_metadata(bh->b_bdev,
1130 bh->b_blocknr);
1131 if (PageUptodate(page)) {
1132 clear_buffer_new(bh);
1133 set_buffer_uptodate(bh);
1134 mark_buffer_dirty(bh);
1135 continue;
1137 if (block_end > to || block_start < from)
1138 zero_user_segments(page, to, block_end,
1139 block_start, from);
1140 continue;
1143 if (PageUptodate(page)) {
1144 if (!buffer_uptodate(bh))
1145 set_buffer_uptodate(bh);
1146 continue;
1148 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1149 !buffer_unwritten(bh) &&
1150 (block_start < from || block_end > to)) {
1151 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1152 *wait_bh++ = bh;
1153 decrypt = ext4_encrypted_inode(inode) &&
1154 S_ISREG(inode->i_mode);
1158 * If we issued read requests, let them complete.
1160 while (wait_bh > wait) {
1161 wait_on_buffer(*--wait_bh);
1162 if (!buffer_uptodate(*wait_bh))
1163 err = -EIO;
1165 if (unlikely(err))
1166 page_zero_new_buffers(page, from, to);
1167 else if (decrypt)
1168 err = fscrypt_decrypt_page(page);
1169 return err;
1171 #endif
1173 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1174 loff_t pos, unsigned len, unsigned flags,
1175 struct page **pagep, void **fsdata)
1177 struct inode *inode = mapping->host;
1178 int ret, needed_blocks;
1179 handle_t *handle;
1180 int retries = 0;
1181 struct page *page;
1182 pgoff_t index;
1183 unsigned from, to;
1185 trace_ext4_write_begin(inode, pos, len, flags);
1187 * Reserve one block more for addition to orphan list in case
1188 * we allocate blocks but write fails for some reason
1190 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1191 index = pos >> PAGE_SHIFT;
1192 from = pos & (PAGE_SIZE - 1);
1193 to = from + len;
1195 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1196 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1197 flags, pagep);
1198 if (ret < 0)
1199 return ret;
1200 if (ret == 1)
1201 return 0;
1205 * grab_cache_page_write_begin() can take a long time if the
1206 * system is thrashing due to memory pressure, or if the page
1207 * is being written back. So grab it first before we start
1208 * the transaction handle. This also allows us to allocate
1209 * the page (if needed) without using GFP_NOFS.
1211 retry_grab:
1212 page = grab_cache_page_write_begin(mapping, index, flags);
1213 if (!page)
1214 return -ENOMEM;
1215 unlock_page(page);
1217 retry_journal:
1218 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1219 if (IS_ERR(handle)) {
1220 put_page(page);
1221 return PTR_ERR(handle);
1224 lock_page(page);
1225 if (page->mapping != mapping) {
1226 /* The page got truncated from under us */
1227 unlock_page(page);
1228 put_page(page);
1229 ext4_journal_stop(handle);
1230 goto retry_grab;
1232 /* In case writeback began while the page was unlocked */
1233 wait_for_stable_page(page);
1235 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1236 if (ext4_should_dioread_nolock(inode))
1237 ret = ext4_block_write_begin(page, pos, len,
1238 ext4_get_block_unwritten);
1239 else
1240 ret = ext4_block_write_begin(page, pos, len,
1241 ext4_get_block);
1242 #else
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = __block_write_begin(page, pos, len,
1245 ext4_get_block_unwritten);
1246 else
1247 ret = __block_write_begin(page, pos, len, ext4_get_block);
1248 #endif
1249 if (!ret && ext4_should_journal_data(inode)) {
1250 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1251 from, to, NULL,
1252 do_journal_get_write_access);
1255 if (ret) {
1256 unlock_page(page);
1258 * __block_write_begin may have instantiated a few blocks
1259 * outside i_size. Trim these off again. Don't need
1260 * i_size_read because we hold i_mutex.
1262 * Add inode to orphan list in case we crash before
1263 * truncate finishes
1265 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1266 ext4_orphan_add(handle, inode);
1268 ext4_journal_stop(handle);
1269 if (pos + len > inode->i_size) {
1270 ext4_truncate_failed_write(inode);
1272 * If truncate failed early the inode might
1273 * still be on the orphan list; we need to
1274 * make sure the inode is removed from the
1275 * orphan list in that case.
1277 if (inode->i_nlink)
1278 ext4_orphan_del(NULL, inode);
1281 if (ret == -ENOSPC &&
1282 ext4_should_retry_alloc(inode->i_sb, &retries))
1283 goto retry_journal;
1284 put_page(page);
1285 return ret;
1287 *pagep = page;
1288 return ret;
1291 /* For write_end() in data=journal mode */
1292 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 int ret;
1295 if (!buffer_mapped(bh) || buffer_freed(bh))
1296 return 0;
1297 set_buffer_uptodate(bh);
1298 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1299 clear_buffer_meta(bh);
1300 clear_buffer_prio(bh);
1301 return ret;
1305 * We need to pick up the new inode size which generic_commit_write gave us
1306 * `file' can be NULL - eg, when called from page_symlink().
1308 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1309 * buffers are managed internally.
1311 static int ext4_write_end(struct file *file,
1312 struct address_space *mapping,
1313 loff_t pos, unsigned len, unsigned copied,
1314 struct page *page, void *fsdata)
1316 handle_t *handle = ext4_journal_current_handle();
1317 struct inode *inode = mapping->host;
1318 loff_t old_size = inode->i_size;
1319 int ret = 0, ret2;
1320 int i_size_changed = 0;
1322 trace_ext4_write_end(inode, pos, len, copied);
1323 if (ext4_has_inline_data(inode)) {
1324 ret = ext4_write_inline_data_end(inode, pos, len,
1325 copied, page);
1326 if (ret < 0) {
1327 unlock_page(page);
1328 put_page(page);
1329 goto errout;
1331 copied = ret;
1332 } else
1333 copied = block_write_end(file, mapping, pos,
1334 len, copied, page, fsdata);
1336 * it's important to update i_size while still holding page lock:
1337 * page writeout could otherwise come in and zero beyond i_size.
1339 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1340 unlock_page(page);
1341 put_page(page);
1343 if (old_size < pos)
1344 pagecache_isize_extended(inode, old_size, pos);
1346 * Don't mark the inode dirty under page lock. First, it unnecessarily
1347 * makes the holding time of page lock longer. Second, it forces lock
1348 * ordering of page lock and transaction start for journaling
1349 * filesystems.
1351 if (i_size_changed)
1352 ext4_mark_inode_dirty(handle, inode);
1354 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1355 /* if we have allocated more blocks and copied
1356 * less. We will have blocks allocated outside
1357 * inode->i_size. So truncate them
1359 ext4_orphan_add(handle, inode);
1360 errout:
1361 ret2 = ext4_journal_stop(handle);
1362 if (!ret)
1363 ret = ret2;
1365 if (pos + len > inode->i_size) {
1366 ext4_truncate_failed_write(inode);
1368 * If truncate failed early the inode might still be
1369 * on the orphan list; we need to make sure the inode
1370 * is removed from the orphan list in that case.
1372 if (inode->i_nlink)
1373 ext4_orphan_del(NULL, inode);
1376 return ret ? ret : copied;
1380 * This is a private version of page_zero_new_buffers() which doesn't
1381 * set the buffer to be dirty, since in data=journalled mode we need
1382 * to call ext4_handle_dirty_metadata() instead.
1384 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1385 struct page *page,
1386 unsigned from, unsigned to)
1388 unsigned int block_start = 0, block_end;
1389 struct buffer_head *head, *bh;
1391 bh = head = page_buffers(page);
1392 do {
1393 block_end = block_start + bh->b_size;
1394 if (buffer_new(bh)) {
1395 if (block_end > from && block_start < to) {
1396 if (!PageUptodate(page)) {
1397 unsigned start, size;
1399 start = max(from, block_start);
1400 size = min(to, block_end) - start;
1402 zero_user(page, start, size);
1403 write_end_fn(handle, bh);
1405 clear_buffer_new(bh);
1408 block_start = block_end;
1409 bh = bh->b_this_page;
1410 } while (bh != head);
1413 static int ext4_journalled_write_end(struct file *file,
1414 struct address_space *mapping,
1415 loff_t pos, unsigned len, unsigned copied,
1416 struct page *page, void *fsdata)
1418 handle_t *handle = ext4_journal_current_handle();
1419 struct inode *inode = mapping->host;
1420 loff_t old_size = inode->i_size;
1421 int ret = 0, ret2;
1422 int partial = 0;
1423 unsigned from, to;
1424 int size_changed = 0;
1426 trace_ext4_journalled_write_end(inode, pos, len, copied);
1427 from = pos & (PAGE_SIZE - 1);
1428 to = from + len;
1430 BUG_ON(!ext4_handle_valid(handle));
1432 if (ext4_has_inline_data(inode)) {
1433 ret = ext4_write_inline_data_end(inode, pos, len,
1434 copied, page);
1435 if (ret < 0) {
1436 unlock_page(page);
1437 put_page(page);
1438 goto errout;
1440 copied = ret;
1441 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1442 copied = 0;
1443 ext4_journalled_zero_new_buffers(handle, page, from, to);
1444 } else {
1445 if (unlikely(copied < len))
1446 ext4_journalled_zero_new_buffers(handle, page,
1447 from + copied, to);
1448 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1449 from + copied, &partial,
1450 write_end_fn);
1451 if (!partial)
1452 SetPageUptodate(page);
1454 size_changed = ext4_update_inode_size(inode, pos + copied);
1455 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1456 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1457 unlock_page(page);
1458 put_page(page);
1460 if (old_size < pos)
1461 pagecache_isize_extended(inode, old_size, pos);
1463 if (size_changed) {
1464 ret2 = ext4_mark_inode_dirty(handle, inode);
1465 if (!ret)
1466 ret = ret2;
1469 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1470 /* if we have allocated more blocks and copied
1471 * less. We will have blocks allocated outside
1472 * inode->i_size. So truncate them
1474 ext4_orphan_add(handle, inode);
1476 errout:
1477 ret2 = ext4_journal_stop(handle);
1478 if (!ret)
1479 ret = ret2;
1480 if (pos + len > inode->i_size) {
1481 ext4_truncate_failed_write(inode);
1483 * If truncate failed early the inode might still be
1484 * on the orphan list; we need to make sure the inode
1485 * is removed from the orphan list in that case.
1487 if (inode->i_nlink)
1488 ext4_orphan_del(NULL, inode);
1491 return ret ? ret : copied;
1495 * Reserve space for a single cluster
1497 static int ext4_da_reserve_space(struct inode *inode)
1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 struct ext4_inode_info *ei = EXT4_I(inode);
1501 int ret;
1504 * We will charge metadata quota at writeout time; this saves
1505 * us from metadata over-estimation, though we may go over by
1506 * a small amount in the end. Here we just reserve for data.
1508 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1509 if (ret)
1510 return ret;
1512 spin_lock(&ei->i_block_reservation_lock);
1513 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1514 spin_unlock(&ei->i_block_reservation_lock);
1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1516 return -ENOSPC;
1518 ei->i_reserved_data_blocks++;
1519 trace_ext4_da_reserve_space(inode);
1520 spin_unlock(&ei->i_block_reservation_lock);
1522 return 0; /* success */
1525 static void ext4_da_release_space(struct inode *inode, int to_free)
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528 struct ext4_inode_info *ei = EXT4_I(inode);
1530 if (!to_free)
1531 return; /* Nothing to release, exit */
1533 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1535 trace_ext4_da_release_space(inode, to_free);
1536 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1538 * if there aren't enough reserved blocks, then the
1539 * counter is messed up somewhere. Since this
1540 * function is called from invalidate page, it's
1541 * harmless to return without any action.
1543 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1544 "ino %lu, to_free %d with only %d reserved "
1545 "data blocks", inode->i_ino, to_free,
1546 ei->i_reserved_data_blocks);
1547 WARN_ON(1);
1548 to_free = ei->i_reserved_data_blocks;
1550 ei->i_reserved_data_blocks -= to_free;
1552 /* update fs dirty data blocks counter */
1553 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1555 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1557 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1560 static void ext4_da_page_release_reservation(struct page *page,
1561 unsigned int offset,
1562 unsigned int length)
1564 int to_release = 0, contiguous_blks = 0;
1565 struct buffer_head *head, *bh;
1566 unsigned int curr_off = 0;
1567 struct inode *inode = page->mapping->host;
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 unsigned int stop = offset + length;
1570 int num_clusters;
1571 ext4_fsblk_t lblk;
1573 BUG_ON(stop > PAGE_SIZE || stop < length);
1575 head = page_buffers(page);
1576 bh = head;
1577 do {
1578 unsigned int next_off = curr_off + bh->b_size;
1580 if (next_off > stop)
1581 break;
1583 if ((offset <= curr_off) && (buffer_delay(bh))) {
1584 to_release++;
1585 contiguous_blks++;
1586 clear_buffer_delay(bh);
1587 } else if (contiguous_blks) {
1588 lblk = page->index <<
1589 (PAGE_SHIFT - inode->i_blkbits);
1590 lblk += (curr_off >> inode->i_blkbits) -
1591 contiguous_blks;
1592 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1593 contiguous_blks = 0;
1595 curr_off = next_off;
1596 } while ((bh = bh->b_this_page) != head);
1598 if (contiguous_blks) {
1599 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1600 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1601 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1604 /* If we have released all the blocks belonging to a cluster, then we
1605 * need to release the reserved space for that cluster. */
1606 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1607 while (num_clusters > 0) {
1608 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1609 ((num_clusters - 1) << sbi->s_cluster_bits);
1610 if (sbi->s_cluster_ratio == 1 ||
1611 !ext4_find_delalloc_cluster(inode, lblk))
1612 ext4_da_release_space(inode, 1);
1614 num_clusters--;
1619 * Delayed allocation stuff
1622 struct mpage_da_data {
1623 struct inode *inode;
1624 struct writeback_control *wbc;
1626 pgoff_t first_page; /* The first page to write */
1627 pgoff_t next_page; /* Current page to examine */
1628 pgoff_t last_page; /* Last page to examine */
1630 * Extent to map - this can be after first_page because that can be
1631 * fully mapped. We somewhat abuse m_flags to store whether the extent
1632 * is delalloc or unwritten.
1634 struct ext4_map_blocks map;
1635 struct ext4_io_submit io_submit; /* IO submission data */
1638 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1639 bool invalidate)
1641 int nr_pages, i;
1642 pgoff_t index, end;
1643 struct pagevec pvec;
1644 struct inode *inode = mpd->inode;
1645 struct address_space *mapping = inode->i_mapping;
1647 /* This is necessary when next_page == 0. */
1648 if (mpd->first_page >= mpd->next_page)
1649 return;
1651 index = mpd->first_page;
1652 end = mpd->next_page - 1;
1653 if (invalidate) {
1654 ext4_lblk_t start, last;
1655 start = index << (PAGE_SHIFT - inode->i_blkbits);
1656 last = end << (PAGE_SHIFT - inode->i_blkbits);
1657 ext4_es_remove_extent(inode, start, last - start + 1);
1660 pagevec_init(&pvec, 0);
1661 while (index <= end) {
1662 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1663 if (nr_pages == 0)
1664 break;
1665 for (i = 0; i < nr_pages; i++) {
1666 struct page *page = pvec.pages[i];
1667 if (page->index > end)
1668 break;
1669 BUG_ON(!PageLocked(page));
1670 BUG_ON(PageWriteback(page));
1671 if (invalidate) {
1672 if (page_mapped(page))
1673 clear_page_dirty_for_io(page);
1674 block_invalidatepage(page, 0, PAGE_SIZE);
1675 ClearPageUptodate(page);
1677 unlock_page(page);
1679 index = pvec.pages[nr_pages - 1]->index + 1;
1680 pagevec_release(&pvec);
1684 static void ext4_print_free_blocks(struct inode *inode)
1686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1687 struct super_block *sb = inode->i_sb;
1688 struct ext4_inode_info *ei = EXT4_I(inode);
1690 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1691 EXT4_C2B(EXT4_SB(inode->i_sb),
1692 ext4_count_free_clusters(sb)));
1693 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1694 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1695 (long long) EXT4_C2B(EXT4_SB(sb),
1696 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1697 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1698 (long long) EXT4_C2B(EXT4_SB(sb),
1699 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1700 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1701 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1702 ei->i_reserved_data_blocks);
1703 return;
1706 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1708 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1712 * This function is grabs code from the very beginning of
1713 * ext4_map_blocks, but assumes that the caller is from delayed write
1714 * time. This function looks up the requested blocks and sets the
1715 * buffer delay bit under the protection of i_data_sem.
