2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 1000;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
98 int sysctl_tcp_thin_dupack __read_mostly
;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
101 int sysctl_tcp_early_retrans __read_mostly
= 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
)
133 static bool __once __read_mostly
;
136 struct net_device
*dev
;
141 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev
? dev
->name
: "Unknown driver");
148 /* Adapt the MSS value used to make delayed ack decision to the
151 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
153 struct inet_connection_sock
*icsk
= inet_csk(sk
);
154 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
157 icsk
->icsk_ack
.last_seg_size
= 0;
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
162 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
163 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
164 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
166 if (unlikely(icsk
->icsk_ack
.rcv_mss
!= len
))
167 tcp_gro_dev_warn(sk
, skb
);
169 /* Otherwise, we make more careful check taking into account,
170 * that SACKs block is variable.
172 * "len" is invariant segment length, including TCP header.
174 len
+= skb
->data
- skb_transport_header(skb
);
175 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
176 /* If PSH is not set, packet should be
177 * full sized, provided peer TCP is not badly broken.
178 * This observation (if it is correct 8)) allows
179 * to handle super-low mtu links fairly.
181 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
182 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
183 /* Subtract also invariant (if peer is RFC compliant),
184 * tcp header plus fixed timestamp option length.
185 * Resulting "len" is MSS free of SACK jitter.
187 len
-= tcp_sk(sk
)->tcp_header_len
;
188 icsk
->icsk_ack
.last_seg_size
= len
;
190 icsk
->icsk_ack
.rcv_mss
= len
;
194 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
195 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
196 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
200 static void tcp_incr_quickack(struct sock
*sk
)
202 struct inet_connection_sock
*icsk
= inet_csk(sk
);
203 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
207 if (quickacks
> icsk
->icsk_ack
.quick
)
208 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
211 static void tcp_enter_quickack_mode(struct sock
*sk
)
213 struct inet_connection_sock
*icsk
= inet_csk(sk
);
214 tcp_incr_quickack(sk
);
215 icsk
->icsk_ack
.pingpong
= 0;
216 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
219 /* Send ACKs quickly, if "quick" count is not exhausted
220 * and the session is not interactive.
223 static bool tcp_in_quickack_mode(struct sock
*sk
)
225 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
226 const struct dst_entry
*dst
= __sk_dst_get(sk
);
228 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
229 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
232 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
234 if (tp
->ecn_flags
& TCP_ECN_OK
)
235 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
238 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
240 if (tcp_hdr(skb
)->cwr
)
241 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
244 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
246 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
249 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
251 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
252 case INET_ECN_NOT_ECT
:
253 /* Funny extension: if ECT is not set on a segment,
254 * and we already seen ECT on a previous segment,
255 * it is probably a retransmit.
257 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
258 tcp_enter_quickack_mode((struct sock
*)tp
);
261 if (tcp_ca_needs_ecn((struct sock
*)tp
))
262 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
264 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
265 /* Better not delay acks, sender can have a very low cwnd */
266 tcp_enter_quickack_mode((struct sock
*)tp
);
267 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
269 tp
->ecn_flags
|= TCP_ECN_SEEN
;
272 if (tcp_ca_needs_ecn((struct sock
*)tp
))
273 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
274 tp
->ecn_flags
|= TCP_ECN_SEEN
;
279 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
281 if (tp
->ecn_flags
& TCP_ECN_OK
)
282 __tcp_ecn_check_ce(tp
, skb
);
285 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
287 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
288 tp
->ecn_flags
&= ~TCP_ECN_OK
;
291 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
293 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
294 tp
->ecn_flags
&= ~TCP_ECN_OK
;
297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
299 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
304 /* Buffer size and advertised window tuning.
306 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309 static void tcp_sndbuf_expand(struct sock
*sk
)
311 const struct tcp_sock
*tp
= tcp_sk(sk
);
312 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
316 /* Worst case is non GSO/TSO : each frame consumes one skb
317 * and skb->head is kmalloced using power of two area of memory
319 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
323 per_mss
= roundup_pow_of_two(per_mss
) +
324 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
326 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
327 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
329 /* Fast Recovery (RFC 5681 3.2) :
330 * Cubic needs 1.7 factor, rounded to 2 to include
331 * extra cushion (application might react slowly to POLLOUT)
333 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
334 sndmem
*= nr_segs
* per_mss
;
336 if (sk
->sk_sndbuf
< sndmem
)
337 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342 * All tcp_full_space() is split to two parts: "network" buffer, allocated
343 * forward and advertised in receiver window (tp->rcv_wnd) and
344 * "application buffer", required to isolate scheduling/application
345 * latencies from network.
346 * window_clamp is maximal advertised window. It can be less than
347 * tcp_full_space(), in this case tcp_full_space() - window_clamp
348 * is reserved for "application" buffer. The less window_clamp is
349 * the smoother our behaviour from viewpoint of network, but the lower
350 * throughput and the higher sensitivity of the connection to losses. 8)
352 * rcv_ssthresh is more strict window_clamp used at "slow start"
353 * phase to predict further behaviour of this connection.
354 * It is used for two goals:
355 * - to enforce header prediction at sender, even when application
356 * requires some significant "application buffer". It is check #1.
357 * - to prevent pruning of receive queue because of misprediction
358 * of receiver window. Check #2.
360 * The scheme does not work when sender sends good segments opening
361 * window and then starts to feed us spaghetti. But it should work
362 * in common situations. Otherwise, we have to rely on queue collapsing.
365 /* Slow part of check#2. */
366 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
368 struct tcp_sock
*tp
= tcp_sk(sk
);
370 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
371 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
373 while (tp
->rcv_ssthresh
<= window
) {
374 if (truesize
<= skb
->len
)
375 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
383 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
385 struct tcp_sock
*tp
= tcp_sk(sk
);
388 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
389 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
390 !tcp_under_memory_pressure(sk
)) {
393 /* Check #2. Increase window, if skb with such overhead
394 * will fit to rcvbuf in future.
396 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
397 incr
= 2 * tp
->advmss
;
399 incr
= __tcp_grow_window(sk
, skb
);
402 incr
= max_t(int, incr
, 2 * skb
->len
);
403 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
405 inet_csk(sk
)->icsk_ack
.quick
|= 1;
410 /* 3. Tuning rcvbuf, when connection enters established state. */
411 static void tcp_fixup_rcvbuf(struct sock
*sk
)
413 u32 mss
= tcp_sk(sk
)->advmss
;
416 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
417 tcp_default_init_rwnd(mss
);
419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
420 * Allow enough cushion so that sender is not limited by our window
422 if (sysctl_tcp_moderate_rcvbuf
)
425 if (sk
->sk_rcvbuf
< rcvmem
)
426 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
429 /* 4. Try to fixup all. It is made immediately after connection enters
432 void tcp_init_buffer_space(struct sock
*sk
)
434 struct tcp_sock
*tp
= tcp_sk(sk
);
437 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
438 tcp_fixup_rcvbuf(sk
);
439 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
440 tcp_sndbuf_expand(sk
);
442 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
443 tp
->rcvq_space
.time
= tcp_time_stamp
;
444 tp
->rcvq_space
.seq
= tp
->copied_seq
;
446 maxwin
= tcp_full_space(sk
);
448 if (tp
->window_clamp
>= maxwin
) {
449 tp
->window_clamp
= maxwin
;
451 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
452 tp
->window_clamp
= max(maxwin
-
453 (maxwin
>> sysctl_tcp_app_win
),
457 /* Force reservation of one segment. */
458 if (sysctl_tcp_app_win
&&
459 tp
->window_clamp
> 2 * tp
->advmss
&&
460 tp
->window_clamp
+ tp
->advmss
> maxwin
)
461 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
463 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
464 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
467 /* 5. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock
*sk
)
470 struct tcp_sock
*tp
= tcp_sk(sk
);
471 struct inet_connection_sock
*icsk
= inet_csk(sk
);
473 icsk
->icsk_ack
.quick
= 0;
475 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
476 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
477 !tcp_under_memory_pressure(sk
) &&
478 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
479 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
482 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
483 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
486 /* Initialize RCV_MSS value.
487 * RCV_MSS is an our guess about MSS used by the peer.
488 * We haven't any direct information about the MSS.
489 * It's better to underestimate the RCV_MSS rather than overestimate.
490 * Overestimations make us ACKing less frequently than needed.
491 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 void tcp_initialize_rcv_mss(struct sock
*sk
)
495 const struct tcp_sock
*tp
= tcp_sk(sk
);
496 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
498 hint
= min(hint
, tp
->rcv_wnd
/ 2);
499 hint
= min(hint
, TCP_MSS_DEFAULT
);
500 hint
= max(hint
, TCP_MIN_MSS
);
502 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
504 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
506 /* Receiver "autotuning" code.
508 * The algorithm for RTT estimation w/o timestamps is based on
509 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
510 * <http://public.lanl.gov/radiant/pubs.html#DRS>
512 * More detail on this code can be found at
513 * <http://staff.psc.edu/jheffner/>,
514 * though this reference is out of date. A new paper
517 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
519 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
525 if (new_sample
!= 0) {
526 /* If we sample in larger samples in the non-timestamp
527 * case, we could grossly overestimate the RTT especially
528 * with chatty applications or bulk transfer apps which
529 * are stalled on filesystem I/O.
531 * Also, since we are only going for a minimum in the
532 * non-timestamp case, we do not smooth things out
533 * else with timestamps disabled convergence takes too
537 m
-= (new_sample
>> 3);
545 /* No previous measure. */
549 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
550 tp
->rcv_rtt_est
.rtt
= new_sample
;
553 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
555 if (tp
->rcv_rtt_est
.time
== 0)
557 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
559 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
562 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
563 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
566 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
567 const struct sk_buff
*skb
)
569 struct tcp_sock
*tp
= tcp_sk(sk
);
570 if (tp
->rx_opt
.rcv_tsecr
&&
571 (TCP_SKB_CB(skb
)->end_seq
-
572 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
573 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
577 * This function should be called every time data is copied to user space.
578 * It calculates the appropriate TCP receive buffer space.
580 void tcp_rcv_space_adjust(struct sock
*sk
)
582 struct tcp_sock
*tp
= tcp_sk(sk
);
586 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
587 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
590 /* Number of bytes copied to user in last RTT */
591 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
592 if (copied
<= tp
->rcvq_space
.space
)
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
604 if (sysctl_tcp_moderate_rcvbuf
&&
605 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
606 int rcvwin
, rcvmem
, rcvbuf
;
608 /* minimal window to cope with packet losses, assuming
609 * steady state. Add some cushion because of small variations.
611 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
613 /* If rate increased by 25%,
614 * assume slow start, rcvwin = 3 * copied
615 * If rate increased by 50%,
616 * assume sender can use 2x growth, rcvwin = 4 * copied
619 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
621 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
624 rcvwin
+= (rcvwin
>> 1);
627 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
628 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
631 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
632 if (rcvbuf
> sk
->sk_rcvbuf
) {
633 sk
->sk_rcvbuf
= rcvbuf
;
635 /* Make the window clamp follow along. */
636 tp
->window_clamp
= rcvwin
;
639 tp
->rcvq_space
.space
= copied
;
642 tp
->rcvq_space
.seq
= tp
->copied_seq
;
643 tp
->rcvq_space
.time
= tcp_time_stamp
;
646 /* There is something which you must keep in mind when you analyze the
647 * behavior of the tp->ato delayed ack timeout interval. When a
648 * connection starts up, we want to ack as quickly as possible. The
649 * problem is that "good" TCP's do slow start at the beginning of data
650 * transmission. The means that until we send the first few ACK's the
651 * sender will sit on his end and only queue most of his data, because
652 * he can only send snd_cwnd unacked packets at any given time. For
653 * each ACK we send, he increments snd_cwnd and transmits more of his
656 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
658 struct tcp_sock
*tp
= tcp_sk(sk
);
659 struct inet_connection_sock
*icsk
= inet_csk(sk
);
662 inet_csk_schedule_ack(sk
);
664 tcp_measure_rcv_mss(sk
, skb
);
666 tcp_rcv_rtt_measure(tp
);
668 now
= tcp_time_stamp
;
670 if (!icsk
->icsk_ack
.ato
) {
671 /* The _first_ data packet received, initialize
672 * delayed ACK engine.
674 tcp_incr_quickack(sk
);
675 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
677 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
679 if (m
<= TCP_ATO_MIN
/ 2) {
680 /* The fastest case is the first. */
681 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
682 } else if (m
< icsk
->icsk_ack
.ato
) {
683 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
684 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
685 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
686 } else if (m
> icsk
->icsk_rto
) {
687 /* Too long gap. Apparently sender failed to
688 * restart window, so that we send ACKs quickly.
690 tcp_incr_quickack(sk
);
694 icsk
->icsk_ack
.lrcvtime
= now
;
696 tcp_ecn_check_ce(tp
, skb
);
699 tcp_grow_window(sk
, skb
);
702 /* Called to compute a smoothed rtt estimate. The data fed to this
703 * routine either comes from timestamps, or from segments that were
704 * known _not_ to have been retransmitted [see Karn/Partridge
705 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
706 * piece by Van Jacobson.
707 * NOTE: the next three routines used to be one big routine.
708 * To save cycles in the RFC 1323 implementation it was better to break
709 * it up into three procedures. -- erics
711 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
713 struct tcp_sock
*tp
= tcp_sk(sk
);
714 long m
= mrtt_us
; /* RTT */
715 u32 srtt
= tp
->srtt_us
;
717 /* The following amusing code comes from Jacobson's
718 * article in SIGCOMM '88. Note that rtt and mdev
719 * are scaled versions of rtt and mean deviation.
720 * This is designed to be as fast as possible
721 * m stands for "measurement".
723 * On a 1990 paper the rto value is changed to:
724 * RTO = rtt + 4 * mdev
726 * Funny. This algorithm seems to be very broken.
727 * These formulae increase RTO, when it should be decreased, increase
728 * too slowly, when it should be increased quickly, decrease too quickly
729 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
730 * does not matter how to _calculate_ it. Seems, it was trap
731 * that VJ failed to avoid. 8)
734 m
-= (srtt
>> 3); /* m is now error in rtt est */
735 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
737 m
= -m
; /* m is now abs(error) */
738 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
739 /* This is similar to one of Eifel findings.
740 * Eifel blocks mdev updates when rtt decreases.
741 * This solution is a bit different: we use finer gain
742 * for mdev in this case (alpha*beta).
743 * Like Eifel it also prevents growth of rto,
744 * but also it limits too fast rto decreases,
745 * happening in pure Eifel.
750 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
752 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
753 if (tp
->mdev_us
> tp
->mdev_max_us
) {
754 tp
->mdev_max_us
= tp
->mdev_us
;
755 if (tp
->mdev_max_us
> tp
->rttvar_us
)
756 tp
->rttvar_us
= tp
->mdev_max_us
;
758 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
759 if (tp
->mdev_max_us
< tp
->rttvar_us
)
760 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
761 tp
->rtt_seq
= tp
->snd_nxt
;
762 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
765 /* no previous measure. */
766 srtt
= m
<< 3; /* take the measured time to be rtt */
767 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
768 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
769 tp
->mdev_max_us
= tp
->rttvar_us
;
770 tp
->rtt_seq
= tp
->snd_nxt
;
772 tp
->srtt_us
= max(1U, srtt
);
775 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
776 * Note: TCP stack does not yet implement pacing.
777 * FQ packet scheduler can be used to implement cheap but effective
778 * TCP pacing, to smooth the burst on large writes when packets
779 * in flight is significantly lower than cwnd (or rwin)
781 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
782 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
784 static void tcp_update_pacing_rate(struct sock
*sk
)
786 const struct tcp_sock
*tp
= tcp_sk(sk
);
789 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
790 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
792 /* current rate is (cwnd * mss) / srtt
793 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
794 * In Congestion Avoidance phase, set it to 120 % the current rate.
796 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
797 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
798 * end of slow start and should slow down.
800 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
801 rate
*= sysctl_tcp_pacing_ss_ratio
;
803 rate
*= sysctl_tcp_pacing_ca_ratio
;
805 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
807 if (likely(tp
->srtt_us
))
808 do_div(rate
, tp
->srtt_us
);
810 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
811 * without any lock. We want to make sure compiler wont store
812 * intermediate values in this location.
814 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
815 sk
->sk_max_pacing_rate
);
818 /* Calculate rto without backoff. This is the second half of Van Jacobson's
819 * routine referred to above.
821 static void tcp_set_rto(struct sock
*sk
)
823 const struct tcp_sock
*tp
= tcp_sk(sk
);
824 /* Old crap is replaced with new one. 8)
827 * 1. If rtt variance happened to be less 50msec, it is hallucination.
828 * It cannot be less due to utterly erratic ACK generation made
829 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
830 * to do with delayed acks, because at cwnd>2 true delack timeout
831 * is invisible. Actually, Linux-2.4 also generates erratic
832 * ACKs in some circumstances.
834 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
836 /* 2. Fixups made earlier cannot be right.
837 * If we do not estimate RTO correctly without them,
838 * all the algo is pure shit and should be replaced
839 * with correct one. It is exactly, which we pretend to do.
842 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
843 * guarantees that rto is higher.
848 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
850 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
853 cwnd
= TCP_INIT_CWND
;
854 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
861 void tcp_disable_fack(struct tcp_sock
*tp
)
863 /* RFC3517 uses different metric in lost marker => reset on change */
865 tp
->lost_skb_hint
= NULL
;
866 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock
*tp
)
872 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
875 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
878 struct tcp_sock
*tp
= tcp_sk(sk
);
879 if (metric
> tp
->reordering
) {
882 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
884 /* This exciting event is worth to be remembered. 8) */
886 mib_idx
= LINUX_MIB_TCPTSREORDER
;
887 else if (tcp_is_reno(tp
))
888 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
889 else if (tcp_is_fack(tp
))
890 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
892 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
894 NET_INC_STATS(sock_net(sk
), mib_idx
);
895 #if FASTRETRANS_DEBUG > 1
896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
901 tp
->undo_marker
? tp
->undo_retrans
: 0);
903 tcp_disable_fack(tp
);
907 tcp_disable_early_retrans(tp
);
911 /* This must be called before lost_out is incremented */
912 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
914 if (!tp
->retransmit_skb_hint
||
915 before(TCP_SKB_CB(skb
)->seq
,
916 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
917 tp
->retransmit_skb_hint
= skb
;
920 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
921 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
924 /* Sum the number of packets on the wire we have marked as lost.
