pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / net / rxrpc / recvmsg.c
blobc29362d50a92b7de9771e94d8af375944ee168d0
1 /* RxRPC recvmsg() implementation
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/net.h>
15 #include <linux/skbuff.h>
16 #include <linux/export.h>
17 #include <net/sock.h>
18 #include <net/af_rxrpc.h>
19 #include "ar-internal.h"
22 * Post a call for attention by the socket or kernel service. Further
23 * notifications are suppressed by putting recvmsg_link on a dummy queue.
25 void rxrpc_notify_socket(struct rxrpc_call *call)
27 struct rxrpc_sock *rx;
28 struct sock *sk;
30 _enter("%d", call->debug_id);
32 if (!list_empty(&call->recvmsg_link))
33 return;
35 rcu_read_lock();
37 rx = rcu_dereference(call->socket);
38 sk = &rx->sk;
39 if (rx && sk->sk_state < RXRPC_CLOSE) {
40 if (call->notify_rx) {
41 call->notify_rx(sk, call, call->user_call_ID);
42 } else {
43 write_lock_bh(&rx->recvmsg_lock);
44 if (list_empty(&call->recvmsg_link)) {
45 rxrpc_get_call(call, rxrpc_call_got);
46 list_add_tail(&call->recvmsg_link, &rx->recvmsg_q);
48 write_unlock_bh(&rx->recvmsg_lock);
50 if (!sock_flag(sk, SOCK_DEAD)) {
51 _debug("call %ps", sk->sk_data_ready);
52 sk->sk_data_ready(sk);
57 rcu_read_unlock();
58 _leave("");
62 * Pass a call terminating message to userspace.
64 static int rxrpc_recvmsg_term(struct rxrpc_call *call, struct msghdr *msg)
66 u32 tmp = 0;
67 int ret;
69 switch (call->completion) {
70 case RXRPC_CALL_SUCCEEDED:
71 ret = 0;
72 if (rxrpc_is_service_call(call))
73 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ACK, 0, &tmp);
74 break;
75 case RXRPC_CALL_REMOTELY_ABORTED:
76 tmp = call->abort_code;
77 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
78 break;
79 case RXRPC_CALL_LOCALLY_ABORTED:
80 tmp = call->abort_code;
81 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
82 break;
83 case RXRPC_CALL_NETWORK_ERROR:
84 tmp = call->error;
85 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NET_ERROR, 4, &tmp);
86 break;
87 case RXRPC_CALL_LOCAL_ERROR:
88 tmp = call->error;
89 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_LOCAL_ERROR, 4, &tmp);
90 break;
91 default:
92 pr_err("Invalid terminal call state %u\n", call->state);
93 BUG();
94 break;
97 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_terminal, call->rx_hard_ack,
98 call->rx_pkt_offset, call->rx_pkt_len, ret);
99 return ret;
103 * Pass back notification of a new call. The call is added to the
104 * to-be-accepted list. This means that the next call to be accepted might not
105 * be the last call seen awaiting acceptance, but unless we leave this on the
106 * front of the queue and block all other messages until someone gives us a
107 * user_ID for it, there's not a lot we can do.
109 static int rxrpc_recvmsg_new_call(struct rxrpc_sock *rx,
110 struct rxrpc_call *call,
111 struct msghdr *msg, int flags)
113 int tmp = 0, ret;
115 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NEW_CALL, 0, &tmp);
117 if (ret == 0 && !(flags & MSG_PEEK)) {
118 _debug("to be accepted");
119 write_lock_bh(&rx->recvmsg_lock);
120 list_del_init(&call->recvmsg_link);
121 write_unlock_bh(&rx->recvmsg_lock);
123 rxrpc_get_call(call, rxrpc_call_got);
124 write_lock(&rx->call_lock);
125 list_add_tail(&call->accept_link, &rx->to_be_accepted);
126 write_unlock(&rx->call_lock);
129 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_to_be_accepted, 1, 0, 0, ret);
130 return ret;
134 * End the packet reception phase.
