1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly
;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata
= 1;
70 static int really_do_swap_account __initdata
= 0;
74 #define do_swap_account (0)
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index
{
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS
,
94 enum mem_cgroup_events_index
{
95 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS
,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target
{
109 MEM_CGROUP_TARGET_THRESH
,
110 MEM_CGROUP_TARGET_SOFTLIMIT
,
111 MEM_CGROUP_TARGET_NUMAINFO
,
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
118 struct mem_cgroup_stat_cpu
{
119 long count
[MEM_CGROUP_STAT_NSTATS
];
120 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
121 unsigned long targets
[MEM_CGROUP_NTARGETS
];
125 * per-zone information in memory controller.
127 struct mem_cgroup_per_zone
{
129 * spin_lock to protect the per cgroup LRU
131 struct list_head lists
[NR_LRU_LISTS
];
132 unsigned long count
[NR_LRU_LISTS
];
134 struct zone_reclaim_stat reclaim_stat
;
135 struct rb_node tree_node
; /* RB tree node */
136 unsigned long long usage_in_excess
;/* Set to the value by which */
137 /* the soft limit is exceeded*/
139 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
140 /* use container_of */
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
145 struct mem_cgroup_per_node
{
146 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
149 struct mem_cgroup_lru_info
{
150 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
158 struct mem_cgroup_tree_per_zone
{
159 struct rb_root rb_root
;
163 struct mem_cgroup_tree_per_node
{
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
167 struct mem_cgroup_tree
{
168 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
173 struct mem_cgroup_threshold
{
174 struct eventfd_ctx
*eventfd
;
179 struct mem_cgroup_threshold_ary
{
180 /* An array index points to threshold just below usage. */
181 int current_threshold
;
182 /* Size of entries[] */
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries
[0];
188 struct mem_cgroup_thresholds
{
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary
*primary
;
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
196 struct mem_cgroup_threshold_ary
*spare
;
200 struct mem_cgroup_eventfd_list
{
201 struct list_head list
;
202 struct eventfd_ctx
*eventfd
;
205 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
206 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
220 struct cgroup_subsys_state css
;
222 * the counter to account for memory usage
224 struct res_counter res
;
226 * the counter to account for mem+swap usage.
228 struct res_counter memsw
;
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
233 struct mem_cgroup_lru_info info
;
235 * While reclaiming in a hierarchy, we cache the last child we
238 int last_scanned_child
;
239 int last_scanned_node
;
241 nodemask_t scan_nodes
;
242 atomic_t numainfo_events
;
243 atomic_t numainfo_updating
;
246 * Should the accounting and control be hierarchical, per subtree?
256 /* OOM-Killer disable */
257 int oom_kill_disable
;
259 /* set when res.limit == memsw.limit */
260 bool memsw_is_minimum
;
262 /* protect arrays of thresholds */
263 struct mutex thresholds_lock
;
265 /* thresholds for memory usage. RCU-protected */
266 struct mem_cgroup_thresholds thresholds
;
268 /* thresholds for mem+swap usage. RCU-protected */
269 struct mem_cgroup_thresholds memsw_thresholds
;
271 /* For oom notifier event fd */
272 struct list_head oom_notify
;
275 * Should we move charges of a task when a task is moved into this
276 * mem_cgroup ? And what type of charges should we move ?
278 unsigned long move_charge_at_immigrate
;
282 struct mem_cgroup_stat_cpu
*stat
;
284 * used when a cpu is offlined or other synchronizations
285 * See mem_cgroup_read_stat().
287 struct mem_cgroup_stat_cpu nocpu_base
;
288 spinlock_t pcp_counter_lock
;
291 /* Stuffs for move charges at task migration. */
293 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
294 * left-shifted bitmap of these types.