925 * There are two cases we care about here:
926 * a) Packet hasn't been marked lost (nor retransmitted),
927 * and this is the first loss.
928 * b) Packet has been marked both lost and retransmitted,
929 * and this means we think it was lost again.
931 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
933 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
935 if (!(sacked
& TCPCB_LOST
) ||
936 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
937 tp
->lost
+= tcp_skb_pcount(skb
);
940 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
942 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
943 tcp_verify_retransmit_hint(tp
, skb
);
945 tp
->lost_out
+= tcp_skb_pcount(skb
);
946 tcp_sum_lost(tp
, skb
);
947 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
953 tcp_verify_retransmit_hint(tp
, skb
);
955 tcp_sum_lost(tp
, skb
);
956 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
957 tp
->lost_out
+= tcp_skb_pcount(skb
);
958 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
962 /* This procedure tags the retransmission queue when SACKs arrive.
964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
965 * Packets in queue with these bits set are counted in variables
966 * sacked_out, retrans_out and lost_out, correspondingly.
968 * Valid combinations are:
969 * Tag InFlight Description
970 * 0 1 - orig segment is in flight.
971 * S 0 - nothing flies, orig reached receiver.
972 * L 0 - nothing flies, orig lost by net.
973 * R 2 - both orig and retransmit are in flight.
974 * L|R 1 - orig is lost, retransmit is in flight.
975 * S|R 1 - orig reached receiver, retrans is still in flight.
976 * (L|S|R is logically valid, it could occur when L|R is sacked,
977 * but it is equivalent to plain S and code short-curcuits it to S.
978 * L|S is logically invalid, it would mean -1 packet in flight 8))
980 * These 6 states form finite state machine, controlled by the following events:
981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
983 * 3. Loss detection event of two flavors:
984 * A. Scoreboard estimator decided the packet is lost.
985 * A'. Reno "three dupacks" marks head of queue lost.
986 * A''. Its FACK modification, head until snd.fack is lost.
987 * B. SACK arrives sacking SND.NXT at the moment, when the
988 * segment was retransmitted.
989 * 4. D-SACK added new rule: D-SACK changes any tag to S.
991 * It is pleasant to note, that state diagram turns out to be commutative,
992 * so that we are allowed not to be bothered by order of our actions,
993 * when multiple events arrive simultaneously. (see the function below).
995 * Reordering detection.
996 * --------------------
997 * Reordering metric is maximal distance, which a packet can be displaced
998 * in packet stream. With SACKs we can estimate it:
1000 * 1. SACK fills old hole and the corresponding segment was not
1001 * ever retransmitted -> reordering. Alas, we cannot use it
1002 * when segment was retransmitted.
1003 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1004 * for retransmitted and already SACKed segment -> reordering..
1005 * Both of these heuristics are not used in Loss state, when we cannot
1006 * account for retransmits accurately.
1008 * SACK block validation.
1009 * ----------------------
1011 * SACK block range validation checks that the received SACK block fits to
1012 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1013 * Note that SND.UNA is not included to the range though being valid because
1014 * it means that the receiver is rather inconsistent with itself reporting
1015 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1016 * perfectly valid, however, in light of RFC2018 which explicitly states
1017 * that "SACK block MUST reflect the newest segment. Even if the newest
1018 * segment is going to be discarded ...", not that it looks very clever
1019 * in case of head skb. Due to potentional receiver driven attacks, we
1020 * choose to avoid immediate execution of a walk in write queue due to
1021 * reneging and defer head skb's loss recovery to standard loss recovery
1022 * procedure that will eventually trigger (nothing forbids us doing this).
1024 * Implements also blockage to start_seq wrap-around. Problem lies in the
1025 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1026 * there's no guarantee that it will be before snd_nxt (n). The problem
1027 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030 * <- outs wnd -> <- wrapzone ->
1031 * u e n u_w e_w s n_w
1033 * |<------------+------+----- TCP seqno space --------------+---------->|
1034 * ...-- <2^31 ->| |<--------...
1035 * ...---- >2^31 ------>| |<--------...
1037 * Current code wouldn't be vulnerable but it's better still to discard such
1038 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1039 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1040 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1041 * equal to the ideal case (infinite seqno space without wrap caused issues).
1043 * With D-SACK the lower bound is extended to cover sequence space below
1044 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1045 * again, D-SACK block must not to go across snd_una (for the same reason as
1046 * for the normal SACK blocks, explained above). But there all simplicity
1047 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1048 * fully below undo_marker they do not affect behavior in anyway and can
1049 * therefore be safely ignored. In rare cases (which are more or less
1050 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1051 * fragmentation and packet reordering past skb's retransmission. To consider
1052 * them correctly, the acceptable range must be extended even more though
1053 * the exact amount is rather hard to quantify. However, tp->max_window can
1054 * be used as an exaggerated estimate.
1056 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1057 u32 start_seq
, u32 end_seq
)
1059 /* Too far in future, or reversed (interpretation is ambiguous) */
1060 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1063 /* Nasty start_seq wrap-around check (see comments above) */
1064 if (!before(start_seq
, tp
->snd_nxt
))
1067 /* In outstanding window? ...This is valid exit for D-SACKs too.
1068 * start_seq == snd_una is non-sensical (see comments above)
1070 if (after(start_seq
, tp
->snd_una
))
1073 if (!is_dsack
|| !tp
->undo_marker
)
1076 /* ...Then it's D-SACK, and must reside below snd_una completely */
1077 if (after(end_seq
, tp
->snd_una
))
1080 if (!before(start_seq
, tp
->undo_marker
))
1084 if (!after(end_seq
, tp
->undo_marker
))
1087 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1088 * start_seq < undo_marker and end_seq >= undo_marker.
1090 return !before(start_seq
, end_seq
- tp
->max_window
);
1093 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1094 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1097 struct tcp_sock
*tp
= tcp_sk(sk
);
1098 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1099 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1100 bool dup_sack
= false;
1102 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1105 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1106 } else if (num_sacks
> 1) {
1107 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1108 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1110 if (!after(end_seq_0
, end_seq_1
) &&
1111 !before(start_seq_0
, start_seq_1
)) {
1114 NET_INC_STATS(sock_net(sk
),
1115 LINUX_MIB_TCPDSACKOFORECV
);
1119 /* D-SACK for already forgotten data... Do dumb counting. */
1120 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1121 !after(end_seq_0
, prior_snd_una
) &&
1122 after(end_seq_0
, tp
->undo_marker
))
1128 struct tcp_sacktag_state
{
1131 /* Timestamps for earliest and latest never-retransmitted segment
1132 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1133 * but congestion control should still get an accurate delay signal.
1135 struct skb_mstamp first_sackt
;
1136 struct skb_mstamp last_sackt
;
1137 struct rate_sample
*rate
;
1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1142 * the incoming SACK may not exactly match but we can find smaller MSS
1143 * aligned portion of it that matches. Therefore we might need to fragment
1144 * which may fail and creates some hassle (caller must handle error case
1147 * FIXME: this could be merged to shift decision code
1149 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1150 u32 start_seq
, u32 end_seq
)
1154 unsigned int pkt_len
;
1157 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1158 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1160 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1161 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1162 mss
= tcp_skb_mss(skb
);
1163 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1166 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1170 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1175 /* Round if necessary so that SACKs cover only full MSSes
1176 * and/or the remaining small portion (if present)
1178 if (pkt_len
> mss
) {
1179 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1180 if (!in_sack
&& new_len
< pkt_len
)
1185 if (pkt_len
>= skb
->len
&& !in_sack
)
1188 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8
tcp_sacktag_one(struct sock
*sk
,
1198 struct tcp_sacktag_state
*state
, u8 sacked
,
1199 u32 start_seq
, u32 end_seq
,
1200 int dup_sack
, int pcount
,
1201 const struct skb_mstamp
*xmit_time
)
1203 struct tcp_sock
*tp
= tcp_sk(sk
);
1204 int fack_count
= state
->fack_count
;
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1208 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1209 after(end_seq
, tp
->undo_marker
))
1211 if (sacked
& TCPCB_SACKED_ACKED
)
1212 state
->reord
= min(fack_count
, state
->reord
);
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 if (!after(end_seq
, tp
->snd_una
))
1219 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1220 tcp_rack_advance(tp
, xmit_time
, sacked
);
1222 if (sacked
& TCPCB_SACKED_RETRANS
) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1227 if (sacked
& TCPCB_LOST
) {
1228 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1229 tp
->lost_out
-= pcount
;
1230 tp
->retrans_out
-= pcount
;
1233 if (!(sacked
& TCPCB_RETRANS
)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1237 if (before(start_seq
,
1238 tcp_highest_sack_seq(tp
)))
1239 state
->reord
= min(fack_count
,
1241 if (!after(end_seq
, tp
->high_seq
))
1242 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1243 if (state
->first_sackt
.v64
== 0)
1244 state
->first_sackt
= *xmit_time
;
1245 state
->last_sackt
= *xmit_time
;
1248 if (sacked
& TCPCB_LOST
) {
1249 sacked
&= ~TCPCB_LOST
;
1250 tp
->lost_out
-= pcount
;
1254 sacked
|= TCPCB_SACKED_ACKED
;
1255 state
->flag
|= FLAG_DATA_SACKED
;
1256 tp
->sacked_out
+= pcount
;
1257 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1259 fack_count
+= pcount
;
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1263 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1264 tp
->lost_cnt_hint
+= pcount
;
1266 if (fack_count
> tp
->fackets_out
)
1267 tp
->fackets_out
= fack_count
;
1270 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1271 * frames and clear it. undo_retrans is decreased above, L|R frames
1272 * are accounted above as well.
1274 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1275 sacked
&= ~TCPCB_SACKED_RETRANS
;
1276 tp
->retrans_out
-= pcount
;
1282 /* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1285 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1286 struct tcp_sacktag_state
*state
,
1287 unsigned int pcount
, int shifted
, int mss
,
1290 struct tcp_sock
*tp
= tcp_sk(sk
);
1291 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1292 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1293 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1297 /* Adjust counters and hints for the newly sacked sequence
1298 * range but discard the return value since prev is already
1299 * marked. We must tag the range first because the seq
1300 * advancement below implicitly advances
1301 * tcp_highest_sack_seq() when skb is highest_sack.
1303 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1304 start_seq
, end_seq
, dup_sack
, pcount
,
1306 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1308 if (skb
== tp
->lost_skb_hint
)
1309 tp
->lost_cnt_hint
+= pcount
;
1311 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1312 TCP_SKB_CB(skb
)->seq
+= shifted
;
1314 tcp_skb_pcount_add(prev
, pcount
);
1315 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1316 tcp_skb_pcount_add(skb
, -pcount
);
1318 /* When we're adding to gso_segs == 1, gso_size will be zero,
1319 * in theory this shouldn't be necessary but as long as DSACK
1320 * code can come after this skb later on it's better to keep
1321 * setting gso_size to something.
1323 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1324 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1326 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1327 if (tcp_skb_pcount(skb
) <= 1)
1328 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1334 BUG_ON(!tcp_skb_pcount(skb
));
1335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1339 /* Whole SKB was eaten :-) */
1341 if (skb
== tp
->retransmit_skb_hint
)
1342 tp
->retransmit_skb_hint
= prev
;
1343 if (skb
== tp
->lost_skb_hint
) {
1344 tp
->lost_skb_hint
= prev
;
1345 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1348 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1349 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1350 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1351 TCP_SKB_CB(prev
)->end_seq
++;
1353 if (skb
== tcp_highest_sack(sk
))
1354 tcp_advance_highest_sack(sk
, skb
);
1356 tcp_skb_collapse_tstamp(prev
, skb
);
1357 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
))
1358 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
= 0;
1360 tcp_unlink_write_queue(skb
, sk
);
1361 sk_wmem_free_skb(sk
, skb
);
1363 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1368 /* I wish gso_size would have a bit more sane initialization than
1369 * something-or-zero which complicates things
1371 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1373 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1376 /* Shifting pages past head area doesn't work */
1377 static int skb_can_shift(const struct sk_buff
*skb
)
1379 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1382 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1386 struct tcp_sacktag_state
*state
,
1387 u32 start_seq
, u32 end_seq
,
1390 struct tcp_sock
*tp
= tcp_sk(sk
);
1391 struct sk_buff
*prev
;
1397 if (!sk_can_gso(sk
))
1400 /* Normally R but no L won't result in plain S */
1402 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1404 if (!skb_can_shift(skb
))
1406 /* This frame is about to be dropped (was ACKed). */
1407 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1410 /* Can only happen with delayed DSACK + discard craziness */
1411 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1413 prev
= tcp_write_queue_prev(sk
, skb
);
1415 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1418 if (!tcp_skb_can_collapse_to(prev
))
1421 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1422 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1426 pcount
= tcp_skb_pcount(skb
);
1427 mss
= tcp_skb_seglen(skb
);
1429 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1430 * drop this restriction as unnecessary
1432 if (mss
!= tcp_skb_seglen(prev
))
1435 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1437 /* CHECKME: This is non-MSS split case only?, this will
1438 * cause skipped skbs due to advancing loop btw, original
1439 * has that feature too
1441 if (tcp_skb_pcount(skb
) <= 1)
1444 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1446 /* TODO: head merge to next could be attempted here
1447 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1448 * though it might not be worth of the additional hassle
1450 * ...we can probably just fallback to what was done
1451 * previously. We could try merging non-SACKed ones
1452 * as well but it probably isn't going to buy off
1453 * because later SACKs might again split them, and
1454 * it would make skb timestamp tracking considerably
1460 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1462 BUG_ON(len
> skb
->len
);
1464 /* MSS boundaries should be honoured or else pcount will
1465 * severely break even though it makes things bit trickier.
1466 * Optimize common case to avoid most of the divides
1468 mss
= tcp_skb_mss(skb
);
1470 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1471 * drop this restriction as unnecessary
1473 if (mss
!= tcp_skb_seglen(prev
))
1478 } else if (len
< mss
) {
1486 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1487 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1490 if (!skb_shift(prev
, skb
, len
))
1492 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1495 /* Hole filled allows collapsing with the next as well, this is very
1496 * useful when hole on every nth skb pattern happens
1498 if (prev
== tcp_write_queue_tail(sk
))
1500 skb
= tcp_write_queue_next(sk
, prev
);
1502 if (!skb_can_shift(skb
) ||
1503 (skb
== tcp_send_head(sk
)) ||
1504 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1505 (mss
!= tcp_skb_seglen(skb
)))
1509 if (skb_shift(prev
, skb
, len
)) {
1510 pcount
+= tcp_skb_pcount(skb
);
1511 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1515 state
->fack_count
+= pcount
;
1522 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1526 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1527 struct tcp_sack_block
*next_dup
,
1528 struct tcp_sacktag_state
*state
,
1529 u32 start_seq
, u32 end_seq
,
1532 struct tcp_sock
*tp
= tcp_sk(sk
);
1533 struct sk_buff
*tmp
;
1535 tcp_for_write_queue_from(skb
, sk
) {
1537 bool dup_sack
= dup_sack_in
;
1539 if (skb
== tcp_send_head(sk
))
1542 /* queue is in-order => we can short-circuit the walk early */
1543 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1547 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1548 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1549 next_dup
->start_seq
,
1555 /* skb reference here is a bit tricky to get right, since
1556 * shifting can eat and free both this skb and the next,
1557 * so not even _safe variant of the loop is enough.
1560 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1561 start_seq
, end_seq
, dup_sack
);
1570 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1576 if (unlikely(in_sack
< 0))
1580 TCP_SKB_CB(skb
)->sacked
=
1583 TCP_SKB_CB(skb
)->sacked
,
1584 TCP_SKB_CB(skb
)->seq
,
1585 TCP_SKB_CB(skb
)->end_seq
,
1587 tcp_skb_pcount(skb
),
1589 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1591 if (!before(TCP_SKB_CB(skb
)->seq
,
1592 tcp_highest_sack_seq(tp
)))
1593 tcp_advance_highest_sack(sk
, skb
);
1596 state
->fack_count
+= tcp_skb_pcount(skb
);
1601 /* Avoid all extra work that is being done by sacktag while walking in
1604 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1605 struct tcp_sacktag_state
*state
,
1608 tcp_for_write_queue_from(skb
, sk
) {
1609 if (skb
== tcp_send_head(sk
))
1612 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1615 state
->fack_count
+= tcp_skb_pcount(skb
);
1620 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1622 struct tcp_sack_block
*next_dup
,
1623 struct tcp_sacktag_state
*state
,
1629 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1630 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1631 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1632 next_dup
->start_seq
, next_dup
->end_seq
,
1639 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1641 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1645 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1646 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1648 struct tcp_sock
*tp
= tcp_sk(sk
);
1649 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1650 TCP_SKB_CB(ack_skb
)->sacked
);
1651 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1652 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1653 struct tcp_sack_block
*cache
;
1654 struct sk_buff
*skb
;
1655 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1657 bool found_dup_sack
= false;
1659 int first_sack_index
;
1662 state
->reord
= tp
->packets_out
;
1664 if (!tp
->sacked_out
) {
1665 if (WARN_ON(tp
->fackets_out
))
1666 tp
->fackets_out
= 0;
1667 tcp_highest_sack_reset(sk
);
1670 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1671 num_sacks
, prior_snd_una
);
1672 if (found_dup_sack
) {
1673 state
->flag
|= FLAG_DSACKING_ACK
;
1674 tp
->delivered
++; /* A spurious retransmission is delivered */
1677 /* Eliminate too old ACKs, but take into
1678 * account more or less fresh ones, they can
1679 * contain valid SACK info.