1717 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1718 struct ext4_map_blocks *map,
1719 struct buffer_head *bh)
1721 struct extent_status es;
1722 int retval;
1723 sector_t invalid_block = ~((sector_t) 0xffff);
1724 #ifdef ES_AGGRESSIVE_TEST
1725 struct ext4_map_blocks orig_map;
1727 memcpy(&orig_map, map, sizeof(*map));
1728 #endif
1730 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1731 invalid_block = ~0;
1733 map->m_flags = 0;
1734 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1735 "logical block %lu\n", inode->i_ino, map->m_len,
1736 (unsigned long) map->m_lblk);
1738 /* Lookup extent status tree firstly */
1739 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1740 if (ext4_es_is_hole(&es)) {
1741 retval = 0;
1742 down_read(&EXT4_I(inode)->i_data_sem);
1743 goto add_delayed;
1747 * Delayed extent could be allocated by fallocate.
1748 * So we need to check it.
1750 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1751 map_bh(bh, inode->i_sb, invalid_block);
1752 set_buffer_new(bh);
1753 set_buffer_delay(bh);
1754 return 0;
1757 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1758 retval = es.es_len - (iblock - es.es_lblk);
1759 if (retval > map->m_len)
1760 retval = map->m_len;
1761 map->m_len = retval;
1762 if (ext4_es_is_written(&es))
1763 map->m_flags |= EXT4_MAP_MAPPED;
1764 else if (ext4_es_is_unwritten(&es))
1765 map->m_flags |= EXT4_MAP_UNWRITTEN;
1766 else
1767 BUG_ON(1);
1769 #ifdef ES_AGGRESSIVE_TEST
1770 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1771 #endif
1772 return retval;
1776 * Try to see if we can get the block without requesting a new
1777 * file system block.
1779 down_read(&EXT4_I(inode)->i_data_sem);
1780 if (ext4_has_inline_data(inode))
1781 retval = 0;
1782 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1783 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1784 else
1785 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1787 add_delayed:
1788 if (retval == 0) {
1789 int ret;
1791 * XXX: __block_prepare_write() unmaps passed block,
1792 * is it OK?
1795 * If the block was allocated from previously allocated cluster,
1796 * then we don't need to reserve it again. However we still need
1797 * to reserve metadata for every block we're going to write.
1799 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1800 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1801 ret = ext4_da_reserve_space(inode);
1802 if (ret) {
1803 /* not enough space to reserve */
1804 retval = ret;
1805 goto out_unlock;
1809 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1810 ~0, EXTENT_STATUS_DELAYED);
1811 if (ret) {
1812 retval = ret;
1813 goto out_unlock;
1816 map_bh(bh, inode->i_sb, invalid_block);
1817 set_buffer_new(bh);
1818 set_buffer_delay(bh);
1819 } else if (retval > 0) {
1820 int ret;
1821 unsigned int status;
1823 if (unlikely(retval != map->m_len)) {
1824 ext4_warning(inode->i_sb,
1825 "ES len assertion failed for inode "
1826 "%lu: retval %d != map->m_len %d",
1827 inode->i_ino, retval, map->m_len);
1828 WARN_ON(1);
1831 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1832 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1833 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1834 map->m_pblk, status);
1835 if (ret != 0)
1836 retval = ret;
1839 out_unlock:
1840 up_read((&EXT4_I(inode)->i_data_sem));
1842 return retval;
1846 * This is a special get_block_t callback which is used by
1847 * ext4_da_write_begin(). It will either return mapped block or
1848 * reserve space for a single block.
1850 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1851 * We also have b_blocknr = -1 and b_bdev initialized properly
1853 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1854 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1855 * initialized properly.
1857 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1858 struct buffer_head *bh, int create)
1860 struct ext4_map_blocks map;
1861 int ret = 0;
1863 BUG_ON(create == 0);
1864 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1866 map.m_lblk = iblock;
1867 map.m_len = 1;
1870 * first, we need to know whether the block is allocated already
1871 * preallocated blocks are unmapped but should treated
1872 * the same as allocated blocks.
1874 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1875 if (ret <= 0)
1876 return ret;
1878 map_bh(bh, inode->i_sb, map.m_pblk);
1879 ext4_update_bh_state(bh, map.m_flags);
1881 if (buffer_unwritten(bh)) {
1882 /* A delayed write to unwritten bh should be marked
1883 * new and mapped. Mapped ensures that we don't do
1884 * get_block multiple times when we write to the same
1885 * offset and new ensures that we do proper zero out
1886 * for partial write.
1888 set_buffer_new(bh);
1889 set_buffer_mapped(bh);
1891 return 0;
1894 static int bget_one(handle_t *handle, struct buffer_head *bh)
1896 get_bh(bh);
1897 return 0;
1900 static int bput_one(handle_t *handle, struct buffer_head *bh)
1902 put_bh(bh);
1903 return 0;
1906 static int __ext4_journalled_writepage(struct page *page,
1907 unsigned int len)
1909 struct address_space *mapping = page->mapping;
1910 struct inode *inode = mapping->host;
1911 struct buffer_head *page_bufs = NULL;
1912 handle_t *handle = NULL;
1913 int ret = 0, err = 0;
1914 int inline_data = ext4_has_inline_data(inode);
1915 struct buffer_head *inode_bh = NULL;
1917 ClearPageChecked(page);
1919 if (inline_data) {
1920 BUG_ON(page->index != 0);
1921 BUG_ON(len > ext4_get_max_inline_size(inode));
1922 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1923 if (inode_bh == NULL)
1924 goto out;
1925 } else {
1926 page_bufs = page_buffers(page);
1927 if (!page_bufs) {
1928 BUG();
1929 goto out;
1931 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1932 NULL, bget_one);
1935 * We need to release the page lock before we start the
1936 * journal, so grab a reference so the page won't disappear
1937 * out from under us.
1939 get_page(page);
1940 unlock_page(page);
1942 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1943 ext4_writepage_trans_blocks(inode));
1944 if (IS_ERR(handle)) {
1945 ret = PTR_ERR(handle);
1946 put_page(page);
1947 goto out_no_pagelock;
1949 BUG_ON(!ext4_handle_valid(handle));
1951 lock_page(page);
1952 put_page(page);
1953 if (page->mapping != mapping) {
1954 /* The page got truncated from under us */
1955 ext4_journal_stop(handle);
1956 ret = 0;
1957 goto out;
1960 if (inline_data) {
1961 BUFFER_TRACE(inode_bh, "get write access");
1962 ret = ext4_journal_get_write_access(handle, inode_bh);
1964 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1966 } else {
1967 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1968 do_journal_get_write_access);
1970 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1971 write_end_fn);
1973 if (ret == 0)
1974 ret = err;
1975 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1976 err = ext4_journal_stop(handle);
1977 if (!ret)
1978 ret = err;
1980 if (!ext4_has_inline_data(inode))
1981 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1982 NULL, bput_one);
1983 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1984 out:
1985 unlock_page(page);
1986 out_no_pagelock:
1987 brelse(inode_bh);
1988 return ret;
1992 * Note that we don't need to start a transaction unless we're journaling data
1993 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1994 * need to file the inode to the transaction's list in ordered mode because if
1995 * we are writing back data added by write(), the inode is already there and if
1996 * we are writing back data modified via mmap(), no one guarantees in which
1997 * transaction the data will hit the disk. In case we are journaling data, we
1998 * cannot start transaction directly because transaction start ranks above page
1999 * lock so we have to do some magic.
2001 * This function can get called via...
2002 * - ext4_writepages after taking page lock (have journal handle)
2003 * - journal_submit_inode_data_buffers (no journal handle)
2004 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2005 * - grab_page_cache when doing write_begin (have journal handle)
2007 * We don't do any block allocation in this function. If we have page with
2008 * multiple blocks we need to write those buffer_heads that are mapped. This
2009 * is important for mmaped based write. So if we do with blocksize 1K
2010 * truncate(f, 1024);
2011 * a = mmap(f, 0, 4096);
2012 * a[0] = 'a';
2013 * truncate(f, 4096);
2014 * we have in the page first buffer_head mapped via page_mkwrite call back
2015 * but other buffer_heads would be unmapped but dirty (dirty done via the
2016 * do_wp_page). So writepage should write the first block. If we modify
2017 * the mmap area beyond 1024 we will again get a page_fault and the
2018 * page_mkwrite callback will do the block allocation and mark the
2019 * buffer_heads mapped.
2021 * We redirty the page if we have any buffer_heads that is either delay or
2022 * unwritten in the page.
2024 * We can get recursively called as show below.
2026 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2027 * ext4_writepage()
2029 * But since we don't do any block allocation we should not deadlock.
2030 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2032 static int ext4_writepage(struct page *page,
2033 struct writeback_control *wbc)
2035 int ret = 0;
2036 loff_t size;
2037 unsigned int len;
2038 struct buffer_head *page_bufs = NULL;
2039 struct inode *inode = page->mapping->host;
2040 struct ext4_io_submit io_submit;
2041 bool keep_towrite = false;
2043 trace_ext4_writepage(page);
2044 size = i_size_read(inode);
2045 if (page->index == size >> PAGE_SHIFT)
2046 len = size & ~PAGE_MASK;
2047 else
2048 len = PAGE_SIZE;
2050 page_bufs = page_buffers(page);
2052 * We cannot do block allocation or other extent handling in this
2053 * function. If there are buffers needing that, we have to redirty
2054 * the page. But we may reach here when we do a journal commit via
2055 * journal_submit_inode_data_buffers() and in that case we must write
2056 * allocated buffers to achieve data=ordered mode guarantees.
2058 * Also, if there is only one buffer per page (the fs block
2059 * size == the page size), if one buffer needs block
2060 * allocation or needs to modify the extent tree to clear the
2061 * unwritten flag, we know that the page can't be written at
2062 * all, so we might as well refuse the write immediately.
2063 * Unfortunately if the block size != page size, we can't as
2064 * easily detect this case using ext4_walk_page_buffers(), but
2065 * for the extremely common case, this is an optimization that
2066 * skips a useless round trip through ext4_bio_write_page().
2068 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069 ext4_bh_delay_or_unwritten)) {
2070 redirty_page_for_writepage(wbc, page);
2071 if ((current->flags & PF_MEMALLOC) ||
2072 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2074 * For memory cleaning there's no point in writing only
2075 * some buffers. So just bail out. Warn if we came here
2076 * from direct reclaim.
2078 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2079 == PF_MEMALLOC);
2080 unlock_page(page);
2081 return 0;
2083 keep_towrite = true;
2086 if (PageChecked(page) && ext4_should_journal_data(inode))
2088 * It's mmapped pagecache. Add buffers and journal it. There
2089 * doesn't seem much point in redirtying the page here.
2091 return __ext4_journalled_writepage(page, len);
2093 ext4_io_submit_init(&io_submit, wbc);
2094 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2095 if (!io_submit.io_end) {
2096 redirty_page_for_writepage(wbc, page);
2097 unlock_page(page);
2098 return -ENOMEM;
2100 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2101 ext4_io_submit(&io_submit);
2102 /* Drop io_end reference we got from init */
2103 ext4_put_io_end_defer(io_submit.io_end);
2104 return ret;
2107 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2109 int len;
2110 loff_t size = i_size_read(mpd->inode);
2111 int err;
2113 BUG_ON(page->index != mpd->first_page);
2114 if (page->index == size >> PAGE_SHIFT)
2115 len = size & ~PAGE_MASK;
2116 else
2117 len = PAGE_SIZE;
2118 clear_page_dirty_for_io(page);
2119 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2120 if (!err)
2121 mpd->wbc->nr_to_write--;
2122 mpd->first_page++;
2124 return err;
2127 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2130 * mballoc gives us at most this number of blocks...
2131 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2132 * The rest of mballoc seems to handle chunks up to full group size.
2134 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2137 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2139 * @mpd - extent of blocks
2140 * @lblk - logical number of the block in the file
2141 * @bh - buffer head we want to add to the extent
2143 * The function is used to collect contig. blocks in the same state. If the
2144 * buffer doesn't require mapping for writeback and we haven't started the
2145 * extent of buffers to map yet, the function returns 'true' immediately - the
2146 * caller can write the buffer right away. Otherwise the function returns true
2147 * if the block has been added to the extent, false if the block couldn't be
2148 * added.
2150 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2151 struct buffer_head *bh)
2153 struct ext4_map_blocks *map = &mpd->map;
2155 /* Buffer that doesn't need mapping for writeback? */
2156 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2157 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2158 /* So far no extent to map => we write the buffer right away */
2159 if (map->m_len == 0)
2160 return true;
2161 return false;
2164 /* First block in the extent? */
2165 if (map->m_len == 0) {
2166 map->m_lblk = lblk;
2167 map->m_len = 1;
2168 map->m_flags = bh->b_state & BH_FLAGS;
2169 return true;
2172 /* Don't go larger than mballoc is willing to allocate */
2173 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2174 return false;
2176 /* Can we merge the block to our big extent? */
2177 if (lblk == map->m_lblk + map->m_len &&
2178 (bh->b_state & BH_FLAGS) == map->m_flags) {
2179 map->m_len++;
2180 return true;
2182 return false;
2186 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2188 * @mpd - extent of blocks for mapping
2189 * @head - the first buffer in the page
2190 * @bh - buffer we should start processing from
2191 * @lblk - logical number of the block in the file corresponding to @bh
2193 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2194 * the page for IO if all buffers in this page were mapped and there's no
2195 * accumulated extent of buffers to map or add buffers in the page to the
2196 * extent of buffers to map. The function returns 1 if the caller can continue
2197 * by processing the next page, 0 if it should stop adding buffers to the
2198 * extent to map because we cannot extend it anymore. It can also return value
2199 * < 0 in case of error during IO submission.
2201 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2202 struct buffer_head *head,
2203 struct buffer_head *bh,
2204 ext4_lblk_t lblk)
2206 struct inode *inode = mpd->inode;
2207 int err;
2208 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2209 >> inode->i_blkbits;
2211 do {
2212 BUG_ON(buffer_locked(bh));
2214 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2215 /* Found extent to map? */
2216 if (mpd->map.m_len)
2217 return 0;
2218 /* Everything mapped so far and we hit EOF */
2219 break;
2221 } while (lblk++, (bh = bh->b_this_page) != head);
2222 /* So far everything mapped? Submit the page for IO. */
2223 if (mpd->map.m_len == 0) {
2224 err = mpage_submit_page(mpd, head->b_page);
2225 if (err < 0)
2226 return err;
2228 return lblk < blocks;
2232 * mpage_map_buffers - update buffers corresponding to changed extent and
2233 * submit fully mapped pages for IO
2235 * @mpd - description of extent to map, on return next extent to map
2237 * Scan buffers corresponding to changed extent (we expect corresponding pages
2238 * to be already locked) and update buffer state according to new extent state.
2239 * We map delalloc buffers to their physical location, clear unwritten bits,
2240 * and mark buffers as uninit when we perform writes to unwritten extents
2241 * and do extent conversion after IO is finished. If the last page is not fully
2242 * mapped, we update @map to the next extent in the last page that needs
2243 * mapping. Otherwise we submit the page for IO.
2245 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2247 struct pagevec pvec;
2248 int nr_pages, i;
2249 struct inode *inode = mpd->inode;
2250 struct buffer_head *head, *bh;
2251 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2252 pgoff_t start, end;
2253 ext4_lblk_t lblk;
2254 sector_t pblock;
2255 int err;
2257 start = mpd->map.m_lblk >> bpp_bits;
2258 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2259 lblk = start << bpp_bits;
2260 pblock = mpd->map.m_pblk;
2262 pagevec_init(&pvec, 0);
2263 while (start <= end) {
2264 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2265 PAGEVEC_SIZE);
2266 if (nr_pages == 0)
2267 break;
2268 for (i = 0; i < nr_pages; i++) {
2269 struct page *page = pvec.pages[i];
2271 if (page->index > end)
2272 break;
2273 /* Up to 'end' pages must be contiguous */
2274 BUG_ON(page->index != start);
2275 bh = head = page_buffers(page);
2276 do {
2277 if (lblk < mpd->map.m_lblk)
2278 continue;
2279 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2281 * Buffer after end of mapped extent.
2282 * Find next buffer in the page to map.
2284 mpd->map.m_len = 0;
2285 mpd->map.m_flags = 0;
2287 * FIXME: If dioread_nolock supports
2288 * blocksize < pagesize, we need to make
2289 * sure we add size mapped so far to
2290 * io_end->size as the following call
2291 * can submit the page for IO.
2293 err = mpage_process_page_bufs(mpd, head,
2294 bh, lblk);
2295 pagevec_release(&pvec);
2296 if (err > 0)
2297 err = 0;
2298 return err;
2300 if (buffer_delay(bh)) {
2301 clear_buffer_delay(bh);
2302 bh->b_blocknr = pblock++;
2304 clear_buffer_unwritten(bh);
2305 } while (lblk++, (bh = bh->b_this_page) != head);
2308 * FIXME: This is going to break if dioread_nolock
2309 * supports blocksize < pagesize as we will try to
2310 * convert potentially unmapped parts of inode.
