4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
12 #include <linux/nsproxy.h>
16 /* return the next shared peer mount of @p */
17 static inline struct mount
*next_peer(struct mount
*p
)
19 return list_entry(p
->mnt_share
.next
, struct mount
, mnt_share
);
22 static inline struct mount
*first_slave(struct mount
*p
)
24 return list_entry(p
->mnt_slave_list
.next
, struct mount
, mnt_slave
);
27 static inline struct mount
*next_slave(struct mount
*p
)
29 return list_entry(p
->mnt_slave
.next
, struct mount
, mnt_slave
);
32 static struct mount
*get_peer_under_root(struct mount
*mnt
,
33 struct mnt_namespace
*ns
,
34 const struct path
*root
)
36 struct mount
*m
= mnt
;
39 /* Check the namespace first for optimization */
40 if (m
->mnt_ns
== ns
&& is_path_reachable(m
, m
->mnt
.mnt_root
, root
))
50 * Get ID of closest dominating peer group having a representative
51 * under the given root.
53 * Caller must hold namespace_sem
55 int get_dominating_id(struct mount
*mnt
, const struct path
*root
)
59 for (m
= mnt
->mnt_master
; m
!= NULL
; m
= m
->mnt_master
) {
60 struct mount
*d
= get_peer_under_root(m
, mnt
->mnt_ns
, root
);
62 return d
->mnt_group_id
;
68 static int do_make_slave(struct mount
*mnt
)
70 struct mount
*peer_mnt
= mnt
, *master
= mnt
->mnt_master
;
71 struct mount
*slave_mnt
;
74 * slave 'mnt' to a peer mount that has the
75 * same root dentry. If none is available then
76 * slave it to anything that is available.
78 while ((peer_mnt
= next_peer(peer_mnt
)) != mnt
&&
79 peer_mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_root
) ;
81 if (peer_mnt
== mnt
) {
82 peer_mnt
= next_peer(mnt
);
86 if (mnt
->mnt_group_id
&& IS_MNT_SHARED(mnt
) &&
87 list_empty(&mnt
->mnt_share
))
88 mnt_release_group_id(mnt
);
90 list_del_init(&mnt
->mnt_share
);
91 mnt
->mnt_group_id
= 0;
97 list_for_each_entry(slave_mnt
, &mnt
->mnt_slave_list
, mnt_slave
)
98 slave_mnt
->mnt_master
= master
;
99 list_move(&mnt
->mnt_slave
, &master
->mnt_slave_list
);
100 list_splice(&mnt
->mnt_slave_list
, master
->mnt_slave_list
.prev
);
101 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
103 struct list_head
*p
= &mnt
->mnt_slave_list
;
104 while (!list_empty(p
)) {
105 slave_mnt
= list_first_entry(p
,
106 struct mount
, mnt_slave
);
107 list_del_init(&slave_mnt
->mnt_slave
);
108 slave_mnt
->mnt_master
= NULL
;
111 mnt
->mnt_master
= master
;
112 CLEAR_MNT_SHARED(mnt
);
117 * vfsmount lock must be held for write
119 void change_mnt_propagation(struct mount
*mnt
, int type
)
121 if (type
== MS_SHARED
) {
126 if (type
!= MS_SLAVE
) {
127 list_del_init(&mnt
->mnt_slave
);
128 mnt
->mnt_master
= NULL
;
129 if (type
== MS_UNBINDABLE
)
130 mnt
->mnt
.mnt_flags
|= MNT_UNBINDABLE
;
132 mnt
->mnt
.mnt_flags
&= ~MNT_UNBINDABLE
;
137 * get the next mount in the propagation tree.
138 * @m: the mount seen last
139 * @origin: the original mount from where the tree walk initiated
141 * Note that peer groups form contiguous segments of slave lists.
142 * We rely on that in get_source() to be able to find out if
143 * vfsmount found while iterating with propagation_next() is
144 * a peer of one we'd found earlier.