1681 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1684 if (!tp
->packets_out
)
1688 first_sack_index
= 0;
1689 for (i
= 0; i
< num_sacks
; i
++) {
1690 bool dup_sack
= !i
&& found_dup_sack
;
1692 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1693 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1695 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1696 sp
[used_sacks
].start_seq
,
1697 sp
[used_sacks
].end_seq
)) {
1701 if (!tp
->undo_marker
)
1702 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1704 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1706 /* Don't count olds caused by ACK reordering */
1707 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1708 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1710 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1713 NET_INC_STATS(sock_net(sk
), mib_idx
);
1715 first_sack_index
= -1;
1719 /* Ignore very old stuff early */
1720 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1726 /* order SACK blocks to allow in order walk of the retrans queue */
1727 for (i
= used_sacks
- 1; i
> 0; i
--) {
1728 for (j
= 0; j
< i
; j
++) {
1729 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1730 swap(sp
[j
], sp
[j
+ 1]);
1732 /* Track where the first SACK block goes to */
1733 if (j
== first_sack_index
)
1734 first_sack_index
= j
+ 1;
1739 skb
= tcp_write_queue_head(sk
);
1740 state
->fack_count
= 0;
1743 if (!tp
->sacked_out
) {
1744 /* It's already past, so skip checking against it */
1745 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1747 cache
= tp
->recv_sack_cache
;
1748 /* Skip empty blocks in at head of the cache */
1749 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1754 while (i
< used_sacks
) {
1755 u32 start_seq
= sp
[i
].start_seq
;
1756 u32 end_seq
= sp
[i
].end_seq
;
1757 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1758 struct tcp_sack_block
*next_dup
= NULL
;
1760 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1761 next_dup
= &sp
[i
+ 1];
1763 /* Skip too early cached blocks */
1764 while (tcp_sack_cache_ok(tp
, cache
) &&
1765 !before(start_seq
, cache
->end_seq
))
1768 /* Can skip some work by looking recv_sack_cache? */
1769 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1770 after(end_seq
, cache
->start_seq
)) {
1773 if (before(start_seq
, cache
->start_seq
)) {
1774 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1776 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1783 /* Rest of the block already fully processed? */
1784 if (!after(end_seq
, cache
->end_seq
))
1787 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1791 /* ...tail remains todo... */
1792 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1793 /* ...but better entrypoint exists! */
1794 skb
= tcp_highest_sack(sk
);
1797 state
->fack_count
= tp
->fackets_out
;
1802 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1803 /* Check overlap against next cached too (past this one already) */
1808 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1809 skb
= tcp_highest_sack(sk
);
1812 state
->fack_count
= tp
->fackets_out
;
1814 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1817 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1818 start_seq
, end_seq
, dup_sack
);
1824 /* Clear the head of the cache sack blocks so we can skip it next time */
1825 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1826 tp
->recv_sack_cache
[i
].start_seq
= 0;
1827 tp
->recv_sack_cache
[i
].end_seq
= 0;
1829 for (j
= 0; j
< used_sacks
; j
++)
1830 tp
->recv_sack_cache
[i
++] = sp
[j
];
1832 if ((state
->reord
< tp
->fackets_out
) &&
1833 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1834 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1836 tcp_verify_left_out(tp
);
1839 #if FASTRETRANS_DEBUG > 0
1840 WARN_ON((int)tp
->sacked_out
< 0);
1841 WARN_ON((int)tp
->lost_out
< 0);
1842 WARN_ON((int)tp
->retrans_out
< 0);
1843 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1855 holes
= max(tp
->lost_out
, 1U);
1856 holes
= min(holes
, tp
->packets_out
);
1858 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1859 tp
->sacked_out
= tp
->packets_out
- holes
;
1865 /* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1869 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1871 struct tcp_sock
*tp
= tcp_sk(sk
);
1872 if (tcp_limit_reno_sacked(tp
))
1873 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1876 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1878 static void tcp_add_reno_sack(struct sock
*sk
)
1880 struct tcp_sock
*tp
= tcp_sk(sk
);
1881 u32 prior_sacked
= tp
->sacked_out
;
1884 tcp_check_reno_reordering(sk
, 0);
1885 if (tp
->sacked_out
> prior_sacked
)
1886 tp
->delivered
++; /* Some out-of-order packet is delivered */
1887 tcp_verify_left_out(tp
);
1890 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1892 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1894 struct tcp_sock
*tp
= tcp_sk(sk
);
1897 /* One ACK acked hole. The rest eat duplicate ACKs. */
1898 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1899 if (acked
- 1 >= tp
->sacked_out
)
1902 tp
->sacked_out
-= acked
- 1;
1904 tcp_check_reno_reordering(sk
, acked
);
1905 tcp_verify_left_out(tp
);
1908 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1913 void tcp_clear_retrans(struct tcp_sock
*tp
)
1915 tp
->retrans_out
= 0;
1917 tp
->undo_marker
= 0;
1918 tp
->undo_retrans
= -1;
1919 tp
->fackets_out
= 0;
1923 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1925 tp
->undo_marker
= tp
->snd_una
;
1926 /* Retransmission still in flight may cause DSACKs later. */
1927 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1930 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1931 * and reset tags completely, otherwise preserve SACKs. If receiver
1932 * dropped its ofo queue, we will know this due to reneging detection.
1934 void tcp_enter_loss(struct sock
*sk
)
1936 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1937 struct tcp_sock
*tp
= tcp_sk(sk
);
1938 struct net
*net
= sock_net(sk
);
1939 struct sk_buff
*skb
;
1940 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1941 bool is_reneg
; /* is receiver reneging on SACKs? */
1944 /* Reduce ssthresh if it has not yet been made inside this window. */
1945 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1946 !after(tp
->high_seq
, tp
->snd_una
) ||
1947 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1948 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1949 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1950 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1954 tp
->snd_cwnd_cnt
= 0;
1955 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1957 tp
->retrans_out
= 0;
1960 if (tcp_is_reno(tp
))
1961 tcp_reset_reno_sack(tp
);
1963 skb
= tcp_write_queue_head(sk
);
1964 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1966 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1968 tp
->fackets_out
= 0;
1970 tcp_clear_all_retrans_hints(tp
);
1972 tcp_for_write_queue(skb
, sk
) {
1973 if (skb
== tcp_send_head(sk
))
1976 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1979 tcp_sum_lost(tp
, skb
);
1980 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1982 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1983 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1984 tp
->lost_out
+= tcp_skb_pcount(skb
);
1985 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1988 tcp_verify_left_out(tp
);
1990 /* Timeout in disordered state after receiving substantial DUPACKs
1991 * suggests that the degree of reordering is over-estimated.
1993 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1994 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1995 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1996 net
->ipv4
.sysctl_tcp_reordering
);
1997 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1998 tp
->high_seq
= tp
->snd_nxt
;
1999 tcp_ecn_queue_cwr(tp
);
2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 * loss recovery is underway except recurring timeout(s) on
2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2005 tp
->frto
= sysctl_tcp_frto
&&
2006 (new_recovery
|| icsk
->icsk_retransmits
) &&
2007 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2010 /* If ACK arrived pointing to a remembered SACK, it means that our
2011 * remembered SACKs do not reflect real state of receiver i.e.
2012 * receiver _host_ is heavily congested (or buggy).
2014 * To avoid big spurious retransmission bursts due to transient SACK
2015 * scoreboard oddities that look like reneging, we give the receiver a
2016 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2017 * restore sanity to the SACK scoreboard. If the apparent reneging
2018 * persists until this RTO then we'll clear the SACK scoreboard.
2020 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2022 if (flag
& FLAG_SACK_RENEGING
) {
2023 struct tcp_sock
*tp
= tcp_sk(sk
);
2024 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2025 msecs_to_jiffies(10));
2027 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2028 delay
, TCP_RTO_MAX
);
2034 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2036 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2039 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2040 * counter when SACK is enabled (without SACK, sacked_out is used for
2043 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2044 * segments up to the highest received SACK block so far and holes in
2047 * With reordering, holes may still be in flight, so RFC3517 recovery
2048 * uses pure sacked_out (total number of SACKed segments) even though
2049 * it violates the RFC that uses duplicate ACKs, often these are equal
2050 * but when e.g. out-of-window ACKs or packet duplication occurs,
2051 * they differ. Since neither occurs due to loss, TCP should really
2054 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2056 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2059 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2061 struct tcp_sock
*tp
= tcp_sk(sk
);
2062 unsigned long delay
;
2064 /* Delay early retransmit and entering fast recovery for
2065 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2066 * available, or RTO is scheduled to fire first.
2068 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2069 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2072 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2073 msecs_to_jiffies(2));
2075 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2078 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2083 /* Linux NewReno/SACK/FACK/ECN state machine.
2084 * --------------------------------------
2086 * "Open" Normal state, no dubious events, fast path.
2087 * "Disorder" In all the respects it is "Open",
2088 * but requires a bit more attention. It is entered when
2089 * we see some SACKs or dupacks. It is split of "Open"
2090 * mainly to move some processing from fast path to slow one.
2091 * "CWR" CWND was reduced due to some Congestion Notification event.
2092 * It can be ECN, ICMP source quench, local device congestion.
2093 * "Recovery" CWND was reduced, we are fast-retransmitting.
2094 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2096 * tcp_fastretrans_alert() is entered:
2097 * - each incoming ACK, if state is not "Open"
2098 * - when arrived ACK is unusual, namely:
2103 * Counting packets in flight is pretty simple.
2105 * in_flight = packets_out - left_out + retrans_out
2107 * packets_out is SND.NXT-SND.UNA counted in packets.
2109 * retrans_out is number of retransmitted segments.
2111 * left_out is number of segments left network, but not ACKed yet.
2113 * left_out = sacked_out + lost_out
2115 * sacked_out: Packets, which arrived to receiver out of order
2116 * and hence not ACKed. With SACKs this number is simply
2117 * amount of SACKed data. Even without SACKs
2118 * it is easy to give pretty reliable estimate of this number,
2119 * counting duplicate ACKs.
2121 * lost_out: Packets lost by network. TCP has no explicit
2122 * "loss notification" feedback from network (for now).
2123 * It means that this number can be only _guessed_.
2124 * Actually, it is the heuristics to predict lossage that
2125 * distinguishes different algorithms.
2127 * F.e. after RTO, when all the queue is considered as lost,
2128 * lost_out = packets_out and in_flight = retrans_out.
2130 * Essentially, we have now two algorithms counting
2133 * FACK: It is the simplest heuristics. As soon as we decided
2134 * that something is lost, we decide that _all_ not SACKed
2135 * packets until the most forward SACK are lost. I.e.
2136 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2137 * It is absolutely correct estimate, if network does not reorder
2138 * packets. And it loses any connection to reality when reordering
2139 * takes place. We use FACK by default until reordering
2140 * is suspected on the path to this destination.
2142 * NewReno: when Recovery is entered, we assume that one segment
2143 * is lost (classic Reno). While we are in Recovery and
2144 * a partial ACK arrives, we assume that one more packet
2145 * is lost (NewReno). This heuristics are the same in NewReno
2148 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2149 * deflation etc. CWND is real congestion window, never inflated, changes
2150 * only according to classic VJ rules.
2152 * Really tricky (and requiring careful tuning) part of algorithm
2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2154 * The first determines the moment _when_ we should reduce CWND and,
2155 * hence, slow down forward transmission. In fact, it determines the moment
2156 * when we decide that hole is caused by loss, rather than by a reorder.
2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2159 * holes, caused by lost packets.
2161 * And the most logically complicated part of algorithm is undo
2162 * heuristics. We detect false retransmits due to both too early
2163 * fast retransmit (reordering) and underestimated RTO, analyzing
2164 * timestamps and D-SACKs. When we detect that some segments were
2165 * retransmitted by mistake and CWND reduction was wrong, we undo
2166 * window reduction and abort recovery phase. This logic is hidden
2167 * inside several functions named tcp_try_undo_<something>.
2170 /* This function decides, when we should leave Disordered state
2171 * and enter Recovery phase, reducing congestion window.
2173 * Main question: may we further continue forward transmission
2174 * with the same cwnd?
2176 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2178 struct tcp_sock
*tp
= tcp_sk(sk
);
2180 int tcp_reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
2182 /* Trick#1: The loss is proven. */
2186 /* Not-A-Trick#2 : Classic rule... */
2187 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2190 /* Trick#4: It is still not OK... But will it be useful to delay
2193 packets_out
= tp
->packets_out
;
2194 if (packets_out
<= tp
->reordering
&&
2195 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, tcp_reordering
) &&
2196 !tcp_may_send_now(sk
)) {
2197 /* We have nothing to send. This connection is limited
2198 * either by receiver window or by application.
2203 /* If a thin stream is detected, retransmit after first
2204 * received dupack. Employ only if SACK is supported in order
2205 * to avoid possible corner-case series of spurious retransmissions
2206 * Use only if there are no unsent data.
2208 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2209 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2210 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2213 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2214 * retransmissions due to small network reorderings, we implement
2215 * Mitigation A.3 in the RFC and delay the retransmission for a short
2216 * interval if appropriate.
2218 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2219 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2220 !tcp_may_send_now(sk
))
2221 return !tcp_pause_early_retransmit(sk
, flag
);
2226 /* Detect loss in event "A" above by marking head of queue up as lost.
2227 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2228 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2229 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2230 * the maximum SACKed segments to pass before reaching this limit.
2232 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2234 struct tcp_sock
*tp
= tcp_sk(sk
);
2235 struct sk_buff
*skb
;
2236 int cnt
, oldcnt
, lost
;
2238 /* Use SACK to deduce losses of new sequences sent during recovery */
2239 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2241 WARN_ON(packets
> tp
->packets_out
);
2242 if (tp
->lost_skb_hint
) {
2243 skb
= tp
->lost_skb_hint
;
2244 cnt
= tp
->lost_cnt_hint
;
2245 /* Head already handled? */
2246 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2249 skb
= tcp_write_queue_head(sk
);
2253 tcp_for_write_queue_from(skb
, sk
) {
2254 if (skb
== tcp_send_head(sk
))
2256 /* TODO: do this better */
2257 /* this is not the most efficient way to do this... */
2258 tp
->lost_skb_hint
= skb
;
2259 tp
->lost_cnt_hint
= cnt
;
2261 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2265 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2266 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2267 cnt
+= tcp_skb_pcount(skb
);
2269 if (cnt
> packets
) {
2270 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2271 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2272 (oldcnt
>= packets
))
2275 mss
= tcp_skb_mss(skb
);
2276 /* If needed, chop off the prefix to mark as lost. */
2277 lost
= (packets
- oldcnt
) * mss
;
2278 if (lost
< skb
->len
&&
2279 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2284 tcp_skb_mark_lost(tp
, skb
);
2289 tcp_verify_left_out(tp
);
2292 /* Account newly detected lost packet(s) */
2294 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2296 struct tcp_sock
*tp
= tcp_sk(sk
);
2298 if (tcp_is_reno(tp
)) {
2299 tcp_mark_head_lost(sk
, 1, 1);
2300 } else if (tcp_is_fack(tp
)) {
2301 int lost
= tp
->fackets_out
- tp
->reordering
;
2304 tcp_mark_head_lost(sk
, lost
, 0);
2306 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2307 if (sacked_upto
>= 0)
2308 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2309 else if (fast_rexmit
)
2310 tcp_mark_head_lost(sk
, 1, 1);
2314 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2316 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2317 before(tp
->rx_opt
.rcv_tsecr
, when
);
2320 /* skb is spurious retransmitted if the returned timestamp echo
2321 * reply is prior to the skb transmission time
2323 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2324 const struct sk_buff
*skb
)
2326 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2327 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2330 /* Nothing was retransmitted or returned timestamp is less
2331 * than timestamp of the first retransmission.
2333 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2335 return !tp
->retrans_stamp
||
2336 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2339 /* Undo procedures. */
2341 /* We can clear retrans_stamp when there are no retransmissions in the
2342 * window. It would seem that it is trivially available for us in
2343 * tp->retrans_out, however, that kind of assumptions doesn't consider
2344 * what will happen if errors occur when sending retransmission for the
2345 * second time. ...It could the that such segment has only
2346 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2347 * the head skb is enough except for some reneging corner cases that
2348 * are not worth the effort.
2350 * Main reason for all this complexity is the fact that connection dying
2351 * time now depends on the validity of the retrans_stamp, in particular,
2352 * that successive retransmissions of a segment must not advance
2353 * retrans_stamp under any conditions.
2355 static bool tcp_any_retrans_done(const struct sock
*sk
)
2357 const struct tcp_sock
*tp
= tcp_sk(sk
);
2358 struct sk_buff
*skb
;
2360 if (tp
->retrans_out
)
2363 skb
= tcp_write_queue_head(sk
);
2364 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2370 #if FASTRETRANS_DEBUG > 1
2371 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2373 struct tcp_sock
*tp
= tcp_sk(sk
);
2374 struct inet_sock
*inet
= inet_sk(sk
);
2376 if (sk
->sk_family
== AF_INET
) {
2377 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2379 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2380 tp
->snd_cwnd
, tcp_left_out(tp
),
2381 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2384 #if IS_ENABLED(CONFIG_IPV6)
2385 else if (sk
->sk_family
== AF_INET6
) {
2386 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2388 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2389 tp
->snd_cwnd
, tcp_left_out(tp
),
2390 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2396 #define DBGUNDO(x...) do { } while (0)
2399 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2401 struct tcp_sock
*tp
= tcp_sk(sk
);
2404 struct sk_buff
*skb
;
2406 tcp_for_write_queue(skb
, sk
) {
2407 if (skb
== tcp_send_head(sk
))
2409 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2412 tcp_clear_all_retrans_hints(tp
);
2415 if (tp
->prior_ssthresh
) {
2416 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2418 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2419 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2421 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2423 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2424 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2425 tcp_ecn_withdraw_cwr(tp
);
2428 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2429 tp
->undo_marker
= 0;
2432 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2434 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2437 /* People celebrate: "We love our President!" */
2438 static bool tcp_try_undo_recovery(struct sock
*sk
)
2440 struct tcp_sock
*tp
= tcp_sk(sk
);
2442 if (tcp_may_undo(tp
)) {
2445 /* Happy end! We did not retransmit anything
2446 * or our original transmission succeeded.