297 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
298 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
302 /* "mc" and its members are protected by cgroup_mutex */
303 static struct move_charge_struct
{
304 spinlock_t lock
; /* for from, to */
305 struct mem_cgroup
*from
;
306 struct mem_cgroup
*to
;
307 unsigned long precharge
;
308 unsigned long moved_charge
;
309 unsigned long moved_swap
;
310 struct task_struct
*moving_task
; /* a task moving charges */
311 wait_queue_head_t waitq
; /* a waitq for other context */
313 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
314 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
317 static bool move_anon(void)
319 return test_bit(MOVE_CHARGE_TYPE_ANON
,
320 &mc
.to
->move_charge_at_immigrate
);
323 static bool move_file(void)
325 return test_bit(MOVE_CHARGE_TYPE_FILE
,
326 &mc
.to
->move_charge_at_immigrate
);
330 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
331 * limit reclaim to prevent infinite loops, if they ever occur.
333 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
334 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
337 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
338 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
339 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
340 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
341 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
342 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
346 /* for encoding cft->private value on file */
349 #define _OOM_TYPE (2)
350 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
351 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
352 #define MEMFILE_ATTR(val) ((val) & 0xffff)
353 /* Used for OOM nofiier */
354 #define OOM_CONTROL (0)
357 * Reclaim flags for mem_cgroup_hierarchical_reclaim
359 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
360 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
361 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
362 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
364 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
366 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
367 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
368 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
);
369 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
371 static struct mem_cgroup_per_zone
*
372 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
374 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
377 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
382 static struct mem_cgroup_per_zone
*
383 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
385 int nid
= page_to_nid(page
);
386 int zid
= page_zonenum(page
);
388 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
391 static struct mem_cgroup_tree_per_zone
*
392 soft_limit_tree_node_zone(int nid
, int zid
)
394 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
397 static struct mem_cgroup_tree_per_zone
*
398 soft_limit_tree_from_page(struct page
*page
)
400 int nid
= page_to_nid(page
);
401 int zid
= page_zonenum(page
);
403 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
407 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
408 struct mem_cgroup_per_zone
*mz
,
409 struct mem_cgroup_tree_per_zone
*mctz
,
410 unsigned long long new_usage_in_excess
)
412 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
413 struct rb_node
*parent
= NULL
;
414 struct mem_cgroup_per_zone
*mz_node
;
419 mz
->usage_in_excess
= new_usage_in_excess
;
420 if (!mz
->usage_in_excess
)
424 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
426 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
429 * We can't avoid mem cgroups that are over their soft
430 * limit by the same amount
432 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
435 rb_link_node(&mz
->tree_node
, parent
, p
);
436 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
441 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
442 struct mem_cgroup_per_zone
*mz
,
443 struct mem_cgroup_tree_per_zone
*mctz
)
447 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
452 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
453 struct mem_cgroup_per_zone
*mz
,
454 struct mem_cgroup_tree_per_zone
*mctz
)
456 spin_lock(&mctz
->lock
);
457 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
458 spin_unlock(&mctz
->lock
);
462 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
464 unsigned long long excess
;
465 struct mem_cgroup_per_zone
*mz
;
466 struct mem_cgroup_tree_per_zone
*mctz
;
467 int nid
= page_to_nid(page
);
468 int zid
= page_zonenum(page
);
469 mctz
= soft_limit_tree_from_page(page
);
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
475 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
476 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
477 excess
= res_counter_soft_limit_excess(&memcg
->res
);
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
482 if (excess
|| mz
->on_tree
) {
483 spin_lock(&mctz
->lock
);
484 /* if on-tree, remove it */
486 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
488 * Insert again. mz->usage_in_excess will be updated.
489 * If excess is 0, no tree ops.
491 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
492 spin_unlock(&mctz
->lock
);
497 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
500 struct mem_cgroup_per_zone
*mz
;
501 struct mem_cgroup_tree_per_zone
*mctz
;
503 for_each_node_state(node
, N_POSSIBLE
) {
504 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
505 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
506 mctz
= soft_limit_tree_node_zone(node
, zone
);
507 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
512 static struct mem_cgroup_per_zone
*
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
515 struct rb_node
*rightmost
= NULL
;
516 struct mem_cgroup_per_zone
*mz
;
520 rightmost
= rb_last(&mctz
->rb_root
);
522 goto done
; /* Nothing to reclaim from */
524 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
530 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
531 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
532 !css_tryget(&mz
->mem
->css
))
538 static struct mem_cgroup_per_zone
*
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
541 struct mem_cgroup_per_zone
*mz
;
543 spin_lock(&mctz
->lock
);
544 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
545 spin_unlock(&mctz
->lock
);
550 * Implementation Note: reading percpu statistics for memcg.
