pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blobe5c1dbef36268b004165a048207a41164af7d1f5
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 static int
84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
85 unsigned int mtu,
86 int (*output)(struct net *, struct sock *, struct sk_buff *));
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr *iph)
91 iph->check = 0;
92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 EXPORT_SYMBOL(ip_send_check);
96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 struct iphdr *iph = ip_hdr(skb);
100 iph->tot_len = htons(skb->len);
101 ip_send_check(iph);
103 /* if egress device is enslaved to an L3 master device pass the
104 * skb to its handler for processing
106 skb = l3mdev_ip_out(sk, skb);
107 if (unlikely(!skb))
108 return 0;
110 skb->protocol = htons(ETH_P_IP);
112 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
113 net, sk, skb, NULL, skb_dst(skb)->dev,
114 dst_output);
117 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 int err;
121 err = __ip_local_out(net, sk, skb);
122 if (likely(err == 1))
123 err = dst_output(net, sk, skb);
125 return err;
127 EXPORT_SYMBOL_GPL(ip_local_out);
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 int ttl = inet->uc_ttl;
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct net *net = sock_net(sk);
148 struct iphdr *iph;
150 /* Build the IP header. */
151 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
152 skb_reset_network_header(skb);
153 iph = ip_hdr(skb);
154 iph->version = 4;
155 iph->ihl = 5;
156 iph->tos = inet->tos;
157 iph->ttl = ip_select_ttl(inet, &rt->dst);
158 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
159 iph->saddr = saddr;
160 iph->protocol = sk->sk_protocol;
161 if (ip_dont_fragment(sk, &rt->dst)) {
162 iph->frag_off = htons(IP_DF);
163 iph->id = 0;
164 } else {
165 iph->frag_off = 0;
166 __ip_select_ident(net, iph, 1);
169 if (opt && opt->opt.optlen) {
170 iph->ihl += opt->opt.optlen>>2;
171 ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 skb->priority = sk->sk_priority;
175 skb->mark = sk->sk_mark;
177 /* Send it out. */
178 return ip_local_out(net, skb->sk, skb);
180 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
182 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
184 struct dst_entry *dst = skb_dst(skb);
185 struct rtable *rt = (struct rtable *)dst;
186 struct net_device *dev = dst->dev;
187 unsigned int hh_len = LL_RESERVED_SPACE(dev);
188 struct neighbour *neigh;
189 u32 nexthop;
191 if (rt->rt_type == RTN_MULTICAST) {
192 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
193 } else if (rt->rt_type == RTN_BROADCAST)
194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
196 /* Be paranoid, rather than too clever. */
197 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
198 struct sk_buff *skb2;
200 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
201 if (!skb2) {
202 kfree_skb(skb);
203 return -ENOMEM;
205 if (skb->sk)
206 skb_set_owner_w(skb2, skb->sk);
207 consume_skb(skb);
208 skb = skb2;
211 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
212 int res = lwtunnel_xmit(skb);
214 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
215 return res;
218 rcu_read_lock_bh();
219 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
220 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
221 if (unlikely(!neigh))
222 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
223 if (!IS_ERR(neigh)) {
224 int res = dst_neigh_output(dst, neigh, skb);
226 rcu_read_unlock_bh();
227 return res;
229 rcu_read_unlock_bh();
231 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
232 __func__);
233 kfree_skb(skb);
234 return -EINVAL;
237 static int ip_finish_output_gso(struct net *net, struct sock *sk,
238 struct sk_buff *skb, unsigned int mtu)
240 netdev_features_t features;
241 struct sk_buff *segs;
242 int ret = 0;
244 /* common case: seglen is <= mtu
246 if (skb_gso_validate_mtu(skb, mtu))
247 return ip_finish_output2(net, sk, skb);
249 /* Slowpath - GSO segment length exceeds the egress MTU.
251 * This can happen in several cases:
252 * - Forwarding of a TCP GRO skb, when DF flag is not set.
253 * - Forwarding of an skb that arrived on a virtualization interface
254 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
255 * stack.
256 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
257 * interface with a smaller MTU.
258 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
259 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
260 * insufficent MTU.
262 features = netif_skb_features(skb);
263 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
264 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
265 if (IS_ERR_OR_NULL(segs)) {
266 kfree_skb(skb);
267 return -ENOMEM;
270 consume_skb(skb);
272 do {
273 struct sk_buff *nskb = segs->next;
274 int err;
276 segs->next = NULL;
277 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
279 if (err && ret == 0)
280 ret = err;
281 segs = nskb;
282 } while (segs);
284 return ret;
287 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 unsigned int mtu;
291 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
292 /* Policy lookup after SNAT yielded a new policy */
293 if (skb_dst(skb)->xfrm) {
294 IPCB(skb)->flags |= IPSKB_REROUTED;
295 return dst_output(net, sk, skb);
297 #endif
298 mtu = ip_skb_dst_mtu(sk, skb);
299 if (skb_is_gso(skb))
300 return ip_finish_output_gso(net, sk, skb, mtu);
302 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
303 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
305 return ip_finish_output2(net, sk, skb);
308 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
310 struct rtable *rt = skb_rtable(skb);
311 struct net_device *dev = rt->dst.dev;
314 * If the indicated interface is up and running, send the packet.
