2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
84 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
86 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr
*iph
)
92 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
94 EXPORT_SYMBOL(ip_send_check
);
96 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
98 struct iphdr
*iph
= ip_hdr(skb
);
100 iph
->tot_len
= htons(skb
->len
);
103 /* if egress device is enslaved to an L3 master device pass the
104 * skb to its handler for processing
106 skb
= l3mdev_ip_out(sk
, skb
);
110 skb
->protocol
= htons(ETH_P_IP
);
112 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
113 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
117 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
121 err
= __ip_local_out(net
, sk
, skb
);
122 if (likely(err
== 1))
123 err
= dst_output(net
, sk
, skb
);
127 EXPORT_SYMBOL_GPL(ip_local_out
);
129 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
131 int ttl
= inet
->uc_ttl
;
134 ttl
= ip4_dst_hoplimit(dst
);
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
143 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
145 struct inet_sock
*inet
= inet_sk(sk
);
146 struct rtable
*rt
= skb_rtable(skb
);
147 struct net
*net
= sock_net(sk
);
150 /* Build the IP header. */
151 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
152 skb_reset_network_header(skb
);
156 iph
->tos
= inet
->tos
;
157 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
158 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
160 iph
->protocol
= sk
->sk_protocol
;
161 if (ip_dont_fragment(sk
, &rt
->dst
)) {
162 iph
->frag_off
= htons(IP_DF
);
166 __ip_select_ident(net
, iph
, 1);
169 if (opt
&& opt
->opt
.optlen
) {
170 iph
->ihl
+= opt
->opt
.optlen
>>2;
171 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
174 skb
->priority
= sk
->sk_priority
;
175 skb
->mark
= sk
->sk_mark
;
178 return ip_local_out(net
, skb
->sk
, skb
);
180 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
182 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
184 struct dst_entry
*dst
= skb_dst(skb
);
185 struct rtable
*rt
= (struct rtable
*)dst
;
186 struct net_device
*dev
= dst
->dev
;
187 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
188 struct neighbour
*neigh
;
191 if (rt
->rt_type
== RTN_MULTICAST
) {
192 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
193 } else if (rt
->rt_type
== RTN_BROADCAST
)
194 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
196 /* Be paranoid, rather than too clever. */
197 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
198 struct sk_buff
*skb2
;
200 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
206 skb_set_owner_w(skb2
, skb
->sk
);
211 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
212 int res
= lwtunnel_xmit(skb
);
214 if (res
< 0 || res
== LWTUNNEL_XMIT_DONE
)
219 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
220 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
221 if (unlikely(!neigh
))
222 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
223 if (!IS_ERR(neigh
)) {
224 int res
= dst_neigh_output(dst
, neigh
, skb
);
226 rcu_read_unlock_bh();
229 rcu_read_unlock_bh();
231 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
238 struct sk_buff
*skb
, unsigned int mtu
)
240 netdev_features_t features
;
241 struct sk_buff
*segs
;
244 /* common case: seglen is <= mtu
246 if (skb_gso_validate_mtu(skb
, mtu
))
247 return ip_finish_output2(net
, sk
, skb
);
249 /* Slowpath - GSO segment length exceeds the egress MTU.
251 * This can happen in several cases:
252 * - Forwarding of a TCP GRO skb, when DF flag is not set.
253 * - Forwarding of an skb that arrived on a virtualization interface
254 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
256 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
257 * interface with a smaller MTU.
258 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
259 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
262 features
= netif_skb_features(skb
);
263 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_SGO_CB_OFFSET
);
264 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
265 if (IS_ERR_OR_NULL(segs
)) {
273 struct sk_buff
*nskb
= segs
->next
;
277 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
287 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
291 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
292 /* Policy lookup after SNAT yielded a new policy */
293 if (skb_dst(skb
)->xfrm
) {
294 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
295 return dst_output(net
, sk
, skb
);
298 mtu
= ip_skb_dst_mtu(sk
, skb
);
300 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
302 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
303 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
305 return ip_finish_output2(net
, sk
, skb
);
308 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
310 struct rtable
*rt
= skb_rtable(skb
);
311 struct net_device
*dev
= rt
->dst
.dev
;
314 * If the indicated interface is up and running, send the packet.
