pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / fs / pstore / ram_core.c
blob3975deec02f8ca9202c42662cba69f9783605158
1 /*
2 * Copyright (C) 2012 Google, Inc.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
15 #define pr_fmt(fmt) "persistent_ram: " fmt
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/pstore_ram.h>
26 #include <linux/rslib.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <asm/page.h>
32 struct persistent_ram_buffer {
33 uint32_t sig;
34 atomic_t start;
35 atomic_t size;
36 uint8_t data[0];
39 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
41 static inline size_t buffer_size(struct persistent_ram_zone *prz)
43 return atomic_read(&prz->buffer->size);
46 static inline size_t buffer_start(struct persistent_ram_zone *prz)
48 return atomic_read(&prz->buffer->start);
51 static DEFINE_RAW_SPINLOCK(buffer_lock);
53 /* increase and wrap the start pointer, returning the old value */
54 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
56 int old;
57 int new;
58 unsigned long flags;
60 raw_spin_lock_irqsave(&buffer_lock, flags);
62 old = atomic_read(&prz->buffer->start);
63 new = old + a;
64 while (unlikely(new >= prz->buffer_size))
65 new -= prz->buffer_size;
66 atomic_set(&prz->buffer->start, new);
68 raw_spin_unlock_irqrestore(&buffer_lock, flags);
70 return old;
73 /* increase the size counter until it hits the max size */
74 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
76 size_t old;
77 size_t new;
78 unsigned long flags;
80 raw_spin_lock_irqsave(&buffer_lock, flags);
82 old = atomic_read(&prz->buffer->size);
83 if (old == prz->buffer_size)
84 goto exit;
86 new = old + a;
87 if (new > prz->buffer_size)
88 new = prz->buffer_size;
89 atomic_set(&prz->buffer->size, new);
91 exit:
92 raw_spin_unlock_irqrestore(&buffer_lock, flags);
95 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
96 uint8_t *data, size_t len, uint8_t *ecc)
98 int i;
99 uint16_t par[prz->ecc_info.ecc_size];
101 /* Initialize the parity buffer */
102 memset(par, 0, sizeof(par));
103 encode_rs8(prz->rs_decoder, data, len, par, 0);
104 for (i = 0; i < prz->ecc_info.ecc_size; i++)
105 ecc[i] = par[i];
108 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
109 void *data, size_t len, uint8_t *ecc)
111 int i;
112 uint16_t par[prz->ecc_info.ecc_size];
114 for (i = 0; i < prz->ecc_info.ecc_size; i++)
115 par[i] = ecc[i];
116 return decode_rs8(prz->rs_decoder, data, par, len,
117 NULL, 0, NULL, 0, NULL);
120 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
121 unsigned int start, unsigned int count)
123 struct persistent_ram_buffer *buffer = prz->buffer;
124 uint8_t *buffer_end = buffer->data + prz->buffer_size;
125 uint8_t *block;
126 uint8_t *par;
127 int ecc_block_size = prz->ecc_info.block_size;
128 int ecc_size = prz->ecc_info.ecc_size;
129 int size = ecc_block_size;
131 if (!ecc_size)
132 return;
134 block = buffer->data + (start & ~(ecc_block_size - 1));
135 par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
137 do {
138 if (block + ecc_block_size > buffer_end)
139 size = buffer_end - block;
140 persistent_ram_encode_rs8(prz, block, size, par);
141 block += ecc_block_size;
142 par += ecc_size;
143 } while (block < buffer->data + start + count);
146 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
148 struct persistent_ram_buffer *buffer = prz->buffer;
150 if (!prz->ecc_info.ecc_size)
151 return;
153 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
154 prz->par_header);
157 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
159 struct persistent_ram_buffer *buffer = prz->buffer;
160 uint8_t *block;
161 uint8_t *par;
163 if (!prz->ecc_info.ecc_size)
164 return;
166 block = buffer->data;
167 par = prz->par_buffer;
168 while (block < buffer->data + buffer_size(prz)) {
169 int numerr;
170 int size = prz->ecc_info.block_size;
171 if (block + size > buffer->data + prz->buffer_size)
172 size = buffer->data + prz->buffer_size - block;
173 numerr = persistent_ram_decode_rs8(prz, block, size, par);
174 if (numerr > 0) {
175 pr_devel("error in block %p, %d\n", block, numerr);
176 prz->corrected_bytes += numerr;
177 } else if (numerr < 0) {
178 pr_devel("uncorrectable error in block %p\n", block);
179 prz->bad_blocks++;
181 block += prz->ecc_info.block_size;
182 par += prz->ecc_info.ecc_size;