316 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
318 skb->dev = dev;
319 skb->protocol = htons(ETH_P_IP);
322 * Multicasts are looped back for other local users
325 if (rt->rt_flags&RTCF_MULTICAST) {
326 if (sk_mc_loop(sk)
327 #ifdef CONFIG_IP_MROUTE
328 /* Small optimization: do not loopback not local frames,
329 which returned after forwarding; they will be dropped
330 by ip_mr_input in any case.
331 Note, that local frames are looped back to be delivered
332 to local recipients.
334 This check is duplicated in ip_mr_input at the moment.
337 ((rt->rt_flags & RTCF_LOCAL) ||
338 !(IPCB(skb)->flags & IPSKB_FORWARDED))
339 #endif
341 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
342 if (newskb)
343 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
344 net, sk, newskb, NULL, newskb->dev,
345 dev_loopback_xmit);
348 /* Multicasts with ttl 0 must not go beyond the host */
350 if (ip_hdr(skb)->ttl == 0) {
351 kfree_skb(skb);
352 return 0;
356 if (rt->rt_flags&RTCF_BROADCAST) {
357 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
358 if (newskb)
359 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
360 net, sk, newskb, NULL, newskb->dev,
361 dev_loopback_xmit);
364 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
365 net, sk, skb, NULL, skb->dev,
366 ip_finish_output,
367 !(IPCB(skb)->flags & IPSKB_REROUTED));
370 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
372 struct net_device *dev = skb_dst(skb)->dev;
374 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
376 skb->dev = dev;
377 skb->protocol = htons(ETH_P_IP);
379 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
380 net, sk, skb, NULL, dev,
381 ip_finish_output,
382 !(IPCB(skb)->flags & IPSKB_REROUTED));
386 * copy saddr and daddr, possibly using 64bit load/stores
387 * Equivalent to :
388 * iph->saddr = fl4->saddr;
389 * iph->daddr = fl4->daddr;
391 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
393 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
394 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
395 memcpy(&iph->saddr, &fl4->saddr,
396 sizeof(fl4->saddr) + sizeof(fl4->daddr));
399 /* Note: skb->sk can be different from sk, in case of tunnels */
400 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
402 struct inet_sock *inet = inet_sk(sk);
403 struct net *net = sock_net(sk);
404 struct ip_options_rcu *inet_opt;
405 struct flowi4 *fl4;
406 struct rtable *rt;
407 struct iphdr *iph;
408 int res;
410 /* Skip all of this if the packet is already routed,
411 * f.e. by something like SCTP.
413 rcu_read_lock();
414 inet_opt = rcu_dereference(inet->inet_opt);
415 fl4 = &fl->u.ip4;
416 rt = skb_rtable(skb);
417 if (rt)
418 goto packet_routed;
420 /* Make sure we can route this packet. */
421 rt = (struct rtable *)__sk_dst_check(sk, 0);
422 if (!rt) {
423 __be32 daddr;
425 /* Use correct destination address if we have options. */
426 daddr = inet->inet_daddr;
427 if (inet_opt && inet_opt->opt.srr)
428 daddr = inet_opt->opt.faddr;
430 /* If this fails, retransmit mechanism of transport layer will
431 * keep trying until route appears or the connection times
432 * itself out.
434 rt = ip_route_output_ports(net, fl4, sk,
435 daddr, inet->inet_saddr,
436 inet->inet_dport,
437 inet->inet_sport,
438 sk->sk_protocol,
439 RT_CONN_FLAGS(sk),
440 sk->sk_bound_dev_if);
441 if (IS_ERR(rt))
442 goto no_route;
443 sk_setup_caps(sk, &rt->dst);
445 skb_dst_set_noref(skb, &rt->dst);
447 packet_routed:
448 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
449 goto no_route;
451 /* OK, we know where to send it, allocate and build IP header. */
452 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
453 skb_reset_network_header(skb);
454 iph = ip_hdr(skb);
455 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
456 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
457 iph->frag_off = htons(IP_DF);
458 else
459 iph->frag_off = 0;
460 iph->ttl = ip_select_ttl(inet, &rt->dst);
461 iph->protocol = sk->sk_protocol;
462 ip_copy_addrs(iph, fl4);
464 /* Transport layer set skb->h.foo itself. */
466 if (inet_opt && inet_opt->opt.optlen) {
467 iph->ihl += inet_opt->opt.optlen >> 2;
468 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
471 ip_select_ident_segs(net, skb, sk,
472 skb_shinfo(skb)->gso_segs ?: 1);
474 /* TODO : should we use skb->sk here instead of sk ? */
475 skb->priority = sk->sk_priority;
476 skb->mark = sk->sk_mark;
478 res = ip_local_out(net, sk, skb);
479 rcu_read_unlock();
480 return res;
482 no_route:
483 rcu_read_unlock();
484 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
485 kfree_skb(skb);
486 return -EHOSTUNREACH;
488 EXPORT_SYMBOL(ip_queue_xmit);
490 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
492 to->pkt_type = from->pkt_type;
493 to->priority = from->priority;
494 to->protocol = from->protocol;
495 skb_dst_drop(to);
496 skb_dst_copy(to, from);
497 to->dev = from->dev;
498 to->mark = from->mark;
500 /* Copy the flags to each fragment. */
501 IPCB(to)->flags = IPCB(from)->flags;
503 #ifdef CONFIG_NET_SCHED
504 to->tc_index = from->tc_index;
505 #endif
506 nf_copy(to, from);
507 #if IS_ENABLED(CONFIG_IP_VS)
508 to->ipvs_property = from->ipvs_property;
509 #endif
510 skb_copy_secmark(to, from);
513 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
514 unsigned int mtu,
515 int (*output)(struct net *, struct sock *, struct sk_buff *))
517 struct iphdr *iph = ip_hdr(skb);
519 if ((iph->frag_off & htons(IP_DF)) == 0)
520 return ip_do_fragment(net, sk, skb, output);
522 if (unlikely(!skb->ignore_df ||
523 (IPCB(skb)->frag_max_size &&
524 IPCB(skb)->frag_max_size > mtu))) {
525 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
526 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
527 htonl(mtu));
528 kfree_skb(skb);
529 return -EMSGSIZE;
532 return ip_do_fragment(net, sk, skb, output);
536 * This IP datagram is too large to be sent in one piece. Break it up into
537 * smaller pieces (each of size equal to IP header plus
538 * a block of the data of the original IP data part) that will yet fit in a
539 * single device frame, and queue such a frame for sending.