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
568 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
569 enum mem_cgroup_stat_index idx
)
575 for_each_online_cpu(cpu
)
576 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&memcg
->pcp_counter_lock
);
579 val
+= memcg
->nocpu_base
.count
[idx
];
580 spin_unlock(&memcg
->pcp_counter_lock
);
586 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
589 int val
= (charge
) ? 1 : -1;
590 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
593 void mem_cgroup_pgfault(struct mem_cgroup
*memcg
, int val
)
595 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
598 void mem_cgroup_pgmajfault(struct mem_cgroup
*memcg
, int val
)
600 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
603 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
604 enum mem_cgroup_events_index idx
)
606 unsigned long val
= 0;
609 for_each_online_cpu(cpu
)
610 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
611 #ifdef CONFIG_HOTPLUG_CPU
612 spin_lock(&memcg
->pcp_counter_lock
);
613 val
+= memcg
->nocpu_base
.events
[idx
];
614 spin_unlock(&memcg
->pcp_counter_lock
);
619 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
620 bool file
, int nr_pages
)
625 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
628 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
631 /* pagein of a big page is an event. So, ignore page size */
633 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
635 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
636 nr_pages
= -nr_pages
; /* for event */
639 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
645 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
646 unsigned int lru_mask
)
648 struct mem_cgroup_per_zone
*mz
;
650 unsigned long ret
= 0;
652 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
655 if (BIT(l
) & lru_mask
)
656 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
662 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
663 int nid
, unsigned int lru_mask
)
668 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
669 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
675 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
676 unsigned int lru_mask
)
681 for_each_node_state(nid
, N_HIGH_MEMORY
)
682 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
686 static bool __memcg_event_check(struct mem_cgroup
*memcg
, int target
)
688 unsigned long val
, next
;
690 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
691 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
692 /* from time_after() in jiffies.h */
693 return ((long)next
- (long)val
< 0);
696 static void __mem_cgroup_target_update(struct mem_cgroup
*memcg
, int target
)
698 unsigned long val
, next
;
700 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
703 case MEM_CGROUP_TARGET_THRESH
:
704 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
706 case MEM_CGROUP_TARGET_SOFTLIMIT
:
707 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
709 case MEM_CGROUP_TARGET_NUMAINFO
:
710 next
= val
+ NUMAINFO_EVENTS_TARGET
;
716 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
720 * Check events in order.
723 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
726 /* threshold event is triggered in finer grain than soft limit */
727 if (unlikely(__memcg_event_check(memcg
, MEM_CGROUP_TARGET_THRESH
))) {
728 mem_cgroup_threshold(memcg
);
729 __mem_cgroup_target_update(memcg
, MEM_CGROUP_TARGET_THRESH
);
730 if (unlikely(__memcg_event_check(memcg
,
731 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
732 mem_cgroup_update_tree(memcg
, page
);
733 __mem_cgroup_target_update(memcg
,
734 MEM_CGROUP_TARGET_SOFTLIMIT
);
737 if (unlikely(__memcg_event_check(memcg
,
738 MEM_CGROUP_TARGET_NUMAINFO
))) {
739 atomic_inc(&memcg
->numainfo_events
);
740 __mem_cgroup_target_update(memcg
,
741 MEM_CGROUP_TARGET_NUMAINFO
);
748 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
750 return container_of(cgroup_subsys_state(cont
,
751 mem_cgroup_subsys_id
), struct mem_cgroup
,
755 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
758 * mm_update_next_owner() may clear mm->owner to NULL
759 * if it races with swapoff, page migration, etc.
760 * So this can be called with p == NULL.
765 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
766 struct mem_cgroup
, css
);
769 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
771 struct mem_cgroup
*memcg
= NULL
;
776 * Because we have no locks, mm->owner's may be being moved to other
777 * cgroup. We use css_tryget() here even if this looks
778 * pessimistic (rather than adding locks here).