186 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
187 struct persistent_ram_ecc_info *ecc_info)
189 int numerr;
190 struct persistent_ram_buffer *buffer = prz->buffer;
191 int ecc_blocks;
192 size_t ecc_total;
194 if (!ecc_info || !ecc_info->ecc_size)
195 return 0;
197 prz->ecc_info.block_size = ecc_info->block_size ?: 128;
198 prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
199 prz->ecc_info.symsize = ecc_info->symsize ?: 8;
200 prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
202 ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
203 prz->ecc_info.block_size +
204 prz->ecc_info.ecc_size);
205 ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
206 if (ecc_total >= prz->buffer_size) {
207 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
208 __func__, prz->ecc_info.ecc_size,
209 ecc_total, prz->buffer_size);
210 return -EINVAL;
213 prz->buffer_size -= ecc_total;
214 prz->par_buffer = buffer->data + prz->buffer_size;
215 prz->par_header = prz->par_buffer +
216 ecc_blocks * prz->ecc_info.ecc_size;
219 * first consecutive root is 0
220 * primitive element to generate roots = 1
222 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
223 0, 1, prz->ecc_info.ecc_size);
224 if (prz->rs_decoder == NULL) {
225 pr_info("init_rs failed\n");
226 return -EINVAL;
229 prz->corrected_bytes = 0;
230 prz->bad_blocks = 0;
232 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
233 prz->par_header);
234 if (numerr > 0) {
235 pr_info("error in header, %d\n", numerr);
236 prz->corrected_bytes += numerr;
237 } else if (numerr < 0) {
238 pr_info("uncorrectable error in header\n");
239 prz->bad_blocks++;
242 return 0;
245 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
246 char *str, size_t len)
248 ssize_t ret;
250 if (!prz->ecc_info.ecc_size)
251 return 0;
253 if (prz->corrected_bytes || prz->bad_blocks)
254 ret = snprintf(str, len, ""
255 "\n%d Corrected bytes, %d unrecoverable blocks\n",
256 prz->corrected_bytes, prz->bad_blocks);
257 else
258 ret = snprintf(str, len, "\nNo errors detected\n");
260 return ret;
263 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
264 const void *s, unsigned int start, unsigned int count)
266 struct persistent_ram_buffer *buffer = prz->buffer;
267 memcpy_toio(buffer->data + start, s, count);
268 persistent_ram_update_ecc(prz, start, count);
271 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
272 const void __user *s, unsigned int start, unsigned int count)
274 struct persistent_ram_buffer *buffer = prz->buffer;
275 int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
276 -EFAULT : 0;
277 persistent_ram_update_ecc(prz, start, count);
278 return ret;
281 void persistent_ram_save_old(struct persistent_ram_zone *prz)
283 struct persistent_ram_buffer *buffer = prz->buffer;
284 size_t size = buffer_size(prz);
285 size_t start = buffer_start(prz);
287 if (!size)
288 return;
290 if (!prz->old_log) {
291 persistent_ram_ecc_old(prz);
292 prz->old_log = kmalloc(size, GFP_KERNEL);
294 if (!prz->old_log) {
295 pr_err("failed to allocate buffer\n");
296 return;
299 prz->old_log_size = size;
300 memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
301 memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
304 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
305 const void *s, unsigned int count)
307 int rem;
308 int c = count;
309 size_t start;
311 if (unlikely(c > prz->buffer_size)) {
312 s += c - prz->buffer_size;
313 c = prz->buffer_size;
316 buffer_size_add(prz, c);
318 start = buffer_start_add(prz, c);
320 rem = prz->buffer_size - start;
321 if (unlikely(rem < c)) {
322 persistent_ram_update(prz, s, start, rem);
323 s += rem;
324 c -= rem;
325 start = 0;
327 persistent_ram_update(prz, s, start, c);
329 persistent_ram_update_header_ecc(prz);
331 return count;
334 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
335 const void __user *s, unsigned int count)
337 int rem, ret = 0, c = count;
338 size_t start;
340 if (unlikely(!access_ok(VERIFY_READ, s, count)))
341 return -EFAULT;
342 if (unlikely(c > prz->buffer_size)) {
343 s += c - prz->buffer_size;
344 c = prz->buffer_size;
347 buffer_size_add(prz, c);
349 start = buffer_start_add(prz, c);
351 rem = prz->buffer_size - start;
352 if (unlikely(rem < c)) {
353 ret = persistent_ram_update_user(prz, s, start, rem);