542 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 int (*output)(struct net *, struct sock *, struct sk_buff *))
545 struct iphdr *iph;
546 int ptr;
547 struct sk_buff *skb2;
548 unsigned int mtu, hlen, left, len, ll_rs;
549 int offset;
550 __be16 not_last_frag;
551 struct rtable *rt = skb_rtable(skb);
552 int err = 0;
554 /* for offloaded checksums cleanup checksum before fragmentation */
555 if (skb->ip_summed == CHECKSUM_PARTIAL &&
556 (err = skb_checksum_help(skb)))
557 goto fail;
560 * Point into the IP datagram header.
563 iph = ip_hdr(skb);
565 mtu = ip_skb_dst_mtu(sk, skb);
566 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
567 mtu = IPCB(skb)->frag_max_size;
570 * Setup starting values.
573 hlen = iph->ihl * 4;
574 mtu = mtu - hlen; /* Size of data space */
575 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
577 /* When frag_list is given, use it. First, check its validity:
578 * some transformers could create wrong frag_list or break existing
579 * one, it is not prohibited. In this case fall back to copying.
581 * LATER: this step can be merged to real generation of fragments,
582 * we can switch to copy when see the first bad fragment.
584 if (skb_has_frag_list(skb)) {
585 struct sk_buff *frag, *frag2;
586 int first_len = skb_pagelen(skb);
588 if (first_len - hlen > mtu ||
589 ((first_len - hlen) & 7) ||
590 ip_is_fragment(iph) ||
591 skb_cloned(skb))
592 goto slow_path;
594 skb_walk_frags(skb, frag) {
595 /* Correct geometry. */
596 if (frag->len > mtu ||
597 ((frag->len & 7) && frag->next) ||
598 skb_headroom(frag) < hlen)
599 goto slow_path_clean;
601 /* Partially cloned skb? */
602 if (skb_shared(frag))
603 goto slow_path_clean;
605 BUG_ON(frag->sk);
606 if (skb->sk) {
607 frag->sk = skb->sk;
608 frag->destructor = sock_wfree;
610 skb->truesize -= frag->truesize;
613 /* Everything is OK. Generate! */
615 err = 0;
616 offset = 0;
617 frag = skb_shinfo(skb)->frag_list;
618 skb_frag_list_init(skb);
619 skb->data_len = first_len - skb_headlen(skb);
620 skb->len = first_len;
621 iph->tot_len = htons(first_len);
622 iph->frag_off = htons(IP_MF);
623 ip_send_check(iph);
625 for (;;) {
626 /* Prepare header of the next frame,
627 * before previous one went down. */
628 if (frag) {
629 frag->ip_summed = CHECKSUM_NONE;
630 skb_reset_transport_header(frag);
631 __skb_push(frag, hlen);
632 skb_reset_network_header(frag);
633 memcpy(skb_network_header(frag), iph, hlen);
634 iph = ip_hdr(frag);
635 iph->tot_len = htons(frag->len);
636 ip_copy_metadata(frag, skb);
637 if (offset == 0)
638 ip_options_fragment(frag);
639 offset += skb->len - hlen;
640 iph->frag_off = htons(offset>>3);
641 if (frag->next)
642 iph->frag_off |= htons(IP_MF);
643 /* Ready, complete checksum */
644 ip_send_check(iph);
647 err = output(net, sk, skb);
649 if (!err)
650 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
651 if (err || !frag)
652 break;
654 skb = frag;
655 frag = skb->next;
656 skb->next = NULL;
659 if (err == 0) {
660 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
661 return 0;
664 while (frag) {
665 skb = frag->next;
666 kfree_skb(frag);
667 frag = skb;
669 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
670 return err;
672 slow_path_clean:
673 skb_walk_frags(skb, frag2) {
674 if (frag2 == frag)
675 break;
676 frag2->sk = NULL;
677 frag2->destructor = NULL;
678 skb->truesize += frag2->truesize;
682 slow_path:
683 iph = ip_hdr(skb);
685 left = skb->len - hlen; /* Space per frame */
686 ptr = hlen; /* Where to start from */
688 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
691 * Fragment the datagram.