2448 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2449 tcp_undo_cwnd_reduction(sk
, false);
2450 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2451 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2453 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2455 NET_INC_STATS(sock_net(sk
), mib_idx
);
2457 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2458 /* Hold old state until something *above* high_seq
2459 * is ACKed. For Reno it is MUST to prevent false
2460 * fast retransmits (RFC2582). SACK TCP is safe. */
2461 if (!tcp_any_retrans_done(sk
))
2462 tp
->retrans_stamp
= 0;
2465 tcp_set_ca_state(sk
, TCP_CA_Open
);
2469 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2470 static bool tcp_try_undo_dsack(struct sock
*sk
)
2472 struct tcp_sock
*tp
= tcp_sk(sk
);
2474 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2475 DBGUNDO(sk
, "D-SACK");
2476 tcp_undo_cwnd_reduction(sk
, false);
2477 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2483 /* Undo during loss recovery after partial ACK or using F-RTO. */
2484 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2486 struct tcp_sock
*tp
= tcp_sk(sk
);
2488 if (frto_undo
|| tcp_may_undo(tp
)) {
2489 tcp_undo_cwnd_reduction(sk
, true);
2491 DBGUNDO(sk
, "partial loss");
2492 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2494 NET_INC_STATS(sock_net(sk
),
2495 LINUX_MIB_TCPSPURIOUSRTOS
);
2496 inet_csk(sk
)->icsk_retransmits
= 0;
2497 if (frto_undo
|| tcp_is_sack(tp
))
2498 tcp_set_ca_state(sk
, TCP_CA_Open
);
2504 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2505 * It computes the number of packets to send (sndcnt) based on packets newly
2507 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2508 * cwnd reductions across a full RTT.
2509 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2510 * But when the retransmits are acked without further losses, PRR
2511 * slow starts cwnd up to ssthresh to speed up the recovery.
2513 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2515 struct tcp_sock
*tp
= tcp_sk(sk
);
2517 tp
->high_seq
= tp
->snd_nxt
;
2518 tp
->tlp_high_seq
= 0;
2519 tp
->snd_cwnd_cnt
= 0;
2520 tp
->prior_cwnd
= tp
->snd_cwnd
;
2521 tp
->prr_delivered
= 0;
2523 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2524 tcp_ecn_queue_cwr(tp
);
2527 static void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
,
2530 struct tcp_sock
*tp
= tcp_sk(sk
);
2532 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2534 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2537 tp
->prr_delivered
+= newly_acked_sacked
;
2539 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2541 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2542 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2543 !(flag
& FLAG_LOST_RETRANS
)) {
2544 sndcnt
= min_t(int, delta
,
2545 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2546 newly_acked_sacked
) + 1);
2548 sndcnt
= min(delta
, newly_acked_sacked
);
2550 /* Force a fast retransmit upon entering fast recovery */
2551 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2552 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2555 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2557 struct tcp_sock
*tp
= tcp_sk(sk
);
2559 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2562 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2563 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2564 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2565 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2566 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2568 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2571 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2572 void tcp_enter_cwr(struct sock
*sk
)
2574 struct tcp_sock
*tp
= tcp_sk(sk
);
2576 tp
->prior_ssthresh
= 0;
2577 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2578 tp
->undo_marker
= 0;
2579 tcp_init_cwnd_reduction(sk
);
2580 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2583 EXPORT_SYMBOL(tcp_enter_cwr
);
2585 static void tcp_try_keep_open(struct sock
*sk
)
2587 struct tcp_sock
*tp
= tcp_sk(sk
);
2588 int state
= TCP_CA_Open
;
2590 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2591 state
= TCP_CA_Disorder
;
2593 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2594 tcp_set_ca_state(sk
, state
);
2595 tp
->high_seq
= tp
->snd_nxt
;
2599 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2601 struct tcp_sock
*tp
= tcp_sk(sk
);
2603 tcp_verify_left_out(tp
);
2605 if (!tcp_any_retrans_done(sk
))
2606 tp
->retrans_stamp
= 0;
2608 if (flag
& FLAG_ECE
)
2611 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2612 tcp_try_keep_open(sk
);
2616 static void tcp_mtup_probe_failed(struct sock
*sk
)
2618 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2620 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2621 icsk
->icsk_mtup
.probe_size
= 0;
2622 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2625 static void tcp_mtup_probe_success(struct sock
*sk
)
2627 struct tcp_sock
*tp
= tcp_sk(sk
);
2628 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2630 /* FIXME: breaks with very large cwnd */
2631 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2632 tp
->snd_cwnd
= tp
->snd_cwnd
*
2633 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2634 icsk
->icsk_mtup
.probe_size
;
2635 tp
->snd_cwnd_cnt
= 0;
2636 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2637 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2639 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2640 icsk
->icsk_mtup
.probe_size
= 0;
2641 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2642 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2645 /* Do a simple retransmit without using the backoff mechanisms in
2646 * tcp_timer. This is used for path mtu discovery.
2647 * The socket is already locked here.
2649 void tcp_simple_retransmit(struct sock
*sk
)
2651 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2652 struct tcp_sock
*tp
= tcp_sk(sk
);
2653 struct sk_buff
*skb
;
2654 unsigned int mss
= tcp_current_mss(sk
);
2655 u32 prior_lost
= tp
->lost_out
;
2657 tcp_for_write_queue(skb
, sk
) {
2658 if (skb
== tcp_send_head(sk
))
2660 if (tcp_skb_seglen(skb
) > mss
&&
2661 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2662 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2663 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2664 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2666 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2670 tcp_clear_retrans_hints_partial(tp
);
2672 if (prior_lost
== tp
->lost_out
)
2675 if (tcp_is_reno(tp
))
2676 tcp_limit_reno_sacked(tp
);
2678 tcp_verify_left_out(tp
);
2680 /* Don't muck with the congestion window here.
2681 * Reason is that we do not increase amount of _data_
2682 * in network, but units changed and effective
2683 * cwnd/ssthresh really reduced now.
2685 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2686 tp
->high_seq
= tp
->snd_nxt
;
2687 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2688 tp
->prior_ssthresh
= 0;
2689 tp
->undo_marker
= 0;
2690 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2692 tcp_xmit_retransmit_queue(sk
);
2694 EXPORT_SYMBOL(tcp_simple_retransmit
);
2696 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2698 struct tcp_sock
*tp
= tcp_sk(sk
);
2701 if (tcp_is_reno(tp
))
2702 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2704 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2706 NET_INC_STATS(sock_net(sk
), mib_idx
);
2708 tp
->prior_ssthresh
= 0;
2711 if (!tcp_in_cwnd_reduction(sk
)) {
2713 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2714 tcp_init_cwnd_reduction(sk
);
2716 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2719 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2720 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2722 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2725 struct tcp_sock
*tp
= tcp_sk(sk
);
2726 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2728 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2729 tcp_try_undo_loss(sk
, false))
2732 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2733 /* Step 3.b. A timeout is spurious if not all data are
2734 * lost, i.e., never-retransmitted data are (s)acked.
2736 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2737 tcp_try_undo_loss(sk
, true))
2740 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2741 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2742 tp
->frto
= 0; /* Step 3.a. loss was real */
2743 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2744 tp
->high_seq
= tp
->snd_nxt
;
2745 /* Step 2.b. Try send new data (but deferred until cwnd
2746 * is updated in tcp_ack()). Otherwise fall back to
2747 * the conventional recovery.
2749 if (tcp_send_head(sk
) &&
2750 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2751 *rexmit
= REXMIT_NEW
;
2759 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2760 tcp_try_undo_recovery(sk
);
2763 if (tcp_is_reno(tp
)) {
2764 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2765 * delivered. Lower inflight to clock out (re)tranmissions.
2767 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2768 tcp_add_reno_sack(sk
);
2769 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2770 tcp_reset_reno_sack(tp
);
2772 *rexmit
= REXMIT_LOST
;
2775 /* Undo during fast recovery after partial ACK. */
2776 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2778 struct tcp_sock
*tp
= tcp_sk(sk
);
2780 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2781 /* Plain luck! Hole if filled with delayed
2782 * packet, rather than with a retransmit.
2784 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2786 /* We are getting evidence that the reordering degree is higher
2787 * than we realized. If there are no retransmits out then we
2788 * can undo. Otherwise we clock out new packets but do not
2789 * mark more packets lost or retransmit more.
2791 if (tp
->retrans_out
)
2794 if (!tcp_any_retrans_done(sk
))
2795 tp
->retrans_stamp
= 0;
2797 DBGUNDO(sk
, "partial recovery");
2798 tcp_undo_cwnd_reduction(sk
, true);
2799 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2800 tcp_try_keep_open(sk
);
2806 /* Process an event, which can update packets-in-flight not trivially.
2807 * Main goal of this function is to calculate new estimate for left_out,
2808 * taking into account both packets sitting in receiver's buffer and
2809 * packets lost by network.
2811 * Besides that it updates the congestion state when packet loss or ECN
2812 * is detected. But it does not reduce the cwnd, it is done by the
2813 * congestion control later.
2815 * It does _not_ decide what to send, it is made in function
2816 * tcp_xmit_retransmit_queue().
2818 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2819 bool is_dupack
, int *ack_flag
, int *rexmit
)
2821 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2822 struct tcp_sock
*tp
= tcp_sk(sk
);
2823 int fast_rexmit
= 0, flag
= *ack_flag
;
2824 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2825 (tcp_fackets_out(tp
) > tp
->reordering
));
2827 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2829 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2830 tp
->fackets_out
= 0;
2832 /* Now state machine starts.
2833 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2834 if (flag
& FLAG_ECE
)
2835 tp
->prior_ssthresh
= 0;
2837 /* B. In all the states check for reneging SACKs. */
2838 if (tcp_check_sack_reneging(sk
, flag
))
2841 /* C. Check consistency of the current state. */
2842 tcp_verify_left_out(tp
);
2844 /* D. Check state exit conditions. State can be terminated
2845 * when high_seq is ACKed. */
2846 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2847 WARN_ON(tp
->retrans_out
!= 0);
2848 tp
->retrans_stamp
= 0;
2849 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2850 switch (icsk
->icsk_ca_state
) {
2852 /* CWR is to be held something *above* high_seq
2853 * is ACKed for CWR bit to reach receiver. */
2854 if (tp
->snd_una
!= tp
->high_seq
) {
2855 tcp_end_cwnd_reduction(sk
);
2856 tcp_set_ca_state(sk
, TCP_CA_Open
);
2860 case TCP_CA_Recovery
:
2861 if (tcp_is_reno(tp
))
2862 tcp_reset_reno_sack(tp
);
2863 if (tcp_try_undo_recovery(sk
))
2865 tcp_end_cwnd_reduction(sk
);
2870 /* Use RACK to detect loss */
2871 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2872 tcp_rack_mark_lost(sk
)) {
2873 flag
|= FLAG_LOST_RETRANS
;
2874 *ack_flag
|= FLAG_LOST_RETRANS
;
2877 /* E. Process state. */
2878 switch (icsk
->icsk_ca_state
) {
2879 case TCP_CA_Recovery
:
2880 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2881 if (tcp_is_reno(tp
) && is_dupack
)
2882 tcp_add_reno_sack(sk
);
2884 if (tcp_try_undo_partial(sk
, acked
))
2886 /* Partial ACK arrived. Force fast retransmit. */
2887 do_lost
= tcp_is_reno(tp
) ||
2888 tcp_fackets_out(tp
) > tp
->reordering
;
2890 if (tcp_try_undo_dsack(sk
)) {
2891 tcp_try_keep_open(sk
);
2896 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2897 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2898 !(flag
& FLAG_LOST_RETRANS
))
2900 /* Change state if cwnd is undone or retransmits are lost */
2902 if (tcp_is_reno(tp
)) {
2903 if (flag
& FLAG_SND_UNA_ADVANCED
)
2904 tcp_reset_reno_sack(tp
);
2906 tcp_add_reno_sack(sk
);
2909 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2910 tcp_try_undo_dsack(sk
);
2912 if (!tcp_time_to_recover(sk
, flag
)) {
2913 tcp_try_to_open(sk
, flag
);
2917 /* MTU probe failure: don't reduce cwnd */
2918 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2919 icsk
->icsk_mtup
.probe_size
&&
2920 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2921 tcp_mtup_probe_failed(sk
);
2922 /* Restores the reduction we did in tcp_mtup_probe() */
2924 tcp_simple_retransmit(sk
);
2928 /* Otherwise enter Recovery state */
2929 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2934 tcp_update_scoreboard(sk
, fast_rexmit
);
2935 *rexmit
= REXMIT_LOST
;
2938 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2940 struct tcp_sock
*tp
= tcp_sk(sk
);
2941 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2943 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_time_stamp
,
2944 rtt_us
? : jiffies_to_usecs(1));
2947 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2948 long seq_rtt_us
, long sack_rtt_us
,
2951 const struct tcp_sock
*tp
= tcp_sk(sk
);
2953 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2954 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2955 * Karn's algorithm forbids taking RTT if some retransmitted data
2956 * is acked (RFC6298).
2959 seq_rtt_us
= sack_rtt_us
;
2961 /* RTTM Rule: A TSecr value received in a segment is used to
2962 * update the averaged RTT measurement only if the segment
2963 * acknowledges some new data, i.e., only if it advances the
2964 * left edge of the send window.
2965 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2967 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2969 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2970 tp
->rx_opt
.rcv_tsecr
);
2974 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2975 * always taken together with ACK, SACK, or TS-opts. Any negative
2976 * values will be skipped with the seq_rtt_us < 0 check above.
2978 tcp_update_rtt_min(sk
, ca_rtt_us
);
2979 tcp_rtt_estimator(sk
, seq_rtt_us
);
2982 /* RFC6298: only reset backoff on valid RTT measurement. */
2983 inet_csk(sk
)->icsk_backoff
= 0;
2987 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2988 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2992 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2993 struct skb_mstamp now
;
2995 skb_mstamp_get(&now
);
2996 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2999 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
3003 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3005 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3007 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3008 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3011 /* Restart timer after forward progress on connection.
3012 * RFC2988 recommends to restart timer to now+rto.
3014 void tcp_rearm_rto(struct sock
*sk
)
3016 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3017 struct tcp_sock
*tp
= tcp_sk(sk
);
3019 /* If the retrans timer is currently being used by Fast Open
3020 * for SYN-ACK retrans purpose, stay put.
3022 if (tp
->fastopen_rsk
)
3025 if (!tp
->packets_out
) {
3026 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3028 u32 rto
= inet_csk(sk
)->icsk_rto
;
3029 /* Offset the time elapsed after installing regular RTO */
3030 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3031 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3032 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3033 const u32 rto_time_stamp
=
3034 tcp_skb_timestamp(skb
) + rto
;
3035 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3036 /* delta may not be positive if the socket is locked
3037 * when the retrans timer fires and is rescheduled.
3042 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3047 /* This function is called when the delayed ER timer fires. TCP enters
3048 * fast recovery and performs fast-retransmit.
3050 void tcp_resume_early_retransmit(struct sock
*sk
)
3052 struct tcp_sock
*tp
= tcp_sk(sk
);
3056 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3057 if (!tp
->do_early_retrans
)
3060 tcp_enter_recovery(sk
, false);
3061 tcp_update_scoreboard(sk
, 1);
3062 tcp_xmit_retransmit_queue(sk
);
3065 /* If we get here, the whole TSO packet has not been acked. */
3066 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3068 struct tcp_sock
*tp
= tcp_sk(sk
);
3071 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3073 packets_acked
= tcp_skb_pcount(skb
);
3074 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3076 packets_acked
-= tcp_skb_pcount(skb
);
3078 if (packets_acked
) {
3079 BUG_ON(tcp_skb_pcount(skb
) == 0);
3080 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3083 return packets_acked
;
3086 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3089 const struct skb_shared_info
*shinfo
;
3091 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3092 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3095 shinfo
= skb_shinfo(skb
);
3096 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3097 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3098 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3101 /* Remove acknowledged frames from the retransmission queue. If our packet
3102 * is before the ack sequence we can discard it as it's confirmed to have
3103 * arrived at the other end.
3105 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3106 u32 prior_snd_una
, int *acked
,
3107 struct tcp_sacktag_state
*sack
,
3108 struct skb_mstamp
*now
)
3110 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3111 struct skb_mstamp first_ackt
, last_ackt
;
3112 struct tcp_sock
*tp
= tcp_sk(sk
);
3113 u32 prior_sacked
= tp
->sacked_out
;
3114 u32 reord
= tp
->packets_out
;
3115 bool fully_acked
= true;
3116 long sack_rtt_us
= -1L;
3117 long seq_rtt_us
= -1L;
3118 long ca_rtt_us
= -1L;
3119 struct sk_buff
*skb
;
3121 u32 last_in_flight
= 0;
3127 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3128 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3129 u8 sacked
= scb
->sacked
;
3132 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3134 /* Determine how many packets and what bytes were acked, tso and else */
3135 if (after(scb
->end_seq
, tp
->snd_una
)) {
3136 if (tcp_skb_pcount(skb
) == 1 ||
3137 !after(tp
->snd_una
, scb
->seq
))
3140 acked_pcount
= tcp_tso_acked(sk
, skb
);
3143 fully_acked
= false;
3145 /* Speedup tcp_unlink_write_queue() and next loop */
3146 prefetchw(skb
->next
);
3147 acked_pcount
= tcp_skb_pcount(skb
);
3150 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3151 if (sacked
& TCPCB_SACKED_RETRANS
)
3152 tp
->retrans_out
-= acked_pcount
;
3153 flag
|= FLAG_RETRANS_DATA_ACKED
;
3154 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3155 last_ackt
= skb
->skb_mstamp
;
3156 WARN_ON_ONCE(last_ackt
.v64
== 0);
3157 if (!first_ackt
.v64
)
3158 first_ackt
= last_ackt
;
3160 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3161 reord
= min(pkts_acked
, reord
);
3162 if (!after(scb
->end_seq
, tp
->high_seq
))
3163 flag
|= FLAG_ORIG_SACK_ACKED
;
3166 if (sacked
& TCPCB_SACKED_ACKED
) {
3167 tp
->sacked_out
-= acked_pcount
;
3168 } else if (tcp_is_sack(tp
)) {
3169 tp
->delivered
+= acked_pcount
;
3170 if (!tcp_skb_spurious_retrans(tp
, skb
))
3171 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3173 if (sacked
& TCPCB_LOST
)
3174 tp
->lost_out
-= acked_pcount
;
3176 tp
->packets_out
-= acked_pcount
;
3177 pkts_acked
+= acked_pcount
;
3178 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3180 /* Initial outgoing SYN's get put onto the write_queue
3181 * just like anything else we transmit. It is not
3182 * true data, and if we misinform our callers that
3183 * this ACK acks real data, we will erroneously exit
3184 * connection startup slow start one packet too
3185 * quickly. This is severely frowned upon behavior.