136 static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial)
138 _enter("%d,%s", call->debug_id, rxrpc_call_states[call->state]);
140 trace_rxrpc_receive(call, rxrpc_receive_end, 0, call->rx_top);
141 ASSERTCMP(call->rx_hard_ack, ==, call->rx_top);
143 if (call->state == RXRPC_CALL_CLIENT_RECV_REPLY) {
144 rxrpc_propose_ACK(call, RXRPC_ACK_IDLE, 0, serial, true, false,
145 rxrpc_propose_ack_terminal_ack);
146 rxrpc_send_ack_packet(call, false);
149 write_lock_bh(&call->state_lock);
151 switch (call->state) {
152 case RXRPC_CALL_CLIENT_RECV_REPLY:
153 __rxrpc_call_completed(call);
154 write_unlock_bh(&call->state_lock);
155 break;
157 case RXRPC_CALL_SERVER_RECV_REQUEST:
158 call->tx_phase = true;
159 call->state = RXRPC_CALL_SERVER_ACK_REQUEST;
160 call->ack_at = call->expire_at;
161 write_unlock_bh(&call->state_lock);
162 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, 0, serial, false, true,
163 rxrpc_propose_ack_processing_op);
164 break;
165 default:
166 write_unlock_bh(&call->state_lock);
167 break;
172 * Discard a packet we've used up and advance the Rx window by one.
174 static void rxrpc_rotate_rx_window(struct rxrpc_call *call)
176 struct rxrpc_skb_priv *sp;
177 struct sk_buff *skb;
178 rxrpc_serial_t serial;
179 rxrpc_seq_t hard_ack, top;
180 u8 flags;
181 int ix;
183 _enter("%d", call->debug_id);
185 hard_ack = call->rx_hard_ack;
186 top = smp_load_acquire(&call->rx_top);
187 ASSERT(before(hard_ack, top));
189 hard_ack++;
190 ix = hard_ack & RXRPC_RXTX_BUFF_MASK;
191 skb = call->rxtx_buffer[ix];
192 rxrpc_see_skb(skb, rxrpc_skb_rx_rotated);
193 sp = rxrpc_skb(skb);
194 flags = sp->hdr.flags;
195 serial = sp->hdr.serial;
196 if (call->rxtx_annotations[ix] & RXRPC_RX_ANNO_JUMBO)
197 serial += (call->rxtx_annotations[ix] & RXRPC_RX_ANNO_JUMBO) - 1;
199 call->rxtx_buffer[ix] = NULL;
200 call->rxtx_annotations[ix] = 0;
201 /* Barrier against rxrpc_input_data(). */
202 smp_store_release(&call->rx_hard_ack, hard_ack);
204 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
206 _debug("%u,%u,%02x", hard_ack, top, flags);
207 trace_rxrpc_receive(call, rxrpc_receive_rotate, serial, hard_ack);
208 if (flags & RXRPC_LAST_PACKET) {
209 rxrpc_end_rx_phase(call, serial);
210 } else {
211 /* Check to see if there's an ACK that needs sending. */
212 if (after_eq(hard_ack, call->ackr_consumed + 2) ||
213 after_eq(top, call->ackr_seen + 2) ||
214 (hard_ack == top && after(hard_ack, call->ackr_consumed)))
215 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, 0, serial,
216 true, false,
217 rxrpc_propose_ack_rotate_rx);
218 if (call->ackr_reason)
219 rxrpc_send_ack_packet(call, false);
224 * Decrypt and verify a (sub)packet. The packet's length may be changed due to
225 * padding, but if this is the case, the packet length will be resident in the
226 * socket buffer. Note that we can't modify the master skb info as the skb may
227 * be the home to multiple subpackets.
229 static int rxrpc_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
230 u8 annotation,
231 unsigned int offset, unsigned int len)
233 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
234 rxrpc_seq_t seq = sp->hdr.seq;
235 u16 cksum = sp->hdr.cksum;
237 _enter("");
239 /* For all but the head jumbo subpacket, the security checksum is in a
240 * jumbo header immediately prior to the data.
242 if ((annotation & RXRPC_RX_ANNO_JUMBO) > 1) {
243 __be16 tmp;
244 if (skb_copy_bits(skb, offset - 2, &tmp, 2) < 0)
245 BUG();
246 cksum = ntohs(tmp);
247 seq += (annotation & RXRPC_RX_ANNO_JUMBO) - 1;
250 return call->conn->security->verify_packet(call, skb, offset, len,
251 seq, cksum);
255 * Locate the data within a packet. This is complicated by:
257 * (1) An skb may contain a jumbo packet - so we have to find the appropriate
258 * subpacket.
260 * (2) The (sub)packets may be encrypted and, if so, the encrypted portion
261 * contains an extra header which includes the true length of the data,
262 * excluding any encrypted padding.