694 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
695 not_last_frag = iph->frag_off & htons(IP_MF);
698 * Keep copying data until we run out.
701 while (left > 0) {
702 len = left;
703 /* IF: it doesn't fit, use 'mtu' - the data space left */
704 if (len > mtu)
705 len = mtu;
706 /* IF: we are not sending up to and including the packet end
707 then align the next start on an eight byte boundary */
708 if (len < left) {
709 len &= ~7;
712 /* Allocate buffer */
713 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
714 if (!skb2) {
715 err = -ENOMEM;
716 goto fail;
720 * Set up data on packet
723 ip_copy_metadata(skb2, skb);
724 skb_reserve(skb2, ll_rs);
725 skb_put(skb2, len + hlen);
726 skb_reset_network_header(skb2);
727 skb2->transport_header = skb2->network_header + hlen;
730 * Charge the memory for the fragment to any owner
731 * it might possess
734 if (skb->sk)
735 skb_set_owner_w(skb2, skb->sk);
738 * Copy the packet header into the new buffer.
741 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
744 * Copy a block of the IP datagram.
746 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
747 BUG();
748 left -= len;
751 * Fill in the new header fields.
753 iph = ip_hdr(skb2);
754 iph->frag_off = htons((offset >> 3));
756 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
757 iph->frag_off |= htons(IP_DF);
759 /* ANK: dirty, but effective trick. Upgrade options only if
760 * the segment to be fragmented was THE FIRST (otherwise,
761 * options are already fixed) and make it ONCE
762 * on the initial skb, so that all the following fragments
763 * will inherit fixed options.
765 if (offset == 0)
766 ip_options_fragment(skb);
769 * Added AC : If we are fragmenting a fragment that's not the
770 * last fragment then keep MF on each bit
772 if (left > 0 || not_last_frag)
773 iph->frag_off |= htons(IP_MF);
774 ptr += len;
775 offset += len;
778 * Put this fragment into the sending queue.
780 iph->tot_len = htons(len + hlen);
782 ip_send_check(iph);
784 err = output(net, sk, skb2);
785 if (err)
786 goto fail;
788 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
790 consume_skb(skb);
791 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
792 return err;
794 fail:
795 kfree_skb(skb);
796 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
797 return err;
799 EXPORT_SYMBOL(ip_do_fragment);
802 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
804 struct msghdr *msg = from;
806 if (skb->ip_summed == CHECKSUM_PARTIAL) {
807 if (copy_from_iter(to, len, &msg->msg_iter) != len)
808 return -EFAULT;
809 } else {
810 __wsum csum = 0;
811 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
812 return -EFAULT;
813 skb->csum = csum_block_add(skb->csum, csum, odd);
815 return 0;
817 EXPORT_SYMBOL(ip_generic_getfrag);
819 static inline __wsum
820 csum_page(struct page *page, int offset, int copy)
822 char *kaddr;
823 __wsum csum;
824 kaddr = kmap(page);
825 csum = csum_partial(kaddr + offset, copy, 0);
826 kunmap(page);
827 return csum;
830 static inline int ip_ufo_append_data(struct sock *sk,
831 struct sk_buff_head *queue,
832 int getfrag(void *from, char *to, int offset, int len,
833 int odd, struct sk_buff *skb),
834 void *from, int length, int hh_len, int fragheaderlen,
835 int transhdrlen, int maxfraglen, unsigned int flags)
837 struct sk_buff *skb;
838 int err;
840 /* There is support for UDP fragmentation offload by network
841 * device, so create one single skb packet containing complete
842 * udp datagram
844 skb = skb_peek_tail(queue);
845 if (!skb) {
846 skb = sock_alloc_send_skb(sk,
847 hh_len + fragheaderlen + transhdrlen + 20,
848 (flags & MSG_DONTWAIT), &err);
850 if (!skb)
851 return err;
853 /* reserve space for Hardware header */
854 skb_reserve(skb, hh_len);
856 /* create space for UDP/IP header */
857 skb_put(skb, fragheaderlen + transhdrlen);
859 /* initialize network header pointer */
860 skb_reset_network_header(skb);
862 /* initialize protocol header pointer */
863 skb->transport_header = skb->network_header + fragheaderlen;
865 skb->csum = 0;
867 __skb_queue_tail(queue, skb);
868 } else if (skb_is_gso(skb)) {
869 goto append;
872 skb->ip_summed = CHECKSUM_PARTIAL;
873 /* specify the length of each IP datagram fragment */
874 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
875 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
877 append:
878 return skb_append_datato_frags(sk, skb, getfrag, from,
879 (length - transhdrlen));
882 static int __ip_append_data(struct sock *sk,
883 struct flowi4 *fl4,
884 struct sk_buff_head *queue,
885 struct inet_cork *cork,
886 struct page_frag *pfrag,
887 int getfrag(void *from, char *to, int offset,
888 int len, int odd, struct sk_buff *skb),
889 void *from, int length, int transhdrlen,
890 unsigned int flags)
892 struct inet_sock *inet = inet_sk(sk);
893 struct sk_buff *skb;
895 struct ip_options *opt = cork->opt;
896 int hh_len;
897 int exthdrlen;
898 int mtu;
899 int copy;
900 int err;
901 int offset = 0;
902 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
903 int csummode = CHECKSUM_NONE;
904 struct rtable *rt = (struct rtable *)cork->dst;
905 u32 tskey = 0;
907 skb = skb_peek_tail(queue);
909 exthdrlen = !skb ? rt->dst.header_len : 0;
910 mtu = cork->fragsize;
911 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
912 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
913 tskey = sk->sk_tskey++;
915 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
917 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
918 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
919 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
921 if (cork->length + length > maxnonfragsize - fragheaderlen) {
922 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
923 mtu - (opt ? opt->optlen : 0));
924 return -EMSGSIZE;
928 * transhdrlen > 0 means that this is the first fragment and we wish
929 * it won't be fragmented in the future.