316 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
319 skb
->protocol
= htons(ETH_P_IP
);
322 * Multicasts are looped back for other local users
325 if (rt
->rt_flags
&RTCF_MULTICAST
) {
327 #ifdef CONFIG_IP_MROUTE
328 /* Small optimization: do not loopback not local frames,
329 which returned after forwarding; they will be dropped
330 by ip_mr_input in any case.
331 Note, that local frames are looped back to be delivered
334 This check is duplicated in ip_mr_input at the moment.
337 ((rt
->rt_flags
& RTCF_LOCAL
) ||
338 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
341 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
343 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
344 net
, sk
, newskb
, NULL
, newskb
->dev
,
348 /* Multicasts with ttl 0 must not go beyond the host */
350 if (ip_hdr(skb
)->ttl
== 0) {
356 if (rt
->rt_flags
&RTCF_BROADCAST
) {
357 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
359 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
360 net
, sk
, newskb
, NULL
, newskb
->dev
,
364 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
365 net
, sk
, skb
, NULL
, skb
->dev
,
367 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
370 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
372 struct net_device
*dev
= skb_dst(skb
)->dev
;
374 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
377 skb
->protocol
= htons(ETH_P_IP
);
379 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
380 net
, sk
, skb
, NULL
, dev
,
382 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
386 * copy saddr and daddr, possibly using 64bit load/stores
388 * iph->saddr = fl4->saddr;
389 * iph->daddr = fl4->daddr;
391 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
393 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
394 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
395 memcpy(&iph
->saddr
, &fl4
->saddr
,
396 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
399 /* Note: skb->sk can be different from sk, in case of tunnels */
400 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
402 struct inet_sock
*inet
= inet_sk(sk
);
403 struct net
*net
= sock_net(sk
);
404 struct ip_options_rcu
*inet_opt
;
410 /* Skip all of this if the packet is already routed,
411 * f.e. by something like SCTP.
414 inet_opt
= rcu_dereference(inet
->inet_opt
);
416 rt
= skb_rtable(skb
);
420 /* Make sure we can route this packet. */
421 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
425 /* Use correct destination address if we have options. */
426 daddr
= inet
->inet_daddr
;
427 if (inet_opt
&& inet_opt
->opt
.srr
)
428 daddr
= inet_opt
->opt
.faddr
;
430 /* If this fails, retransmit mechanism of transport layer will
431 * keep trying until route appears or the connection times
434 rt
= ip_route_output_ports(net
, fl4
, sk
,
435 daddr
, inet
->inet_saddr
,
440 sk
->sk_bound_dev_if
);
443 sk_setup_caps(sk
, &rt
->dst
);
445 skb_dst_set_noref(skb
, &rt
->dst
);
448 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
451 /* OK, we know where to send it, allocate and build IP header. */
452 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
453 skb_reset_network_header(skb
);
455 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
456 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
457 iph
->frag_off
= htons(IP_DF
);
460 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
461 iph
->protocol
= sk
->sk_protocol
;
462 ip_copy_addrs(iph
, fl4
);
464 /* Transport layer set skb->h.foo itself. */
466 if (inet_opt
&& inet_opt
->opt
.optlen
) {
467 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
468 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
471 ip_select_ident_segs(net
, skb
, sk
,
472 skb_shinfo(skb
)->gso_segs
?: 1);
474 /* TODO : should we use skb->sk here instead of sk ? */
475 skb
->priority
= sk
->sk_priority
;
476 skb
->mark
= sk
->sk_mark
;
478 res
= ip_local_out(net
, sk
, skb
);
484 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
486 return -EHOSTUNREACH
;
488 EXPORT_SYMBOL(ip_queue_xmit
);
490 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
492 to
->pkt_type
= from
->pkt_type
;
493 to
->priority
= from
->priority
;
494 to
->protocol
= from
->protocol
;
496 skb_dst_copy(to
, from
);
498 to
->mark
= from
->mark
;
500 /* Copy the flags to each fragment. */
501 IPCB(to
)->flags
= IPCB(from
)->flags
;
503 #ifdef CONFIG_NET_SCHED
504 to
->tc_index
= from
->tc_index
;
507 #if IS_ENABLED(CONFIG_IP_VS)
508 to
->ipvs_property
= from
->ipvs_property
;
510 skb_copy_secmark(to
, from
);
513 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
515 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
517 struct iphdr
*iph
= ip_hdr(skb
);
519 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
520 return ip_do_fragment(net
, sk
, skb
, output
);
522 if (unlikely(!skb
->ignore_df
||
523 (IPCB(skb
)->frag_max_size
&&
524 IPCB(skb
)->frag_max_size
> mtu
))) {
525 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
526 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
532 return ip_do_fragment(net
, sk
, skb
, output
);
536 * This IP datagram is too large to be sent in one piece. Break it up into
537 * smaller pieces (each of size equal to IP header plus
538 * a block of the data of the original IP data part) that will yet fit in a
539 * single device frame, and queue such a frame for sending.