146 static struct mount
*propagation_next(struct mount
*m
,
147 struct mount
*origin
)
149 /* are there any slaves of this mount? */
150 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
151 return first_slave(m
);
154 struct mount
*master
= m
->mnt_master
;
156 if (master
== origin
->mnt_master
) {
157 struct mount
*next
= next_peer(m
);
158 return (next
== origin
) ? NULL
: next
;
159 } else if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
160 return next_slave(m
);
167 static struct mount
*next_group(struct mount
*m
, struct mount
*origin
)
172 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
173 return first_slave(m
);
175 if (m
->mnt_group_id
== origin
->mnt_group_id
) {
178 } else if (m
->mnt_slave
.next
!= &next
->mnt_slave
)
182 /* m is the last peer */
184 struct mount
*master
= m
->mnt_master
;
185 if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
186 return next_slave(m
);
187 m
= next_peer(master
);
188 if (master
->mnt_group_id
== origin
->mnt_group_id
)
190 if (master
->mnt_slave
.next
== &m
->mnt_slave
)
199 /* all accesses are serialized by namespace_sem */
200 static struct user_namespace
*user_ns
;
201 static struct mount
*last_dest
, *first_source
, *last_source
, *dest_master
;
202 static struct mountpoint
*mp
;
203 static struct hlist_head
*list
;
205 static inline bool peers(struct mount
*m1
, struct mount
*m2
)
207 return m1
->mnt_group_id
== m2
->mnt_group_id
&& m1
->mnt_group_id
;
210 static int propagate_one(struct mount
*m
)
214 /* skip ones added by this propagate_mnt() */
217 /* skip if mountpoint isn't covered by it */
218 if (!is_subdir(mp
->m_dentry
, m
->mnt
.mnt_root
))
220 if (peers(m
, last_dest
)) {
221 type
= CL_MAKE_SHARED
;
225 for (n
= m
; ; n
= p
) {
227 if (p
== dest_master
|| IS_MNT_MARKED(p
))
231 struct mount
*parent
= last_source
->mnt_parent
;
232 if (last_source
== first_source
)
234 done
= parent
->mnt_master
== p
;
235 if (done
&& peers(n
, parent
))
237 last_source
= last_source
->mnt_master
;
241 /* beginning of peer group among the slaves? */
242 if (IS_MNT_SHARED(m
))
243 type
|= CL_MAKE_SHARED
;
246 /* Notice when we are propagating across user namespaces */
247 if (m
->mnt_ns
->user_ns
!= user_ns
)
248 type
|= CL_UNPRIVILEGED
;
249 child
= copy_tree(last_source
, last_source
->mnt
.mnt_root
, type
);
251 return PTR_ERR(child
);
252 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
253 mnt_set_mountpoint(m
, mp
, child
);
256 if (m
->mnt_master
!= dest_master
) {
257 read_seqlock_excl(&mount_lock
);
258 SET_MNT_MARK(m
->mnt_master
);
259 read_sequnlock_excl(&mount_lock
);
261 hlist_add_head(&child
->mnt_hash
, list
);
262 return count_mounts(m
->mnt_ns
, child
);
266 * mount 'source_mnt' under the destination 'dest_mnt' at
267 * dentry 'dest_dentry'. And propagate that mount to
268 * all the peer and slave mounts of 'dest_mnt'.
269 * Link all the new mounts into a propagation tree headed at
270 * source_mnt. Also link all the new mounts using ->mnt_list
271 * headed at source_mnt's ->mnt_list
273 * @dest_mnt: destination mount.
274 * @dest_dentry: destination dentry.
275 * @source_mnt: source mount.
276 * @tree_list : list of heads of trees to be attached.
278 int propagate_mnt(struct mount
*dest_mnt
, struct mountpoint
*dest_mp
,
279 struct mount
*source_mnt
, struct hlist_head
*tree_list
)
285 * we don't want to bother passing tons of arguments to
286 * propagate_one(); everything is serialized by namespace_sem,
287 * so globals will do just fine.
289 user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
290 last_dest
= dest_mnt
;
291 first_source
= source_mnt
;
292 last_source
= source_mnt
;
295 dest_master
= dest_mnt
->mnt_master
;
297 /* all peers of dest_mnt, except dest_mnt itself */
298 for (n
= next_peer(dest_mnt
); n
!= dest_mnt
; n
= next_peer(n
)) {
299 ret
= propagate_one(n
);
304 /* all slave groups */
305 for (m
= next_group(dest_mnt
, dest_mnt
); m
;
306 m
= next_group(m
, dest_mnt
)) {
307 /* everything in that slave group */
310 ret
= propagate_one(n
);
317 read_seqlock_excl(&mount_lock
);
318 hlist_for_each_entry(n
, tree_list
, mnt_hash
) {
320 if (m
->mnt_master
!= dest_mnt
->mnt_master
)
321 CLEAR_MNT_MARK(m
->mnt_master
);
323 read_sequnlock_excl(&mount_lock
);
327 static struct mount
*find_topper(struct mount
*mnt
)
329 /* If there is exactly one mount covering mnt completely return it. */
332 if (!list_is_singular(&mnt
->mnt_mounts
))
335 child
= list_first_entry(&mnt
->mnt_mounts
, struct mount
, mnt_child
);
336 if (child
->mnt_mountpoint
!= mnt
->mnt
.mnt_root
)
343 * return true if the refcount is greater than count
345 static inline int do_refcount_check(struct mount
*mnt
, int count
)
347 return mnt_get_count(mnt
) > count
;
351 * check if the mount 'mnt' can be unmounted successfully.