264 static int rxrpc_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
265 u8 *_annotation,
266 unsigned int *_offset, unsigned int *_len)
268 unsigned int offset = sizeof(struct rxrpc_wire_header);
269 unsigned int len = *_len;
270 int ret;
271 u8 annotation = *_annotation;
273 /* Locate the subpacket */
274 len = skb->len - offset;
275 if ((annotation & RXRPC_RX_ANNO_JUMBO) > 0) {
276 offset += (((annotation & RXRPC_RX_ANNO_JUMBO) - 1) *
277 RXRPC_JUMBO_SUBPKTLEN);
278 len = (annotation & RXRPC_RX_ANNO_JLAST) ?
279 skb->len - offset : RXRPC_JUMBO_SUBPKTLEN;
282 if (!(annotation & RXRPC_RX_ANNO_VERIFIED)) {
283 ret = rxrpc_verify_packet(call, skb, annotation, offset, len);
284 if (ret < 0)
285 return ret;
286 *_annotation |= RXRPC_RX_ANNO_VERIFIED;
289 *_offset = offset;
290 *_len = len;
291 call->conn->security->locate_data(call, skb, _offset, _len);
292 return 0;
296 * Deliver messages to a call. This keeps processing packets until the buffer
297 * is filled and we find either more DATA (returns 0) or the end of the DATA
298 * (returns 1). If more packets are required, it returns -EAGAIN.
300 static int rxrpc_recvmsg_data(struct socket *sock, struct rxrpc_call *call,
301 struct msghdr *msg, struct iov_iter *iter,
302 size_t len, int flags, size_t *_offset)
304 struct rxrpc_skb_priv *sp;
305 struct sk_buff *skb;
306 rxrpc_seq_t hard_ack, top, seq;
307 size_t remain;
308 bool last;
309 unsigned int rx_pkt_offset, rx_pkt_len;
310 int ix, copy, ret = -EAGAIN, ret2;
312 rx_pkt_offset = call->rx_pkt_offset;
313 rx_pkt_len = call->rx_pkt_len;
315 if (call->state >= RXRPC_CALL_SERVER_ACK_REQUEST) {
316 seq = call->rx_hard_ack;
317 ret = 1;
318 goto done;
321 /* Barriers against rxrpc_input_data(). */
322 hard_ack = call->rx_hard_ack;
323 top = smp_load_acquire(&call->rx_top);
324 for (seq = hard_ack + 1; before_eq(seq, top); seq++) {
325 ix = seq & RXRPC_RXTX_BUFF_MASK;
326 skb = call->rxtx_buffer[ix];
327 if (!skb) {
328 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_hole, seq,
329 rx_pkt_offset, rx_pkt_len, 0);
330 break;
332 smp_rmb();
333 rxrpc_see_skb(skb, rxrpc_skb_rx_seen);
334 sp = rxrpc_skb(skb);
336 if (!(flags & MSG_PEEK))
337 trace_rxrpc_receive(call, rxrpc_receive_front,
338 sp->hdr.serial, seq);
340 if (msg)
341 sock_recv_timestamp(msg, sock->sk, skb);
343 if (rx_pkt_offset == 0) {
344 ret2 = rxrpc_locate_data(call, skb,
345 &call->rxtx_annotations[ix],
346 &rx_pkt_offset, &rx_pkt_len);
347 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_next, seq,
348 rx_pkt_offset, rx_pkt_len, ret2);
349 if (ret2 < 0) {
350 ret = ret2;
351 goto out;
353 } else {
354 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_cont, seq,
355 rx_pkt_offset, rx_pkt_len, 0);
358 /* We have to handle short, empty and used-up DATA packets. */
359 remain = len - *_offset;
360 copy = rx_pkt_len;
361 if (copy > remain)
362 copy = remain;
363 if (copy > 0) {
364 ret2 = skb_copy_datagram_iter(skb, rx_pkt_offset, iter,
365 copy);
366 if (ret2 < 0) {
367 ret = ret2;
368 goto out;
371 /* handle piecemeal consumption of data packets */
372 rx_pkt_offset += copy;
373 rx_pkt_len -= copy;
374 *_offset += copy;
377 if (rx_pkt_len > 0) {
378 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_full, seq,
379 rx_pkt_offset, rx_pkt_len, 0);
380 ASSERTCMP(*_offset, ==, len);
381 ret = 0;
382 break;
385 /* The whole packet has been transferred. */
386 last = sp->hdr.flags & RXRPC_LAST_PACKET;
387 if (!(flags & MSG_PEEK))
388 rxrpc_rotate_rx_window(call);
389 rx_pkt_offset = 0;
390 rx_pkt_len = 0;
392 if (last) {
393 ASSERTCMP(seq, ==, READ_ONCE(call->rx_top));
394 ret = 1;
395 goto out;
399 out:
400 if (!(flags & MSG_PEEK)) {
401 call->rx_pkt_offset = rx_pkt_offset;
402 call->rx_pkt_len = rx_pkt_len;
404 done:
405 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_data_return, seq,
406 rx_pkt_offset, rx_pkt_len, ret);
407 return ret;
411 * Receive a message from an RxRPC socket
412 * - we need to be careful about two or more threads calling recvmsg
413 * simultaneously
415 int rxrpc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