3187 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3188 flag
|= FLAG_DATA_ACKED
;
3190 flag
|= FLAG_SYN_ACKED
;
3191 tp
->retrans_stamp
= 0;
3197 tcp_unlink_write_queue(skb
, sk
);
3198 sk_wmem_free_skb(sk
, skb
);
3199 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3200 tp
->retransmit_skb_hint
= NULL
;
3201 if (unlikely(skb
== tp
->lost_skb_hint
))
3202 tp
->lost_skb_hint
= NULL
;
3205 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3206 tp
->snd_up
= tp
->snd_una
;
3208 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3209 flag
|= FLAG_SACK_RENEGING
;
3211 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3212 seq_rtt_us
= skb_mstamp_us_delta(now
, &first_ackt
);
3213 ca_rtt_us
= skb_mstamp_us_delta(now
, &last_ackt
);
3215 if (sack
->first_sackt
.v64
) {
3216 sack_rtt_us
= skb_mstamp_us_delta(now
, &sack
->first_sackt
);
3217 ca_rtt_us
= skb_mstamp_us_delta(now
, &sack
->last_sackt
);
3219 sack
->rate
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet, or -1 */
3220 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3223 if (flag
& FLAG_ACKED
) {
3225 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3226 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3227 tcp_mtup_probe_success(sk
);
3230 if (tcp_is_reno(tp
)) {
3231 tcp_remove_reno_sacks(sk
, pkts_acked
);
3235 /* Non-retransmitted hole got filled? That's reordering */
3236 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3237 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3239 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3240 prior_sacked
- tp
->sacked_out
;
3241 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3244 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3246 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3247 sack_rtt_us
> skb_mstamp_us_delta(now
, &skb
->skb_mstamp
)) {
3248 /* Do not re-arm RTO if the sack RTT is measured from data sent
3249 * after when the head was last (re)transmitted. Otherwise the
3250 * timeout may continue to extend in loss recovery.
3255 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3256 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3257 .rtt_us
= ca_rtt_us
,
3258 .in_flight
= last_in_flight
};
3260 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3263 #if FASTRETRANS_DEBUG > 0
3264 WARN_ON((int)tp
->sacked_out
< 0);
3265 WARN_ON((int)tp
->lost_out
< 0);
3266 WARN_ON((int)tp
->retrans_out
< 0);
3267 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3268 icsk
= inet_csk(sk
);
3270 pr_debug("Leak l=%u %d\n",
3271 tp
->lost_out
, icsk
->icsk_ca_state
);
3274 if (tp
->sacked_out
) {
3275 pr_debug("Leak s=%u %d\n",
3276 tp
->sacked_out
, icsk
->icsk_ca_state
);
3279 if (tp
->retrans_out
) {
3280 pr_debug("Leak r=%u %d\n",
3281 tp
->retrans_out
, icsk
->icsk_ca_state
);
3282 tp
->retrans_out
= 0;
3286 *acked
= pkts_acked
;
3290 static void tcp_ack_probe(struct sock
*sk
)
3292 const struct tcp_sock
*tp
= tcp_sk(sk
);
3293 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3295 /* Was it a usable window open? */
3297 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3298 icsk
->icsk_backoff
= 0;
3299 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3300 /* Socket must be waked up by subsequent tcp_data_snd_check().
3301 * This function is not for random using!
3304 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3306 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3311 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3313 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3314 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3317 /* Decide wheather to run the increase function of congestion control. */
3318 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3320 /* If reordering is high then always grow cwnd whenever data is
3321 * delivered regardless of its ordering. Otherwise stay conservative
3322 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323 * new SACK or ECE mark may first advance cwnd here and later reduce
3324 * cwnd in tcp_fastretrans_alert() based on more states.
3326 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3327 return flag
& FLAG_FORWARD_PROGRESS
;
3329 return flag
& FLAG_DATA_ACKED
;
3332 /* The "ultimate" congestion control function that aims to replace the rigid
3333 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3334 * It's called toward the end of processing an ACK with precise rate
3335 * information. All transmission or retransmission are delayed afterwards.
3337 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3338 int flag
, const struct rate_sample
*rs
)
3340 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3342 if (icsk
->icsk_ca_ops
->cong_control
) {
3343 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3347 if (tcp_in_cwnd_reduction(sk
)) {
3348 /* Reduce cwnd if state mandates */
3349 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3350 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3351 /* Advance cwnd if state allows */
3352 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3354 tcp_update_pacing_rate(sk
);
3357 /* Check that window update is acceptable.
3358 * The function assumes that snd_una<=ack<=snd_next.
3360 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3361 const u32 ack
, const u32 ack_seq
,
3364 return after(ack
, tp
->snd_una
) ||
3365 after(ack_seq
, tp
->snd_wl1
) ||
3366 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3369 /* If we update tp->snd_una, also update tp->bytes_acked */
3370 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3372 u32 delta
= ack
- tp
->snd_una
;
3374 sock_owned_by_me((struct sock
*)tp
);
3375 u64_stats_update_begin_raw(&tp
->syncp
);
3376 tp
->bytes_acked
+= delta
;
3377 u64_stats_update_end_raw(&tp
->syncp
);
3381 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3382 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3384 u32 delta
= seq
- tp
->rcv_nxt
;
3386 sock_owned_by_me((struct sock
*)tp
);
3387 u64_stats_update_begin_raw(&tp
->syncp
);
3388 tp
->bytes_received
+= delta
;
3389 u64_stats_update_end_raw(&tp
->syncp
);
3393 /* Update our send window.
3395 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3396 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3398 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3401 struct tcp_sock
*tp
= tcp_sk(sk
);
3403 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3405 if (likely(!tcp_hdr(skb
)->syn
))
3406 nwin
<<= tp
->rx_opt
.snd_wscale
;
3408 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3409 flag
|= FLAG_WIN_UPDATE
;
3410 tcp_update_wl(tp
, ack_seq
);
3412 if (tp
->snd_wnd
!= nwin
) {
3415 /* Note, it is the only place, where
3416 * fast path is recovered for sending TCP.
3419 tcp_fast_path_check(sk
);
3421 if (tcp_send_head(sk
))
3422 tcp_slow_start_after_idle_check(sk
);
3424 if (nwin
> tp
->max_window
) {
3425 tp
->max_window
= nwin
;
3426 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3431 tcp_snd_una_update(tp
, ack
);
3436 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3437 u32
*last_oow_ack_time
)
3439 if (*last_oow_ack_time
) {
3440 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3442 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3443 NET_INC_STATS(net
, mib_idx
);
3444 return true; /* rate-limited: don't send yet! */
3448 *last_oow_ack_time
= tcp_time_stamp
;
3450 return false; /* not rate-limited: go ahead, send dupack now! */
3453 /* Return true if we're currently rate-limiting out-of-window ACKs and
3454 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3455 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3456 * attacks that send repeated SYNs or ACKs for the same connection. To
3457 * do this, we do not send a duplicate SYNACK or ACK if the remote
3458 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3460 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3461 int mib_idx
, u32
*last_oow_ack_time
)
3463 /* Data packets without SYNs are not likely part of an ACK loop. */
3464 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3468 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3471 /* RFC 5961 7 [ACK Throttling] */
3472 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3474 /* unprotected vars, we dont care of overwrites */
3475 static u32 challenge_timestamp
;
3476 static unsigned int challenge_count
;
3477 struct tcp_sock
*tp
= tcp_sk(sk
);
3480 /* First check our per-socket dupack rate limit. */
3481 if (__tcp_oow_rate_limited(sock_net(sk
),
3482 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3483 &tp
->last_oow_ack_time
))
3486 /* Then check host-wide RFC 5961 rate limit. */
3488 if (now
!= challenge_timestamp
) {
3489 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3491 challenge_timestamp
= now
;
3492 WRITE_ONCE(challenge_count
, half
+
3493 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3495 count
= READ_ONCE(challenge_count
);
3497 WRITE_ONCE(challenge_count
, count
- 1);
3498 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3503 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3505 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3506 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3509 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3511 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3512 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3513 * extra check below makes sure this can only happen
3514 * for pure ACK frames. -DaveM
3516 * Not only, also it occurs for expired timestamps.
3519 if (tcp_paws_check(&tp
->rx_opt
, 0))
3520 tcp_store_ts_recent(tp
);
3524 /* This routine deals with acks during a TLP episode.
3525 * We mark the end of a TLP episode on receiving TLP dupack or when
3526 * ack is after tlp_high_seq.
3527 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3529 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3531 struct tcp_sock
*tp
= tcp_sk(sk
);
3533 if (before(ack
, tp
->tlp_high_seq
))
3536 if (flag
& FLAG_DSACKING_ACK
) {
3537 /* This DSACK means original and TLP probe arrived; no loss */
3538 tp
->tlp_high_seq
= 0;
3539 } else if (after(ack
, tp
->tlp_high_seq
)) {
3540 /* ACK advances: there was a loss, so reduce cwnd. Reset
3541 * tlp_high_seq in tcp_init_cwnd_reduction()
3543 tcp_init_cwnd_reduction(sk
);
3544 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3545 tcp_end_cwnd_reduction(sk
);
3546 tcp_try_keep_open(sk
);
3547 NET_INC_STATS(sock_net(sk
),
3548 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3549 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3550 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3551 /* Pure dupack: original and TLP probe arrived; no loss */
3552 tp
->tlp_high_seq
= 0;
3556 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3558 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3560 if (icsk
->icsk_ca_ops
->in_ack_event
)
3561 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3564 /* Congestion control has updated the cwnd already. So if we're in
3565 * loss recovery then now we do any new sends (for FRTO) or
3566 * retransmits (for CA_Loss or CA_recovery) that make sense.
3568 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3570 struct tcp_sock
*tp
= tcp_sk(sk
);
3572 if (rexmit
== REXMIT_NONE
)
3575 if (unlikely(rexmit
== 2)) {
3576 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3578 if (after(tp
->snd_nxt
, tp
->high_seq
))
3582 tcp_xmit_retransmit_queue(sk
);
3585 /* This routine deals with incoming acks, but not outgoing ones. */
3586 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3588 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3589 struct tcp_sock
*tp
= tcp_sk(sk
);
3590 struct tcp_sacktag_state sack_state
;
3591 struct rate_sample rs
= { .prior_delivered
= 0 };
3592 u32 prior_snd_una
= tp
->snd_una
;
3593 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3594 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3595 bool is_dupack
= false;
3597 int prior_packets
= tp
->packets_out
;
3598 u32 delivered
= tp
->delivered
;
3599 u32 lost
= tp
->lost
;
3600 int acked
= 0; /* Number of packets newly acked */
3601 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3602 struct skb_mstamp now
;
3604 sack_state
.first_sackt
.v64
= 0;
3605 sack_state
.rate
= &rs
;
3607 /* We very likely will need to access write queue head. */
3608 prefetchw(sk
->sk_write_queue
.next
);
3610 /* If the ack is older than previous acks
3611 * then we can probably ignore it.
3613 if (before(ack
, prior_snd_una
)) {
3614 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3615 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3616 tcp_send_challenge_ack(sk
, skb
);
3622 /* If the ack includes data we haven't sent yet, discard
3623 * this segment (RFC793 Section 3.9).
3625 if (after(ack
, tp
->snd_nxt
))
3628 skb_mstamp_get(&now
);
3630 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3631 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3634 if (after(ack
, prior_snd_una
)) {
3635 flag
|= FLAG_SND_UNA_ADVANCED
;
3636 icsk
->icsk_retransmits
= 0;
3639 prior_fackets
= tp
->fackets_out
;
3640 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3642 /* ts_recent update must be made after we are sure that the packet
3645 if (flag
& FLAG_UPDATE_TS_RECENT
)
3646 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3648 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3649 /* Window is constant, pure forward advance.
3650 * No more checks are required.
3651 * Note, we use the fact that SND.UNA>=SND.WL2.
3653 tcp_update_wl(tp
, ack_seq
);
3654 tcp_snd_una_update(tp
, ack
);
3655 flag
|= FLAG_WIN_UPDATE
;
3657 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3659 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3661 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3663 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3666 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3668 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3670 if (TCP_SKB_CB(skb
)->sacked
)
3671 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3674 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3676 ack_ev_flags
|= CA_ACK_ECE
;
3679 if (flag
& FLAG_WIN_UPDATE
)
3680 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3682 tcp_in_ack_event(sk
, ack_ev_flags
);
3685 /* We passed data and got it acked, remove any soft error
3686 * log. Something worked...
3688 sk
->sk_err_soft
= 0;
3689 icsk
->icsk_probes_out
= 0;
3690 tp
->rcv_tstamp
= tcp_time_stamp
;
3694 /* See if we can take anything off of the retransmit queue. */
3695 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3698 if (tcp_ack_is_dubious(sk
, flag
)) {
3699 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3700 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3702 if (tp
->tlp_high_seq
)
3703 tcp_process_tlp_ack(sk
, ack
, flag
);
3705 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3706 struct dst_entry
*dst
= __sk_dst_get(sk
);
3711 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3712 tcp_schedule_loss_probe(sk
);
3713 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3714 lost
= tp
->lost
- lost
; /* freshly marked lost */
3715 tcp_rate_gen(sk
, delivered
, lost
, &now
, &rs
);
3716 tcp_cong_control(sk
, ack
, delivered
, flag
, &rs
);
3717 tcp_xmit_recovery(sk
, rexmit
);
3721 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3722 if (flag
& FLAG_DSACKING_ACK
)
3723 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3724 /* If this ack opens up a zero window, clear backoff. It was
3725 * being used to time the probes, and is probably far higher than
3726 * it needs to be for normal retransmission.
3728 if (tcp_send_head(sk
))
3731 if (tp
->tlp_high_seq
)
3732 tcp_process_tlp_ack(sk
, ack
, flag
);
3736 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3740 /* If data was SACKed, tag it and see if we should send more data.
3741 * If data was DSACKed, see if we can undo a cwnd reduction.
3743 if (TCP_SKB_CB(skb
)->sacked
) {
3744 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3746 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3747 tcp_xmit_recovery(sk
, rexmit
);
3750 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3754 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3755 bool syn
, struct tcp_fastopen_cookie
*foc
,
3758 /* Valid only in SYN or SYN-ACK with an even length. */
3759 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3762 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3763 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3764 memcpy(foc
->val
, cookie
, len
);
3771 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3772 * But, this can also be called on packets in the established flow when
3773 * the fast version below fails.
3775 void tcp_parse_options(const struct sk_buff
*skb
,
3776 struct tcp_options_received
*opt_rx
, int estab
,
3777 struct tcp_fastopen_cookie
*foc
)
3779 const unsigned char *ptr
;
3780 const struct tcphdr
*th
= tcp_hdr(skb
);
3781 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3783 ptr
= (const unsigned char *)(th
+ 1);
3784 opt_rx
->saw_tstamp
= 0;
3786 while (length
> 0) {
3787 int opcode
= *ptr
++;
3793 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3798 if (opsize
< 2) /* "silly options" */
3800 if (opsize
> length
)
3801 return; /* don't parse partial options */
3804 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3805 u16 in_mss
= get_unaligned_be16(ptr
);
3807 if (opt_rx
->user_mss
&&
3808 opt_rx
->user_mss
< in_mss
)
3809 in_mss
= opt_rx
->user_mss
;
3810 opt_rx
->mss_clamp
= in_mss
;
3815 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3816 !estab
&& sysctl_tcp_window_scaling
) {
3817 __u8 snd_wscale
= *(__u8
*)ptr
;
3818 opt_rx
->wscale_ok
= 1;
3819 if (snd_wscale
> 14) {
3820 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3825 opt_rx
->snd_wscale
= snd_wscale
;
3828 case TCPOPT_TIMESTAMP
:
3829 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3830 ((estab
&& opt_rx
->tstamp_ok
) ||
3831 (!estab
&& sysctl_tcp_timestamps
))) {
3832 opt_rx
->saw_tstamp
= 1;
3833 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3834 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3837 case TCPOPT_SACK_PERM
:
3838 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3839 !estab
&& sysctl_tcp_sack
) {
3840 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3841 tcp_sack_reset(opt_rx
);
3846 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3847 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3849 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3852 #ifdef CONFIG_TCP_MD5SIG
3855 * The MD5 Hash has already been
3856 * checked (see tcp_v{4,6}_do_rcv()).
3860 case TCPOPT_FASTOPEN
:
3861 tcp_parse_fastopen_option(
3862 opsize
- TCPOLEN_FASTOPEN_BASE
,
3863 ptr
, th
->syn
, foc
, false);
3867 /* Fast Open option shares code 254 using a
3868 * 16 bits magic number.
3870 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3871 get_unaligned_be16(ptr
) ==
3872 TCPOPT_FASTOPEN_MAGIC
)
3873 tcp_parse_fastopen_option(opsize
-
3874 TCPOLEN_EXP_FASTOPEN_BASE
,
3875 ptr
+ 2, th
->syn
, foc
, true);
3884 EXPORT_SYMBOL(tcp_parse_options
);
3886 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3888 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3890 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3891 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3892 tp
->rx_opt
.saw_tstamp
= 1;
3894 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3897 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3899 tp
->rx_opt
.rcv_tsecr
= 0;
3905 /* Fast parse options. This hopes to only see timestamps.
3906 * If it is wrong it falls back on tcp_parse_options().