354 s += rem;
355 c -= rem;
356 start = 0;
358 if (likely(!ret))
359 ret = persistent_ram_update_user(prz, s, start, c);
361 persistent_ram_update_header_ecc(prz);
363 return unlikely(ret) ? ret : count;
366 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
368 return prz->old_log_size;
371 void *persistent_ram_old(struct persistent_ram_zone *prz)
373 return prz->old_log;
376 void persistent_ram_free_old(struct persistent_ram_zone *prz)
378 kfree(prz->old_log);
379 prz->old_log = NULL;
380 prz->old_log_size = 0;
383 void persistent_ram_zap(struct persistent_ram_zone *prz)
385 atomic_set(&prz->buffer->start, 0);
386 atomic_set(&prz->buffer->size, 0);
387 persistent_ram_update_header_ecc(prz);
390 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
391 unsigned int memtype)
393 struct page **pages;
394 phys_addr_t page_start;
395 unsigned int page_count;
396 pgprot_t prot;
397 unsigned int i;
398 void *vaddr;
400 page_start = start - offset_in_page(start);
401 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
403 if (memtype)
404 prot = pgprot_noncached(PAGE_KERNEL);
405 else
406 prot = pgprot_writecombine(PAGE_KERNEL);
408 pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
409 if (!pages) {
410 pr_err("%s: Failed to allocate array for %u pages\n",
411 __func__, page_count);
412 return NULL;
415 for (i = 0; i < page_count; i++) {
416 phys_addr_t addr = page_start + i * PAGE_SIZE;
417 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
419 vaddr = vmap(pages, page_count, VM_MAP, prot);
420 kfree(pages);
422 return vaddr;
425 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
426 unsigned int memtype)
428 void *va;
430 if (!request_mem_region(start, size, "persistent_ram")) {
431 pr_err("request mem region (0x%llx@0x%llx) failed\n",
432 (unsigned long long)size, (unsigned long long)start);
433 return NULL;
436 if (memtype)
437 va = ioremap(start, size);
438 else
439 va = ioremap_wc(start, size);
441 return va;
444 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
445 struct persistent_ram_zone *prz, int memtype)
447 prz->paddr = start;
448 prz->size = size;
450 if (pfn_valid(start >> PAGE_SHIFT))
451 prz->vaddr = persistent_ram_vmap(start, size, memtype);
452 else
453 prz->vaddr = persistent_ram_iomap(start, size, memtype);
455 if (!prz->vaddr) {
456 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
457 (unsigned long long)size, (unsigned long long)start);
458 return -ENOMEM;
461 prz->buffer = prz->vaddr + offset_in_page(start);
462 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
464 return 0;
467 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
468 struct persistent_ram_ecc_info *ecc_info)
470 int ret;
472 ret = persistent_ram_init_ecc(prz, ecc_info);
473 if (ret)
474 return ret;
476 sig ^= PERSISTENT_RAM_SIG;
478 if (prz->buffer->sig == sig) {
479 if (buffer_size(prz) > prz->buffer_size ||
480 buffer_start(prz) > buffer_size(prz))
481 pr_info("found existing invalid buffer, size %zu, start %zu\n",
482 buffer_size(prz), buffer_start(prz));
483 else {
484 pr_debug("found existing buffer, size %zu, start %zu\n",
485 buffer_size(prz), buffer_start(prz));
486 persistent_ram_save_old(prz);
487 return 0;
489 } else {
490 pr_debug("no valid data in buffer (sig = 0x%08x)\n",
491 prz->buffer->sig);
494 prz->buffer->sig = sig;
495 persistent_ram_zap(prz);
497 return 0;
500 void persistent_ram_free(struct persistent_ram_zone *prz)
502 if (!prz)
503 return;
505 if (prz->vaddr) {
506 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
507 vunmap(prz->vaddr);
508 } else {
509 iounmap(prz->vaddr);
510 release_mem_region(prz->paddr, prz->size);
512 prz->vaddr = NULL;
514 persistent_ram_free_old(prz);
515 kfree(prz);
518 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
519 u32 sig, struct persistent_ram_ecc_info *ecc_info,
520 unsigned int memtype)
522 struct persistent_ram_zone *prz;
523 int ret = -ENOMEM;
525 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
526 if (!prz) {
527 pr_err("failed to allocate persistent ram zone\n");
528 goto err;
531 ret = persistent_ram_buffer_map(start, size, prz, memtype);
532 if (ret)
533 goto err;
535 ret = persistent_ram_post_init(prz, sig, ecc_info);
536 if (ret)
537 goto err;
539 return prz;
540 err:
541 persistent_ram_free(prz);
542 return ERR_PTR(ret);