782 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
783 if (unlikely(!memcg
))
785 } while (!css_tryget(&memcg
->css
));
790 /* The caller has to guarantee "mem" exists before calling this */
791 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*memcg
)
793 struct cgroup_subsys_state
*css
;
796 if (!memcg
) /* ROOT cgroup has the smallest ID */
797 return root_mem_cgroup
; /*css_put/get against root is ignored*/
798 if (!memcg
->use_hierarchy
) {
799 if (css_tryget(&memcg
->css
))
805 * searching a memory cgroup which has the smallest ID under given
806 * ROOT cgroup. (ID >= 1)
808 css
= css_get_next(&mem_cgroup_subsys
, 1, &memcg
->css
, &found
);
809 if (css
&& css_tryget(css
))
810 memcg
= container_of(css
, struct mem_cgroup
, css
);
817 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
818 struct mem_cgroup
*root
,
821 int nextid
= css_id(&iter
->css
) + 1;
824 struct cgroup_subsys_state
*css
;
826 hierarchy_used
= iter
->use_hierarchy
;
829 /* If no ROOT, walk all, ignore hierarchy */
830 if (!cond
|| (root
&& !hierarchy_used
))
834 root
= root_mem_cgroup
;
840 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
842 if (css
&& css_tryget(css
))
843 iter
= container_of(css
, struct mem_cgroup
, css
);
845 /* If css is NULL, no more cgroups will be found */
847 } while (css
&& !iter
);
852 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
853 * be careful that "break" loop is not allowed. We have reference count.
854 * Instead of that modify "cond" to be false and "continue" to exit the loop.
856 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
857 for (iter = mem_cgroup_start_loop(root);\
859 iter = mem_cgroup_get_next(iter, root, cond))
861 #define for_each_mem_cgroup_tree(iter, root) \
862 for_each_mem_cgroup_tree_cond(iter, root, true)
864 #define for_each_mem_cgroup_all(iter) \
865 for_each_mem_cgroup_tree_cond(iter, NULL, true)
868 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
870 return (memcg
== root_mem_cgroup
);
873 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
875 struct mem_cgroup
*memcg
;
881 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
882 if (unlikely(!memcg
))
887 mem_cgroup_pgmajfault(memcg
, 1);
890 mem_cgroup_pgfault(memcg
, 1);
898 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
901 * Following LRU functions are allowed to be used without PCG_LOCK.
902 * Operations are called by routine of global LRU independently from memcg.
903 * What we have to take care of here is validness of pc->mem_cgroup.
905 * Changes to pc->mem_cgroup happens when
908 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
909 * It is added to LRU before charge.
910 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
911 * When moving account, the page is not on LRU. It's isolated.
914 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
916 struct page_cgroup
*pc
;
917 struct mem_cgroup_per_zone
*mz
;
919 if (mem_cgroup_disabled())
921 pc
= lookup_page_cgroup(page
);
922 /* can happen while we handle swapcache. */
923 if (!TestClearPageCgroupAcctLRU(pc
))
925 VM_BUG_ON(!pc
->mem_cgroup
);
927 * We don't check PCG_USED bit. It's cleared when the "page" is finally
928 * removed from global LRU.
930 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
931 /* huge page split is done under lru_lock. so, we have no races. */
932 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
933 if (mem_cgroup_is_root(pc
->mem_cgroup
))
935 VM_BUG_ON(list_empty(&pc
->lru
));
936 list_del_init(&pc
->lru
);
939 void mem_cgroup_del_lru(struct page
*page
)
941 mem_cgroup_del_lru_list(page
, page_lru(page
));
945 * Writeback is about to end against a page which has been marked for immediate
946 * reclaim. If it still appears to be reclaimable, move it to the tail of the
949 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
951 struct mem_cgroup_per_zone
*mz
;
952 struct page_cgroup
*pc
;
953 enum lru_list lru
= page_lru(page
);
955 if (mem_cgroup_disabled())
958 pc
= lookup_page_cgroup(page
);
959 /* unused or root page is not rotated. */
960 if (!PageCgroupUsed(pc
))
962 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
964 if (mem_cgroup_is_root(pc
->mem_cgroup
))
966 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
967 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
970 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
972 struct mem_cgroup_per_zone
*mz
;
973 struct page_cgroup
*pc
;
975 if (mem_cgroup_disabled())
978 pc
= lookup_page_cgroup(page
);
979 /* unused or root page is not rotated. */
980 if (!PageCgroupUsed(pc
))
982 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
984 if (mem_cgroup_is_root(pc
->mem_cgroup
))
986 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
987 list_move(&pc
->lru
, &mz
->lists
[lru
]);
990 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
992 struct page_cgroup
*pc
;
993 struct mem_cgroup_per_zone
*mz
;
995 if (mem_cgroup_disabled())
997 pc
= lookup_page_cgroup(page
);
998 VM_BUG_ON(PageCgroupAcctLRU(pc
));
1001 * SetPageLRU SetPageCgroupUsed
1003 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1005 * Ensure that one of the two sides adds the page to the memcg
1006 * LRU during a race.