542 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
543 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
547 struct sk_buff
*skb2
;
548 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
550 __be16 not_last_frag
;
551 struct rtable
*rt
= skb_rtable(skb
);
554 /* for offloaded checksums cleanup checksum before fragmentation */
555 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
556 (err
= skb_checksum_help(skb
)))
560 * Point into the IP datagram header.
565 mtu
= ip_skb_dst_mtu(sk
, skb
);
566 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
567 mtu
= IPCB(skb
)->frag_max_size
;
570 * Setup starting values.
574 mtu
= mtu
- hlen
; /* Size of data space */
575 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
577 /* When frag_list is given, use it. First, check its validity:
578 * some transformers could create wrong frag_list or break existing
579 * one, it is not prohibited. In this case fall back to copying.
581 * LATER: this step can be merged to real generation of fragments,
582 * we can switch to copy when see the first bad fragment.
584 if (skb_has_frag_list(skb
)) {
585 struct sk_buff
*frag
, *frag2
;
586 int first_len
= skb_pagelen(skb
);
588 if (first_len
- hlen
> mtu
||
589 ((first_len
- hlen
) & 7) ||
590 ip_is_fragment(iph
) ||
594 skb_walk_frags(skb
, frag
) {
595 /* Correct geometry. */
596 if (frag
->len
> mtu
||
597 ((frag
->len
& 7) && frag
->next
) ||
598 skb_headroom(frag
) < hlen
)
599 goto slow_path_clean
;
601 /* Partially cloned skb? */
602 if (skb_shared(frag
))
603 goto slow_path_clean
;
608 frag
->destructor
= sock_wfree
;
610 skb
->truesize
-= frag
->truesize
;
613 /* Everything is OK. Generate! */
617 frag
= skb_shinfo(skb
)->frag_list
;
618 skb_frag_list_init(skb
);
619 skb
->data_len
= first_len
- skb_headlen(skb
);
620 skb
->len
= first_len
;
621 iph
->tot_len
= htons(first_len
);
622 iph
->frag_off
= htons(IP_MF
);
626 /* Prepare header of the next frame,
627 * before previous one went down. */
629 frag
->ip_summed
= CHECKSUM_NONE
;
630 skb_reset_transport_header(frag
);
631 __skb_push(frag
, hlen
);
632 skb_reset_network_header(frag
);
633 memcpy(skb_network_header(frag
), iph
, hlen
);
635 iph
->tot_len
= htons(frag
->len
);
636 ip_copy_metadata(frag
, skb
);
638 ip_options_fragment(frag
);
639 offset
+= skb
->len
- hlen
;
640 iph
->frag_off
= htons(offset
>>3);
642 iph
->frag_off
|= htons(IP_MF
);
643 /* Ready, complete checksum */
647 err
= output(net
, sk
, skb
);
650 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
660 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
669 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
673 skb_walk_frags(skb
, frag2
) {
677 frag2
->destructor
= NULL
;
678 skb
->truesize
+= frag2
->truesize
;
685 left
= skb
->len
- hlen
; /* Space per frame */
686 ptr
= hlen
; /* Where to start from */
688 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
691 * Fragment the datagram.
694 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
695 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
698 * Keep copying data until we run out.
703 /* IF: it doesn't fit, use 'mtu' - the data space left */
706 /* IF: we are not sending up to and including the packet end
707 then align the next start on an eight byte boundary */
712 /* Allocate buffer */
713 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
720 * Set up data on packet
723 ip_copy_metadata(skb2
, skb
);
724 skb_reserve(skb2
, ll_rs
);
725 skb_put(skb2
, len
+ hlen
);
726 skb_reset_network_header(skb2
);
727 skb2
->transport_header
= skb2
->network_header
+ hlen
;
730 * Charge the memory for the fragment to any owner
735 skb_set_owner_w(skb2
, skb
->sk
);
738 * Copy the packet header into the new buffer.