2312 mpd->io_submit.io_end->size += PAGE_SIZE;
2313 /* Page fully mapped - let IO run! */
2314 err = mpage_submit_page(mpd, page);
2315 if (err < 0) {
2316 pagevec_release(&pvec);
2317 return err;
2319 start++;
2321 pagevec_release(&pvec);
2323 /* Extent fully mapped and matches with page boundary. We are done. */
2324 mpd->map.m_len = 0;
2325 mpd->map.m_flags = 0;
2326 return 0;
2329 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2331 struct inode *inode = mpd->inode;
2332 struct ext4_map_blocks *map = &mpd->map;
2333 int get_blocks_flags;
2334 int err, dioread_nolock;
2336 trace_ext4_da_write_pages_extent(inode, map);
2338 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2339 * to convert an unwritten extent to be initialized (in the case
2340 * where we have written into one or more preallocated blocks). It is
2341 * possible that we're going to need more metadata blocks than
2342 * previously reserved. However we must not fail because we're in
2343 * writeback and there is nothing we can do about it so it might result
2344 * in data loss. So use reserved blocks to allocate metadata if
2345 * possible.
2347 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2348 * the blocks in question are delalloc blocks. This indicates
2349 * that the blocks and quotas has already been checked when
2350 * the data was copied into the page cache.
2352 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2353 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2354 EXT4_GET_BLOCKS_IO_SUBMIT;
2355 dioread_nolock = ext4_should_dioread_nolock(inode);
2356 if (dioread_nolock)
2357 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2358 if (map->m_flags & (1 << BH_Delay))
2359 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2361 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2362 if (err < 0)
2363 return err;
2364 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2365 if (!mpd->io_submit.io_end->handle &&
2366 ext4_handle_valid(handle)) {
2367 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2368 handle->h_rsv_handle = NULL;
2370 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2373 BUG_ON(map->m_len == 0);
2374 if (map->m_flags & EXT4_MAP_NEW) {
2375 struct block_device *bdev = inode->i_sb->s_bdev;
2376 int i;
2378 for (i = 0; i < map->m_len; i++)
2379 unmap_underlying_metadata(bdev, map->m_pblk + i);
2381 return 0;
2385 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2386 * mpd->len and submit pages underlying it for IO
2388 * @handle - handle for journal operations
2389 * @mpd - extent to map
2390 * @give_up_on_write - we set this to true iff there is a fatal error and there
2391 * is no hope of writing the data. The caller should discard
2392 * dirty pages to avoid infinite loops.
2394 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2395 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2396 * them to initialized or split the described range from larger unwritten
2397 * extent. Note that we need not map all the described range since allocation
2398 * can return less blocks or the range is covered by more unwritten extents. We
2399 * cannot map more because we are limited by reserved transaction credits. On
2400 * the other hand we always make sure that the last touched page is fully
2401 * mapped so that it can be written out (and thus forward progress is
2402 * guaranteed). After mapping we submit all mapped pages for IO.
2404 static int mpage_map_and_submit_extent(handle_t *handle,
2405 struct mpage_da_data *mpd,
2406 bool *give_up_on_write)
2408 struct inode *inode = mpd->inode;
2409 struct ext4_map_blocks *map = &mpd->map;
2410 int err;
2411 loff_t disksize;
2412 int progress = 0;
2414 mpd->io_submit.io_end->offset =
2415 ((loff_t)map->m_lblk) << inode->i_blkbits;
2416 do {
2417 err = mpage_map_one_extent(handle, mpd);
2418 if (err < 0) {
2419 struct super_block *sb = inode->i_sb;
2421 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2422 goto invalidate_dirty_pages;
2424 * Let the uper layers retry transient errors.
2425 * In the case of ENOSPC, if ext4_count_free_blocks()
2426 * is non-zero, a commit should free up blocks.
2428 if ((err == -ENOMEM) ||
2429 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2430 if (progress)
2431 goto update_disksize;
2432 return err;
2434 ext4_msg(sb, KERN_CRIT,
2435 "Delayed block allocation failed for "
2436 "inode %lu at logical offset %llu with"
2437 " max blocks %u with error %d",
2438 inode->i_ino,
2439 (unsigned long long)map->m_lblk,
2440 (unsigned)map->m_len, -err);
2441 ext4_msg(sb, KERN_CRIT,
2442 "This should not happen!! Data will "
2443 "be lost\n");
2444 if (err == -ENOSPC)
2445 ext4_print_free_blocks(inode);
2446 invalidate_dirty_pages:
2447 *give_up_on_write = true;
2448 return err;
2450 progress = 1;
2452 * Update buffer state, submit mapped pages, and get us new
2453 * extent to map
2455 err = mpage_map_and_submit_buffers(mpd);
2456 if (err < 0)
2457 goto update_disksize;
2458 } while (map->m_len);
2460 update_disksize:
2462 * Update on-disk size after IO is submitted. Races with
2463 * truncate are avoided by checking i_size under i_data_sem.
2465 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2466 if (disksize > EXT4_I(inode)->i_disksize) {
2467 int err2;
2468 loff_t i_size;
2470 down_write(&EXT4_I(inode)->i_data_sem);
2471 i_size = i_size_read(inode);
2472 if (disksize > i_size)
2473 disksize = i_size;
2474 if (disksize > EXT4_I(inode)->i_disksize)
2475 EXT4_I(inode)->i_disksize = disksize;
2476 err2 = ext4_mark_inode_dirty(handle, inode);
2477 up_write(&EXT4_I(inode)->i_data_sem);
2478 if (err2)
2479 ext4_error(inode->i_sb,
2480 "Failed to mark inode %lu dirty",
2481 inode->i_ino);
2482 if (!err)
2483 err = err2;
2485 return err;
2489 * Calculate the total number of credits to reserve for one writepages
2490 * iteration. This is called from ext4_writepages(). We map an extent of
2491 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2492 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2493 * bpp - 1 blocks in bpp different extents.
2495 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2497 int bpp = ext4_journal_blocks_per_page(inode);
2499 return ext4_meta_trans_blocks(inode,
2500 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2504 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2505 * and underlying extent to map
2507 * @mpd - where to look for pages
2509 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2510 * IO immediately. When we find a page which isn't mapped we start accumulating
2511 * extent of buffers underlying these pages that needs mapping (formed by
2512 * either delayed or unwritten buffers). We also lock the pages containing
2513 * these buffers. The extent found is returned in @mpd structure (starting at
2514 * mpd->lblk with length mpd->len blocks).
2516 * Note that this function can attach bios to one io_end structure which are
2517 * neither logically nor physically contiguous. Although it may seem as an
2518 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2519 * case as we need to track IO to all buffers underlying a page in one io_end.
2521 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2523 struct address_space *mapping = mpd->inode->i_mapping;
2524 struct pagevec pvec;
2525 unsigned int nr_pages;
2526 long left = mpd->wbc->nr_to_write;
2527 pgoff_t index = mpd->first_page;
2528 pgoff_t end = mpd->last_page;
2529 int tag;
2530 int i, err = 0;
2531 int blkbits = mpd->inode->i_blkbits;
2532 ext4_lblk_t lblk;
2533 struct buffer_head *head;
2535 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2536 tag = PAGECACHE_TAG_TOWRITE;
2537 else
2538 tag = PAGECACHE_TAG_DIRTY;
2540 pagevec_init(&pvec, 0);
2541 mpd->map.m_len = 0;
2542 mpd->next_page = index;
2543 while (index <= end) {
2544 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2545 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2546 if (nr_pages == 0)
2547 goto out;
2549 for (i = 0; i < nr_pages; i++) {
2550 struct page *page = pvec.pages[i];
2553 * At this point, the page may be truncated or
2554 * invalidated (changing page->mapping to NULL), or
2555 * even swizzled back from swapper_space to tmpfs file
2556 * mapping. However, page->index will not change
2557 * because we have a reference on the page.
2559 if (page->index > end)
2560 goto out;
2563 * Accumulated enough dirty pages? This doesn't apply
2564 * to WB_SYNC_ALL mode. For integrity sync we have to
2565 * keep going because someone may be concurrently
2566 * dirtying pages, and we might have synced a lot of
2567 * newly appeared dirty pages, but have not synced all
2568 * of the old dirty pages.
2570 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2571 goto out;
2573 /* If we can't merge this page, we are done. */
2574 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2575 goto out;
2577 lock_page(page);
2579 * If the page is no longer dirty, or its mapping no
2580 * longer corresponds to inode we are writing (which
2581 * means it has been truncated or invalidated), or the
2582 * page is already under writeback and we are not doing
2583 * a data integrity writeback, skip the page
2585 if (!PageDirty(page) ||
2586 (PageWriteback(page) &&
2587 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2588 unlikely(page->mapping != mapping)) {
2589 unlock_page(page);
2590 continue;
2593 wait_on_page_writeback(page);
2594 BUG_ON(PageWriteback(page));
2596 if (mpd->map.m_len == 0)
2597 mpd->first_page = page->index;
2598 mpd->next_page = page->index + 1;
2599 /* Add all dirty buffers to mpd */
2600 lblk = ((ext4_lblk_t)page->index) <<
2601 (PAGE_SHIFT - blkbits);
2602 head = page_buffers(page);
2603 err = mpage_process_page_bufs(mpd, head, head, lblk);
2604 if (err <= 0)
2605 goto out;
2606 err = 0;
2607 left--;
2609 pagevec_release(&pvec);
2610 cond_resched();
2612 return 0;
2613 out:
2614 pagevec_release(&pvec);
2615 return err;
2618 static int __writepage(struct page *page, struct writeback_control *wbc,
2619 void *data)
2621 struct address_space *mapping = data;
2622 int ret = ext4_writepage(page, wbc);
2623 mapping_set_error(mapping, ret);
2624 return ret;
2627 static int ext4_writepages(struct address_space *mapping,
2628 struct writeback_control *wbc)
2630 pgoff_t writeback_index = 0;
2631 long nr_to_write = wbc->nr_to_write;
2632 int range_whole = 0;
2633 int cycled = 1;
2634 handle_t *handle = NULL;
2635 struct mpage_da_data mpd;
2636 struct inode *inode = mapping->host;
2637 int needed_blocks, rsv_blocks = 0, ret = 0;
2638 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2639 bool done;
2640 struct blk_plug plug;
2641 bool give_up_on_write = false;
2643 percpu_down_read(&sbi->s_journal_flag_rwsem);
2644 trace_ext4_writepages(inode, wbc);
2646 if (dax_mapping(mapping)) {
2647 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2648 wbc);
2649 goto out_writepages;
2653 * No pages to write? This is mainly a kludge to avoid starting
2654 * a transaction for special inodes like journal inode on last iput()
2655 * because that could violate lock ordering on umount
2657 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2658 goto out_writepages;
2660 if (ext4_should_journal_data(inode)) {
2661 struct blk_plug plug;
2663 blk_start_plug(&plug);
2664 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2665 blk_finish_plug(&plug);
2666 goto out_writepages;
2670 * If the filesystem has aborted, it is read-only, so return
2671 * right away instead of dumping stack traces later on that
2672 * will obscure the real source of the problem. We test
2673 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2674 * the latter could be true if the filesystem is mounted
2675 * read-only, and in that case, ext4_writepages should
2676 * *never* be called, so if that ever happens, we would want
2677 * the stack trace.
2679 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2680 ret = -EROFS;
2681 goto out_writepages;
2684 if (ext4_should_dioread_nolock(inode)) {
2686 * We may need to convert up to one extent per block in
2687 * the page and we may dirty the inode.
2689 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2693 * If we have inline data and arrive here, it means that
2694 * we will soon create the block for the 1st page, so
2695 * we'd better clear the inline data here.
2697 if (ext4_has_inline_data(inode)) {
2698 /* Just inode will be modified... */
2699 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2700 if (IS_ERR(handle)) {
2701 ret = PTR_ERR(handle);
2702 goto out_writepages;
2704 BUG_ON(ext4_test_inode_state(inode,
2705 EXT4_STATE_MAY_INLINE_DATA));
2706 ext4_destroy_inline_data(handle, inode);
2707 ext4_journal_stop(handle);
2710 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2711 range_whole = 1;
2713 if (wbc->range_cyclic) {
2714 writeback_index = mapping->writeback_index;
2715 if (writeback_index)
2716 cycled = 0;
2717 mpd.first_page = writeback_index;
2718 mpd.last_page = -1;
2719 } else {
2720 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2721 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2724 mpd.inode = inode;
2725 mpd.wbc = wbc;
2726 ext4_io_submit_init(&mpd.io_submit, wbc);
2727 retry:
2728 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2729 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2730 done = false;
2731 blk_start_plug(&plug);
2732 while (!done && mpd.first_page <= mpd.last_page) {
2733 /* For each extent of pages we use new io_end */
2734 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2735 if (!mpd.io_submit.io_end) {
2736 ret = -ENOMEM;
2737 break;
2741 * We have two constraints: We find one extent to map and we
2742 * must always write out whole page (makes a difference when
2743 * blocksize < pagesize) so that we don't block on IO when we
2744 * try to write out the rest of the page. Journalled mode is
2745 * not supported by delalloc.
2747 BUG_ON(ext4_should_journal_data(inode));
2748 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750 /* start a new transaction */
2751 handle = ext4_journal_start_with_reserve(inode,
2752 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2753 if (IS_ERR(handle)) {
2754 ret = PTR_ERR(handle);
2755 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2756 "%ld pages, ino %lu; err %d", __func__,
2757 wbc->nr_to_write, inode->i_ino, ret);
2758 /* Release allocated io_end */
2759 ext4_put_io_end(mpd.io_submit.io_end);
2760 break;
2763 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2764 ret = mpage_prepare_extent_to_map(&mpd);
2765 if (!ret) {
2766 if (mpd.map.m_len)
2767 ret = mpage_map_and_submit_extent(handle, &mpd,
2768 &give_up_on_write);
2769 else {
2771 * We scanned the whole range (or exhausted
2772 * nr_to_write), submitted what was mapped and
2773 * didn't find anything needing mapping. We are
2774 * done.
2776 done = true;
2780 * Caution: If the handle is synchronous,
2781 * ext4_journal_stop() can wait for transaction commit
2782 * to finish which may depend on writeback of pages to
2783 * complete or on page lock to be released. In that
2784 * case, we have to wait until after after we have
2785 * submitted all the IO, released page locks we hold,
2786 * and dropped io_end reference (for extent conversion
2787 * to be able to complete) before stopping the handle.
2789 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2790 ext4_journal_stop(handle);
2791 handle = NULL;
2793 /* Submit prepared bio */
2794 ext4_io_submit(&mpd.io_submit);
2795 /* Unlock pages we didn't use */
2796 mpage_release_unused_pages(&mpd, give_up_on_write);
2798 * Drop our io_end reference we got from init. We have
2799 * to be careful and use deferred io_end finishing if
2800 * we are still holding the transaction as we can
2801 * release the last reference to io_end which may end
2802 * up doing unwritten extent conversion.
2804 if (handle) {
2805 ext4_put_io_end_defer(mpd.io_submit.io_end);
2806 ext4_journal_stop(handle);
2807 } else
2808 ext4_put_io_end(mpd.io_submit.io_end);
2810 if (ret == -ENOSPC && sbi->s_journal) {
2812 * Commit the transaction which would
2813 * free blocks released in the transaction
2814 * and try again
2816 jbd2_journal_force_commit_nested(sbi->s_journal);
2817 ret = 0;
2818 continue;
2820 /* Fatal error - ENOMEM, EIO... */
2821 if (ret)
2822 break;
2824 blk_finish_plug(&plug);
2825 if (!ret && !cycled && wbc->nr_to_write > 0) {
2826 cycled = 1;
2827 mpd.last_page = writeback_index - 1;
2828 mpd.first_page = 0;
2829 goto retry;
2832 /* Update index */
2833 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2835 * Set the writeback_index so that range_cyclic
2836 * mode will write it back later
2838 mapping->writeback_index = mpd.first_page;
2840 out_writepages:
2841 trace_ext4_writepages_result(inode, wbc, ret,
2842 nr_to_write - wbc->nr_to_write);
2843 percpu_up_read(&sbi->s_journal_flag_rwsem);
2844 return ret;
2847 static int ext4_nonda_switch(struct super_block *sb)
2849 s64 free_clusters, dirty_clusters;
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2853 * switch to non delalloc mode if we are running low
2854 * on free block. The free block accounting via percpu
2855 * counters can get slightly wrong with percpu_counter_batch getting
2856 * accumulated on each CPU without updating global counters
2857 * Delalloc need an accurate free block accounting. So switch
2858 * to non delalloc when we are near to error range.
2860 free_clusters =
2861 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2862 dirty_clusters =
2863 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2865 * Start pushing delalloc when 1/2 of free blocks are dirty.