1009 if (!PageCgroupUsed(pc
))
1011 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1013 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1014 /* huge page split is done under lru_lock. so, we have no races. */
1015 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1016 SetPageCgroupAcctLRU(pc
);
1017 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1019 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1023 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1024 * while it's linked to lru because the page may be reused after it's fully
1025 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1026 * It's done under lock_page and expected that zone->lru_lock isnever held.
1028 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1030 unsigned long flags
;
1031 struct zone
*zone
= page_zone(page
);
1032 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1035 * Doing this check without taking ->lru_lock seems wrong but this
1036 * is safe. Because if page_cgroup's USED bit is unset, the page
1037 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1038 * set, the commit after this will fail, anyway.
1039 * This all charge/uncharge is done under some mutual execustion.
1040 * So, we don't need to taking care of changes in USED bit.
1042 if (likely(!PageLRU(page
)))
1045 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1047 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1048 * is guarded by lock_page() because the page is SwapCache.
1050 if (!PageCgroupUsed(pc
))
1051 mem_cgroup_del_lru_list(page
, page_lru(page
));
1052 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1055 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1057 unsigned long flags
;
1058 struct zone
*zone
= page_zone(page
);
1059 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1062 * SetPageLRU SetPageCgroupUsed
1064 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1066 * Ensure that one of the two sides adds the page to the memcg
1067 * LRU during a race.
1070 /* taking care of that the page is added to LRU while we commit it */
1071 if (likely(!PageLRU(page
)))
1073 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1074 /* link when the page is linked to LRU but page_cgroup isn't */
1075 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1076 mem_cgroup_add_lru_list(page
, page_lru(page
));
1077 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1081 void mem_cgroup_move_lists(struct page
*page
,
1082 enum lru_list from
, enum lru_list to
)
1084 if (mem_cgroup_disabled())
1086 mem_cgroup_del_lru_list(page
, from
);
1087 mem_cgroup_add_lru_list(page
, to
);
1091 * Checks whether given mem is same or in the root_mem_cgroup's
1094 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1095 struct mem_cgroup
*memcg
)
1097 if (root_memcg
!= memcg
) {
1098 return (root_memcg
->use_hierarchy
&&
1099 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1105 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1108 struct mem_cgroup
*curr
= NULL
;
1109 struct task_struct
*p
;
1111 p
= find_lock_task_mm(task
);
1114 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1119 * We should check use_hierarchy of "memcg" not "curr". Because checking
1120 * use_hierarchy of "curr" here make this function true if hierarchy is
1121 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1122 * hierarchy(even if use_hierarchy is disabled in "memcg").