3908 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3909 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3911 /* In the spirit of fast parsing, compare doff directly to constant
3912 * values. Because equality is used, short doff can be ignored here.
3914 if (th
->doff
== (sizeof(*th
) / 4)) {
3915 tp
->rx_opt
.saw_tstamp
= 0;
3917 } else if (tp
->rx_opt
.tstamp_ok
&&
3918 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3919 if (tcp_parse_aligned_timestamp(tp
, th
))
3923 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3924 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3925 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3930 #ifdef CONFIG_TCP_MD5SIG
3932 * Parse MD5 Signature option
3934 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3936 int length
= (th
->doff
<< 2) - sizeof(*th
);
3937 const u8
*ptr
= (const u8
*)(th
+ 1);
3939 /* If the TCP option is too short, we can short cut */
3940 if (length
< TCPOLEN_MD5SIG
)
3943 while (length
> 0) {
3944 int opcode
= *ptr
++;
3955 if (opsize
< 2 || opsize
> length
)
3957 if (opcode
== TCPOPT_MD5SIG
)
3958 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3965 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3968 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3970 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3971 * it can pass through stack. So, the following predicate verifies that
3972 * this segment is not used for anything but congestion avoidance or
3973 * fast retransmit. Moreover, we even are able to eliminate most of such
3974 * second order effects, if we apply some small "replay" window (~RTO)
3975 * to timestamp space.
3977 * All these measures still do not guarantee that we reject wrapped ACKs
3978 * on networks with high bandwidth, when sequence space is recycled fastly,
3979 * but it guarantees that such events will be very rare and do not affect
3980 * connection seriously. This doesn't look nice, but alas, PAWS is really
3983 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3984 * states that events when retransmit arrives after original data are rare.
3985 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3986 * the biggest problem on large power networks even with minor reordering.
3987 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3988 * up to bandwidth of 18Gigabit/sec. 8) ]
3991 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3993 const struct tcp_sock
*tp
= tcp_sk(sk
);
3994 const struct tcphdr
*th
= tcp_hdr(skb
);
3995 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3996 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3998 return (/* 1. Pure ACK with correct sequence number. */
3999 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4001 /* 2. ... and duplicate ACK. */
4002 ack
== tp
->snd_una
&&
4004 /* 3. ... and does not update window. */
4005 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4007 /* 4. ... and sits in replay window. */
4008 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4011 static inline bool tcp_paws_discard(const struct sock
*sk
,
4012 const struct sk_buff
*skb
)
4014 const struct tcp_sock
*tp
= tcp_sk(sk
);
4016 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4017 !tcp_disordered_ack(sk
, skb
);
4020 /* Check segment sequence number for validity.
4022 * Segment controls are considered valid, if the segment
4023 * fits to the window after truncation to the window. Acceptability
4024 * of data (and SYN, FIN, of course) is checked separately.
4025 * See tcp_data_queue(), for example.
4027 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4028 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4029 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4030 * (borrowed from freebsd)
4033 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4035 return !before(end_seq
, tp
->rcv_wup
) &&
4036 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4039 /* When we get a reset we do this. */
4040 void tcp_reset(struct sock
*sk
)
4042 /* We want the right error as BSD sees it (and indeed as we do). */
4043 switch (sk
->sk_state
) {
4045 sk
->sk_err
= ECONNREFUSED
;
4047 case TCP_CLOSE_WAIT
:
4053 sk
->sk_err
= ECONNRESET
;
4055 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4058 if (!sock_flag(sk
, SOCK_DEAD
))
4059 sk
->sk_error_report(sk
);
4065 * Process the FIN bit. This now behaves as it is supposed to work
4066 * and the FIN takes effect when it is validly part of sequence
4067 * space. Not before when we get holes.
4069 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4070 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4073 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4074 * close and we go into CLOSING (and later onto TIME-WAIT)
4076 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4078 void tcp_fin(struct sock
*sk
)
4080 struct tcp_sock
*tp
= tcp_sk(sk
);
4082 inet_csk_schedule_ack(sk
);
4084 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4085 sock_set_flag(sk
, SOCK_DONE
);
4087 switch (sk
->sk_state
) {
4089 case TCP_ESTABLISHED
:
4090 /* Move to CLOSE_WAIT */
4091 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4092 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4095 case TCP_CLOSE_WAIT
:
4097 /* Received a retransmission of the FIN, do
4102 /* RFC793: Remain in the LAST-ACK state. */
4106 /* This case occurs when a simultaneous close
4107 * happens, we must ack the received FIN and
4108 * enter the CLOSING state.
4111 tcp_set_state(sk
, TCP_CLOSING
);
4114 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4116 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4119 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4120 * cases we should never reach this piece of code.
4122 pr_err("%s: Impossible, sk->sk_state=%d\n",
4123 __func__
, sk
->sk_state
);
4127 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4128 * Probably, we should reset in this case. For now drop them.
4130 skb_rbtree_purge(&tp
->out_of_order_queue
);
4131 if (tcp_is_sack(tp
))
4132 tcp_sack_reset(&tp
->rx_opt
);
4135 if (!sock_flag(sk
, SOCK_DEAD
)) {
4136 sk
->sk_state_change(sk
);
4138 /* Do not send POLL_HUP for half duplex close. */
4139 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4140 sk
->sk_state
== TCP_CLOSE
)
4141 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4143 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4147 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4150 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4151 if (before(seq
, sp
->start_seq
))
4152 sp
->start_seq
= seq
;
4153 if (after(end_seq
, sp
->end_seq
))
4154 sp
->end_seq
= end_seq
;
4160 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4162 struct tcp_sock
*tp
= tcp_sk(sk
);
4164 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4167 if (before(seq
, tp
->rcv_nxt
))
4168 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4170 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4172 NET_INC_STATS(sock_net(sk
), mib_idx
);
4174 tp
->rx_opt
.dsack
= 1;
4175 tp
->duplicate_sack
[0].start_seq
= seq
;
4176 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4180 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4182 struct tcp_sock
*tp
= tcp_sk(sk
);
4184 if (!tp
->rx_opt
.dsack
)
4185 tcp_dsack_set(sk
, seq
, end_seq
);
4187 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4190 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4192 struct tcp_sock
*tp
= tcp_sk(sk
);
4194 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4195 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4196 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4197 tcp_enter_quickack_mode(sk
);
4199 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4200 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4202 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4203 end_seq
= tp
->rcv_nxt
;
4204 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4211 /* These routines update the SACK block as out-of-order packets arrive or
4212 * in-order packets close up the sequence space.
4214 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4217 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4218 struct tcp_sack_block
*swalk
= sp
+ 1;
4220 /* See if the recent change to the first SACK eats into
4221 * or hits the sequence space of other SACK blocks, if so coalesce.
4223 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4224 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4227 /* Zap SWALK, by moving every further SACK up by one slot.
4228 * Decrease num_sacks.
4230 tp
->rx_opt
.num_sacks
--;
4231 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4235 this_sack
++, swalk
++;
4239 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4241 struct tcp_sock
*tp
= tcp_sk(sk
);
4242 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4243 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4249 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4250 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4251 /* Rotate this_sack to the first one. */
4252 for (; this_sack
> 0; this_sack
--, sp
--)
4253 swap(*sp
, *(sp
- 1));
4255 tcp_sack_maybe_coalesce(tp
);
4260 /* Could not find an adjacent existing SACK, build a new one,
4261 * put it at the front, and shift everyone else down. We
4262 * always know there is at least one SACK present already here.
4264 * If the sack array is full, forget about the last one.
4266 if (this_sack
>= TCP_NUM_SACKS
) {
4268 tp
->rx_opt
.num_sacks
--;
4271 for (; this_sack
> 0; this_sack
--, sp
--)
4275 /* Build the new head SACK, and we're done. */
4276 sp
->start_seq
= seq
;
4277 sp
->end_seq
= end_seq
;
4278 tp
->rx_opt
.num_sacks
++;
4281 /* RCV.NXT advances, some SACKs should be eaten. */
4283 static void tcp_sack_remove(struct tcp_sock
*tp
)
4285 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4286 int num_sacks
= tp
->rx_opt
.num_sacks
;
4289 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4290 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4291 tp
->rx_opt
.num_sacks
= 0;
4295 for (this_sack
= 0; this_sack
< num_sacks
;) {
4296 /* Check if the start of the sack is covered by RCV.NXT. */
4297 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4300 /* RCV.NXT must cover all the block! */
4301 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4303 /* Zap this SACK, by moving forward any other SACKS. */
4304 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4305 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4312 tp
->rx_opt
.num_sacks
= num_sacks
;
4316 * tcp_try_coalesce - try to merge skb to prior one
4319 * @from: buffer to add in queue
4320 * @fragstolen: pointer to boolean
4322 * Before queueing skb @from after @to, try to merge them
4323 * to reduce overall memory use and queue lengths, if cost is small.
4324 * Packets in ofo or receive queues can stay a long time.
4325 * Better try to coalesce them right now to avoid future collapses.
4326 * Returns true if caller should free @from instead of queueing it
4328 static bool tcp_try_coalesce(struct sock
*sk
,
4330 struct sk_buff
*from
,
4335 *fragstolen
= false;
4337 /* Its possible this segment overlaps with prior segment in queue */
4338 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4341 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4344 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4345 sk_mem_charge(sk
, delta
);
4346 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4347 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4348 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4349 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4353 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4355 sk_drops_add(sk
, skb
);
4359 /* This one checks to see if we can put data from the
4360 * out_of_order queue into the receive_queue.
4362 static void tcp_ofo_queue(struct sock
*sk
)
4364 struct tcp_sock
*tp
= tcp_sk(sk
);
4365 __u32 dsack_high
= tp
->rcv_nxt
;
4366 bool fin
, fragstolen
, eaten
;
4367 struct sk_buff
*skb
, *tail
;
4370 p
= rb_first(&tp
->out_of_order_queue
);
4372 skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4373 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4376 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4377 __u32 dsack
= dsack_high
;
4378 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4379 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4380 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4383 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4385 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4386 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4390 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4391 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4392 TCP_SKB_CB(skb
)->end_seq
);
4394 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4395 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4396 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4397 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4399 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4401 kfree_skb_partial(skb
, fragstolen
);
4403 if (unlikely(fin
)) {
4405 /* tcp_fin() purges tp->out_of_order_queue,
4406 * so we must end this loop right now.
4413 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4414 static int tcp_prune_queue(struct sock
*sk
);
4416 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4419 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4420 !sk_rmem_schedule(sk
, skb
, size
)) {
4422 if (tcp_prune_queue(sk
) < 0)
4425 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4426 if (!tcp_prune_ofo_queue(sk
))
4433 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4435 struct tcp_sock
*tp
= tcp_sk(sk
);
4436 struct rb_node
**p
, *q
, *parent
;
4437 struct sk_buff
*skb1
;
4441 tcp_ecn_check_ce(tp
, skb
);
4443 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4444 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4449 /* Disable header prediction. */
4451 inet_csk_schedule_ack(sk
);
4453 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4454 seq
= TCP_SKB_CB(skb
)->seq
;
4455 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4456 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4457 tp
->rcv_nxt
, seq
, end_seq
);
4459 p
= &tp
->out_of_order_queue
.rb_node
;
4460 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4461 /* Initial out of order segment, build 1 SACK. */
4462 if (tcp_is_sack(tp
)) {
4463 tp
->rx_opt
.num_sacks
= 1;
4464 tp
->selective_acks
[0].start_seq
= seq
;
4465 tp
->selective_acks
[0].end_seq
= end_seq
;
4467 rb_link_node(&skb
->rbnode
, NULL
, p
);
4468 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4469 tp
->ooo_last_skb
= skb
;
4473 /* In the typical case, we are adding an skb to the end of the list.
4474 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4476 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
, skb
, &fragstolen
)) {
4478 tcp_grow_window(sk
, skb
);
4479 kfree_skb_partial(skb
, fragstolen
);
4483 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4484 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4485 parent
= &tp
->ooo_last_skb
->rbnode
;
4486 p
= &parent
->rb_right
;
4490 /* Find place to insert this segment. Handle overlaps on the way. */
4494 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4495 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4496 p
= &parent
->rb_left
;
4499 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4500 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4501 /* All the bits are present. Drop. */
4502 NET_INC_STATS(sock_net(sk
),
4503 LINUX_MIB_TCPOFOMERGE
);
4506 tcp_dsack_set(sk
, seq
, end_seq
);
4509 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4510 /* Partial overlap. */
4511 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4513 /* skb's seq == skb1's seq and skb covers skb1.
4514 * Replace skb1 with skb.
4516 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4517 &tp
->out_of_order_queue
);
4518 tcp_dsack_extend(sk
,
4519 TCP_SKB_CB(skb1
)->seq
,
4520 TCP_SKB_CB(skb1
)->end_seq
);
4521 NET_INC_STATS(sock_net(sk
),
4522 LINUX_MIB_TCPOFOMERGE
);
4526 } else if (tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4529 p
= &parent
->rb_right
;
4532 /* Insert segment into RB tree. */
4533 rb_link_node(&skb
->rbnode
, parent
, p
);
4534 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4537 /* Remove other segments covered by skb. */
4538 while ((q
= rb_next(&skb
->rbnode
)) != NULL
) {
4539 skb1
= rb_entry(q
, struct sk_buff
, rbnode
);
4541 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4543 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4544 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4548 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4549 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4550 TCP_SKB_CB(skb1
)->end_seq
);
4551 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4554 /* If there is no skb after us, we are the last_skb ! */
4556 tp
->ooo_last_skb
= skb
;
4559 if (tcp_is_sack(tp
))
4560 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4563 tcp_grow_window(sk
, skb
);
4564 skb_set_owner_r(skb
, sk
);
4568 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4572 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4574 __skb_pull(skb
, hdrlen
);
4576 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4577 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4579 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4580 skb_set_owner_r(skb
, sk
);
4585 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4587 struct sk_buff
*skb
;
4595 if (size
> PAGE_SIZE
) {
4596 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4598 data_len
= npages
<< PAGE_SHIFT
;
4599 size
= data_len
+ (size
& ~PAGE_MASK
);
4601 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4602 PAGE_ALLOC_COSTLY_ORDER
,
4603 &err
, sk
->sk_allocation
);
4607 skb_put(skb
, size
- data_len
);
4608 skb
->data_len
= data_len
;
4611 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4614 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4618 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4619 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4620 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4622 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4623 WARN_ON_ONCE(fragstolen
); /* should not happen */
4635 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4637 struct tcp_sock
*tp
= tcp_sk(sk
);
4638 bool fragstolen
= false;
4641 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4646 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4648 tcp_ecn_accept_cwr(tp
, skb
);
4650 tp
->rx_opt
.dsack
= 0;
4652 /* Queue data for delivery to the user.
4653 * Packets in sequence go to the receive queue.
4654 * Out of sequence packets to the out_of_order_queue.
4656 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4657 if (tcp_receive_window(tp
) == 0)
4660 /* Ok. In sequence. In window. */
4661 if (tp
->ucopy
.task
== current
&&
4662 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4663 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4664 int chunk
= min_t(unsigned int, skb
->len
,
4667 __set_current_state(TASK_RUNNING
);
4669 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4670 tp
->ucopy
.len
-= chunk
;
4671 tp
->copied_seq
+= chunk
;
4672 eaten
= (chunk
== skb
->len
);
4673 tcp_rcv_space_adjust(sk
);
4680 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4681 sk_forced_mem_schedule(sk
, skb
->truesize
);
4682 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4685 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4687 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4689 tcp_event_data_recv(sk
, skb
);
4690 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4693 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4696 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4697 * gap in queue is filled.
4699 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4700 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4703 if (tp
->rx_opt
.num_sacks
)
4704 tcp_sack_remove(tp
);
4706 tcp_fast_path_check(sk
);
4709 kfree_skb_partial(skb
, fragstolen
);
4710 if (!sock_flag(sk
, SOCK_DEAD
))
4711 sk
->sk_data_ready(sk
);
4715 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4716 /* A retransmit, 2nd most common case. Force an immediate ack. */
4717 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4718 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4721 tcp_enter_quickack_mode(sk
);
4722 inet_csk_schedule_ack(sk
);
4728 /* Out of window. F.e. zero window probe. */
4729 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4732 tcp_enter_quickack_mode(sk
);
4734 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4735 /* Partial packet, seq < rcv_next < end_seq */
4736 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4737 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4738 TCP_SKB_CB(skb
)->end_seq
);
4740 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4742 /* If window is closed, drop tail of packet. But after
4743 * remembering D-SACK for its head made in previous line.
4745 if (!tcp_receive_window(tp
))
4750 tcp_data_queue_ofo(sk
, skb
);
4753 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4756 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4758 return rb_entry_safe(rb_next(&skb
->rbnode
), struct sk_buff
, rbnode
);
4761 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4762 struct sk_buff_head
*list
,
4763 struct rb_root
*root
)
4765 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4768 __skb_unlink(skb
, list
);
4770 rb_erase(&skb
->rbnode
, root
);
4773 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4778 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4779 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4781 struct rb_node
**p
= &root
->rb_node
;
4782 struct rb_node
*parent
= NULL
;
4783 struct sk_buff
*skb1
;
4787 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4788 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4789 p
= &parent
->rb_left
;
4791 p
= &parent
->rb_right
;
4793 rb_link_node(&skb
->rbnode
, parent
, p
);
4794 rb_insert_color(&skb
->rbnode
, root
);
4797 /* Collapse contiguous sequence of skbs head..tail with
4798 * sequence numbers start..end.
4800 * If tail is NULL, this means until the end of the queue.
4802 * Segments with FIN/SYN are not collapsed (only because this
4806 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4807 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4809 struct sk_buff
*skb
= head
, *n
;
4810 struct sk_buff_head tmp
;
4813 /* First, check that queue is collapsible and find
4814 * the point where collapsing can be useful.
4817 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4818 n
= tcp_skb_next(skb
, list
);
4820 /* No new bits? It is possible on ofo queue. */
4821 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4822 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4828 /* The first skb to collapse is:
4830 * - bloated or contains data before "start" or
4831 * overlaps to the next one.