741 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
744 * Copy a block of the IP datagram.
746 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
751 * Fill in the new header fields.
754 iph
->frag_off
= htons((offset
>> 3));
756 if (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
)
757 iph
->frag_off
|= htons(IP_DF
);
759 /* ANK: dirty, but effective trick. Upgrade options only if
760 * the segment to be fragmented was THE FIRST (otherwise,
761 * options are already fixed) and make it ONCE
762 * on the initial skb, so that all the following fragments
763 * will inherit fixed options.
766 ip_options_fragment(skb
);
769 * Added AC : If we are fragmenting a fragment that's not the
770 * last fragment then keep MF on each bit
772 if (left
> 0 || not_last_frag
)
773 iph
->frag_off
|= htons(IP_MF
);
778 * Put this fragment into the sending queue.
780 iph
->tot_len
= htons(len
+ hlen
);
784 err
= output(net
, sk
, skb2
);
788 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
791 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
796 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
799 EXPORT_SYMBOL(ip_do_fragment
);
802 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
804 struct msghdr
*msg
= from
;
806 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
807 if (copy_from_iter(to
, len
, &msg
->msg_iter
) != len
)
811 if (csum_and_copy_from_iter(to
, len
, &csum
, &msg
->msg_iter
) != len
)
813 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
817 EXPORT_SYMBOL(ip_generic_getfrag
);
820 csum_page(struct page
*page
, int offset
, int copy
)
825 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
830 static inline int ip_ufo_append_data(struct sock
*sk
,
831 struct sk_buff_head
*queue
,
832 int getfrag(void *from
, char *to
, int offset
, int len
,
833 int odd
, struct sk_buff
*skb
),
834 void *from
, int length
, int hh_len
, int fragheaderlen
,
835 int transhdrlen
, int maxfraglen
, unsigned int flags
)
840 /* There is support for UDP fragmentation offload by network
841 * device, so create one single skb packet containing complete
844 skb
= skb_peek_tail(queue
);
846 skb
= sock_alloc_send_skb(sk
,
847 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
848 (flags
& MSG_DONTWAIT
), &err
);
853 /* reserve space for Hardware header */
854 skb_reserve(skb
, hh_len
);
856 /* create space for UDP/IP header */
857 skb_put(skb
, fragheaderlen
+ transhdrlen
);
859 /* initialize network header pointer */
860 skb_reset_network_header(skb
);
862 /* initialize protocol header pointer */
863 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
867 __skb_queue_tail(queue
, skb
);
868 } else if (skb_is_gso(skb
)) {
872 skb
->ip_summed
= CHECKSUM_PARTIAL
;
873 /* specify the length of each IP datagram fragment */
874 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
875 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
878 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
879 (length
- transhdrlen
));
882 static int __ip_append_data(struct sock
*sk
,
884 struct sk_buff_head
*queue
,
885 struct inet_cork
*cork
,
886 struct page_frag
*pfrag
,
887 int getfrag(void *from
, char *to
, int offset
,
888 int len
, int odd
, struct sk_buff
*skb
),
889 void *from
, int length
, int transhdrlen
,
892 struct inet_sock
*inet
= inet_sk(sk
);
895 struct ip_options
*opt
= cork
->opt
;
902 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
903 int csummode
= CHECKSUM_NONE
;
904 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
907 skb
= skb_peek_tail(queue
);
909 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
910 mtu
= cork
->fragsize
;
911 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
912 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
913 tskey
= sk
->sk_tskey
++;
915 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
917 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
918 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
919 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
921 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
922 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
923 mtu
- (opt
? opt
->optlen
: 0));
928 * transhdrlen > 0 means that this is the first fragment and we wish
929 * it won't be fragmented in the future.
932 length
+ fragheaderlen
<= mtu
&&
933 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
934 !(flags
& MSG_MORE
) &&
936 csummode
= CHECKSUM_PARTIAL
;
938 cork
->length
+= length
;
939 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
940 (sk
->sk_protocol
== IPPROTO_UDP
) &&
941 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !rt
->dst
.header_len
&&
942 (sk
->sk_type
== SOCK_DGRAM
) && !sk
->sk_no_check_tx
) {
943 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
944 hh_len
, fragheaderlen
, transhdrlen
,
951 /* So, what's going on in the loop below?
953 * We use calculated fragment length to generate chained skb,
954 * each of segments is IP fragment ready for sending to network after
955 * adding appropriate IP header.