2867 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2868 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2870 if (2 * free_clusters < 3 * dirty_clusters ||
2871 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2873 * free block count is less than 150% of dirty blocks
2874 * or free blocks is less than watermark
2876 return 1;
2878 return 0;
2881 /* We always reserve for an inode update; the superblock could be there too */
2882 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2884 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2885 return 1;
2887 if (pos + len <= 0x7fffffffULL)
2888 return 1;
2890 /* We might need to update the superblock to set LARGE_FILE */
2891 return 2;
2894 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2895 loff_t pos, unsigned len, unsigned flags,
2896 struct page **pagep, void **fsdata)
2898 int ret, retries = 0;
2899 struct page *page;
2900 pgoff_t index;
2901 struct inode *inode = mapping->host;
2902 handle_t *handle;
2904 index = pos >> PAGE_SHIFT;
2906 if (ext4_nonda_switch(inode->i_sb)) {
2907 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 return ext4_write_begin(file, mapping, pos,
2909 len, flags, pagep, fsdata);
2911 *fsdata = (void *)0;
2912 trace_ext4_da_write_begin(inode, pos, len, flags);
2914 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 ret = ext4_da_write_inline_data_begin(mapping, inode,
2916 pos, len, flags,
2917 pagep, fsdata);
2918 if (ret < 0)
2919 return ret;
2920 if (ret == 1)
2921 return 0;
2925 * grab_cache_page_write_begin() can take a long time if the
2926 * system is thrashing due to memory pressure, or if the page
2927 * is being written back. So grab it first before we start
2928 * the transaction handle. This also allows us to allocate
2929 * the page (if needed) without using GFP_NOFS.
2931 retry_grab:
2932 page = grab_cache_page_write_begin(mapping, index, flags);
2933 if (!page)
2934 return -ENOMEM;
2935 unlock_page(page);
2938 * With delayed allocation, we don't log the i_disksize update
2939 * if there is delayed block allocation. But we still need
2940 * to journalling the i_disksize update if writes to the end
2941 * of file which has an already mapped buffer.
2943 retry_journal:
2944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2945 ext4_da_write_credits(inode, pos, len));
2946 if (IS_ERR(handle)) {
2947 put_page(page);
2948 return PTR_ERR(handle);
2951 lock_page(page);
2952 if (page->mapping != mapping) {
2953 /* The page got truncated from under us */
2954 unlock_page(page);
2955 put_page(page);
2956 ext4_journal_stop(handle);
2957 goto retry_grab;
2959 /* In case writeback began while the page was unlocked */
2960 wait_for_stable_page(page);
2962 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2963 ret = ext4_block_write_begin(page, pos, len,
2964 ext4_da_get_block_prep);
2965 #else
2966 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2967 #endif
2968 if (ret < 0) {
2969 unlock_page(page);
2970 ext4_journal_stop(handle);
2972 * block_write_begin may have instantiated a few blocks
2973 * outside i_size. Trim these off again. Don't need
2974 * i_size_read because we hold i_mutex.
2976 if (pos + len > inode->i_size)
2977 ext4_truncate_failed_write(inode);
2979 if (ret == -ENOSPC &&
2980 ext4_should_retry_alloc(inode->i_sb, &retries))
2981 goto retry_journal;
2983 put_page(page);
2984 return ret;
2987 *pagep = page;
2988 return ret;
2992 * Check if we should update i_disksize
2993 * when write to the end of file but not require block allocation
2995 static int ext4_da_should_update_i_disksize(struct page *page,
2996 unsigned long offset)
2998 struct buffer_head *bh;
2999 struct inode *inode = page->mapping->host;
3000 unsigned int idx;
3001 int i;
3003 bh = page_buffers(page);
3004 idx = offset >> inode->i_blkbits;
3006 for (i = 0; i < idx; i++)
3007 bh = bh->b_this_page;
3009 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3010 return 0;
3011 return 1;
3014 static int ext4_da_write_end(struct file *file,
3015 struct address_space *mapping,
3016 loff_t pos, unsigned len, unsigned copied,
3017 struct page *page, void *fsdata)
3019 struct inode *inode = mapping->host;
3020 int ret = 0, ret2;
3021 handle_t *handle = ext4_journal_current_handle();
3022 loff_t new_i_size;
3023 unsigned long start, end;
3024 int write_mode = (int)(unsigned long)fsdata;
3026 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 return ext4_write_end(file, mapping, pos,
3028 len, copied, page, fsdata);
3030 trace_ext4_da_write_end(inode, pos, len, copied);
3031 start = pos & (PAGE_SIZE - 1);
3032 end = start + copied - 1;
3035 * generic_write_end() will run mark_inode_dirty() if i_size
3036 * changes. So let's piggyback the i_disksize mark_inode_dirty
3037 * into that.
3039 new_i_size = pos + copied;
3040 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3041 if (ext4_has_inline_data(inode) ||
3042 ext4_da_should_update_i_disksize(page, end)) {
3043 ext4_update_i_disksize(inode, new_i_size);
3044 /* We need to mark inode dirty even if
3045 * new_i_size is less that inode->i_size
3046 * bu greater than i_disksize.(hint delalloc)
3048 ext4_mark_inode_dirty(handle, inode);
3052 if (write_mode != CONVERT_INLINE_DATA &&
3053 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 ext4_has_inline_data(inode))
3055 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3056 page);
3057 else
3058 ret2 = generic_write_end(file, mapping, pos, len, copied,
3059 page, fsdata);
3061 copied = ret2;
3062 if (ret2 < 0)
3063 ret = ret2;
3064 ret2 = ext4_journal_stop(handle);
3065 if (!ret)
3066 ret = ret2;
3068 return ret ? ret : copied;
3071 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3072 unsigned int length)
3075 * Drop reserved blocks
3077 BUG_ON(!PageLocked(page));
3078 if (!page_has_buffers(page))
3079 goto out;
3081 ext4_da_page_release_reservation(page, offset, length);
3083 out:
3084 ext4_invalidatepage(page, offset, length);
3086 return;
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3092 int ext4_alloc_da_blocks(struct inode *inode)
3094 trace_ext4_alloc_da_blocks(inode);
3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 return 0;
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
3106 * ext4_writepages() ->
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3117 * We could call write_cache_pages(), and then redirty all of
3118 * the pages by calling redirty_page_for_writepage() but that
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
3121 * simplifying them because we wouldn't actually intend to
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3130 return filemap_flush(inode->i_mapping);
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3149 struct inode *inode = mapping->host;
3150 journal_t *journal;
3151 int err;
3154 * We can get here for an inline file via the FIBMAP ioctl
3156 if (ext4_has_inline_data(inode))
3157 return 0;
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 test_opt(inode->i_sb, DELALLOC)) {
3162 * With delalloc we want to sync the file
3163 * so that we can make sure we allocate
3164 * blocks for file
3166 filemap_write_and_wait(mapping);
3169 if (EXT4_JOURNAL(inode) &&
3170 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3172 * This is a REALLY heavyweight approach, but the use of
3173 * bmap on dirty files is expected to be extremely rare:
3174 * only if we run lilo or swapon on a freshly made file
3175 * do we expect this to happen.
3177 * (bmap requires CAP_SYS_RAWIO so this does not
3178 * represent an unprivileged user DOS attack --- we'd be
3179 * in trouble if mortal users could trigger this path at
3180 * will.)
3182 * NB. EXT4_STATE_JDATA is not set on files other than
3183 * regular files. If somebody wants to bmap a directory
3184 * or symlink and gets confused because the buffer
3185 * hasn't yet been flushed to disk, they deserve
3186 * everything they get.
3189 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3190 journal = EXT4_JOURNAL(inode);
3191 jbd2_journal_lock_updates(journal);
3192 err = jbd2_journal_flush(journal);
3193 jbd2_journal_unlock_updates(journal);
3195 if (err)
3196 return 0;
3199 return generic_block_bmap(mapping, block, ext4_get_block);
3202 static int ext4_readpage(struct file *file, struct page *page)
3204 int ret = -EAGAIN;
3205 struct inode *inode = page->mapping->host;
3207 trace_ext4_readpage(page);
3209 if (ext4_has_inline_data(inode))
3210 ret = ext4_readpage_inline(inode, page);
3212 if (ret == -EAGAIN)
3213 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3215 return ret;
3218 static int
3219 ext4_readpages(struct file *file, struct address_space *mapping,
3220 struct list_head *pages, unsigned nr_pages)
3222 struct inode *inode = mapping->host;
3224 /* If the file has inline data, no need to do readpages. */
3225 if (ext4_has_inline_data(inode))
3226 return 0;
3228 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3231 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3232 unsigned int length)
3234 trace_ext4_invalidatepage(page, offset, length);
3236 /* No journalling happens on data buffers when this function is used */
3237 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3239 block_invalidatepage(page, offset, length);
3242 static int __ext4_journalled_invalidatepage(struct page *page,
3243 unsigned int offset,
3244 unsigned int length)
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3248 trace_ext4_journalled_invalidatepage(page, offset, length);
3251 * If it's a full truncate we just forget about the pending dirtying
3253 if (offset == 0 && length == PAGE_SIZE)
3254 ClearPageChecked(page);
3256 return jbd2_journal_invalidatepage(journal, page, offset, length);
3259 /* Wrapper for aops... */
3260 static void ext4_journalled_invalidatepage(struct page *page,
3261 unsigned int offset,
3262 unsigned int length)
3264 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3267 static int ext4_releasepage(struct page *page, gfp_t wait)
3269 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3271 trace_ext4_releasepage(page);
3273 /* Page has dirty journalled data -> cannot release */
3274 if (PageChecked(page))
3275 return 0;
3276 if (journal)
3277 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3278 else
3279 return try_to_free_buffers(page);
3282 #ifdef CONFIG_FS_DAX
3284 * Get block function for DAX IO and mmap faults. It takes care of converting
3285 * unwritten extents to written ones and initializes new / converted blocks
3286 * to zeros.
3288 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3289 struct buffer_head *bh_result, int create)
3291 int ret;
3293 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3294 if (!create)
3295 return _ext4_get_block(inode, iblock, bh_result, 0);
3297 ret = ext4_get_block_trans(inode, iblock, bh_result,
3298 EXT4_GET_BLOCKS_PRE_IO |
3299 EXT4_GET_BLOCKS_CREATE_ZERO);
3300 if (ret < 0)
3301 return ret;
3303 if (buffer_unwritten(bh_result)) {
3305 * We are protected by i_mmap_sem or i_mutex so we know block
3306 * cannot go away from under us even though we dropped
3307 * i_data_sem. Convert extent to written and write zeros there.
3309 ret = ext4_get_block_trans(inode, iblock, bh_result,
3310 EXT4_GET_BLOCKS_CONVERT |
3311 EXT4_GET_BLOCKS_CREATE_ZERO);
3312 if (ret < 0)
3313 return ret;
3316 * At least for now we have to clear BH_New so that DAX code
3317 * doesn't attempt to zero blocks again in a racy way.
3319 clear_buffer_new(bh_result);
3320 return 0;
3322 #else
3323 /* Just define empty function, it will never get called. */
3324 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3325 struct buffer_head *bh_result, int create)
3327 BUG();
3328 return 0;
3330 #endif
3332 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3333 ssize_t size, void *private)
3335 ext4_io_end_t *io_end = private;
3337 /* if not async direct IO just return */
3338 if (!io_end)
3339 return 0;
3341 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3342 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3343 io_end, io_end->inode->i_ino, iocb, offset, size);
3346 * Error during AIO DIO. We cannot convert unwritten extents as the
3347 * data was not written. Just clear the unwritten flag and drop io_end.
3349 if (size <= 0) {
3350 ext4_clear_io_unwritten_flag(io_end);
3351 size = 0;
3353 io_end->offset = offset;
3354 io_end->size = size;
3355 ext4_put_io_end(io_end);
3357 return 0;
3361 * Handling of direct IO writes.
3363 * For ext4 extent files, ext4 will do direct-io write even to holes,
3364 * preallocated extents, and those write extend the file, no need to
3365 * fall back to buffered IO.
3367 * For holes, we fallocate those blocks, mark them as unwritten
3368 * If those blocks were preallocated, we mark sure they are split, but
3369 * still keep the range to write as unwritten.
3371 * The unwritten extents will be converted to written when DIO is completed.
3372 * For async direct IO, since the IO may still pending when return, we
3373 * set up an end_io call back function, which will do the conversion
3374 * when async direct IO completed.
3376 * If the O_DIRECT write will extend the file then add this inode to the
3377 * orphan list. So recovery will truncate it back to the original size
3378 * if the machine crashes during the write.
3381 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3383 struct file *file = iocb->ki_filp;
3384 struct inode *inode = file->f_mapping->host;
3385 struct ext4_inode_info *ei = EXT4_I(inode);
3386 ssize_t ret;
3387 loff_t offset = iocb->ki_pos;
3388 size_t count = iov_iter_count(iter);
3389 int overwrite = 0;
3390 get_block_t *get_block_func = NULL;
3391 int dio_flags = 0;
3392 loff_t final_size = offset + count;
3393 int orphan = 0;
3394 handle_t *handle;
3396 if (final_size > inode->i_size) {
3397 /* Credits for sb + inode write */
3398 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3399 if (IS_ERR(handle)) {
3400 ret = PTR_ERR(handle);
3401 goto out;
3403 ret = ext4_orphan_add(handle, inode);
3404 if (ret) {
3405 ext4_journal_stop(handle);
3406 goto out;
3408 orphan = 1;
3409 ei->i_disksize = inode->i_size;
3410 ext4_journal_stop(handle);
3413 BUG_ON(iocb->private == NULL);
3416 * Make all waiters for direct IO properly wait also for extent
3417 * conversion. This also disallows race between truncate() and
3418 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3420 inode_dio_begin(inode);
3422 /* If we do a overwrite dio, i_mutex locking can be released */
3423 overwrite = *((int *)iocb->private);
3425 if (overwrite)
3426 inode_unlock(inode);
3429 * For extent mapped files we could direct write to holes and fallocate.
3431 * Allocated blocks to fill the hole are marked as unwritten to prevent
3432 * parallel buffered read to expose the stale data before DIO complete
3433 * the data IO.
3435 * As to previously fallocated extents, ext4 get_block will just simply
3436 * mark the buffer mapped but still keep the extents unwritten.
3438 * For non AIO case, we will convert those unwritten extents to written
3439 * after return back from blockdev_direct_IO. That way we save us from
3440 * allocating io_end structure and also the overhead of offloading
3441 * the extent convertion to a workqueue.
3443 * For async DIO, the conversion needs to be deferred when the
3444 * IO is completed. The ext4 end_io callback function will be
3445 * called to take care of the conversion work. Here for async
3446 * case, we allocate an io_end structure to hook to the iocb.
3448 iocb->private = NULL;
3449 if (overwrite)
3450 get_block_func = ext4_dio_get_block_overwrite;
3451 else if (IS_DAX(inode)) {
3453 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3454 * writes need zeroing either because they can race with page
3455 * faults or because they use partial blocks.
3457 if (round_down(offset, i_blocksize(inode)) >= inode->i_size &&
3458 ext4_aligned_io(inode, offset, count))
3459 get_block_func = ext4_dio_get_block;
3460 else
3461 get_block_func = ext4_dax_get_block;
3462 dio_flags = DIO_LOCKING;
3463 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3464 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3465 get_block_func = ext4_dio_get_block;
3466 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3467 } else if (is_sync_kiocb(iocb)) {
3468 get_block_func = ext4_dio_get_block_unwritten_sync;
3469 dio_flags = DIO_LOCKING;
3470 } else {
3471 get_block_func = ext4_dio_get_block_unwritten_async;
3472 dio_flags = DIO_LOCKING;
3474 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3475 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3476 #endif
3477 if (IS_DAX(inode)) {
3478 ret = dax_do_io(iocb, inode, iter, get_block_func,
3479 ext4_end_io_dio, dio_flags);
3480 } else
3481 ret = __blockdev_direct_IO(iocb, inode,
3482 inode->i_sb->s_bdev, iter,
3483 get_block_func,
3484 ext4_end_io_dio, NULL, dio_flags);
3486 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3487 EXT4_STATE_DIO_UNWRITTEN)) {
3488 int err;
3490 * for non AIO case, since the IO is already
3491 * completed, we could do the conversion right here
3493 err = ext4_convert_unwritten_extents(NULL, inode,
3494 offset, ret);
3495 if (err < 0)
3496 ret = err;
3497 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3500 inode_dio_end(inode);
3501 /* take i_mutex locking again if we do a ovewrite dio */
3502 if (overwrite)
3503 inode_lock(inode);
3505 if (ret < 0 && final_size > inode->i_size)
3506 ext4_truncate_failed_write(inode);
3508 /* Handle extending of i_size after direct IO write */
3509 if (orphan) {
3510 int err;
3512 /* Credits for sb + inode write */
3513 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3514 if (IS_ERR(handle)) {
3515 /* This is really bad luck. We've written the data
3516 * but cannot extend i_size. Bail out and pretend
3517 * the write failed... */
3518 ret = PTR_ERR(handle);
3519 if (inode->i_nlink)
3520 ext4_orphan_del(NULL, inode);
3522 goto out;
3524 if (inode->i_nlink)
3525 ext4_orphan_del(handle, inode);
3526 if (ret > 0) {
3527 loff_t end = offset + ret;
3528 if (end > inode->i_size) {
3529 ei->i_disksize = end;
3530 i_size_write(inode, end);
3532 * We're going to return a positive `ret'
3533 * here due to non-zero-length I/O, so there's
3534 * no way of reporting error returns from
3535 * ext4_mark_inode_dirty() to userspace. So
3536 * ignore it.