4833 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4834 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4835 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4836 end_of_skbs
= false;
4840 if (n
&& n
!= tail
&&
4841 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4842 end_of_skbs
= false;
4846 /* Decided to skip this, advance start seq. */
4847 start
= TCP_SKB_CB(skb
)->end_seq
;
4850 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4853 __skb_queue_head_init(&tmp
);
4855 while (before(start
, end
)) {
4856 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4857 struct sk_buff
*nskb
;
4859 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4863 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4864 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4866 __skb_queue_before(list
, skb
, nskb
);
4868 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4869 skb_set_owner_r(nskb
, sk
);
4871 /* Copy data, releasing collapsed skbs. */
4873 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4874 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4878 size
= min(copy
, size
);
4879 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4881 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4885 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4886 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4889 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4895 skb_queue_walk_safe(&tmp
, skb
, n
)
4896 tcp_rbtree_insert(root
, skb
);
4899 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4900 * and tcp_collapse() them until all the queue is collapsed.
4902 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4904 struct tcp_sock
*tp
= tcp_sk(sk
);
4905 struct sk_buff
*skb
, *head
;
4909 p
= rb_first(&tp
->out_of_order_queue
);
4910 skb
= rb_entry_safe(p
, struct sk_buff
, rbnode
);
4913 p
= rb_last(&tp
->out_of_order_queue
);
4914 /* Note: This is possible p is NULL here. We do not
4915 * use rb_entry_safe(), as ooo_last_skb is valid only
4916 * if rbtree is not empty.
4918 tp
->ooo_last_skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4921 start
= TCP_SKB_CB(skb
)->seq
;
4922 end
= TCP_SKB_CB(skb
)->end_seq
;
4924 for (head
= skb
;;) {
4925 skb
= tcp_skb_next(skb
, NULL
);
4927 /* Range is terminated when we see a gap or when
4928 * we are at the queue end.
4931 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4932 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4933 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4934 head
, skb
, start
, end
);
4938 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4939 start
= TCP_SKB_CB(skb
)->seq
;
4940 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4941 end
= TCP_SKB_CB(skb
)->end_seq
;
4946 * Clean the out-of-order queue to make room.
4947 * We drop high sequences packets to :
4948 * 1) Let a chance for holes to be filled.
4949 * 2) not add too big latencies if thousands of packets sit there.
4950 * (But if application shrinks SO_RCVBUF, we could still end up
4951 * freeing whole queue here)
4953 * Return true if queue has shrunk.
4955 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4957 struct tcp_sock
*tp
= tcp_sk(sk
);
4958 struct rb_node
*node
, *prev
;
4960 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4963 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4964 node
= &tp
->ooo_last_skb
->rbnode
;
4966 prev
= rb_prev(node
);
4967 rb_erase(node
, &tp
->out_of_order_queue
);
4968 tcp_drop(sk
, rb_entry(node
, struct sk_buff
, rbnode
));
4970 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4971 !tcp_under_memory_pressure(sk
))
4975 tp
->ooo_last_skb
= rb_entry(prev
, struct sk_buff
, rbnode
);
4977 /* Reset SACK state. A conforming SACK implementation will
4978 * do the same at a timeout based retransmit. When a connection
4979 * is in a sad state like this, we care only about integrity
4980 * of the connection not performance.
4982 if (tp
->rx_opt
.sack_ok
)
4983 tcp_sack_reset(&tp
->rx_opt
);
4987 /* Reduce allocated memory if we can, trying to get
4988 * the socket within its memory limits again.
4990 * Return less than zero if we should start dropping frames
4991 * until the socket owning process reads some of the data
4992 * to stabilize the situation.
4994 static int tcp_prune_queue(struct sock
*sk
)
4996 struct tcp_sock
*tp
= tcp_sk(sk
);
4998 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
5000 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5002 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5003 tcp_clamp_window(sk
);
5004 else if (tcp_under_memory_pressure(sk
))
5005 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5007 tcp_collapse_ofo_queue(sk
);
5008 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5009 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5010 skb_peek(&sk
->sk_receive_queue
),
5012 tp
->copied_seq
, tp
->rcv_nxt
);
5015 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5018 /* Collapsing did not help, destructive actions follow.
5019 * This must not ever occur. */
5021 tcp_prune_ofo_queue(sk
);
5023 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5026 /* If we are really being abused, tell the caller to silently
5027 * drop receive data on the floor. It will get retransmitted
5028 * and hopefully then we'll have sufficient space.
5030 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5032 /* Massive buffer overcommit. */
5037 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5039 const struct tcp_sock
*tp
= tcp_sk(sk
);
5041 /* If the user specified a specific send buffer setting, do
5044 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5047 /* If we are under global TCP memory pressure, do not expand. */
5048 if (tcp_under_memory_pressure(sk
))
5051 /* If we are under soft global TCP memory pressure, do not expand. */
5052 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5055 /* If we filled the congestion window, do not expand. */
5056 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5062 /* When incoming ACK allowed to free some skb from write_queue,
5063 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5064 * on the exit from tcp input handler.
5066 * PROBLEM: sndbuf expansion does not work well with largesend.
5068 static void tcp_new_space(struct sock
*sk
)
5070 struct tcp_sock
*tp
= tcp_sk(sk
);
5072 if (tcp_should_expand_sndbuf(sk
)) {
5073 tcp_sndbuf_expand(sk
);
5074 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5077 sk
->sk_write_space(sk
);
5080 static void tcp_check_space(struct sock
*sk
)
5082 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5083 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5084 /* pairs with tcp_poll() */
5085 smp_mb__after_atomic();
5086 if (sk
->sk_socket
&&
5087 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5092 static inline void tcp_data_snd_check(struct sock
*sk
)
5094 tcp_push_pending_frames(sk
);
5095 tcp_check_space(sk
);
5099 * Check if sending an ack is needed.
5101 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5103 struct tcp_sock
*tp
= tcp_sk(sk
);
5105 /* More than one full frame received... */
5106 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5107 /* ... and right edge of window advances far enough.
5108 * (tcp_recvmsg() will send ACK otherwise). Or...
5110 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5111 /* We ACK each frame or... */
5112 tcp_in_quickack_mode(sk
) ||
5113 /* We have out of order data. */
5114 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5115 /* Then ack it now */
5118 /* Else, send delayed ack. */
5119 tcp_send_delayed_ack(sk
);
5123 static inline void tcp_ack_snd_check(struct sock
*sk
)
5125 if (!inet_csk_ack_scheduled(sk
)) {
5126 /* We sent a data segment already. */
5129 __tcp_ack_snd_check(sk
, 1);
5133 * This routine is only called when we have urgent data
5134 * signaled. Its the 'slow' part of tcp_urg. It could be
5135 * moved inline now as tcp_urg is only called from one
5136 * place. We handle URGent data wrong. We have to - as
5137 * BSD still doesn't use the correction from RFC961.
5138 * For 1003.1g we should support a new option TCP_STDURG to permit
5139 * either form (or just set the sysctl tcp_stdurg).
5142 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5144 struct tcp_sock
*tp
= tcp_sk(sk
);
5145 u32 ptr
= ntohs(th
->urg_ptr
);
5147 if (ptr
&& !sysctl_tcp_stdurg
)
5149 ptr
+= ntohl(th
->seq
);
5151 /* Ignore urgent data that we've already seen and read. */
5152 if (after(tp
->copied_seq
, ptr
))
5155 /* Do not replay urg ptr.
5157 * NOTE: interesting situation not covered by specs.
5158 * Misbehaving sender may send urg ptr, pointing to segment,
5159 * which we already have in ofo queue. We are not able to fetch
5160 * such data and will stay in TCP_URG_NOTYET until will be eaten
5161 * by recvmsg(). Seems, we are not obliged to handle such wicked
5162 * situations. But it is worth to think about possibility of some
5163 * DoSes using some hypothetical application level deadlock.
5165 if (before(ptr
, tp
->rcv_nxt
))
5168 /* Do we already have a newer (or duplicate) urgent pointer? */
5169 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5172 /* Tell the world about our new urgent pointer. */
5175 /* We may be adding urgent data when the last byte read was
5176 * urgent. To do this requires some care. We cannot just ignore
5177 * tp->copied_seq since we would read the last urgent byte again
5178 * as data, nor can we alter copied_seq until this data arrives
5179 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5181 * NOTE. Double Dutch. Rendering to plain English: author of comment
5182 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5183 * and expect that both A and B disappear from stream. This is _wrong_.
5184 * Though this happens in BSD with high probability, this is occasional.
5185 * Any application relying on this is buggy. Note also, that fix "works"
5186 * only in this artificial test. Insert some normal data between A and B and we will
5187 * decline of BSD again. Verdict: it is better to remove to trap
5190 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5191 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5192 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5194 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5195 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5200 tp
->urg_data
= TCP_URG_NOTYET
;
5203 /* Disable header prediction. */
5207 /* This is the 'fast' part of urgent handling. */
5208 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5210 struct tcp_sock
*tp
= tcp_sk(sk
);
5212 /* Check if we get a new urgent pointer - normally not. */
5214 tcp_check_urg(sk
, th
);
5216 /* Do we wait for any urgent data? - normally not... */
5217 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5218 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5221 /* Is the urgent pointer pointing into this packet? */
5222 if (ptr
< skb
->len
) {
5224 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5226 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5227 if (!sock_flag(sk
, SOCK_DEAD
))
5228 sk
->sk_data_ready(sk
);
5233 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5235 struct tcp_sock
*tp
= tcp_sk(sk
);
5236 int chunk
= skb
->len
- hlen
;
5239 if (skb_csum_unnecessary(skb
))
5240 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5242 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5245 tp
->ucopy
.len
-= chunk
;
5246 tp
->copied_seq
+= chunk
;
5247 tcp_rcv_space_adjust(sk
);
5253 /* Does PAWS and seqno based validation of an incoming segment, flags will
5254 * play significant role here.
5256 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5257 const struct tcphdr
*th
, int syn_inerr
)
5259 struct tcp_sock
*tp
= tcp_sk(sk
);
5260 bool rst_seq_match
= false;
5262 /* RFC1323: H1. Apply PAWS check first. */
5263 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5264 tcp_paws_discard(sk
, skb
)) {
5266 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5267 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5268 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5269 &tp
->last_oow_ack_time
))
5270 tcp_send_dupack(sk
, skb
);
5273 /* Reset is accepted even if it did not pass PAWS. */
5276 /* Step 1: check sequence number */
5277 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5278 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5279 * (RST) segments are validated by checking their SEQ-fields."
5280 * And page 69: "If an incoming segment is not acceptable,
5281 * an acknowledgment should be sent in reply (unless the RST
5282 * bit is set, if so drop the segment and return)".
5287 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5288 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5289 &tp
->last_oow_ack_time
))
5290 tcp_send_dupack(sk
, skb
);
5295 /* Step 2: check RST bit */
5297 /* RFC 5961 3.2 (extend to match against SACK too if available):
5298 * If seq num matches RCV.NXT or the right-most SACK block,
5300 * RESET the connection
5302 * Send a challenge ACK
5304 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5305 rst_seq_match
= true;
5306 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5307 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5308 int max_sack
= sp
[0].end_seq
;
5311 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5313 max_sack
= after(sp
[this_sack
].end_seq
,
5315 sp
[this_sack
].end_seq
: max_sack
;
5318 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5319 rst_seq_match
= true;
5325 tcp_send_challenge_ack(sk
, skb
);
5329 /* step 3: check security and precedence [ignored] */
5331 /* step 4: Check for a SYN
5332 * RFC 5961 4.2 : Send a challenge ack
5337 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5338 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5339 tcp_send_challenge_ack(sk
, skb
);
5351 * TCP receive function for the ESTABLISHED state.
5353 * It is split into a fast path and a slow path. The fast path is
5355 * - A zero window was announced from us - zero window probing
5356 * is only handled properly in the slow path.
5357 * - Out of order segments arrived.
5358 * - Urgent data is expected.
5359 * - There is no buffer space left
5360 * - Unexpected TCP flags/window values/header lengths are received
5361 * (detected by checking the TCP header against pred_flags)
5362 * - Data is sent in both directions. Fast path only supports pure senders
5363 * or pure receivers (this means either the sequence number or the ack
5364 * value must stay constant)
5365 * - Unexpected TCP option.
5367 * When these conditions are not satisfied it drops into a standard
5368 * receive procedure patterned after RFC793 to handle all cases.
5369 * The first three cases are guaranteed by proper pred_flags setting,
5370 * the rest is checked inline. Fast processing is turned on in
5371 * tcp_data_queue when everything is OK.
5373 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5374 const struct tcphdr
*th
, unsigned int len
)
5376 struct tcp_sock
*tp
= tcp_sk(sk
);
5378 if (unlikely(!sk
->sk_rx_dst
))
5379 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5381 * Header prediction.
5382 * The code loosely follows the one in the famous
5383 * "30 instruction TCP receive" Van Jacobson mail.
5385 * Van's trick is to deposit buffers into socket queue
5386 * on a device interrupt, to call tcp_recv function
5387 * on the receive process context and checksum and copy
5388 * the buffer to user space. smart...
5390 * Our current scheme is not silly either but we take the
5391 * extra cost of the net_bh soft interrupt processing...
5392 * We do checksum and copy also but from device to kernel.
5395 tp
->rx_opt
.saw_tstamp
= 0;
5397 /* pred_flags is 0xS?10 << 16 + snd_wnd
5398 * if header_prediction is to be made
5399 * 'S' will always be tp->tcp_header_len >> 2
5400 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5401 * turn it off (when there are holes in the receive
5402 * space for instance)
5403 * PSH flag is ignored.
5406 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5407 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5408 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5409 int tcp_header_len
= tp
->tcp_header_len
;
5411 /* Timestamp header prediction: tcp_header_len
5412 * is automatically equal to th->doff*4 due to pred_flags
5416 /* Check timestamp */
5417 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5418 /* No? Slow path! */
5419 if (!tcp_parse_aligned_timestamp(tp
, th
))
5422 /* If PAWS failed, check it more carefully in slow path */
5423 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5426 /* DO NOT update ts_recent here, if checksum fails
5427 * and timestamp was corrupted part, it will result
5428 * in a hung connection since we will drop all
5429 * future packets due to the PAWS test.
5433 if (len
<= tcp_header_len
) {
5434 /* Bulk data transfer: sender */
5435 if (len
== tcp_header_len
) {
5436 /* Predicted packet is in window by definition.
5437 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5438 * Hence, check seq<=rcv_wup reduces to:
5440 if (tcp_header_len
==
5441 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5442 tp
->rcv_nxt
== tp
->rcv_wup
)
5443 tcp_store_ts_recent(tp
);
5445 /* We know that such packets are checksummed
5448 tcp_ack(sk
, skb
, 0);
5450 tcp_data_snd_check(sk
);
5452 } else { /* Header too small */
5453 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5458 bool fragstolen
= false;
5460 if (tp
->ucopy
.task
== current
&&
5461 tp
->copied_seq
== tp
->rcv_nxt
&&
5462 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5463 sock_owned_by_user(sk
)) {
5464 __set_current_state(TASK_RUNNING
);
5466 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5467 /* Predicted packet is in window by definition.
5468 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5469 * Hence, check seq<=rcv_wup reduces to:
5471 if (tcp_header_len
==
5472 (sizeof(struct tcphdr
) +
5473 TCPOLEN_TSTAMP_ALIGNED
) &&
5474 tp
->rcv_nxt
== tp
->rcv_wup
)
5475 tcp_store_ts_recent(tp
);
5477 tcp_rcv_rtt_measure_ts(sk
, skb
);
5479 __skb_pull(skb
, tcp_header_len
);
5480 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5481 NET_INC_STATS(sock_net(sk
),
5482 LINUX_MIB_TCPHPHITSTOUSER
);
5487 if (tcp_checksum_complete(skb
))
5490 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5493 /* Predicted packet is in window by definition.
5494 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5495 * Hence, check seq<=rcv_wup reduces to:
5497 if (tcp_header_len
==
5498 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5499 tp
->rcv_nxt
== tp
->rcv_wup
)
5500 tcp_store_ts_recent(tp
);
5502 tcp_rcv_rtt_measure_ts(sk
, skb
);
5504 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5506 /* Bulk data transfer: receiver */
5507 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5511 tcp_event_data_recv(sk
, skb
);
5513 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5514 /* Well, only one small jumplet in fast path... */
5515 tcp_ack(sk
, skb
, FLAG_DATA
);
5516 tcp_data_snd_check(sk
);
5517 if (!inet_csk_ack_scheduled(sk
))
5521 __tcp_ack_snd_check(sk
, 0);
5524 kfree_skb_partial(skb
, fragstolen
);
5525 sk
->sk_data_ready(sk
);
5531 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5534 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5538 * Standard slow path.
5541 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5545 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5548 tcp_rcv_rtt_measure_ts(sk
, skb
);
5550 /* Process urgent data. */
5551 tcp_urg(sk
, skb
, th
);
5553 /* step 7: process the segment text */
5554 tcp_data_queue(sk
, skb
);
5556 tcp_data_snd_check(sk
);
5557 tcp_ack_snd_check(sk
);
5561 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5562 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5567 EXPORT_SYMBOL(tcp_rcv_established
);
5569 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5571 struct tcp_sock
*tp
= tcp_sk(sk
);
5572 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5574 tcp_set_state(sk
, TCP_ESTABLISHED
);
5575 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5578 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5579 security_inet_conn_established(sk
, skb
);
5582 /* Make sure socket is routed, for correct metrics. */
5583 icsk
->icsk_af_ops
->rebuild_header(sk
);
5585 tcp_init_metrics(sk
);
5587 tcp_init_congestion_control(sk
);
5589 /* Prevent spurious tcp_cwnd_restart() on first data
5592 tp
->lsndtime
= tcp_time_stamp
;
5594 tcp_init_buffer_space(sk
);
5596 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5597 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5599 if (!tp
->rx_opt
.snd_wscale
)
5600 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5604 if (!sock_flag(sk
, SOCK_DEAD
)) {
5605 sk
->sk_state_change(sk
);
5606 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5610 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5611 struct tcp_fastopen_cookie
*cookie
)
5613 struct tcp_sock
*tp
= tcp_sk(sk
);
5614 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5615 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5616 bool syn_drop
= false;
5618 if (mss
== tp
->rx_opt
.user_mss
) {
5619 struct tcp_options_received opt
;
5621 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5622 tcp_clear_options(&opt
);
5623 opt
.user_mss
= opt
.mss_clamp
= 0;
5624 tcp_parse_options(synack
, &opt
, 0, NULL
);
5625 mss
= opt
.mss_clamp
;
5628 if (!tp
->syn_fastopen
) {
5629 /* Ignore an unsolicited cookie */
5631 } else if (tp
->total_retrans
) {
5632 /* SYN timed out and the SYN-ACK neither has a cookie nor
5633 * acknowledges data. Presumably the remote received only
5634 * the retransmitted (regular) SYNs: either the original
5635 * SYN-data or the corresponding SYN-ACK was dropped.