1124 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1125 css_put(&curr
->css
);
1129 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1131 unsigned long inactive_ratio
;
1132 int nid
= zone_to_nid(zone
);
1133 int zid
= zone_idx(zone
);
1134 unsigned long inactive
;
1135 unsigned long active
;
1138 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1139 BIT(LRU_INACTIVE_ANON
));
1140 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1141 BIT(LRU_ACTIVE_ANON
));
1143 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1145 inactive_ratio
= int_sqrt(10 * gb
);
1149 return inactive
* inactive_ratio
< active
;
1152 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1154 unsigned long active
;
1155 unsigned long inactive
;
1156 int zid
= zone_idx(zone
);
1157 int nid
= zone_to_nid(zone
);
1159 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1160 BIT(LRU_INACTIVE_FILE
));
1161 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1162 BIT(LRU_ACTIVE_FILE
));
1164 return (active
> inactive
);
1167 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1170 int nid
= zone_to_nid(zone
);
1171 int zid
= zone_idx(zone
);
1172 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1174 return &mz
->reclaim_stat
;
1177 struct zone_reclaim_stat
*
1178 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1180 struct page_cgroup
*pc
;
1181 struct mem_cgroup_per_zone
*mz
;
1183 if (mem_cgroup_disabled())
1186 pc
= lookup_page_cgroup(page
);
1187 if (!PageCgroupUsed(pc
))
1189 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1191 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1192 return &mz
->reclaim_stat
;
1195 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1196 struct list_head
*dst
,
1197 unsigned long *scanned
, int order
,
1198 isolate_mode_t mode
,
1200 struct mem_cgroup
*mem_cont
,
1201 int active
, int file
)
1203 unsigned long nr_taken
= 0;
1207 struct list_head
*src
;
1208 struct page_cgroup
*pc
, *tmp
;
1209 int nid
= zone_to_nid(z
);
1210 int zid
= zone_idx(z
);
1211 struct mem_cgroup_per_zone
*mz
;
1212 int lru
= LRU_FILE
* file
+ active
;
1216 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1217 src
= &mz
->lists
[lru
];
1220 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1221 if (scan
>= nr_to_scan
)
1224 if (unlikely(!PageCgroupUsed(pc
)))
1227 page
= lookup_cgroup_page(pc
);
1229 if (unlikely(!PageLRU(page
)))
1233 ret
= __isolate_lru_page(page
, mode
, file
);
1236 list_move(&page
->lru
, dst
);
1237 mem_cgroup_del_lru(page
);
1238 nr_taken
+= hpage_nr_pages(page
);
1241 /* we don't affect global LRU but rotate in our LRU */
1242 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1251 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1257 #define mem_cgroup_from_res_counter(counter, member) \
1258 container_of(counter, struct mem_cgroup, member)
1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262 * @mem: the memory cgroup
1264 * Returns the maximum amount of memory @mem can be charged with, in
1267 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1269 unsigned long long margin
;
1271 margin
= res_counter_margin(&memcg
->res
);
1272 if (do_swap_account
)
1273 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1274 return margin
>> PAGE_SHIFT
;
1277 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1279 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1282 if (cgrp
->parent
== NULL
)
1283 return vm_swappiness
;
1285 return memcg
->swappiness
;
1288 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1293 spin_lock(&memcg
->pcp_counter_lock
);
1294 for_each_online_cpu(cpu
)
1295 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1296 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1297 spin_unlock(&memcg
->pcp_counter_lock
);
1303 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1310 spin_lock(&memcg
->pcp_counter_lock
);
1311 for_each_online_cpu(cpu
)
1312 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1313 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1314 spin_unlock(&memcg
->pcp_counter_lock
);
1318 * 2 routines for checking "mem" is under move_account() or not.
1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321 * for avoiding race in accounting. If true,
1322 * pc->mem_cgroup may be overwritten.
1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325 * under hierarchy of moving cgroups. This is for
1326 * waiting at hith-memory prressure caused by "move".
1329 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1331 VM_BUG_ON(!rcu_read_lock_held());
1332 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1335 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1337 struct mem_cgroup
*from
;
1338 struct mem_cgroup
*to
;
1341 * Unlike task_move routines, we access mc.to, mc.from not under
1342 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 spin_lock(&mc
.lock
);
1350 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1351 || mem_cgroup_same_or_subtree(memcg
, to
);
1353 spin_unlock(&mc
.lock
);
1357 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1359 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1360 if (mem_cgroup_under_move(memcg
)) {
1362 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1363 /* moving charge context might have finished. */
1366 finish_wait(&mc
.waitq
, &wait
);
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1383 struct cgroup
*task_cgrp
;
1384 struct cgroup
*mem_cgrp
;
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1390 static char memcg_name
[PATH_MAX
];
1399 mem_cgrp
= memcg
->css
.cgroup
;
1400 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1402 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1413 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1416 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1424 * Continues from above, so we don't need an KERN_ level
1426 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1429 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1431 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1432 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1433 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1435 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1436 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1437 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1444 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1447 struct mem_cgroup
*iter
;
1449 for_each_mem_cgroup_tree(iter
, memcg
)
1455 * Return the memory (and swap, if configured) limit for a memcg.