352 * @mnt: the mount to be checked for unmount
353 * NOTE: unmounting 'mnt' would naturally propagate to all
354 * other mounts its parent propagates to.
355 * Check if any of these mounts that **do not have submounts**
356 * have more references than 'refcnt'. If so return busy.
358 * vfsmount lock must be held for write
360 int propagate_mount_busy(struct mount
*mnt
, int refcnt
)
362 struct mount
*m
, *child
, *topper
;
363 struct mount
*parent
= mnt
->mnt_parent
;
366 return do_refcount_check(mnt
, refcnt
);
369 * quickly check if the current mount can be unmounted.
370 * If not, we don't have to go checking for all other
373 if (!list_empty(&mnt
->mnt_mounts
) || do_refcount_check(mnt
, refcnt
))
376 for (m
= propagation_next(parent
, parent
); m
;
377 m
= propagation_next(m
, parent
)) {
379 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
383 /* Is there exactly one mount on the child that covers
384 * it completely whose reference should be ignored?
386 topper
= find_topper(child
);
389 else if (!list_empty(&child
->mnt_mounts
))
392 if (do_refcount_check(child
, count
))
399 * Clear MNT_LOCKED when it can be shown to be safe.
401 * mount_lock lock must be held for write
403 void propagate_mount_unlock(struct mount
*mnt
)
405 struct mount
*parent
= mnt
->mnt_parent
;
406 struct mount
*m
, *child
;
408 BUG_ON(parent
== mnt
);
410 for (m
= propagation_next(parent
, parent
); m
;
411 m
= propagation_next(m
, parent
)) {
412 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
414 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
419 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
421 static void mark_umount_candidates(struct mount
*mnt
)
423 struct mount
*parent
= mnt
->mnt_parent
;
426 BUG_ON(parent
== mnt
);
428 for (m
= propagation_next(parent
, parent
); m
;
429 m
= propagation_next(m
, parent
)) {
430 struct mount
*child
= __lookup_mnt(&m
->mnt
,
431 mnt
->mnt_mountpoint
);
432 if (!child
|| (child
->mnt
.mnt_flags
& MNT_UMOUNT
))
434 if (!IS_MNT_LOCKED(child
) || IS_MNT_MARKED(m
)) {
441 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
442 * parent propagates to.
444 static void __propagate_umount(struct mount
*mnt
)
446 struct mount
*parent
= mnt
->mnt_parent
;
449 BUG_ON(parent
== mnt
);
451 for (m
= propagation_next(parent
, parent
); m
;
452 m
= propagation_next(m
, parent
)) {
453 struct mount
*topper
;
454 struct mount
*child
= __lookup_mnt(&m
->mnt
,
455 mnt
->mnt_mountpoint
);
457 * umount the child only if the child has no children
458 * and the child is marked safe to unmount.
460 if (!child
|| !IS_MNT_MARKED(child
))
462 CLEAR_MNT_MARK(child
);
464 /* If there is exactly one mount covering all of child
465 * replace child with that mount.
467 topper
= find_topper(child
);
469 mnt_change_mountpoint(child
->mnt_parent
, child
->mnt_mp
,
472 if (list_empty(&child
->mnt_mounts
)) {
473 list_del_init(&child
->mnt_child
);
474 child
->mnt
.mnt_flags
|= MNT_UMOUNT
;
475 list_move_tail(&child
->mnt_list
, &mnt
->mnt_list
);
481 * collect all mounts that receive propagation from the mount in @list,
482 * and return these additional mounts in the same list.
483 * @list: the list of mounts to be unmounted.
485 * vfsmount lock must be held for write
487 int propagate_umount(struct list_head
*list
)
491 list_for_each_entry_reverse(mnt
, list
, mnt_list
)
492 mark_umount_candidates(mnt
);
494 list_for_each_entry(mnt
, list
, mnt_list
)
495 __propagate_umount(mnt
);