962 /* Check if the remaining data fits into current packet. */
963 copy
= mtu
- skb
->len
;
965 copy
= maxfraglen
- skb
->len
;
968 unsigned int datalen
;
969 unsigned int fraglen
;
970 unsigned int fraggap
;
971 unsigned int alloclen
;
972 struct sk_buff
*skb_prev
;
976 fraggap
= skb_prev
->len
- maxfraglen
;
981 * If remaining data exceeds the mtu,
982 * we know we need more fragment(s).
984 datalen
= length
+ fraggap
;
985 if (datalen
> mtu
- fragheaderlen
)
986 datalen
= maxfraglen
- fragheaderlen
;
987 fraglen
= datalen
+ fragheaderlen
;
989 if ((flags
& MSG_MORE
) &&
990 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
995 alloclen
+= exthdrlen
;
997 /* The last fragment gets additional space at tail.
998 * Note, with MSG_MORE we overallocate on fragments,
999 * because we have no idea what fragment will be
1002 if (datalen
== length
+ fraggap
)
1003 alloclen
+= rt
->dst
.trailer_len
;
1006 skb
= sock_alloc_send_skb(sk
,
1007 alloclen
+ hh_len
+ 15,
1008 (flags
& MSG_DONTWAIT
), &err
);
1011 if (atomic_read(&sk
->sk_wmem_alloc
) <=
1013 skb
= sock_wmalloc(sk
,
1014 alloclen
+ hh_len
+ 15, 1,
1023 * Fill in the control structures
1025 skb
->ip_summed
= csummode
;
1027 skb_reserve(skb
, hh_len
);
1029 /* only the initial fragment is time stamped */
1030 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1032 skb_shinfo(skb
)->tskey
= tskey
;
1036 * Find where to start putting bytes.
1038 data
= skb_put(skb
, fraglen
+ exthdrlen
);
1039 skb_set_network_header(skb
, exthdrlen
);
1040 skb
->transport_header
= (skb
->network_header
+
1042 data
+= fragheaderlen
+ exthdrlen
;
1045 skb
->csum
= skb_copy_and_csum_bits(
1046 skb_prev
, maxfraglen
,
1047 data
+ transhdrlen
, fraggap
, 0);
1048 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1051 pskb_trim_unique(skb_prev
, maxfraglen
);
1054 copy
= datalen
- transhdrlen
- fraggap
;
1055 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1062 length
-= datalen
- fraggap
;
1065 csummode
= CHECKSUM_NONE
;
1068 * Put the packet on the pending queue.
1070 __skb_queue_tail(queue
, skb
);
1077 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
1081 if (getfrag(from
, skb_put(skb
, copy
),
1082 offset
, copy
, off
, skb
) < 0) {
1083 __skb_trim(skb
, off
);
1088 int i
= skb_shinfo(skb
)->nr_frags
;
1091 if (!sk_page_frag_refill(sk
, pfrag
))
1094 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1097 if (i
== MAX_SKB_FRAGS
)
1100 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1102 skb_shinfo(skb
)->nr_frags
= ++i
;
1103 get_page(pfrag
->page
);
1105 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1107 page_address(pfrag
->page
) + pfrag
->offset
,
1108 offset
, copy
, skb
->len
, skb
) < 0)
1111 pfrag
->offset
+= copy
;
1112 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1114 skb
->data_len
+= copy
;
1115 skb
->truesize
+= copy
;
1116 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1127 cork
->length
-= length
;
1128 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1132 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1133 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1135 struct ip_options_rcu
*opt
;
1139 * setup for corking.
1144 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1146 if (unlikely(!cork
->opt
))
1149 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1150 cork
->flags
|= IPCORK_OPT
;
1151 cork
->addr
= ipc
->addr
;
1157 * We steal reference to this route, caller should not release it
1160 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1161 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1162 cork
->dst
= &rt
->dst
;
1164 cork
->ttl
= ipc
->ttl
;
1165 cork
->tos
= ipc
->tos
;
1166 cork
->priority
= ipc
->priority
;
1167 cork
->tx_flags
= ipc
->tx_flags
;
1173 * ip_append_data() and ip_append_page() can make one large IP datagram
1174 * from many pieces of data. Each pieces will be holded on the socket
1175 * until ip_push_pending_frames() is called. Each piece can be a page
1178 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1179 * this interface potentially.