931 if (transhdrlen &&
932 length + fragheaderlen <= mtu &&
933 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
934 !(flags & MSG_MORE) &&
935 !exthdrlen)
936 csummode = CHECKSUM_PARTIAL;
938 cork->length += length;
939 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
940 (sk->sk_protocol == IPPROTO_UDP) &&
941 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
942 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
943 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
944 hh_len, fragheaderlen, transhdrlen,
945 maxfraglen, flags);
946 if (err)
947 goto error;
948 return 0;
951 /* So, what's going on in the loop below?
953 * We use calculated fragment length to generate chained skb,
954 * each of segments is IP fragment ready for sending to network after
955 * adding appropriate IP header.
958 if (!skb)
959 goto alloc_new_skb;
961 while (length > 0) {
962 /* Check if the remaining data fits into current packet. */
963 copy = mtu - skb->len;
964 if (copy < length)
965 copy = maxfraglen - skb->len;
966 if (copy <= 0) {
967 char *data;
968 unsigned int datalen;
969 unsigned int fraglen;
970 unsigned int fraggap;
971 unsigned int alloclen;
972 struct sk_buff *skb_prev;
973 alloc_new_skb:
974 skb_prev = skb;
975 if (skb_prev)
976 fraggap = skb_prev->len - maxfraglen;
977 else
978 fraggap = 0;
981 * If remaining data exceeds the mtu,
982 * we know we need more fragment(s).
984 datalen = length + fraggap;
985 if (datalen > mtu - fragheaderlen)
986 datalen = maxfraglen - fragheaderlen;
987 fraglen = datalen + fragheaderlen;
989 if ((flags & MSG_MORE) &&
990 !(rt->dst.dev->features&NETIF_F_SG))
991 alloclen = mtu;
992 else
993 alloclen = fraglen;
995 alloclen += exthdrlen;
997 /* The last fragment gets additional space at tail.
998 * Note, with MSG_MORE we overallocate on fragments,
999 * because we have no idea what fragment will be
1000 * the last.
1002 if (datalen == length + fraggap)
1003 alloclen += rt->dst.trailer_len;
1005 if (transhdrlen) {
1006 skb = sock_alloc_send_skb(sk,
1007 alloclen + hh_len + 15,
1008 (flags & MSG_DONTWAIT), &err);
1009 } else {
1010 skb = NULL;
1011 if (atomic_read(&sk->sk_wmem_alloc) <=
1012 2 * sk->sk_sndbuf)
1013 skb = sock_wmalloc(sk,
1014 alloclen + hh_len + 15, 1,
1015 sk->sk_allocation);
1016 if (unlikely(!skb))
1017 err = -ENOBUFS;
1019 if (!skb)
1020 goto error;
1023 * Fill in the control structures
1025 skb->ip_summed = csummode;
1026 skb->csum = 0;
1027 skb_reserve(skb, hh_len);
1029 /* only the initial fragment is time stamped */
1030 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1031 cork->tx_flags = 0;
1032 skb_shinfo(skb)->tskey = tskey;
1033 tskey = 0;
1036 * Find where to start putting bytes.
1038 data = skb_put(skb, fraglen + exthdrlen);
1039 skb_set_network_header(skb, exthdrlen);
1040 skb->transport_header = (skb->network_header +
1041 fragheaderlen);
1042 data += fragheaderlen + exthdrlen;
1044 if (fraggap) {
1045 skb->csum = skb_copy_and_csum_bits(
1046 skb_prev, maxfraglen,
1047 data + transhdrlen, fraggap, 0);
1048 skb_prev->csum = csum_sub(skb_prev->csum,
1049 skb->csum);
1050 data += fraggap;
1051 pskb_trim_unique(skb_prev, maxfraglen);
1054 copy = datalen - transhdrlen - fraggap;
1055 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1056 err = -EFAULT;
1057 kfree_skb(skb);
1058 goto error;
1061 offset += copy;
1062 length -= datalen - fraggap;
1063 transhdrlen = 0;
1064 exthdrlen = 0;
1065 csummode = CHECKSUM_NONE;
1068 * Put the packet on the pending queue.