3538 ext4_mark_inode_dirty(handle, inode);
3541 err = ext4_journal_stop(handle);
3542 if (ret == 0)
3543 ret = err;
3545 out:
3546 return ret;
3549 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3551 struct address_space *mapping = iocb->ki_filp->f_mapping;
3552 struct inode *inode = mapping->host;
3553 ssize_t ret;
3556 * Shared inode_lock is enough for us - it protects against concurrent
3557 * writes & truncates and since we take care of writing back page cache,
3558 * we are protected against page writeback as well.
3560 inode_lock_shared(inode);
3561 if (IS_DAX(inode)) {
3562 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3563 } else {
3564 size_t count = iov_iter_count(iter);
3566 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3567 iocb->ki_pos + count);
3568 if (ret)
3569 goto out_unlock;
3570 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3571 iter, ext4_dio_get_block,
3572 NULL, NULL, 0);
3574 out_unlock:
3575 inode_unlock_shared(inode);
3576 return ret;
3579 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3581 struct file *file = iocb->ki_filp;
3582 struct inode *inode = file->f_mapping->host;
3583 size_t count = iov_iter_count(iter);
3584 loff_t offset = iocb->ki_pos;
3585 ssize_t ret;
3587 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3588 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3589 return 0;
3590 #endif
3593 * If we are doing data journalling we don't support O_DIRECT
3595 if (ext4_should_journal_data(inode))
3596 return 0;
3598 /* Let buffer I/O handle the inline data case. */
3599 if (ext4_has_inline_data(inode))
3600 return 0;
3602 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3603 if (iov_iter_rw(iter) == READ)
3604 ret = ext4_direct_IO_read(iocb, iter);
3605 else
3606 ret = ext4_direct_IO_write(iocb, iter);
3607 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3608 return ret;
3612 * Pages can be marked dirty completely asynchronously from ext4's journalling
3613 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3614 * much here because ->set_page_dirty is called under VFS locks. The page is
3615 * not necessarily locked.
3617 * We cannot just dirty the page and leave attached buffers clean, because the
3618 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3619 * or jbddirty because all the journalling code will explode.
3621 * So what we do is to mark the page "pending dirty" and next time writepage
3622 * is called, propagate that into the buffers appropriately.
3624 static int ext4_journalled_set_page_dirty(struct page *page)
3626 SetPageChecked(page);
3627 return __set_page_dirty_nobuffers(page);
3630 static const struct address_space_operations ext4_aops = {
3631 .readpage = ext4_readpage,
3632 .readpages = ext4_readpages,
3633 .writepage = ext4_writepage,
3634 .writepages = ext4_writepages,
3635 .write_begin = ext4_write_begin,
3636 .write_end = ext4_write_end,
3637 .bmap = ext4_bmap,
3638 .invalidatepage = ext4_invalidatepage,
3639 .releasepage = ext4_releasepage,
3640 .direct_IO = ext4_direct_IO,
3641 .migratepage = buffer_migrate_page,
3642 .is_partially_uptodate = block_is_partially_uptodate,
3643 .error_remove_page = generic_error_remove_page,
3646 static const struct address_space_operations ext4_journalled_aops = {
3647 .readpage = ext4_readpage,
3648 .readpages = ext4_readpages,
3649 .writepage = ext4_writepage,
3650 .writepages = ext4_writepages,
3651 .write_begin = ext4_write_begin,
3652 .write_end = ext4_journalled_write_end,
3653 .set_page_dirty = ext4_journalled_set_page_dirty,
3654 .bmap = ext4_bmap,
3655 .invalidatepage = ext4_journalled_invalidatepage,
3656 .releasepage = ext4_releasepage,
3657 .direct_IO = ext4_direct_IO,
3658 .is_partially_uptodate = block_is_partially_uptodate,
3659 .error_remove_page = generic_error_remove_page,
3662 static const struct address_space_operations ext4_da_aops = {
3663 .readpage = ext4_readpage,
3664 .readpages = ext4_readpages,
3665 .writepage = ext4_writepage,
3666 .writepages = ext4_writepages,
3667 .write_begin = ext4_da_write_begin,
3668 .write_end = ext4_da_write_end,
3669 .bmap = ext4_bmap,
3670 .invalidatepage = ext4_da_invalidatepage,
3671 .releasepage = ext4_releasepage,
3672 .direct_IO = ext4_direct_IO,
3673 .migratepage = buffer_migrate_page,
3674 .is_partially_uptodate = block_is_partially_uptodate,
3675 .error_remove_page = generic_error_remove_page,
3678 void ext4_set_aops(struct inode *inode)
3680 switch (ext4_inode_journal_mode(inode)) {
3681 case EXT4_INODE_ORDERED_DATA_MODE:
3682 case EXT4_INODE_WRITEBACK_DATA_MODE:
3683 break;
3684 case EXT4_INODE_JOURNAL_DATA_MODE:
3685 inode->i_mapping->a_ops = &ext4_journalled_aops;
3686 return;
3687 default:
3688 BUG();
3690 if (test_opt(inode->i_sb, DELALLOC))
3691 inode->i_mapping->a_ops = &ext4_da_aops;
3692 else
3693 inode->i_mapping->a_ops = &ext4_aops;
3696 static int __ext4_block_zero_page_range(handle_t *handle,
3697 struct address_space *mapping, loff_t from, loff_t length)
3699 ext4_fsblk_t index = from >> PAGE_SHIFT;
3700 unsigned offset = from & (PAGE_SIZE-1);
3701 unsigned blocksize, pos;
3702 ext4_lblk_t iblock;
3703 struct inode *inode = mapping->host;
3704 struct buffer_head *bh;
3705 struct page *page;
3706 int err = 0;
3708 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3709 mapping_gfp_constraint(mapping, ~__GFP_FS));
3710 if (!page)
3711 return -ENOMEM;
3713 blocksize = inode->i_sb->s_blocksize;
3715 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3717 if (!page_has_buffers(page))
3718 create_empty_buffers(page, blocksize, 0);
3720 /* Find the buffer that contains "offset" */
3721 bh = page_buffers(page);
3722 pos = blocksize;
3723 while (offset >= pos) {
3724 bh = bh->b_this_page;
3725 iblock++;
3726 pos += blocksize;
3728 if (buffer_freed(bh)) {
3729 BUFFER_TRACE(bh, "freed: skip");
3730 goto unlock;
3732 if (!buffer_mapped(bh)) {
3733 BUFFER_TRACE(bh, "unmapped");
3734 ext4_get_block(inode, iblock, bh, 0);
3735 /* unmapped? It's a hole - nothing to do */
3736 if (!buffer_mapped(bh)) {
3737 BUFFER_TRACE(bh, "still unmapped");
3738 goto unlock;
3742 /* Ok, it's mapped. Make sure it's up-to-date */
3743 if (PageUptodate(page))
3744 set_buffer_uptodate(bh);
3746 if (!buffer_uptodate(bh)) {
3747 err = -EIO;
3748 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3749 wait_on_buffer(bh);
3750 /* Uhhuh. Read error. Complain and punt. */
3751 if (!buffer_uptodate(bh))
3752 goto unlock;
3753 if (S_ISREG(inode->i_mode) &&
3754 ext4_encrypted_inode(inode)) {
3755 /* We expect the key to be set. */
3756 BUG_ON(!fscrypt_has_encryption_key(inode));
3757 BUG_ON(blocksize != PAGE_SIZE);
3758 WARN_ON_ONCE(fscrypt_decrypt_page(page));
3761 if (ext4_should_journal_data(inode)) {
3762 BUFFER_TRACE(bh, "get write access");
3763 err = ext4_journal_get_write_access(handle, bh);
3764 if (err)
3765 goto unlock;
3767 zero_user(page, offset, length);
3768 BUFFER_TRACE(bh, "zeroed end of block");
3770 if (ext4_should_journal_data(inode)) {
3771 err = ext4_handle_dirty_metadata(handle, inode, bh);
3772 } else {
3773 err = 0;
3774 mark_buffer_dirty(bh);
3775 if (ext4_should_order_data(inode))
3776 err = ext4_jbd2_inode_add_write(handle, inode);
3779 unlock:
3780 unlock_page(page);
3781 put_page(page);
3782 return err;
3786 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3787 * starting from file offset 'from'. The range to be zero'd must
3788 * be contained with in one block. If the specified range exceeds
3789 * the end of the block it will be shortened to end of the block
3790 * that cooresponds to 'from'
3792 static int ext4_block_zero_page_range(handle_t *handle,
3793 struct address_space *mapping, loff_t from, loff_t length)
3795 struct inode *inode = mapping->host;
3796 unsigned offset = from & (PAGE_SIZE-1);
3797 unsigned blocksize = inode->i_sb->s_blocksize;
3798 unsigned max = blocksize - (offset & (blocksize - 1));
3801 * correct length if it does not fall between
3802 * 'from' and the end of the block
3804 if (length > max || length < 0)
3805 length = max;
3807 if (IS_DAX(inode))
3808 return dax_zero_page_range(inode, from, length, ext4_get_block);
3809 return __ext4_block_zero_page_range(handle, mapping, from, length);
3813 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3814 * up to the end of the block which corresponds to `from'.
3815 * This required during truncate. We need to physically zero the tail end
3816 * of that block so it doesn't yield old data if the file is later grown.
3818 static int ext4_block_truncate_page(handle_t *handle,
3819 struct address_space *mapping, loff_t from)
3821 unsigned offset = from & (PAGE_SIZE-1);
3822 unsigned length;
3823 unsigned blocksize;
3824 struct inode *inode = mapping->host;
3826 /* If we are processing an encrypted inode during orphan list handling */
3827 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3828 return 0;
3830 blocksize = inode->i_sb->s_blocksize;
3831 length = blocksize - (offset & (blocksize - 1));
3833 return ext4_block_zero_page_range(handle, mapping, from, length);
3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3837 loff_t lstart, loff_t length)
3839 struct super_block *sb = inode->i_sb;
3840 struct address_space *mapping = inode->i_mapping;
3841 unsigned partial_start, partial_end;
3842 ext4_fsblk_t start, end;
3843 loff_t byte_end = (lstart + length - 1);
3844 int err = 0;
3846 partial_start = lstart & (sb->s_blocksize - 1);
3847 partial_end = byte_end & (sb->s_blocksize - 1);
3849 start = lstart >> sb->s_blocksize_bits;
3850 end = byte_end >> sb->s_blocksize_bits;
3852 /* Handle partial zero within the single block */
3853 if (start == end &&
3854 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3855 err = ext4_block_zero_page_range(handle, mapping,
3856 lstart, length);
3857 return err;
3859 /* Handle partial zero out on the start of the range */
3860 if (partial_start) {
3861 err = ext4_block_zero_page_range(handle, mapping,
3862 lstart, sb->s_blocksize);
3863 if (err)
3864 return err;
3866 /* Handle partial zero out on the end of the range */
3867 if (partial_end != sb->s_blocksize - 1)
3868 err = ext4_block_zero_page_range(handle, mapping,
3869 byte_end - partial_end,
3870 partial_end + 1);
3871 return err;
3874 int ext4_can_truncate(struct inode *inode)
3876 if (S_ISREG(inode->i_mode))
3877 return 1;
3878 if (S_ISDIR(inode->i_mode))
3879 return 1;
3880 if (S_ISLNK(inode->i_mode))
3881 return !ext4_inode_is_fast_symlink(inode);
3882 return 0;
3886 * We have to make sure i_disksize gets properly updated before we truncate
3887 * page cache due to hole punching or zero range. Otherwise i_disksize update
3888 * can get lost as it may have been postponed to submission of writeback but
3889 * that will never happen after we truncate page cache.
3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3892 loff_t len)
3894 handle_t *handle;
3895 loff_t size = i_size_read(inode);
3897 WARN_ON(!inode_is_locked(inode));
3898 if (offset > size || offset + len < size)
3899 return 0;
3901 if (EXT4_I(inode)->i_disksize >= size)
3902 return 0;
3904 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3905 if (IS_ERR(handle))
3906 return PTR_ERR(handle);
3907 ext4_update_i_disksize(inode, size);
3908 ext4_mark_inode_dirty(handle, inode);
3909 ext4_journal_stop(handle);
3911 return 0;
3915 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3916 * associated with the given offset and length
3918 * @inode: File inode
3919 * @offset: The offset where the hole will begin
3920 * @len: The length of the hole
3922 * Returns: 0 on success or negative on failure
3925 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3927 struct super_block *sb = inode->i_sb;
3928 ext4_lblk_t first_block, stop_block;
3929 struct address_space *mapping = inode->i_mapping;
3930 loff_t first_block_offset, last_block_offset;
3931 handle_t *handle;
3932 unsigned int credits;
3933 int ret = 0;
3935 if (!S_ISREG(inode->i_mode))
3936 return -EOPNOTSUPP;
3938 trace_ext4_punch_hole(inode, offset, length, 0);
3941 * Write out all dirty pages to avoid race conditions
3942 * Then release them.
3944 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3945 ret = filemap_write_and_wait_range(mapping, offset,
3946 offset + length - 1);
3947 if (ret)
3948 return ret;
3951 inode_lock(inode);
3953 /* No need to punch hole beyond i_size */
3954 if (offset >= inode->i_size)
3955 goto out_mutex;
3958 * If the hole extends beyond i_size, set the hole
3959 * to end after the page that contains i_size
3961 if (offset + length > inode->i_size) {
3962 length = inode->i_size +
3963 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3964 offset;
3967 if (offset & (sb->s_blocksize - 1) ||
3968 (offset + length) & (sb->s_blocksize - 1)) {
3970 * Attach jinode to inode for jbd2 if we do any zeroing of
3971 * partial block
3973 ret = ext4_inode_attach_jinode(inode);
3974 if (ret < 0)
3975 goto out_mutex;
3979 /* Wait all existing dio workers, newcomers will block on i_mutex */
3980 ext4_inode_block_unlocked_dio(inode);
3981 inode_dio_wait(inode);
3984 * Prevent page faults from reinstantiating pages we have released from
3985 * page cache.
3987 down_write(&EXT4_I(inode)->i_mmap_sem);
3988 first_block_offset = round_up(offset, sb->s_blocksize);
3989 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3991 /* Now release the pages and zero block aligned part of pages*/
3992 if (last_block_offset > first_block_offset) {
3993 ret = ext4_update_disksize_before_punch(inode, offset, length);
3994 if (ret)
3995 goto out_dio;
3996 truncate_pagecache_range(inode, first_block_offset,
3997 last_block_offset);
4000 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4001 credits = ext4_writepage_trans_blocks(inode);
4002 else
4003 credits = ext4_blocks_for_truncate(inode);
4004 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4005 if (IS_ERR(handle)) {
4006 ret = PTR_ERR(handle);
4007 ext4_std_error(sb, ret);
4008 goto out_dio;
4011 ret = ext4_zero_partial_blocks(handle, inode, offset,
4012 length);
4013 if (ret)
4014 goto out_stop;
4016 first_block = (offset + sb->s_blocksize - 1) >>
4017 EXT4_BLOCK_SIZE_BITS(sb);
4018 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4020 /* If there are no blocks to remove, return now */
4021 if (first_block >= stop_block)
4022 goto out_stop;
4024 down_write(&EXT4_I(inode)->i_data_sem);
4025 ext4_discard_preallocations(inode);
4027 ret = ext4_es_remove_extent(inode, first_block,
4028 stop_block - first_block);
4029 if (ret) {
4030 up_write(&EXT4_I(inode)->i_data_sem);
4031 goto out_stop;
4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 ret = ext4_ext_remove_space(inode, first_block,
4036 stop_block - 1);
4037 else
4038 ret = ext4_ind_remove_space(handle, inode, first_block,
4039 stop_block);
4041 up_write(&EXT4_I(inode)->i_data_sem);
4042 if (IS_SYNC(inode))
4043 ext4_handle_sync(handle);
4045 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4046 ext4_mark_inode_dirty(handle, inode);
4047 if (ret >= 0)
4048 ext4_update_inode_fsync_trans(handle, inode, 1);
4049 out_stop:
4050 ext4_journal_stop(handle);
4051 out_dio:
4052 up_write(&EXT4_I(inode)->i_mmap_sem);
4053 ext4_inode_resume_unlocked_dio(inode);
4054 out_mutex:
4055 inode_unlock(inode);
4056 return ret;
4059 int ext4_inode_attach_jinode(struct inode *inode)
4061 struct ext4_inode_info *ei = EXT4_I(inode);
4062 struct jbd2_inode *jinode;
4064 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4065 return 0;
4067 jinode = jbd2_alloc_inode(GFP_KERNEL);
4068 spin_lock(&inode->i_lock);
4069 if (!ei->jinode) {
4070 if (!jinode) {
4071 spin_unlock(&inode->i_lock);
4072 return -ENOMEM;
4074 ei->jinode = jinode;
4075 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4076 jinode = NULL;
4078 spin_unlock(&inode->i_lock);
4079 if (unlikely(jinode != NULL))
4080 jbd2_free_inode(jinode);
4081 return 0;
4085 * ext4_truncate()
4087 * We block out ext4_get_block() block instantiations across the entire
4088 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4089 * simultaneously on behalf of the same inode.