1457 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1461 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1464 * Do not consider swap space if we cannot swap due to swappiness
1466 if (mem_cgroup_swappiness(memcg
)) {
1469 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1470 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1473 * If memsw is finite and limits the amount of swap space
1474 * available to this memcg, return that limit.
1476 limit
= min(limit
, memsw
);
1483 * Visit the first child (need not be the first child as per the ordering
1484 * of the cgroup list, since we track last_scanned_child) of @mem and use
1485 * that to reclaim free pages from.
1487 static struct mem_cgroup
*
1488 mem_cgroup_select_victim(struct mem_cgroup
*root_memcg
)
1490 struct mem_cgroup
*ret
= NULL
;
1491 struct cgroup_subsys_state
*css
;
1494 if (!root_memcg
->use_hierarchy
) {
1495 css_get(&root_memcg
->css
);
1501 nextid
= root_memcg
->last_scanned_child
+ 1;
1502 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_memcg
->css
,
1504 if (css
&& css_tryget(css
))
1505 ret
= container_of(css
, struct mem_cgroup
, css
);
1508 /* Updates scanning parameter */
1510 /* this means start scan from ID:1 */
1511 root_memcg
->last_scanned_child
= 0;
1513 root_memcg
->last_scanned_child
= found
;
1520 * test_mem_cgroup_node_reclaimable
1521 * @mem: the target memcg
1522 * @nid: the node ID to be checked.
1523 * @noswap : specify true here if the user wants flle only information.
1525 * This function returns whether the specified memcg contains any
1526 * reclaimable pages on a node. Returns true if there are any reclaimable
1527 * pages in the node.
1529 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1530 int nid
, bool noswap
)
1532 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1534 if (noswap
|| !total_swap_pages
)
1536 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1541 #if MAX_NUMNODES > 1
1544 * Always updating the nodemask is not very good - even if we have an empty
1545 * list or the wrong list here, we can start from some node and traverse all
1546 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1549 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1553 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1554 * pagein/pageout changes since the last update.
1556 if (!atomic_read(&memcg
->numainfo_events
))
1558 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1561 /* make a nodemask where this memcg uses memory from */
1562 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1564 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1566 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1567 node_clear(nid
, memcg
->scan_nodes
);
1570 atomic_set(&memcg
->numainfo_events
, 0);
1571 atomic_set(&memcg
->numainfo_updating
, 0);
1575 * Selecting a node where we start reclaim from. Because what we need is just
1576 * reducing usage counter, start from anywhere is O,K. Considering
1577 * memory reclaim from current node, there are pros. and cons.
1579 * Freeing memory from current node means freeing memory from a node which
1580 * we'll use or we've used. So, it may make LRU bad. And if several threads
1581 * hit limits, it will see a contention on a node. But freeing from remote
1582 * node means more costs for memory reclaim because of memory latency.
1584 * Now, we use round-robin. Better algorithm is welcomed.
1586 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1590 mem_cgroup_may_update_nodemask(memcg
);
1591 node
= memcg
->last_scanned_node
;
1593 node
= next_node(node
, memcg
->scan_nodes
);
1594 if (node
== MAX_NUMNODES
)
1595 node
= first_node(memcg
->scan_nodes
);
1597 * We call this when we hit limit, not when pages are added to LRU.
1598 * No LRU may hold pages because all pages are UNEVICTABLE or
1599 * memcg is too small and all pages are not on LRU. In that case,
1600 * we use curret node.
1602 if (unlikely(node
== MAX_NUMNODES
))
1603 node
= numa_node_id();
1605 memcg
->last_scanned_node
= node
;
1610 * Check all nodes whether it contains reclaimable pages or not.