1070 __skb_queue_tail(queue, skb);
1071 continue;
1074 if (copy > length)
1075 copy = length;
1077 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1078 unsigned int off;
1080 off = skb->len;
1081 if (getfrag(from, skb_put(skb, copy),
1082 offset, copy, off, skb) < 0) {
1083 __skb_trim(skb, off);
1084 err = -EFAULT;
1085 goto error;
1087 } else {
1088 int i = skb_shinfo(skb)->nr_frags;
1090 err = -ENOMEM;
1091 if (!sk_page_frag_refill(sk, pfrag))
1092 goto error;
1094 if (!skb_can_coalesce(skb, i, pfrag->page,
1095 pfrag->offset)) {
1096 err = -EMSGSIZE;
1097 if (i == MAX_SKB_FRAGS)
1098 goto error;
1100 __skb_fill_page_desc(skb, i, pfrag->page,
1101 pfrag->offset, 0);
1102 skb_shinfo(skb)->nr_frags = ++i;
1103 get_page(pfrag->page);
1105 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1106 if (getfrag(from,
1107 page_address(pfrag->page) + pfrag->offset,
1108 offset, copy, skb->len, skb) < 0)
1109 goto error_efault;
1111 pfrag->offset += copy;
1112 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1113 skb->len += copy;
1114 skb->data_len += copy;
1115 skb->truesize += copy;
1116 atomic_add(copy, &sk->sk_wmem_alloc);
1118 offset += copy;
1119 length -= copy;
1122 return 0;
1124 error_efault:
1125 err = -EFAULT;
1126 error:
1127 cork->length -= length;
1128 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1129 return err;
1132 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1133 struct ipcm_cookie *ipc, struct rtable **rtp)
1135 struct ip_options_rcu *opt;
1136 struct rtable *rt;
1139 * setup for corking.
1141 opt = ipc->opt;
1142 if (opt) {
1143 if (!cork->opt) {
1144 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1145 sk->sk_allocation);
1146 if (unlikely(!cork->opt))
1147 return -ENOBUFS;
1149 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1150 cork->flags |= IPCORK_OPT;
1151 cork->addr = ipc->addr;
1153 rt = *rtp;
1154 if (unlikely(!rt))
1155 return -EFAULT;
1157 * We steal reference to this route, caller should not release it
1159 *rtp = NULL;
1160 cork->fragsize = ip_sk_use_pmtu(sk) ?
1161 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1162 cork->dst = &rt->dst;
1163 cork->length = 0;
1164 cork->ttl = ipc->ttl;
1165 cork->tos = ipc->tos;
1166 cork->priority = ipc->priority;
1167 cork->tx_flags = ipc->tx_flags;
1169 return 0;
1173 * ip_append_data() and ip_append_page() can make one large IP datagram
1174 * from many pieces of data. Each pieces will be holded on the socket
1175 * until ip_push_pending_frames() is called. Each piece can be a page
1176 * or non-page data.
1178 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1179 * this interface potentially.
1181 * LATER: length must be adjusted by pad at tail, when it is required.
1183 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1184 int getfrag(void *from, char *to, int offset, int len,
1185 int odd, struct sk_buff *skb),
1186 void *from, int length, int transhdrlen,
1187 struct ipcm_cookie *ipc, struct rtable **rtp,
1188 unsigned int flags)
1190 struct inet_sock *inet = inet_sk(sk);
1191 int err;
1193 if (flags&MSG_PROBE)
1194 return 0;
1196 if (skb_queue_empty(&sk->sk_write_queue)) {
1197 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1198 if (err)
1199 return err;
1200 } else {
1201 transhdrlen = 0;
1204 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1205 sk_page_frag(sk), getfrag,
1206 from, length, transhdrlen, flags);
1209 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1210 int offset, size_t size, int flags)
1212 struct inet_sock *inet = inet_sk(sk);
1213 struct sk_buff *skb;
1214 struct rtable *rt;
1215 struct ip_options *opt = NULL;
1216 struct inet_cork *cork;
1217 int hh_len;
1218 int mtu;
1219 int len;
1220 int err;
1221 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1223 if (inet->hdrincl)
1224 return -EPERM;
1226 if (flags&MSG_PROBE)
1227 return 0;
1229 if (skb_queue_empty(&sk->sk_write_queue))
1230 return -EINVAL;
1232 cork = &inet->cork.base;
1233 rt = (struct rtable *)cork->dst;
1234 if (cork->flags & IPCORK_OPT)
1235 opt = cork->opt;
1237 if (!(rt->dst.dev->features&NETIF_F_SG))
1238 return -EOPNOTSUPP;
1240 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1241 mtu = cork->fragsize;
1243 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1244 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1245 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1247 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1248 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1249 mtu - (opt ? opt->optlen : 0));
1250 return -EMSGSIZE;
1253 skb = skb_peek_tail(&sk->sk_write_queue);
1254 if (!skb)
1255 return -EINVAL;
1257 if ((size + skb->len > mtu) &&
1258 (sk->sk_protocol == IPPROTO_UDP) &&
1259 (rt->dst.dev->features & NETIF_F_UFO)) {
1260 if (skb->ip_summed != CHECKSUM_PARTIAL)
1261 return -EOPNOTSUPP;
1263 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1264 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1266 cork->length += size;
1268 while (size > 0) {
1269 if (skb_is_gso(skb)) {
1270 len = size;
1271 } else {
1273 /* Check if the remaining data fits into current packet. */
1274 len = mtu - skb->len;
1275 if (len < size)
1276 len = maxfraglen - skb->len;
1278 if (len <= 0) {
1279 struct sk_buff *skb_prev;
1280 int alloclen;
1282 skb_prev = skb;
1283 fraggap = skb_prev->len - maxfraglen;
1285 alloclen = fragheaderlen + hh_len + fraggap + 15;
1286 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1287 if (unlikely(!skb)) {
1288 err = -ENOBUFS;
1289 goto error;
1293 * Fill in the control structures
1295 skb->ip_summed = CHECKSUM_NONE;
1296 skb->csum = 0;
1297 skb_reserve(skb, hh_len);
1300 * Find where to start putting bytes.