4091 * As we work through the truncate and commit bits of it to the journal there
4092 * is one core, guiding principle: the file's tree must always be consistent on
4093 * disk. We must be able to restart the truncate after a crash.
4095 * The file's tree may be transiently inconsistent in memory (although it
4096 * probably isn't), but whenever we close off and commit a journal transaction,
4097 * the contents of (the filesystem + the journal) must be consistent and
4098 * restartable. It's pretty simple, really: bottom up, right to left (although
4099 * left-to-right works OK too).
4101 * Note that at recovery time, journal replay occurs *before* the restart of
4102 * truncate against the orphan inode list.
4104 * The committed inode has the new, desired i_size (which is the same as
4105 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4106 * that this inode's truncate did not complete and it will again call
4107 * ext4_truncate() to have another go. So there will be instantiated blocks
4108 * to the right of the truncation point in a crashed ext4 filesystem. But
4109 * that's fine - as long as they are linked from the inode, the post-crash
4110 * ext4_truncate() run will find them and release them.
4112 void ext4_truncate(struct inode *inode)
4114 struct ext4_inode_info *ei = EXT4_I(inode);
4115 unsigned int credits;
4116 handle_t *handle;
4117 struct address_space *mapping = inode->i_mapping;
4120 * There is a possibility that we're either freeing the inode
4121 * or it's a completely new inode. In those cases we might not
4122 * have i_mutex locked because it's not necessary.
4124 if (!(inode->i_state & (I_NEW|I_FREEING)))
4125 WARN_ON(!inode_is_locked(inode));
4126 trace_ext4_truncate_enter(inode);
4128 if (!ext4_can_truncate(inode))
4129 return;
4131 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4133 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4134 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4136 if (ext4_has_inline_data(inode)) {
4137 int has_inline = 1;
4139 ext4_inline_data_truncate(inode, &has_inline);
4140 if (has_inline)
4141 return;
4144 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4145 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4146 if (ext4_inode_attach_jinode(inode) < 0)
4147 return;
4150 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4151 credits = ext4_writepage_trans_blocks(inode);
4152 else
4153 credits = ext4_blocks_for_truncate(inode);
4155 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4156 if (IS_ERR(handle)) {
4157 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4158 return;
4161 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4162 ext4_block_truncate_page(handle, mapping, inode->i_size);
4165 * We add the inode to the orphan list, so that if this
4166 * truncate spans multiple transactions, and we crash, we will
4167 * resume the truncate when the filesystem recovers. It also
4168 * marks the inode dirty, to catch the new size.
4170 * Implication: the file must always be in a sane, consistent
4171 * truncatable state while each transaction commits.
4173 if (ext4_orphan_add(handle, inode))
4174 goto out_stop;
4176 down_write(&EXT4_I(inode)->i_data_sem);
4178 ext4_discard_preallocations(inode);
4180 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4181 ext4_ext_truncate(handle, inode);
4182 else
4183 ext4_ind_truncate(handle, inode);
4185 up_write(&ei->i_data_sem);
4187 if (IS_SYNC(inode))
4188 ext4_handle_sync(handle);
4190 out_stop:
4192 * If this was a simple ftruncate() and the file will remain alive,
4193 * then we need to clear up the orphan record which we created above.
4194 * However, if this was a real unlink then we were called by
4195 * ext4_evict_inode(), and we allow that function to clean up the
4196 * orphan info for us.
4198 if (inode->i_nlink)
4199 ext4_orphan_del(handle, inode);
4201 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4202 ext4_mark_inode_dirty(handle, inode);
4203 ext4_journal_stop(handle);
4205 trace_ext4_truncate_exit(inode);
4209 * ext4_get_inode_loc returns with an extra refcount against the inode's
4210 * underlying buffer_head on success. If 'in_mem' is true, we have all
4211 * data in memory that is needed to recreate the on-disk version of this
4212 * inode.
4214 static int __ext4_get_inode_loc(struct inode *inode,
4215 struct ext4_iloc *iloc, int in_mem)
4217 struct ext4_group_desc *gdp;
4218 struct buffer_head *bh;
4219 struct super_block *sb = inode->i_sb;
4220 ext4_fsblk_t block;
4221 int inodes_per_block, inode_offset;
4223 iloc->bh = NULL;
4224 if (!ext4_valid_inum(sb, inode->i_ino))
4225 return -EFSCORRUPTED;
4227 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4228 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4229 if (!gdp)
4230 return -EIO;
4233 * Figure out the offset within the block group inode table
4235 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4236 inode_offset = ((inode->i_ino - 1) %
4237 EXT4_INODES_PER_GROUP(sb));
4238 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4239 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4241 bh = sb_getblk(sb, block);
4242 if (unlikely(!bh))
4243 return -ENOMEM;
4244 if (!buffer_uptodate(bh)) {
4245 lock_buffer(bh);
4248 * If the buffer has the write error flag, we have failed
4249 * to write out another inode in the same block. In this
4250 * case, we don't have to read the block because we may
4251 * read the old inode data successfully.
4253 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4254 set_buffer_uptodate(bh);
4256 if (buffer_uptodate(bh)) {
4257 /* someone brought it uptodate while we waited */
4258 unlock_buffer(bh);
4259 goto has_buffer;
4263 * If we have all information of the inode in memory and this
4264 * is the only valid inode in the block, we need not read the
4265 * block.
4267 if (in_mem) {
4268 struct buffer_head *bitmap_bh;
4269 int i, start;
4271 start = inode_offset & ~(inodes_per_block - 1);
4273 /* Is the inode bitmap in cache? */
4274 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4275 if (unlikely(!bitmap_bh))
4276 goto make_io;
4279 * If the inode bitmap isn't in cache then the
4280 * optimisation may end up performing two reads instead
4281 * of one, so skip it.
4283 if (!buffer_uptodate(bitmap_bh)) {
4284 brelse(bitmap_bh);
4285 goto make_io;
4287 for (i = start; i < start + inodes_per_block; i++) {
4288 if (i == inode_offset)
4289 continue;
4290 if (ext4_test_bit(i, bitmap_bh->b_data))
4291 break;
4293 brelse(bitmap_bh);
4294 if (i == start + inodes_per_block) {
4295 /* all other inodes are free, so skip I/O */
4296 memset(bh->b_data, 0, bh->b_size);
4297 set_buffer_uptodate(bh);
4298 unlock_buffer(bh);
4299 goto has_buffer;
4303 make_io:
4305 * If we need to do any I/O, try to pre-readahead extra
4306 * blocks from the inode table.
4308 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4309 ext4_fsblk_t b, end, table;
4310 unsigned num;
4311 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4313 table = ext4_inode_table(sb, gdp);
4314 /* s_inode_readahead_blks is always a power of 2 */
4315 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4316 if (table > b)
4317 b = table;
4318 end = b + ra_blks;
4319 num = EXT4_INODES_PER_GROUP(sb);
4320 if (ext4_has_group_desc_csum(sb))
4321 num -= ext4_itable_unused_count(sb, gdp);
4322 table += num / inodes_per_block;
4323 if (end > table)
4324 end = table;
4325 while (b <= end)
4326 sb_breadahead(sb, b++);
4330 * There are other valid inodes in the buffer, this inode
4331 * has in-inode xattrs, or we don't have this inode in memory.
4332 * Read the block from disk.
4334 trace_ext4_load_inode(inode);
4335 get_bh(bh);
4336 bh->b_end_io = end_buffer_read_sync;
4337 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4338 wait_on_buffer(bh);
4339 if (!buffer_uptodate(bh)) {
4340 EXT4_ERROR_INODE_BLOCK(inode, block,
4341 "unable to read itable block");
4342 brelse(bh);
4343 return -EIO;
4346 has_buffer:
4347 iloc->bh = bh;
4348 return 0;
4351 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4353 /* We have all inode data except xattrs in memory here. */
4354 return __ext4_get_inode_loc(inode, iloc,
4355 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4358 void ext4_set_inode_flags(struct inode *inode)
4360 unsigned int flags = EXT4_I(inode)->i_flags;
4361 unsigned int new_fl = 0;
4363 if (flags & EXT4_SYNC_FL)
4364 new_fl |= S_SYNC;
4365 if (flags & EXT4_APPEND_FL)
4366 new_fl |= S_APPEND;
4367 if (flags & EXT4_IMMUTABLE_FL)
4368 new_fl |= S_IMMUTABLE;
4369 if (flags & EXT4_NOATIME_FL)
4370 new_fl |= S_NOATIME;
4371 if (flags & EXT4_DIRSYNC_FL)
4372 new_fl |= S_DIRSYNC;
4373 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4374 new_fl |= S_DAX;
4375 inode_set_flags(inode, new_fl,
4376 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4379 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4380 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4382 unsigned int vfs_fl;
4383 unsigned long old_fl, new_fl;
4385 do {
4386 vfs_fl = ei->vfs_inode.i_flags;
4387 old_fl = ei->i_flags;
4388 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4389 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4390 EXT4_DIRSYNC_FL);
4391 if (vfs_fl & S_SYNC)
4392 new_fl |= EXT4_SYNC_FL;
4393 if (vfs_fl & S_APPEND)
4394 new_fl |= EXT4_APPEND_FL;
4395 if (vfs_fl & S_IMMUTABLE)
4396 new_fl |= EXT4_IMMUTABLE_FL;
4397 if (vfs_fl & S_NOATIME)
4398 new_fl |= EXT4_NOATIME_FL;
4399 if (vfs_fl & S_DIRSYNC)
4400 new_fl |= EXT4_DIRSYNC_FL;
4401 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4404 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4405 struct ext4_inode_info *ei)
4407 blkcnt_t i_blocks ;
4408 struct inode *inode = &(ei->vfs_inode);
4409 struct super_block *sb = inode->i_sb;
4411 if (ext4_has_feature_huge_file(sb)) {
4412 /* we are using combined 48 bit field */
4413 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4414 le32_to_cpu(raw_inode->i_blocks_lo);
4415 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4416 /* i_blocks represent file system block size */
4417 return i_blocks << (inode->i_blkbits - 9);
4418 } else {
4419 return i_blocks;
4421 } else {
4422 return le32_to_cpu(raw_inode->i_blocks_lo);
4426 static inline void ext4_iget_extra_inode(struct inode *inode,
4427 struct ext4_inode *raw_inode,
4428 struct ext4_inode_info *ei)
4430 __le32 *magic = (void *)raw_inode +
4431 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4432 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4433 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4434 ext4_find_inline_data_nolock(inode);
4435 } else
4436 EXT4_I(inode)->i_inline_off = 0;
4439 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4441 if (!ext4_has_feature_project(inode->i_sb))
4442 return -EOPNOTSUPP;
4443 *projid = EXT4_I(inode)->i_projid;
4444 return 0;
4447 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4449 struct ext4_iloc iloc;
4450 struct ext4_inode *raw_inode;
4451 struct ext4_inode_info *ei;
4452 struct inode *inode;
4453 journal_t *journal = EXT4_SB(sb)->s_journal;
4454 long ret;
4455 loff_t size;
4456 int block;
4457 uid_t i_uid;
4458 gid_t i_gid;
4459 projid_t i_projid;
4461 inode = iget_locked(sb, ino);
4462 if (!inode)
4463 return ERR_PTR(-ENOMEM);
4464 if (!(inode->i_state & I_NEW))
4465 return inode;
4467 ei = EXT4_I(inode);
4468 iloc.bh = NULL;
4470 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4471 if (ret < 0)
4472 goto bad_inode;
4473 raw_inode = ext4_raw_inode(&iloc);
4475 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4476 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4477 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4478 EXT4_INODE_SIZE(inode->i_sb)) {
4479 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4480 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4481 EXT4_INODE_SIZE(inode->i_sb));
4482 ret = -EFSCORRUPTED;
4483 goto bad_inode;
4485 } else
4486 ei->i_extra_isize = 0;
4488 /* Precompute checksum seed for inode metadata */
4489 if (ext4_has_metadata_csum(sb)) {
4490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4491 __u32 csum;
4492 __le32 inum = cpu_to_le32(inode->i_ino);
4493 __le32 gen = raw_inode->i_generation;
4494 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4495 sizeof(inum));
4496 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4497 sizeof(gen));
4500 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4501 EXT4_ERROR_INODE(inode, "checksum invalid");
4502 ret = -EFSBADCRC;
4503 goto bad_inode;
4506 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4507 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4508 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4509 if (ext4_has_feature_project(sb) &&
4510 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4511 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4512 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4513 else
4514 i_projid = EXT4_DEF_PROJID;
4516 if (!(test_opt(inode->i_sb, NO_UID32))) {
4517 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4518 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4520 i_uid_write(inode, i_uid);
4521 i_gid_write(inode, i_gid);
4522 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4523 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4525 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4526 ei->i_inline_off = 0;
4527 ei->i_dir_start_lookup = 0;
4528 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4529 /* We now have enough fields to check if the inode was active or not.
4530 * This is needed because nfsd might try to access dead inodes
4531 * the test is that same one that e2fsck uses
4532 * NeilBrown 1999oct15
4534 if (inode->i_nlink == 0) {
4535 if ((inode->i_mode == 0 ||
4536 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4537 ino != EXT4_BOOT_LOADER_INO) {
4538 /* this inode is deleted */
4539 ret = -ESTALE;
4540 goto bad_inode;
4542 /* The only unlinked inodes we let through here have
4543 * valid i_mode and are being read by the orphan
4544 * recovery code: that's fine, we're about to complete
4545 * the process of deleting those.
4546 * OR it is the EXT4_BOOT_LOADER_INO which is
4547 * not initialized on a new filesystem. */
4549 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4550 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4551 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4552 if (ext4_has_feature_64bit(sb))
4553 ei->i_file_acl |=
4554 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4555 inode->i_size = ext4_isize(raw_inode);
4556 if ((size = i_size_read(inode)) < 0) {
4557 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4558 ret = -EFSCORRUPTED;
4559 goto bad_inode;
4561 ei->i_disksize = inode->i_size;
4562 #ifdef CONFIG_QUOTA
4563 ei->i_reserved_quota = 0;
4564 #endif
4565 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4566 ei->i_block_group = iloc.block_group;
4567 ei->i_last_alloc_group = ~0;
4569 * NOTE! The in-memory inode i_data array is in little-endian order
4570 * even on big-endian machines: we do NOT byteswap the block numbers!
4572 for (block = 0; block < EXT4_N_BLOCKS; block++)
4573 ei->i_data[block] = raw_inode->i_block[block];
4574 INIT_LIST_HEAD(&ei->i_orphan);
4577 * Set transaction id's of transactions that have to be committed
4578 * to finish f[data]sync. We set them to currently running transaction
4579 * as we cannot be sure that the inode or some of its metadata isn't
4580 * part of the transaction - the inode could have been reclaimed and
4581 * now it is reread from disk.