1181 * LATER: length must be adjusted by pad at tail, when it is required.
1183 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1184 int getfrag(void *from
, char *to
, int offset
, int len
,
1185 int odd
, struct sk_buff
*skb
),
1186 void *from
, int length
, int transhdrlen
,
1187 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1190 struct inet_sock
*inet
= inet_sk(sk
);
1193 if (flags
&MSG_PROBE
)
1196 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1197 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1204 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1205 sk_page_frag(sk
), getfrag
,
1206 from
, length
, transhdrlen
, flags
);
1209 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1210 int offset
, size_t size
, int flags
)
1212 struct inet_sock
*inet
= inet_sk(sk
);
1213 struct sk_buff
*skb
;
1215 struct ip_options
*opt
= NULL
;
1216 struct inet_cork
*cork
;
1221 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1226 if (flags
&MSG_PROBE
)
1229 if (skb_queue_empty(&sk
->sk_write_queue
))
1232 cork
= &inet
->cork
.base
;
1233 rt
= (struct rtable
*)cork
->dst
;
1234 if (cork
->flags
& IPCORK_OPT
)
1237 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1240 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1241 mtu
= cork
->fragsize
;
1243 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1244 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1245 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1247 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1248 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1249 mtu
- (opt
? opt
->optlen
: 0));
1253 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1257 if ((size
+ skb
->len
> mtu
) &&
1258 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1259 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1260 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1263 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1264 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1266 cork
->length
+= size
;
1269 if (skb_is_gso(skb
)) {
1273 /* Check if the remaining data fits into current packet. */
1274 len
= mtu
- skb
->len
;
1276 len
= maxfraglen
- skb
->len
;
1279 struct sk_buff
*skb_prev
;
1283 fraggap
= skb_prev
->len
- maxfraglen
;
1285 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1286 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1287 if (unlikely(!skb
)) {
1293 * Fill in the control structures
1295 skb
->ip_summed
= CHECKSUM_NONE
;
1297 skb_reserve(skb
, hh_len
);
1300 * Find where to start putting bytes.
1302 skb_put(skb
, fragheaderlen
+ fraggap
);
1303 skb_reset_network_header(skb
);
1304 skb
->transport_header
= (skb
->network_header
+
1307 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1309 skb_transport_header(skb
),
1311 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1313 pskb_trim_unique(skb_prev
, maxfraglen
);
1317 * Put the packet on the pending queue.
1319 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1326 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1331 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1333 csum
= csum_page(page
, offset
, len
);
1334 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1338 skb
->data_len
+= len
;
1339 skb
->truesize
+= len
;
1340 atomic_add(len
, &sk
->sk_wmem_alloc
);
1347 cork
->length
-= size
;
1348 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1352 static void ip_cork_release(struct inet_cork
*cork
)
1354 cork
->flags
&= ~IPCORK_OPT
;
1357 dst_release(cork
->dst
);
1362 * Combined all pending IP fragments on the socket as one IP datagram
1363 * and push them out.
1365 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1367 struct sk_buff_head
*queue
,
1368 struct inet_cork
*cork
)
1370 struct sk_buff
*skb
, *tmp_skb
;
1371 struct sk_buff
**tail_skb
;
1372 struct inet_sock
*inet
= inet_sk(sk
);
1373 struct net
*net
= sock_net(sk
);
1374 struct ip_options
*opt
= NULL
;
1375 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1380 skb
= __skb_dequeue(queue
);
1383 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1385 /* move skb->data to ip header from ext header */
1386 if (skb
->data
< skb_network_header(skb
))
1387 __skb_pull(skb
, skb_network_offset(skb
));
1388 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1389 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1390 *tail_skb
= tmp_skb
;
1391 tail_skb
= &(tmp_skb
->next
);
1392 skb
->len
+= tmp_skb
->len
;
1393 skb
->data_len
+= tmp_skb
->len
;
1394 skb
->truesize
+= tmp_skb
->truesize
;
1395 tmp_skb
->destructor
= NULL
;
1399 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1400 * to fragment the frame generated here. No matter, what transforms
1401 * how transforms change size of the packet, it will come out.
1403 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1405 /* DF bit is set when we want to see DF on outgoing frames.