5637 syn_drop
= (cookie
->len
< 0 && data
);
5638 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5639 /* We requested a cookie but didn't get it. If we did not use
5640 * the (old) exp opt format then try so next time (try_exp=1).
5641 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5643 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5646 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5648 if (data
) { /* Retransmit unacked data in SYN */
5649 tcp_for_write_queue_from(data
, sk
) {
5650 if (data
== tcp_send_head(sk
) ||
5651 __tcp_retransmit_skb(sk
, data
, 1))
5655 NET_INC_STATS(sock_net(sk
),
5656 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5659 tp
->syn_data_acked
= tp
->syn_data
;
5660 if (tp
->syn_data_acked
)
5661 NET_INC_STATS(sock_net(sk
),
5662 LINUX_MIB_TCPFASTOPENACTIVE
);
5664 tcp_fastopen_add_skb(sk
, synack
);
5669 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5670 const struct tcphdr
*th
)
5672 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5673 struct tcp_sock
*tp
= tcp_sk(sk
);
5674 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5675 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5677 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5678 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5679 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5683 * "If the state is SYN-SENT then
5684 * first check the ACK bit
5685 * If the ACK bit is set
5686 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5687 * a reset (unless the RST bit is set, if so drop
5688 * the segment and return)"
5690 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5691 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5692 goto reset_and_undo
;
5694 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5695 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5697 NET_INC_STATS(sock_net(sk
),
5698 LINUX_MIB_PAWSACTIVEREJECTED
);
5699 goto reset_and_undo
;
5702 /* Now ACK is acceptable.
5704 * "If the RST bit is set
5705 * If the ACK was acceptable then signal the user "error:
5706 * connection reset", drop the segment, enter CLOSED state,
5707 * delete TCB, and return."
5716 * "fifth, if neither of the SYN or RST bits is set then
5717 * drop the segment and return."
5723 goto discard_and_undo
;
5726 * "If the SYN bit is on ...
5727 * are acceptable then ...
5728 * (our SYN has been ACKed), change the connection
5729 * state to ESTABLISHED..."
5732 tcp_ecn_rcv_synack(tp
, th
);
5734 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5735 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5737 /* Ok.. it's good. Set up sequence numbers and
5738 * move to established.
5740 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5741 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5743 /* RFC1323: The window in SYN & SYN/ACK segments is
5746 tp
->snd_wnd
= ntohs(th
->window
);
5748 if (!tp
->rx_opt
.wscale_ok
) {
5749 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5750 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5753 if (tp
->rx_opt
.saw_tstamp
) {
5754 tp
->rx_opt
.tstamp_ok
= 1;
5755 tp
->tcp_header_len
=
5756 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5757 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5758 tcp_store_ts_recent(tp
);
5760 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5763 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5764 tcp_enable_fack(tp
);
5767 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5768 tcp_initialize_rcv_mss(sk
);
5770 /* Remember, tcp_poll() does not lock socket!
5771 * Change state from SYN-SENT only after copied_seq
5772 * is initialized. */
5773 tp
->copied_seq
= tp
->rcv_nxt
;
5777 tcp_finish_connect(sk
, skb
);
5779 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5780 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5783 if (sk
->sk_write_pending
||
5784 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5785 icsk
->icsk_ack
.pingpong
) {
5786 /* Save one ACK. Data will be ready after
5787 * several ticks, if write_pending is set.
5789 * It may be deleted, but with this feature tcpdumps
5790 * look so _wonderfully_ clever, that I was not able
5791 * to stand against the temptation 8) --ANK
5793 inet_csk_schedule_ack(sk
);
5794 tcp_enter_quickack_mode(sk
);
5795 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5796 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5807 /* No ACK in the segment */
5811 * "If the RST bit is set
5813 * Otherwise (no ACK) drop the segment and return."
5816 goto discard_and_undo
;
5820 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5821 tcp_paws_reject(&tp
->rx_opt
, 0))
5822 goto discard_and_undo
;
5825 /* We see SYN without ACK. It is attempt of
5826 * simultaneous connect with crossed SYNs.
5827 * Particularly, it can be connect to self.
5829 tcp_set_state(sk
, TCP_SYN_RECV
);
5831 if (tp
->rx_opt
.saw_tstamp
) {
5832 tp
->rx_opt
.tstamp_ok
= 1;
5833 tcp_store_ts_recent(tp
);
5834 tp
->tcp_header_len
=
5835 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5837 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5840 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5841 tp
->copied_seq
= tp
->rcv_nxt
;
5842 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5844 /* RFC1323: The window in SYN & SYN/ACK segments is
5847 tp
->snd_wnd
= ntohs(th
->window
);
5848 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5849 tp
->max_window
= tp
->snd_wnd
;
5851 tcp_ecn_rcv_syn(tp
, th
);
5854 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5855 tcp_initialize_rcv_mss(sk
);
5857 tcp_send_synack(sk
);
5859 /* Note, we could accept data and URG from this segment.
5860 * There are no obstacles to make this (except that we must
5861 * either change tcp_recvmsg() to prevent it from returning data
5862 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5864 * However, if we ignore data in ACKless segments sometimes,
5865 * we have no reasons to accept it sometimes.
5866 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5867 * is not flawless. So, discard packet for sanity.
5868 * Uncomment this return to process the data.
5875 /* "fifth, if neither of the SYN or RST bits is set then
5876 * drop the segment and return."
5880 tcp_clear_options(&tp
->rx_opt
);
5881 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5885 tcp_clear_options(&tp
->rx_opt
);
5886 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5891 * This function implements the receiving procedure of RFC 793 for
5892 * all states except ESTABLISHED and TIME_WAIT.
5893 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5894 * address independent.
5897 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5899 struct tcp_sock
*tp
= tcp_sk(sk
);
5900 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5901 const struct tcphdr
*th
= tcp_hdr(skb
);
5902 struct request_sock
*req
;
5906 switch (sk
->sk_state
) {
5920 /* It is possible that we process SYN packets from backlog,
5921 * so we need to make sure to disable BH right there.
5924 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5935 tp
->rx_opt
.saw_tstamp
= 0;
5936 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5940 /* Do step6 onward by hand. */
5941 tcp_urg(sk
, skb
, th
);
5943 tcp_data_snd_check(sk
);
5947 tp
->rx_opt
.saw_tstamp
= 0;
5948 req
= tp
->fastopen_rsk
;
5950 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5951 sk
->sk_state
!= TCP_FIN_WAIT1
);
5953 if (!tcp_check_req(sk
, skb
, req
, true))
5957 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5960 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5963 /* step 5: check the ACK field */
5964 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5965 FLAG_UPDATE_TS_RECENT
) > 0;
5967 switch (sk
->sk_state
) {
5973 tcp_synack_rtt_meas(sk
, req
);
5975 /* Once we leave TCP_SYN_RECV, we no longer need req
5979 inet_csk(sk
)->icsk_retransmits
= 0;
5980 reqsk_fastopen_remove(sk
, req
, false);
5982 /* Make sure socket is routed, for correct metrics. */
5983 icsk
->icsk_af_ops
->rebuild_header(sk
);
5984 tcp_init_congestion_control(sk
);
5987 tp
->copied_seq
= tp
->rcv_nxt
;
5988 tcp_init_buffer_space(sk
);
5991 tcp_set_state(sk
, TCP_ESTABLISHED
);
5992 sk
->sk_state_change(sk
);
5994 /* Note, that this wakeup is only for marginal crossed SYN case.
5995 * Passively open sockets are not waked up, because
5996 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5999 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6001 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6002 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6003 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6005 if (tp
->rx_opt
.tstamp_ok
)
6006 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6009 /* Re-arm the timer because data may have been sent out.
6010 * This is similar to the regular data transmission case
6011 * when new data has just been ack'ed.
6013 * (TFO) - we could try to be more aggressive and
6014 * retransmitting any data sooner based on when they
6019 tcp_init_metrics(sk
);
6021 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6022 tcp_update_pacing_rate(sk
);
6024 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6025 tp
->lsndtime
= tcp_time_stamp
;
6027 tcp_initialize_rcv_mss(sk
);
6028 tcp_fast_path_on(tp
);
6031 case TCP_FIN_WAIT1
: {
6032 struct dst_entry
*dst
;
6035 /* If we enter the TCP_FIN_WAIT1 state and we are a
6036 * Fast Open socket and this is the first acceptable
6037 * ACK we have received, this would have acknowledged
6038 * our SYNACK so stop the SYNACK timer.
6041 /* Return RST if ack_seq is invalid.
6042 * Note that RFC793 only says to generate a
6043 * DUPACK for it but for TCP Fast Open it seems
6044 * better to treat this case like TCP_SYN_RECV
6049 /* We no longer need the request sock. */
6050 reqsk_fastopen_remove(sk
, req
, false);
6053 if (tp
->snd_una
!= tp
->write_seq
)
6056 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6057 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6059 dst
= __sk_dst_get(sk
);
6063 if (!sock_flag(sk
, SOCK_DEAD
)) {
6064 /* Wake up lingering close() */
6065 sk
->sk_state_change(sk
);
6069 if (tp
->linger2
< 0 ||
6070 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6071 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6073 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6077 tmo
= tcp_fin_time(sk
);
6078 if (tmo
> TCP_TIMEWAIT_LEN
) {
6079 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6080 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6081 /* Bad case. We could lose such FIN otherwise.
6082 * It is not a big problem, but it looks confusing
6083 * and not so rare event. We still can lose it now,
6084 * if it spins in bh_lock_sock(), but it is really
6087 inet_csk_reset_keepalive_timer(sk
, tmo
);
6089 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6096 if (tp
->snd_una
== tp
->write_seq
) {
6097 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6103 if (tp
->snd_una
== tp
->write_seq
) {
6104 tcp_update_metrics(sk
);
6111 /* step 6: check the URG bit */
6112 tcp_urg(sk
, skb
, th
);
6114 /* step 7: process the segment text */
6115 switch (sk
->sk_state
) {
6116 case TCP_CLOSE_WAIT
:
6119 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6123 /* RFC 793 says to queue data in these states,
6124 * RFC 1122 says we MUST send a reset.
6125 * BSD 4.4 also does reset.
6127 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6128 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6129 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6130 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6136 case TCP_ESTABLISHED
:
6137 tcp_data_queue(sk
, skb
);
6142 /* tcp_data could move socket to TIME-WAIT */
6143 if (sk
->sk_state
!= TCP_CLOSE
) {
6144 tcp_data_snd_check(sk
);
6145 tcp_ack_snd_check(sk
);
6154 EXPORT_SYMBOL(tcp_rcv_state_process
);
6156 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6158 struct inet_request_sock
*ireq
= inet_rsk(req
);
6160 if (family
== AF_INET
)
6161 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6162 &ireq
->ir_rmt_addr
, port
);
6163 #if IS_ENABLED(CONFIG_IPV6)
6164 else if (family
== AF_INET6
)
6165 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6166 &ireq
->ir_v6_rmt_addr
, port
);
6170 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6172 * If we receive a SYN packet with these bits set, it means a
6173 * network is playing bad games with TOS bits. In order to
6174 * avoid possible false congestion notifications, we disable
6175 * TCP ECN negotiation.
6177 * Exception: tcp_ca wants ECN. This is required for DCTCP
6178 * congestion control: Linux DCTCP asserts ECT on all packets,
6179 * including SYN, which is most optimal solution; however,
6180 * others, such as FreeBSD do not.
6182 static void tcp_ecn_create_request(struct request_sock
*req
,
6183 const struct sk_buff
*skb
,
6184 const struct sock
*listen_sk
,
6185 const struct dst_entry
*dst
)
6187 const struct tcphdr
*th
= tcp_hdr(skb
);
6188 const struct net
*net
= sock_net(listen_sk
);
6189 bool th_ecn
= th
->ece
&& th
->cwr
;
6196 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6197 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6198 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6200 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6201 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6202 inet_rsk(req
)->ecn_ok
= 1;
6205 static void tcp_openreq_init(struct request_sock
*req
,
6206 const struct tcp_options_received
*rx_opt
,
6207 struct sk_buff
*skb
, const struct sock
*sk
)
6209 struct inet_request_sock
*ireq
= inet_rsk(req
);
6211 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6213 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6214 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6215 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6216 tcp_rsk(req
)->last_oow_ack_time
= 0;
6217 req
->mss
= rx_opt
->mss_clamp
;
6218 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6219 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6220 ireq
->sack_ok
= rx_opt
->sack_ok
;
6221 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6222 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6225 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6226 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6227 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6230 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6231 struct sock
*sk_listener
,
6232 bool attach_listener
)
6234 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6238 struct inet_request_sock
*ireq
= inet_rsk(req
);
6240 kmemcheck_annotate_bitfield(ireq
, flags
);
6242 #if IS_ENABLED(CONFIG_IPV6)
6243 ireq
->pktopts
= NULL
;
6245 atomic64_set(&ireq
->ir_cookie
, 0);
6246 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6247 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6248 ireq
->ireq_family
= sk_listener
->sk_family
;
6253 EXPORT_SYMBOL(inet_reqsk_alloc
);
6256 * Return true if a syncookie should be sent
6258 static bool tcp_syn_flood_action(const struct sock
*sk
,
6259 const struct sk_buff
*skb
,
6262 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6263 const char *msg
= "Dropping request";
6264 bool want_cookie
= false;
6265 struct net
*net
= sock_net(sk
);
6267 #ifdef CONFIG_SYN_COOKIES
6268 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6269 msg
= "Sending cookies";
6271 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6274 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6276 if (!queue
->synflood_warned
&&
6277 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6278 xchg(&queue
->synflood_warned
, 1) == 0)
6279 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6280 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6285 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6286 struct request_sock
*req
,
6287 const struct sk_buff
*skb
)
6289 if (tcp_sk(sk
)->save_syn
) {
6290 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6293 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6296 memcpy(©
[1], skb_network_header(skb
), len
);
6297 req
->saved_syn
= copy
;
6302 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6303 const struct tcp_request_sock_ops
*af_ops
,
6304 struct sock
*sk
, struct sk_buff
*skb
)
6306 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6307 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6308 struct tcp_options_received tmp_opt
;
6309 struct tcp_sock
*tp
= tcp_sk(sk
);
6310 struct net
*net
= sock_net(sk
);
6311 struct sock
*fastopen_sk
= NULL
;
6312 struct dst_entry
*dst
= NULL
;
6313 struct request_sock
*req
;
6314 bool want_cookie
= false;
6317 /* TW buckets are converted to open requests without
6318 * limitations, they conserve resources and peer is
6319 * evidently real one.
6321 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6322 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6323 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6329 /* Accept backlog is full. If we have already queued enough
6330 * of warm entries in syn queue, drop request. It is better than
6331 * clogging syn queue with openreqs with exponentially increasing
6334 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
6335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6339 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6343 tcp_rsk(req
)->af_specific
= af_ops
;
6345 tcp_clear_options(&tmp_opt
);
6346 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6347 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6348 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6350 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6351 tcp_clear_options(&tmp_opt
);
6353 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6354 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6355 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6357 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6358 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6360 af_ops
->init_req(req
, sk
, skb
);
6362 if (security_inet_conn_request(sk
, skb
, req
))
6365 if (!want_cookie
&& !isn
) {
6366 /* VJ's idea. We save last timestamp seen
6367 * from the destination in peer table, when entering
6368 * state TIME-WAIT, and check against it before
6369 * accepting new connection request.
6371 * If "isn" is not zero, this request hit alive
6372 * timewait bucket, so that all the necessary checks
6373 * are made in the function processing timewait state.
6375 if (tcp_death_row
.sysctl_tw_recycle
) {
6378 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6380 if (dst
&& strict
&&
6381 !tcp_peer_is_proven(req
, dst
, true,
6382 tmp_opt
.saw_tstamp
)) {
6383 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6384 goto drop_and_release
;
6387 /* Kill the following clause, if you dislike this way. */
6388 else if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6389 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6390 (sysctl_max_syn_backlog
>> 2)) &&
6391 !tcp_peer_is_proven(req
, dst
, false,
6392 tmp_opt
.saw_tstamp
)) {
6393 /* Without syncookies last quarter of
6394 * backlog is filled with destinations,
6395 * proven to be alive.
6396 * It means that we continue to communicate
6397 * to destinations, already remembered
6398 * to the moment of synflood.
6400 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6402 goto drop_and_release
;
6405 isn
= af_ops
->init_seq(skb
);
6408 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6413 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6416 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6417 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6418 if (!tmp_opt
.tstamp_ok
)
6419 inet_rsk(req
)->ecn_ok
= 0;
6422 tcp_rsk(req
)->snt_isn
= isn
;
6423 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6424 tcp_openreq_init_rwin(req
, sk
, dst
);
6426 tcp_reqsk_record_syn(sk
, req
, skb
);
6427 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6430 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6431 &foc
, TCP_SYNACK_FASTOPEN
);
6432 /* Add the child socket directly into the accept queue */
6433 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6434 sk
->sk_data_ready(sk
);
6435 bh_unlock_sock(fastopen_sk
);
6436 sock_put(fastopen_sk
);
6438 tcp_rsk(req
)->tfo_listener
= false;
6440 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6441 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6442 !want_cookie
? TCP_SYNACK_NORMAL
:
6460 EXPORT_SYMBOL(tcp_conn_request
);