4583 if (journal) {
4584 transaction_t *transaction;
4585 tid_t tid;
4587 read_lock(&journal->j_state_lock);
4588 if (journal->j_running_transaction)
4589 transaction = journal->j_running_transaction;
4590 else
4591 transaction = journal->j_committing_transaction;
4592 if (transaction)
4593 tid = transaction->t_tid;
4594 else
4595 tid = journal->j_commit_sequence;
4596 read_unlock(&journal->j_state_lock);
4597 ei->i_sync_tid = tid;
4598 ei->i_datasync_tid = tid;
4601 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4602 if (ei->i_extra_isize == 0) {
4603 /* The extra space is currently unused. Use it. */
4604 ei->i_extra_isize = sizeof(struct ext4_inode) -
4605 EXT4_GOOD_OLD_INODE_SIZE;
4606 } else {
4607 ext4_iget_extra_inode(inode, raw_inode, ei);
4611 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4612 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4613 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4614 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4616 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4617 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4618 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4619 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4620 inode->i_version |=
4621 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4625 ret = 0;
4626 if (ei->i_file_acl &&
4627 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4628 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4629 ei->i_file_acl);
4630 ret = -EFSCORRUPTED;
4631 goto bad_inode;
4632 } else if (!ext4_has_inline_data(inode)) {
4633 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4634 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4635 (S_ISLNK(inode->i_mode) &&
4636 !ext4_inode_is_fast_symlink(inode))))
4637 /* Validate extent which is part of inode */
4638 ret = ext4_ext_check_inode(inode);
4639 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4640 (S_ISLNK(inode->i_mode) &&
4641 !ext4_inode_is_fast_symlink(inode))) {
4642 /* Validate block references which are part of inode */
4643 ret = ext4_ind_check_inode(inode);
4646 if (ret)
4647 goto bad_inode;
4649 if (S_ISREG(inode->i_mode)) {
4650 inode->i_op = &ext4_file_inode_operations;
4651 inode->i_fop = &ext4_file_operations;
4652 ext4_set_aops(inode);
4653 } else if (S_ISDIR(inode->i_mode)) {
4654 inode->i_op = &ext4_dir_inode_operations;
4655 inode->i_fop = &ext4_dir_operations;
4656 } else if (S_ISLNK(inode->i_mode)) {
4657 if (ext4_encrypted_inode(inode)) {
4658 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4659 ext4_set_aops(inode);
4660 } else if (ext4_inode_is_fast_symlink(inode)) {
4661 inode->i_link = (char *)ei->i_data;
4662 inode->i_op = &ext4_fast_symlink_inode_operations;
4663 nd_terminate_link(ei->i_data, inode->i_size,
4664 sizeof(ei->i_data) - 1);
4665 } else {
4666 inode->i_op = &ext4_symlink_inode_operations;
4667 ext4_set_aops(inode);
4669 inode_nohighmem(inode);
4670 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4671 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4672 inode->i_op = &ext4_special_inode_operations;
4673 if (raw_inode->i_block[0])
4674 init_special_inode(inode, inode->i_mode,
4675 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4676 else
4677 init_special_inode(inode, inode->i_mode,
4678 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4679 } else if (ino == EXT4_BOOT_LOADER_INO) {
4680 make_bad_inode(inode);
4681 } else {
4682 ret = -EFSCORRUPTED;
4683 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4684 goto bad_inode;
4686 brelse(iloc.bh);
4687 ext4_set_inode_flags(inode);
4688 unlock_new_inode(inode);
4689 return inode;
4691 bad_inode:
4692 brelse(iloc.bh);
4693 iget_failed(inode);
4694 return ERR_PTR(ret);
4697 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4699 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4700 return ERR_PTR(-EFSCORRUPTED);
4701 return ext4_iget(sb, ino);
4704 static int ext4_inode_blocks_set(handle_t *handle,
4705 struct ext4_inode *raw_inode,
4706 struct ext4_inode_info *ei)
4708 struct inode *inode = &(ei->vfs_inode);
4709 u64 i_blocks = inode->i_blocks;
4710 struct super_block *sb = inode->i_sb;
4712 if (i_blocks <= ~0U) {
4714 * i_blocks can be represented in a 32 bit variable
4715 * as multiple of 512 bytes
4717 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4718 raw_inode->i_blocks_high = 0;
4719 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4720 return 0;
4722 if (!ext4_has_feature_huge_file(sb))
4723 return -EFBIG;
4725 if (i_blocks <= 0xffffffffffffULL) {
4727 * i_blocks can be represented in a 48 bit variable
4728 * as multiple of 512 bytes
4730 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4731 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4732 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4733 } else {
4734 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4735 /* i_block is stored in file system block size */
4736 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4737 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4738 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4740 return 0;
4743 struct other_inode {
4744 unsigned long orig_ino;
4745 struct ext4_inode *raw_inode;
4748 static int other_inode_match(struct inode * inode, unsigned long ino,
4749 void *data)
4751 struct other_inode *oi = (struct other_inode *) data;
4753 if ((inode->i_ino != ino) ||
4754 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4755 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4756 ((inode->i_state & I_DIRTY_TIME) == 0))
4757 return 0;
4758 spin_lock(&inode->i_lock);
4759 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4760 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4761 (inode->i_state & I_DIRTY_TIME)) {
4762 struct ext4_inode_info *ei = EXT4_I(inode);
4764 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4765 spin_unlock(&inode->i_lock);
4767 spin_lock(&ei->i_raw_lock);
4768 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4769 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4770 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4771 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4772 spin_unlock(&ei->i_raw_lock);
4773 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4774 return -1;
4776 spin_unlock(&inode->i_lock);
4777 return -1;
4781 * Opportunistically update the other time fields for other inodes in
4782 * the same inode table block.
4784 static void ext4_update_other_inodes_time(struct super_block *sb,
4785 unsigned long orig_ino, char *buf)
4787 struct other_inode oi;
4788 unsigned long ino;
4789 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4790 int inode_size = EXT4_INODE_SIZE(sb);
4792 oi.orig_ino = orig_ino;
4794 * Calculate the first inode in the inode table block. Inode
4795 * numbers are one-based. That is, the first inode in a block
4796 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4798 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4799 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4800 if (ino == orig_ino)
4801 continue;
4802 oi.raw_inode = (struct ext4_inode *) buf;
4803 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4808 * Post the struct inode info into an on-disk inode location in the
4809 * buffer-cache. This gobbles the caller's reference to the
4810 * buffer_head in the inode location struct.
4812 * The caller must have write access to iloc->bh.
4814 static int ext4_do_update_inode(handle_t *handle,
4815 struct inode *inode,
4816 struct ext4_iloc *iloc)
4818 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4819 struct ext4_inode_info *ei = EXT4_I(inode);
4820 struct buffer_head *bh = iloc->bh;
4821 struct super_block *sb = inode->i_sb;
4822 int err = 0, rc, block;
4823 int need_datasync = 0, set_large_file = 0;
4824 uid_t i_uid;
4825 gid_t i_gid;
4826 projid_t i_projid;
4828 spin_lock(&ei->i_raw_lock);
4830 /* For fields not tracked in the in-memory inode,
4831 * initialise them to zero for new inodes. */
4832 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4833 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4835 ext4_get_inode_flags(ei);
4836 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4837 i_uid = i_uid_read(inode);
4838 i_gid = i_gid_read(inode);
4839 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4840 if (!(test_opt(inode->i_sb, NO_UID32))) {
4841 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4842 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4844 * Fix up interoperability with old kernels. Otherwise, old inodes get
4845 * re-used with the upper 16 bits of the uid/gid intact
4847 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4848 raw_inode->i_uid_high = 0;
4849 raw_inode->i_gid_high = 0;
4850 } else {
4851 raw_inode->i_uid_high =
4852 cpu_to_le16(high_16_bits(i_uid));
4853 raw_inode->i_gid_high =
4854 cpu_to_le16(high_16_bits(i_gid));
4856 } else {
4857 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4858 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4859 raw_inode->i_uid_high = 0;
4860 raw_inode->i_gid_high = 0;
4862 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4864 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4865 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4866 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4867 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4869 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4870 if (err) {
4871 spin_unlock(&ei->i_raw_lock);
4872 goto out_brelse;
4874 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4875 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4876 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4877 raw_inode->i_file_acl_high =
4878 cpu_to_le16(ei->i_file_acl >> 32);
4879 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4880 if (ei->i_disksize != ext4_isize(raw_inode)) {
4881 ext4_isize_set(raw_inode, ei->i_disksize);
4882 need_datasync = 1;
4884 if (ei->i_disksize > 0x7fffffffULL) {
4885 if (!ext4_has_feature_large_file(sb) ||
4886 EXT4_SB(sb)->s_es->s_rev_level ==
4887 cpu_to_le32(EXT4_GOOD_OLD_REV))
4888 set_large_file = 1;
4890 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4891 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4892 if (old_valid_dev(inode->i_rdev)) {
4893 raw_inode->i_block[0] =
4894 cpu_to_le32(old_encode_dev(inode->i_rdev));
4895 raw_inode->i_block[1] = 0;
4896 } else {
4897 raw_inode->i_block[0] = 0;
4898 raw_inode->i_block[1] =
4899 cpu_to_le32(new_encode_dev(inode->i_rdev));
4900 raw_inode->i_block[2] = 0;
4902 } else if (!ext4_has_inline_data(inode)) {
4903 for (block = 0; block < EXT4_N_BLOCKS; block++)
4904 raw_inode->i_block[block] = ei->i_data[block];
4907 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4908 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4909 if (ei->i_extra_isize) {
4910 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4911 raw_inode->i_version_hi =
4912 cpu_to_le32(inode->i_version >> 32);
4913 raw_inode->i_extra_isize =
4914 cpu_to_le16(ei->i_extra_isize);
4918 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4919 i_projid != EXT4_DEF_PROJID);
4921 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4922 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4923 raw_inode->i_projid = cpu_to_le32(i_projid);
4925 ext4_inode_csum_set(inode, raw_inode, ei);
4926 spin_unlock(&ei->i_raw_lock);
4927 if (inode->i_sb->s_flags & MS_LAZYTIME)
4928 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4929 bh->b_data);
4931 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4932 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4933 if (!err)
4934 err = rc;
4935 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4936 if (set_large_file) {
4937 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4938 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4939 if (err)
4940 goto out_brelse;
4941 ext4_update_dynamic_rev(sb);
4942 ext4_set_feature_large_file(sb);
4943 ext4_handle_sync(handle);
4944 err = ext4_handle_dirty_super(handle, sb);
4946 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4947 out_brelse:
4948 brelse(bh);
4949 ext4_std_error(inode->i_sb, err);
4950 return err;
4954 * ext4_write_inode()
4956 * We are called from a few places:
4958 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4959 * Here, there will be no transaction running. We wait for any running
4960 * transaction to commit.
4962 * - Within flush work (sys_sync(), kupdate and such).
4963 * We wait on commit, if told to.
4965 * - Within iput_final() -> write_inode_now()
4966 * We wait on commit, if told to.
4968 * In all cases it is actually safe for us to return without doing anything,
4969 * because the inode has been copied into a raw inode buffer in
4970 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4971 * writeback.
4973 * Note that we are absolutely dependent upon all inode dirtiers doing the
4974 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4975 * which we are interested.
4977 * It would be a bug for them to not do this. The code:
4979 * mark_inode_dirty(inode)
4980 * stuff();
4981 * inode->i_size = expr;
4983 * is in error because write_inode() could occur while `stuff()' is running,
4984 * and the new i_size will be lost. Plus the inode will no longer be on the
4985 * superblock's dirty inode list.
4987 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4989 int err;
4991 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4992 return 0;
4994 if (EXT4_SB(inode->i_sb)->s_journal) {
4995 if (ext4_journal_current_handle()) {
4996 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4997 dump_stack();
4998 return -EIO;
5002 * No need to force transaction in WB_SYNC_NONE mode. Also
5003 * ext4_sync_fs() will force the commit after everything is
5004 * written.
5006 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5007 return 0;
5009 err = ext4_force_commit(inode->i_sb);
5010 } else {
5011 struct ext4_iloc iloc;
5013 err = __ext4_get_inode_loc(inode, &iloc, 0);
5014 if (err)
5015 return err;
5017 * sync(2) will flush the whole buffer cache. No need to do
5018 * it here separately for each inode.
5020 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5021 sync_dirty_buffer(iloc.bh);
5022 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5023 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5024 "IO error syncing inode");
5025 err = -EIO;
5027 brelse(iloc.bh);
5029 return err;
5033 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5034 * buffers that are attached to a page stradding i_size and are undergoing
5035 * commit. In that case we have to wait for commit to finish and try again.
5037 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5039 struct page *page;
5040 unsigned offset;
5041 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5042 tid_t commit_tid = 0;
5043 int ret;
5045 offset = inode->i_size & (PAGE_SIZE - 1);
5047 * All buffers in the last page remain valid? Then there's nothing to
5048 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5049 * blocksize case
5051 if (offset > PAGE_SIZE - i_blocksize(inode))
5052 return;
5053 while (1) {
5054 page = find_lock_page(inode->i_mapping,
5055 inode->i_size >> PAGE_SHIFT);
5056 if (!page)
5057 return;
5058 ret = __ext4_journalled_invalidatepage(page, offset,
5059 PAGE_SIZE - offset);
5060 unlock_page(page);
5061 put_page(page);
5062 if (ret != -EBUSY)
5063 return;
5064 commit_tid = 0;
5065 read_lock(&journal->j_state_lock);
5066 if (journal->j_committing_transaction)
5067 commit_tid = journal->j_committing_transaction->t_tid;
5068 read_unlock(&journal->j_state_lock);
5069 if (commit_tid)
5070 jbd2_log_wait_commit(journal, commit_tid);
5075 * ext4_setattr()
5077 * Called from notify_change.
5079 * We want to trap VFS attempts to truncate the file as soon as
5080 * possible. In particular, we want to make sure that when the VFS
5081 * shrinks i_size, we put the inode on the orphan list and modify
5082 * i_disksize immediately, so that during the subsequent flushing of
5083 * dirty pages and freeing of disk blocks, we can guarantee that any
5084 * commit will leave the blocks being flushed in an unused state on
5085 * disk. (On recovery, the inode will get truncated and the blocks will
5086 * be freed, so we have a strong guarantee that no future commit will
5087 * leave these blocks visible to the user.)
5089 * Another thing we have to assure is that if we are in ordered mode
5090 * and inode is still attached to the committing transaction, we must
5091 * we start writeout of all the dirty pages which are being truncated.
5092 * This way we are sure that all the data written in the previous
5093 * transaction are already on disk (truncate waits for pages under
5094 * writeback).
5096 * Called with inode->i_mutex down.
5098 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5100 struct inode *inode = d_inode(dentry);
5101 int error, rc = 0;
5102 int orphan = 0;
5103 const unsigned int ia_valid = attr->ia_valid;
5105 error = setattr_prepare(dentry, attr);
5106 if (error)
5107 return error;
5109 if (is_quota_modification(inode, attr)) {
5110 error = dquot_initialize(inode);
5111 if (error)
5112 return error;
5114 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5115 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5116 handle_t *handle;
5118 /* (user+group)*(old+new) structure, inode write (sb,
5119 * inode block, ? - but truncate inode update has it) */
5120 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5121 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5122 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5123 if (IS_ERR(handle)) {
5124 error = PTR_ERR(handle);
5125 goto err_out;
5127 error = dquot_transfer(inode, attr);
5128 if (error) {
5129 ext4_journal_stop(handle);
5130 return error;
5132 /* Update corresponding info in inode so that everything is in
5133 * one transaction */
5134 if (attr->ia_valid & ATTR_UID)
5135 inode->i_uid = attr->ia_uid;
5136 if (attr->ia_valid & ATTR_GID)
5137 inode->i_gid = attr->ia_gid;
5138 error = ext4_mark_inode_dirty(handle, inode);
5139 ext4_journal_stop(handle);
5142 if (attr->ia_valid & ATTR_SIZE) {
5143 handle_t *handle;
5144 loff_t oldsize = inode->i_size;
5145 int shrink = (attr->ia_size <= inode->i_size);
5147 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5150 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5151 return -EFBIG;
5153 if (!S_ISREG(inode->i_mode))
5154 return -EINVAL;
5156 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5157 inode_inc_iversion(inode);
5159 if (ext4_should_order_data(inode) &&
5160 (attr->ia_size < inode->i_size)) {
5161 error = ext4_begin_ordered_truncate(inode,
5162 attr->ia_size);
5163 if (error)
5164 goto err_out;
5166 if (attr->ia_size != inode->i_size) {
5167 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5168 if (IS_ERR(handle)) {
5169 error = PTR_ERR(handle);
5170 goto err_out;
5172 if (ext4_handle_valid(handle) && shrink) {
5173 error = ext4_orphan_add(handle, inode);
5174 orphan = 1;
5177 * Update c/mtime on truncate up, ext4_truncate() will
5178 * update c/mtime in shrink case below
5180 if (!shrink) {
5181 inode->i_mtime = ext4_current_time(inode);
5182 inode->i_ctime = inode->i_mtime;
5184 down_write(&EXT4_I(inode)->i_data_sem);
5185 EXT4_I(inode)->i_disksize = attr->ia_size;
5186 rc = ext4_mark_inode_dirty(handle, inode);
5187 if (!error)
5188 error = rc;
5190 * We have to update i_size under i_data_sem together
5191 * with i_disksize to avoid races with writeback code
5192 * running ext4_wb_update_i_disksize().
5194 if (!error)
5195 i_size_write(inode, attr->ia_size);
5196 up_write(&EXT4_I(inode)->i_data_sem);
5197 ext4_journal_stop(handle);
5198 if (error) {
5199 if (orphan)
5200 ext4_orphan_del(NULL, inode);
5201 goto err_out;
5204 if (!shrink)
5205 pagecache_isize_extended(inode, oldsize, inode->i_size);
5208 * Blocks are going to be removed from the inode. Wait
5209 * for dio in flight. Temporarily disable
5210 * dioread_nolock to prevent livelock.
5212 if (orphan) {
5213 if (!ext4_should_journal_data(inode)) {
5214 ext4_inode_block_unlocked_dio(inode);
5215 inode_dio_wait(inode);
5216 ext4_inode_resume_unlocked_dio(inode);
5217 } else
5218 ext4_wait_for_tail_page_commit(inode);
5220 down_write(&EXT4_I(inode)->i_mmap_sem);
5222 * Truncate pagecache after we've waited for commit
5223 * in data=journal mode to make pages freeable.
5225 truncate_pagecache(inode, inode->i_size);
5226 if (shrink)
5227 ext4_truncate(inode);
5228 up_write(&EXT4_I(inode)->i_mmap_sem);
5231 if (!rc) {
5232 setattr_copy(inode, attr);
5233 mark_inode_dirty(inode);
5237 * If the call to ext4_truncate failed to get a transaction handle at
5238 * all, we need to clean up the in-core orphan list manually.