416 int flags)
418 struct rxrpc_call *call;
419 struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
420 struct list_head *l;
421 size_t copied = 0;
422 long timeo;
423 int ret;
425 DEFINE_WAIT(wait);
427 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_enter, 0, 0, 0, 0);
429 if (flags & (MSG_OOB | MSG_TRUNC))
430 return -EOPNOTSUPP;
432 timeo = sock_rcvtimeo(&rx->sk, flags & MSG_DONTWAIT);
434 try_again:
435 lock_sock(&rx->sk);
437 /* Return immediately if a client socket has no outstanding calls */
438 if (RB_EMPTY_ROOT(&rx->calls) &&
439 list_empty(&rx->recvmsg_q) &&
440 rx->sk.sk_state != RXRPC_SERVER_LISTENING) {
441 release_sock(&rx->sk);
442 return -ENODATA;
445 if (list_empty(&rx->recvmsg_q)) {
446 ret = -EWOULDBLOCK;
447 if (timeo == 0) {
448 call = NULL;
449 goto error_no_call;
452 release_sock(&rx->sk);
454 /* Wait for something to happen */
455 prepare_to_wait_exclusive(sk_sleep(&rx->sk), &wait,
456 TASK_INTERRUPTIBLE);
457 ret = sock_error(&rx->sk);
458 if (ret)
459 goto wait_error;
461 if (list_empty(&rx->recvmsg_q)) {
462 if (signal_pending(current))
463 goto wait_interrupted;
464 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_wait,
465 0, 0, 0, 0);
466 timeo = schedule_timeout(timeo);
468 finish_wait(sk_sleep(&rx->sk), &wait);
469 goto try_again;
472 /* Find the next call and dequeue it if we're not just peeking. If we
473 * do dequeue it, that comes with a ref that we will need to release.
475 write_lock_bh(&rx->recvmsg_lock);
476 l = rx->recvmsg_q.next;
477 call = list_entry(l, struct rxrpc_call, recvmsg_link);
478 if (!(flags & MSG_PEEK))
479 list_del_init(&call->recvmsg_link);
480 else
481 rxrpc_get_call(call, rxrpc_call_got);
482 write_unlock_bh(&rx->recvmsg_lock);
484 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_dequeue, 0, 0, 0, 0);
486 if (test_bit(RXRPC_CALL_RELEASED, &call->flags))
487 BUG();
489 if (test_bit(RXRPC_CALL_HAS_USERID, &call->flags)) {
490 if (flags & MSG_CMSG_COMPAT) {
491 unsigned int id32 = call->user_call_ID;
493 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
494 sizeof(unsigned int), &id32);
495 } else {
496 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
497 sizeof(unsigned long),
498 &call->user_call_ID);
500 if (ret < 0)
501 goto error;
504 if (msg->msg_name) {
505 size_t len = sizeof(call->conn->params.peer->srx);
506 memcpy(msg->msg_name, &call->conn->params.peer->srx, len);
507 msg->msg_namelen = len;
510 switch (call->state) {
511 case RXRPC_CALL_SERVER_ACCEPTING:
512 ret = rxrpc_recvmsg_new_call(rx, call, msg, flags);
513 break;
514 case RXRPC_CALL_CLIENT_RECV_REPLY:
515 case RXRPC_CALL_SERVER_RECV_REQUEST:
516 case RXRPC_CALL_SERVER_ACK_REQUEST:
517 ret = rxrpc_recvmsg_data(sock, call, msg, &msg->msg_iter, len,
518 flags, &copied);
519 if (ret == -EAGAIN)
520 ret = 0;
522 if (after(call->rx_top, call->rx_hard_ack) &&
523 call->rxtx_buffer[(call->rx_hard_ack + 1) & RXRPC_RXTX_BUFF_MASK])
524 rxrpc_notify_socket(call);
525 break;
526 default:
527 ret = 0;
528 break;
531 if (ret < 0)
532 goto error;
534 if (call->state == RXRPC_CALL_COMPLETE) {
535 ret = rxrpc_recvmsg_term(call, msg);
536 if (ret < 0)
537 goto error;
538 if (!(flags & MSG_PEEK))
539 rxrpc_release_call(rx, call);
540 msg->msg_flags |= MSG_EOR;
541 ret = 1;
544 if (ret == 0)
545 msg->msg_flags |= MSG_MORE;
546 else
547 msg->msg_flags &= ~MSG_MORE;
548 ret = copied;
550 error:
551 rxrpc_put_call(call, rxrpc_call_put);
552 error_no_call:
553 release_sock(&rx->sk);
554 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, 0, 0, 0, ret);
555 return ret;
557 wait_interrupted:
558 ret = sock_intr_errno(timeo);
559 wait_error:
560 finish_wait(sk_sleep(&rx->sk), &wait);
561 call = NULL;
562 goto error_no_call;
566 * rxrpc_kernel_recv_data - Allow a kernel service to receive data/info
567 * @sock: The socket that the call exists on
568 * @call: The call to send data through
569 * @buf: The buffer to receive into
570 * @size: The size of the buffer, including data already read
571 * @_offset: The running offset into the buffer.