1302 skb_put(skb, fragheaderlen + fraggap);
1303 skb_reset_network_header(skb);
1304 skb->transport_header = (skb->network_header +
1305 fragheaderlen);
1306 if (fraggap) {
1307 skb->csum = skb_copy_and_csum_bits(skb_prev,
1308 maxfraglen,
1309 skb_transport_header(skb),
1310 fraggap, 0);
1311 skb_prev->csum = csum_sub(skb_prev->csum,
1312 skb->csum);
1313 pskb_trim_unique(skb_prev, maxfraglen);
1317 * Put the packet on the pending queue.
1319 __skb_queue_tail(&sk->sk_write_queue, skb);
1320 continue;
1323 if (len > size)
1324 len = size;
1326 if (skb_append_pagefrags(skb, page, offset, len)) {
1327 err = -EMSGSIZE;
1328 goto error;
1331 if (skb->ip_summed == CHECKSUM_NONE) {
1332 __wsum csum;
1333 csum = csum_page(page, offset, len);
1334 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1337 skb->len += len;
1338 skb->data_len += len;
1339 skb->truesize += len;
1340 atomic_add(len, &sk->sk_wmem_alloc);
1341 offset += len;
1342 size -= len;
1344 return 0;
1346 error:
1347 cork->length -= size;
1348 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1349 return err;
1352 static void ip_cork_release(struct inet_cork *cork)
1354 cork->flags &= ~IPCORK_OPT;
1355 kfree(cork->opt);
1356 cork->opt = NULL;
1357 dst_release(cork->dst);
1358 cork->dst = NULL;
1362 * Combined all pending IP fragments on the socket as one IP datagram
1363 * and push them out.
1365 struct sk_buff *__ip_make_skb(struct sock *sk,
1366 struct flowi4 *fl4,
1367 struct sk_buff_head *queue,
1368 struct inet_cork *cork)
1370 struct sk_buff *skb, *tmp_skb;
1371 struct sk_buff **tail_skb;
1372 struct inet_sock *inet = inet_sk(sk);
1373 struct net *net = sock_net(sk);
1374 struct ip_options *opt = NULL;
1375 struct rtable *rt = (struct rtable *)cork->dst;
1376 struct iphdr *iph;
1377 __be16 df = 0;
1378 __u8 ttl;
1380 skb = __skb_dequeue(queue);
1381 if (!skb)
1382 goto out;
1383 tail_skb = &(skb_shinfo(skb)->frag_list);
1385 /* move skb->data to ip header from ext header */
1386 if (skb->data < skb_network_header(skb))
1387 __skb_pull(skb, skb_network_offset(skb));
1388 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1389 __skb_pull(tmp_skb, skb_network_header_len(skb));
1390 *tail_skb = tmp_skb;
1391 tail_skb = &(tmp_skb->next);
1392 skb->len += tmp_skb->len;
1393 skb->data_len += tmp_skb->len;
1394 skb->truesize += tmp_skb->truesize;
1395 tmp_skb->destructor = NULL;
1396 tmp_skb->sk = NULL;
1399 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1400 * to fragment the frame generated here. No matter, what transforms
1401 * how transforms change size of the packet, it will come out.
1403 skb->ignore_df = ip_sk_ignore_df(sk);
1405 /* DF bit is set when we want to see DF on outgoing frames.
1406 * If ignore_df is set too, we still allow to fragment this frame
1407 * locally. */
1408 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1409 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1410 (skb->len <= dst_mtu(&rt->dst) &&
1411 ip_dont_fragment(sk, &rt->dst)))
1412 df = htons(IP_DF);
1414 if (cork->flags & IPCORK_OPT)
1415 opt = cork->opt;
1417 if (cork->ttl != 0)
1418 ttl = cork->ttl;
1419 else if (rt->rt_type == RTN_MULTICAST)
1420 ttl = inet->mc_ttl;
1421 else
1422 ttl = ip_select_ttl(inet, &rt->dst);
1424 iph = ip_hdr(skb);
1425 iph->version = 4;
1426 iph->ihl = 5;
1427 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1428 iph->frag_off = df;
1429 iph->ttl = ttl;
1430 iph->protocol = sk->sk_protocol;
1431 ip_copy_addrs(iph, fl4);
1432 ip_select_ident(net, skb, sk);
1434 if (opt) {
1435 iph->ihl += opt->optlen>>2;
1436 ip_options_build(skb, opt, cork->addr, rt, 0);
1439 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1440 skb->mark = sk->sk_mark;
1442 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1443 * on dst refcount
1445 cork->dst = NULL;
1446 skb_dst_set(skb, &rt->dst);
1448 if (iph->protocol == IPPROTO_ICMP)
1449 icmp_out_count(net, ((struct icmphdr *)
1450 skb_transport_header(skb))->type);
1452 ip_cork_release(cork);
1453 out:
1454 return skb;
1457 int ip_send_skb(struct net *net, struct sk_buff *skb)
1459 int err;
1461 err = ip_local_out(net, skb->sk, skb);
1462 if (err) {
1463 if (err > 0)
1464 err = net_xmit_errno(err);
1465 if (err)
1466 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1469 return err;
1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1474 struct sk_buff *skb;
1476 skb = ip_finish_skb(sk, fl4);
1477 if (!skb)
1478 return 0;
1480 /* Netfilter gets whole the not fragmented skb. */
1481 return ip_send_skb(sock_net(sk), skb);
1485 * Throw away all pending data on the socket.