5240 if (orphan && inode->i_nlink)
5241 ext4_orphan_del(NULL, inode);
5243 if (!rc && (ia_valid & ATTR_MODE))
5244 rc = posix_acl_chmod(inode, inode->i_mode);
5246 err_out:
5247 ext4_std_error(inode->i_sb, error);
5248 if (!error)
5249 error = rc;
5250 return error;
5253 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5254 struct kstat *stat)
5256 struct inode *inode;
5257 unsigned long long delalloc_blocks;
5259 inode = d_inode(dentry);
5260 generic_fillattr(inode, stat);
5263 * If there is inline data in the inode, the inode will normally not
5264 * have data blocks allocated (it may have an external xattr block).
5265 * Report at least one sector for such files, so tools like tar, rsync,
5266 * others doen't incorrectly think the file is completely sparse.
5268 if (unlikely(ext4_has_inline_data(inode)))
5269 stat->blocks += (stat->size + 511) >> 9;
5272 * We can't update i_blocks if the block allocation is delayed
5273 * otherwise in the case of system crash before the real block
5274 * allocation is done, we will have i_blocks inconsistent with
5275 * on-disk file blocks.
5276 * We always keep i_blocks updated together with real
5277 * allocation. But to not confuse with user, stat
5278 * will return the blocks that include the delayed allocation
5279 * blocks for this file.
5281 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5282 EXT4_I(inode)->i_reserved_data_blocks);
5283 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5284 return 0;
5287 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5288 int pextents)
5290 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5291 return ext4_ind_trans_blocks(inode, lblocks);
5292 return ext4_ext_index_trans_blocks(inode, pextents);
5296 * Account for index blocks, block groups bitmaps and block group
5297 * descriptor blocks if modify datablocks and index blocks
5298 * worse case, the indexs blocks spread over different block groups
5300 * If datablocks are discontiguous, they are possible to spread over
5301 * different block groups too. If they are contiguous, with flexbg,
5302 * they could still across block group boundary.
5304 * Also account for superblock, inode, quota and xattr blocks
5306 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5307 int pextents)
5309 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5310 int gdpblocks;
5311 int idxblocks;
5312 int ret = 0;
5315 * How many index blocks need to touch to map @lblocks logical blocks
5316 * to @pextents physical extents?
5318 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5320 ret = idxblocks;
5323 * Now let's see how many group bitmaps and group descriptors need
5324 * to account
5326 groups = idxblocks + pextents;
5327 gdpblocks = groups;
5328 if (groups > ngroups)
5329 groups = ngroups;
5330 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5331 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5333 /* bitmaps and block group descriptor blocks */
5334 ret += groups + gdpblocks;
5336 /* Blocks for super block, inode, quota and xattr blocks */
5337 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5339 return ret;
5343 * Calculate the total number of credits to reserve to fit
5344 * the modification of a single pages into a single transaction,
5345 * which may include multiple chunks of block allocations.
5347 * This could be called via ext4_write_begin()
5349 * We need to consider the worse case, when
5350 * one new block per extent.
5352 int ext4_writepage_trans_blocks(struct inode *inode)
5354 int bpp = ext4_journal_blocks_per_page(inode);
5355 int ret;
5357 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5359 /* Account for data blocks for journalled mode */
5360 if (ext4_should_journal_data(inode))
5361 ret += bpp;
5362 return ret;
5366 * Calculate the journal credits for a chunk of data modification.
5368 * This is called from DIO, fallocate or whoever calling
5369 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5371 * journal buffers for data blocks are not included here, as DIO
5372 * and fallocate do no need to journal data buffers.
5374 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5376 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5380 * The caller must have previously called ext4_reserve_inode_write().
5381 * Give this, we know that the caller already has write access to iloc->bh.
5383 int ext4_mark_iloc_dirty(handle_t *handle,
5384 struct inode *inode, struct ext4_iloc *iloc)
5386 int err = 0;
5388 if (IS_I_VERSION(inode))
5389 inode_inc_iversion(inode);
5391 /* the do_update_inode consumes one bh->b_count */
5392 get_bh(iloc->bh);
5394 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5395 err = ext4_do_update_inode(handle, inode, iloc);
5396 put_bh(iloc->bh);
5397 return err;
5401 * On success, We end up with an outstanding reference count against
5402 * iloc->bh. This _must_ be cleaned up later.
5406 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5407 struct ext4_iloc *iloc)
5409 int err;
5411 err = ext4_get_inode_loc(inode, iloc);
5412 if (!err) {
5413 BUFFER_TRACE(iloc->bh, "get_write_access");
5414 err = ext4_journal_get_write_access(handle, iloc->bh);
5415 if (err) {
5416 brelse(iloc->bh);
5417 iloc->bh = NULL;
5420 ext4_std_error(inode->i_sb, err);
5421 return err;
5425 * Expand an inode by new_extra_isize bytes.
5426 * Returns 0 on success or negative error number on failure.
5428 static int ext4_expand_extra_isize(struct inode *inode,
5429 unsigned int new_extra_isize,
5430 struct ext4_iloc iloc,
5431 handle_t *handle)
5433 struct ext4_inode *raw_inode;
5434 struct ext4_xattr_ibody_header *header;
5436 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5437 return 0;
5439 raw_inode = ext4_raw_inode(&iloc);
5441 header = IHDR(inode, raw_inode);
5443 /* No extended attributes present */
5444 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5445 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5446 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5447 EXT4_I(inode)->i_extra_isize, 0,
5448 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5449 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5450 return 0;
5453 /* try to expand with EAs present */
5454 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5455 raw_inode, handle);
5459 * What we do here is to mark the in-core inode as clean with respect to inode
5460 * dirtiness (it may still be data-dirty).
5461 * This means that the in-core inode may be reaped by prune_icache
5462 * without having to perform any I/O. This is a very good thing,
5463 * because *any* task may call prune_icache - even ones which
5464 * have a transaction open against a different journal.
5466 * Is this cheating? Not really. Sure, we haven't written the
5467 * inode out, but prune_icache isn't a user-visible syncing function.
5468 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5469 * we start and wait on commits.
5471 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5473 struct ext4_iloc iloc;
5474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5475 static unsigned int mnt_count;
5476 int err, ret;
5478 might_sleep();
5479 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5480 err = ext4_reserve_inode_write(handle, inode, &iloc);
5481 if (err)
5482 return err;
5483 if (ext4_handle_valid(handle) &&
5484 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5485 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5487 * We need extra buffer credits since we may write into EA block
5488 * with this same handle. If journal_extend fails, then it will
5489 * only result in a minor loss of functionality for that inode.
5490 * If this is felt to be critical, then e2fsck should be run to
5491 * force a large enough s_min_extra_isize.
5493 if ((jbd2_journal_extend(handle,
5494 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5495 ret = ext4_expand_extra_isize(inode,
5496 sbi->s_want_extra_isize,
5497 iloc, handle);
5498 if (ret) {
5499 if (mnt_count !=
5500 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5501 ext4_warning(inode->i_sb,
5502 "Unable to expand inode %lu. Delete"
5503 " some EAs or run e2fsck.",
5504 inode->i_ino);
5505 mnt_count =
5506 le16_to_cpu(sbi->s_es->s_mnt_count);
5511 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5515 * ext4_dirty_inode() is called from __mark_inode_dirty()
5517 * We're really interested in the case where a file is being extended.
5518 * i_size has been changed by generic_commit_write() and we thus need
5519 * to include the updated inode in the current transaction.
5521 * Also, dquot_alloc_block() will always dirty the inode when blocks
5522 * are allocated to the file.
5524 * If the inode is marked synchronous, we don't honour that here - doing
5525 * so would cause a commit on atime updates, which we don't bother doing.
5526 * We handle synchronous inodes at the highest possible level.
5528 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5529 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5530 * to copy into the on-disk inode structure are the timestamp files.
5532 void ext4_dirty_inode(struct inode *inode, int flags)
5534 handle_t *handle;
5536 if (flags == I_DIRTY_TIME)
5537 return;
5538 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5539 if (IS_ERR(handle))
5540 goto out;
5542 ext4_mark_inode_dirty(handle, inode);
5544 ext4_journal_stop(handle);
5545 out:
5546 return;
5549 #if 0
5551 * Bind an inode's backing buffer_head into this transaction, to prevent
5552 * it from being flushed to disk early. Unlike
5553 * ext4_reserve_inode_write, this leaves behind no bh reference and
5554 * returns no iloc structure, so the caller needs to repeat the iloc
5555 * lookup to mark the inode dirty later.
5557 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5559 struct ext4_iloc iloc;
5561 int err = 0;
5562 if (handle) {
5563 err = ext4_get_inode_loc(inode, &iloc);
5564 if (!err) {
5565 BUFFER_TRACE(iloc.bh, "get_write_access");
5566 err = jbd2_journal_get_write_access(handle, iloc.bh);
5567 if (!err)
5568 err = ext4_handle_dirty_metadata(handle,
5569 NULL,
5570 iloc.bh);
5571 brelse(iloc.bh);
5574 ext4_std_error(inode->i_sb, err);
5575 return err;
5577 #endif
5579 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5581 journal_t *journal;
5582 handle_t *handle;
5583 int err;
5584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5587 * We have to be very careful here: changing a data block's
5588 * journaling status dynamically is dangerous. If we write a
5589 * data block to the journal, change the status and then delete
5590 * that block, we risk forgetting to revoke the old log record
5591 * from the journal and so a subsequent replay can corrupt data.
5592 * So, first we make sure that the journal is empty and that
5593 * nobody is changing anything.
5596 journal = EXT4_JOURNAL(inode);
5597 if (!journal)
5598 return 0;
5599 if (is_journal_aborted(journal))
5600 return -EROFS;
5602 /* Wait for all existing dio workers */
5603 ext4_inode_block_unlocked_dio(inode);
5604 inode_dio_wait(inode);
5607 * Before flushing the journal and switching inode's aops, we have
5608 * to flush all dirty data the inode has. There can be outstanding
5609 * delayed allocations, there can be unwritten extents created by
5610 * fallocate or buffered writes in dioread_nolock mode covered by
5611 * dirty data which can be converted only after flushing the dirty
5612 * data (and journalled aops don't know how to handle these cases).
5614 if (val) {
5615 down_write(&EXT4_I(inode)->i_mmap_sem);
5616 err = filemap_write_and_wait(inode->i_mapping);
5617 if (err < 0) {
5618 up_write(&EXT4_I(inode)->i_mmap_sem);
5619 ext4_inode_resume_unlocked_dio(inode);
5620 return err;
5624 percpu_down_write(&sbi->s_journal_flag_rwsem);
5625 jbd2_journal_lock_updates(journal);
5628 * OK, there are no updates running now, and all cached data is
5629 * synced to disk. We are now in a completely consistent state
5630 * which doesn't have anything in the journal, and we know that
5631 * no filesystem updates are running, so it is safe to modify
5632 * the inode's in-core data-journaling state flag now.
5635 if (val)
5636 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5637 else {
5638 err = jbd2_journal_flush(journal);
5639 if (err < 0) {
5640 jbd2_journal_unlock_updates(journal);
5641 percpu_up_write(&sbi->s_journal_flag_rwsem);
5642 ext4_inode_resume_unlocked_dio(inode);
5643 return err;
5645 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5647 ext4_set_aops(inode);
5649 jbd2_journal_unlock_updates(journal);
5650 percpu_up_write(&sbi->s_journal_flag_rwsem);
5652 if (val)
5653 up_write(&EXT4_I(inode)->i_mmap_sem);
5654 ext4_inode_resume_unlocked_dio(inode);
5656 /* Finally we can mark the inode as dirty. */
5658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5659 if (IS_ERR(handle))
5660 return PTR_ERR(handle);
5662 err = ext4_mark_inode_dirty(handle, inode);
5663 ext4_handle_sync(handle);
5664 ext4_journal_stop(handle);
5665 ext4_std_error(inode->i_sb, err);
5667 return err;
5670 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5672 return !buffer_mapped(bh);
5675 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5677 struct page *page = vmf->page;
5678 loff_t size;
5679 unsigned long len;
5680 int ret;
5681 struct file *file = vma->vm_file;
5682 struct inode *inode = file_inode(file);
5683 struct address_space *mapping = inode->i_mapping;
5684 handle_t *handle;
5685 get_block_t *get_block;
5686 int retries = 0;
5688 sb_start_pagefault(inode->i_sb);
5689 file_update_time(vma->vm_file);
5691 down_read(&EXT4_I(inode)->i_mmap_sem);
5693 ret = ext4_convert_inline_data(inode);
5694 if (ret)
5695 goto out_ret;
5697 /* Delalloc case is easy... */
5698 if (test_opt(inode->i_sb, DELALLOC) &&
5699 !ext4_should_journal_data(inode) &&
5700 !ext4_nonda_switch(inode->i_sb)) {
5701 do {
5702 ret = block_page_mkwrite(vma, vmf,
5703 ext4_da_get_block_prep);
5704 } while (ret == -ENOSPC &&
5705 ext4_should_retry_alloc(inode->i_sb, &retries));
5706 goto out_ret;
5709 lock_page(page);
5710 size = i_size_read(inode);
5711 /* Page got truncated from under us? */
5712 if (page->mapping != mapping || page_offset(page) > size) {
5713 unlock_page(page);
5714 ret = VM_FAULT_NOPAGE;
5715 goto out;
5718 if (page->index == size >> PAGE_SHIFT)
5719 len = size & ~PAGE_MASK;
5720 else
5721 len = PAGE_SIZE;
5723 * Return if we have all the buffers mapped. This avoids the need to do
5724 * journal_start/journal_stop which can block and take a long time
5726 if (page_has_buffers(page)) {
5727 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5728 0, len, NULL,
5729 ext4_bh_unmapped)) {
5730 /* Wait so that we don't change page under IO */
5731 wait_for_stable_page(page);
5732 ret = VM_FAULT_LOCKED;
5733 goto out;
5736 unlock_page(page);
5737 /* OK, we need to fill the hole... */
5738 if (ext4_should_dioread_nolock(inode))
5739 get_block = ext4_get_block_unwritten;
5740 else
5741 get_block = ext4_get_block;
5742 retry_alloc:
5743 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5744 ext4_writepage_trans_blocks(inode));
5745 if (IS_ERR(handle)) {
5746 ret = VM_FAULT_SIGBUS;
5747 goto out;
5749 ret = block_page_mkwrite(vma, vmf, get_block);
5750 if (!ret && ext4_should_journal_data(inode)) {
5751 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5752 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5753 unlock_page(page);
5754 ret = VM_FAULT_SIGBUS;
5755 ext4_journal_stop(handle);
5756 goto out;
5758 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5760 ext4_journal_stop(handle);
5761 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5762 goto retry_alloc;
5763 out_ret:
5764 ret = block_page_mkwrite_return(ret);
5765 out:
5766 up_read(&EXT4_I(inode)->i_mmap_sem);
5767 sb_end_pagefault(inode->i_sb);
5768 return ret;
5771 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5773 struct inode *inode = file_inode(vma->vm_file);
5774 int err;
5776 down_read(&EXT4_I(inode)->i_mmap_sem);
5777 err = filemap_fault(vma, vmf);
5778 up_read(&EXT4_I(inode)->i_mmap_sem);
5780 return err;
5784 * Find the first extent at or after @lblk in an inode that is not a hole.
5785 * Search for @map_len blocks at most. The extent is returned in @result.
5787 * The function returns 1 if we found an extent. The function returns 0 in
5788 * case there is no extent at or after @lblk and in that case also sets
5789 * @result->es_len to 0. In case of error, the error code is returned.
5791 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5792 unsigned int map_len, struct extent_status *result)
5794 struct ext4_map_blocks map;
5795 struct extent_status es = {};
5796 int ret;
5798 map.m_lblk = lblk;
5799 map.m_len = map_len;
5802 * For non-extent based files this loop may iterate several times since
5803 * we do not determine full hole size.
5805 while (map.m_len > 0) {
5806 ret = ext4_map_blocks(NULL, inode, &map, 0);
5807 if (ret < 0)
5808 return ret;
5809 /* There's extent covering m_lblk? Just return it. */
5810 if (ret > 0) {
5811 int status;
5813 ext4_es_store_pblock(result, map.m_pblk);
5814 result->es_lblk = map.m_lblk;
5815 result->es_len = map.m_len;
5816 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5817 status = EXTENT_STATUS_UNWRITTEN;
5818 else
5819 status = EXTENT_STATUS_WRITTEN;
5820 ext4_es_store_status(result, status);
5821 return 1;
5823 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5824 map.m_lblk + map.m_len - 1,
5825 &es);
5826 /* Is delalloc data before next block in extent tree? */
5827 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5828 ext4_lblk_t offset = 0;
5830 if (es.es_lblk < lblk)
5831 offset = lblk - es.es_lblk;
5832 result->es_lblk = es.es_lblk + offset;
5833 ext4_es_store_pblock(result,
5834 ext4_es_pblock(&es) + offset);
5835 result->es_len = es.es_len - offset;
5836 ext4_es_store_status(result, ext4_es_status(&es));
5838 return 1;
5840 /* There's a hole at m_lblk, advance us after it */
5841 map.m_lblk += map.m_len;
5842 map_len -= map.m_len;
5843 map.m_len = map_len;
5844 cond_resched();
5846 result->es_len = 0;
5847 return 0;