1406 * If ignore_df is set too, we still allow to fragment this frame
1408 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1409 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1410 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1411 ip_dont_fragment(sk
, &rt
->dst
)))
1414 if (cork
->flags
& IPCORK_OPT
)
1419 else if (rt
->rt_type
== RTN_MULTICAST
)
1422 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1427 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1430 iph
->protocol
= sk
->sk_protocol
;
1431 ip_copy_addrs(iph
, fl4
);
1432 ip_select_ident(net
, skb
, sk
);
1435 iph
->ihl
+= opt
->optlen
>>2;
1436 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1439 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1440 skb
->mark
= sk
->sk_mark
;
1442 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1446 skb_dst_set(skb
, &rt
->dst
);
1448 if (iph
->protocol
== IPPROTO_ICMP
)
1449 icmp_out_count(net
, ((struct icmphdr
*)
1450 skb_transport_header(skb
))->type
);
1452 ip_cork_release(cork
);
1457 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1461 err
= ip_local_out(net
, skb
->sk
, skb
);
1464 err
= net_xmit_errno(err
);
1466 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1472 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1474 struct sk_buff
*skb
;
1476 skb
= ip_finish_skb(sk
, fl4
);
1480 /* Netfilter gets whole the not fragmented skb. */
1481 return ip_send_skb(sock_net(sk
), skb
);
1485 * Throw away all pending data on the socket.
1487 static void __ip_flush_pending_frames(struct sock
*sk
,
1488 struct sk_buff_head
*queue
,
1489 struct inet_cork
*cork
)
1491 struct sk_buff
*skb
;
1493 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1496 ip_cork_release(cork
);
1499 void ip_flush_pending_frames(struct sock
*sk
)
1501 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1504 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1506 int getfrag(void *from
, char *to
, int offset
,
1507 int len
, int odd
, struct sk_buff
*skb
),
1508 void *from
, int length
, int transhdrlen
,
1509 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1512 struct inet_cork cork
;
1513 struct sk_buff_head queue
;
1516 if (flags
& MSG_PROBE
)
1519 __skb_queue_head_init(&queue
);
1524 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1526 return ERR_PTR(err
);
1528 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
,
1529 ¤t
->task_frag
, getfrag
,
1530 from
, length
, transhdrlen
, flags
);
1532 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1533 return ERR_PTR(err
);
1536 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1540 * Fetch data from kernel space and fill in checksum if needed.
1542 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1543 int len
, int odd
, struct sk_buff
*skb
)
1547 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1548 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1553 * Generic function to send a packet as reply to another packet.
1554 * Used to send some TCP resets/acks so far.
1556 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1557 const struct ip_options
*sopt
,
1558 __be32 daddr
, __be32 saddr
,
1559 const struct ip_reply_arg
*arg
,
1562 struct ip_options_data replyopts
;
1563 struct ipcm_cookie ipc
;
1565 struct rtable
*rt
= skb_rtable(skb
);
1566 struct net
*net
= sock_net(sk
);
1567 struct sk_buff
*nskb
;
1571 if (__ip_options_echo(&replyopts
.opt
.opt
, skb
, sopt
))
1580 if (replyopts
.opt
.opt
.optlen
) {
1581 ipc
.opt
= &replyopts
.opt
;
1583 if (replyopts
.opt
.opt
.srr
)
1584 daddr
= replyopts
.opt
.opt
.faddr
;
1587 oif
= arg
->bound_dev_if
;
1588 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1591 flowi4_init_output(&fl4
, oif
,
1592 IP4_REPLY_MARK(net
, skb
->mark
),
1594 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1595 ip_reply_arg_flowi_flags(arg
),
1597 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
);
1598 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1599 rt
= ip_route_output_key(net
, &fl4
);
1603 inet_sk(sk
)->tos
= arg
->tos
;
1605 sk
->sk_priority
= skb
->priority
;
1606 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1607 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1608 sk
->sk_sndbuf
= sysctl_wmem_default
;
1609 sk
->sk_mark
= fl4
.flowi4_mark
;
1610 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1611 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1612 if (unlikely(err
)) {
1613 ip_flush_pending_frames(sk
);
1617 nskb
= skb_peek(&sk
->sk_write_queue
);
1619 if (arg
->csumoffset
>= 0)
1620 *((__sum16
*)skb_transport_header(nskb
) +
1621 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1623 nskb
->ip_summed
= CHECKSUM_NONE
;
1624 ip_push_pending_frames(sk
, &fl4
);
1630 void __init
ip_init(void)
1635 #if defined(CONFIG_IP_MULTICAST)