1487 static void __ip_flush_pending_frames(struct sock *sk,
1488 struct sk_buff_head *queue,
1489 struct inet_cork *cork)
1491 struct sk_buff *skb;
1493 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1494 kfree_skb(skb);
1496 ip_cork_release(cork);
1499 void ip_flush_pending_frames(struct sock *sk)
1501 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1504 struct sk_buff *ip_make_skb(struct sock *sk,
1505 struct flowi4 *fl4,
1506 int getfrag(void *from, char *to, int offset,
1507 int len, int odd, struct sk_buff *skb),
1508 void *from, int length, int transhdrlen,
1509 struct ipcm_cookie *ipc, struct rtable **rtp,
1510 unsigned int flags)
1512 struct inet_cork cork;
1513 struct sk_buff_head queue;
1514 int err;
1516 if (flags & MSG_PROBE)
1517 return NULL;
1519 __skb_queue_head_init(&queue);
1521 cork.flags = 0;
1522 cork.addr = 0;
1523 cork.opt = NULL;
1524 err = ip_setup_cork(sk, &cork, ipc, rtp);
1525 if (err)
1526 return ERR_PTR(err);
1528 err = __ip_append_data(sk, fl4, &queue, &cork,
1529 &current->task_frag, getfrag,
1530 from, length, transhdrlen, flags);
1531 if (err) {
1532 __ip_flush_pending_frames(sk, &queue, &cork);
1533 return ERR_PTR(err);
1536 return __ip_make_skb(sk, fl4, &queue, &cork);
1540 * Fetch data from kernel space and fill in checksum if needed.
1542 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1543 int len, int odd, struct sk_buff *skb)
1545 __wsum csum;
1547 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1548 skb->csum = csum_block_add(skb->csum, csum, odd);
1549 return 0;
1553 * Generic function to send a packet as reply to another packet.
1554 * Used to send some TCP resets/acks so far.
1556 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1557 const struct ip_options *sopt,
1558 __be32 daddr, __be32 saddr,
1559 const struct ip_reply_arg *arg,
1560 unsigned int len)
1562 struct ip_options_data replyopts;
1563 struct ipcm_cookie ipc;
1564 struct flowi4 fl4;
1565 struct rtable *rt = skb_rtable(skb);
1566 struct net *net = sock_net(sk);
1567 struct sk_buff *nskb;
1568 int err;
1569 int oif;
1571 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1572 return;
1574 ipc.addr = daddr;
1575 ipc.opt = NULL;
1576 ipc.tx_flags = 0;
1577 ipc.ttl = 0;
1578 ipc.tos = -1;
1580 if (replyopts.opt.opt.optlen) {
1581 ipc.opt = &replyopts.opt;
1583 if (replyopts.opt.opt.srr)
1584 daddr = replyopts.opt.opt.faddr;
1587 oif = arg->bound_dev_if;
1588 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1589 oif = skb->skb_iif;
1591 flowi4_init_output(&fl4, oif,
1592 IP4_REPLY_MARK(net, skb->mark),
1593 RT_TOS(arg->tos),
1594 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1595 ip_reply_arg_flowi_flags(arg),
1596 daddr, saddr,
1597 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1598 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1599 rt = ip_route_output_key(net, &fl4);
1600 if (IS_ERR(rt))
1601 return;
1603 inet_sk(sk)->tos = arg->tos;
1605 sk->sk_priority = skb->priority;
1606 sk->sk_protocol = ip_hdr(skb)->protocol;
1607 sk->sk_bound_dev_if = arg->bound_dev_if;
1608 sk->sk_sndbuf = sysctl_wmem_default;
1609 sk->sk_mark = fl4.flowi4_mark;
1610 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1611 len, 0, &ipc, &rt, MSG_DONTWAIT);
1612 if (unlikely(err)) {
1613 ip_flush_pending_frames(sk);
1614 goto out;
1617 nskb = skb_peek(&sk->sk_write_queue);
1618 if (nskb) {
1619 if (arg->csumoffset >= 0)
1620 *((__sum16 *)skb_transport_header(nskb) +
1621 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1622 arg->csum));
1623 nskb->ip_summed = CHECKSUM_NONE;
1624 ip_push_pending_frames(sk, &fl4);
1626 out:
1627 ip_rt_put(rt);
1630 void __init ip_init(void)
1632 ip_rt_init();
1633 inet_initpeers();
1635 #if defined(CONFIG_IP_MULTICAST)
1636 igmp_mc_init();
1637 #endif