572 * @want_more: True if more data is expected to be read
573 * @_abort: Where the abort code is stored if -ECONNABORTED is returned
575 * Allow a kernel service to receive data and pick up information about the
576 * state of a call. Returns 0 if got what was asked for and there's more
577 * available, 1 if we got what was asked for and we're at the end of the data
578 * and -EAGAIN if we need more data.
580 * Note that we may return -EAGAIN to drain empty packets at the end of the
581 * data, even if we've already copied over the requested data.
583 * This function adds the amount it transfers to *_offset, so this should be
584 * precleared as appropriate. Note that the amount remaining in the buffer is
585 * taken to be size - *_offset.
587 * *_abort should also be initialised to 0.
589 int rxrpc_kernel_recv_data(struct socket *sock, struct rxrpc_call *call,
590 void *buf, size_t size, size_t *_offset,
591 bool want_more, u32 *_abort)
593 struct iov_iter iter;
594 struct kvec iov;
595 int ret;
597 _enter("{%d,%s},%zu/%zu,%d",
598 call->debug_id, rxrpc_call_states[call->state],
599 *_offset, size, want_more);
601 ASSERTCMP(*_offset, <=, size);
602 ASSERTCMP(call->state, !=, RXRPC_CALL_SERVER_ACCEPTING);
604 iov.iov_base = buf + *_offset;
605 iov.iov_len = size - *_offset;
606 iov_iter_kvec(&iter, ITER_KVEC | READ, &iov, 1, size - *_offset);
608 lock_sock(sock->sk);
610 switch (call->state) {
611 case RXRPC_CALL_CLIENT_RECV_REPLY:
612 case RXRPC_CALL_SERVER_RECV_REQUEST:
613 case RXRPC_CALL_SERVER_ACK_REQUEST:
614 ret = rxrpc_recvmsg_data(sock, call, NULL, &iter, size, 0,
615 _offset);
616 if (ret < 0)
617 goto out;
619 /* We can only reach here with a partially full buffer if we
620 * have reached the end of the data. We must otherwise have a
621 * full buffer or have been given -EAGAIN.
623 if (ret == 1) {
624 if (*_offset < size)
625 goto short_data;
626 if (!want_more)
627 goto read_phase_complete;
628 ret = 0;
629 goto out;
632 if (!want_more)
633 goto excess_data;
634 goto out;
636 case RXRPC_CALL_COMPLETE:
637 goto call_complete;
639 default:
640 ret = -EINPROGRESS;
641 goto out;
644 read_phase_complete:
645 ret = 1;
646 out:
647 release_sock(sock->sk);
648 _leave(" = %d [%zu,%d]", ret, *_offset, *_abort);
649 return ret;
651 short_data:
652 ret = -EBADMSG;
653 goto out;
654 excess_data:
655 ret = -EMSGSIZE;
656 goto out;
657 call_complete:
658 *_abort = call->abort_code;
659 ret = -call->error;
660 if (call->completion == RXRPC_CALL_SUCCEEDED) {
661 ret = 1;
662 if (size > 0)
663 ret = -ECONNRESET;
665 goto out;
667 EXPORT_SYMBOL(rxrpc_kernel_recv_data);