1611 * For quick scan, we make use of scan_nodes. This will allow us to skip
1612 * unused nodes. But scan_nodes is lazily updated and may not cotain
1613 * enough new information. We need to do double check.
1615 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1620 * quick check...making use of scan_node.
1621 * We can skip unused nodes.
1623 if (!nodes_empty(memcg
->scan_nodes
)) {
1624 for (nid
= first_node(memcg
->scan_nodes
);
1626 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1628 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1633 * Check rest of nodes.
1635 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1636 if (node_isset(nid
, memcg
->scan_nodes
))
1638 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1645 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1650 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1652 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1657 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1658 * we reclaimed from, so that we don't end up penalizing one child extensively
1659 * based on its position in the children list.
1661 * root_memcg is the original ancestor that we've been reclaim from.
1663 * We give up and return to the caller when we visit root_memcg twice.
1664 * (other groups can be removed while we're walking....)
1666 * If shrink==true, for avoiding to free too much, this returns immedieately.
1668 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_memcg
,
1671 unsigned long reclaim_options
,
1672 unsigned long *total_scanned
)
1674 struct mem_cgroup
*victim
;
1677 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1678 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1679 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1680 unsigned long excess
;
1681 unsigned long nr_scanned
;
1683 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1685 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1686 if (!check_soft
&& !shrink
&& root_memcg
->memsw_is_minimum
)
1690 victim
= mem_cgroup_select_victim(root_memcg
);
1691 if (victim
== root_memcg
) {
1694 * We are not draining per cpu cached charges during
1695 * soft limit reclaim because global reclaim doesn't
1696 * care about charges. It tries to free some memory and
1697 * charges will not give any.
1699 if (!check_soft
&& loop
>= 1)
1700 drain_all_stock_async(root_memcg
);
1703 * If we have not been able to reclaim
1704 * anything, it might because there are
1705 * no reclaimable pages under this hierarchy
1707 if (!check_soft
|| !total
) {
1708 css_put(&victim
->css
);
1712 * We want to do more targeted reclaim.
1713 * excess >> 2 is not to excessive so as to
1714 * reclaim too much, nor too less that we keep
1715 * coming back to reclaim from this cgroup
1717 if (total
>= (excess
>> 2) ||
1718 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1719 css_put(&victim
->css
);
1724 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1725 /* this cgroup's local usage == 0 */
1726 css_put(&victim
->css
);
1729 /* we use swappiness of local cgroup */
1731 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1732 noswap
, zone
, &nr_scanned
);
1733 *total_scanned
+= nr_scanned
;
1735 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1737 css_put(&victim
->css
);
1739 * At shrinking usage, we can't check we should stop here or
1740 * reclaim more. It's depends on callers. last_scanned_child
1741 * will work enough for keeping fairness under tree.
1747 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1749 } else if (mem_cgroup_margin(root_memcg
))
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
1758 * Has to be called with memcg_oom_lock
1760 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1762 struct mem_cgroup
*iter
, *failed
= NULL
;
1765 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1766 if (iter
->oom_lock
) {
1768 * this subtree of our hierarchy is already locked
1769 * so we cannot give a lock.
1774 iter
->oom_lock
= true;
1781 * OK, we failed to lock the whole subtree so we have to clean up
1782 * what we set up to the failing subtree
1785 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1786 if (iter
== failed
) {
1790 iter
->oom_lock
= false;
1796 * Has to be called with memcg_oom_lock
1798 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1800 struct mem_cgroup
*iter
;
1802 for_each_mem_cgroup_tree(iter
, memcg
)
1803 iter
->oom_lock
= false;
1807 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1809 struct mem_cgroup
*iter
;
1811 for_each_mem_cgroup_tree(iter
, memcg
)
1812 atomic_inc(&iter
->under_oom
);
1815 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1817 struct mem_cgroup
*iter
;
1820 * When a new child is created while the hierarchy is under oom,
1821 * mem_cgroup_oom_lock() may not be called. We have to use
1822 * atomic_add_unless() here.
1824 for_each_mem_cgroup_tree(iter
, memcg
)
1825 atomic_add_unless(&iter
->under_oom
, -1, 0);
1828 static DEFINE_SPINLOCK(memcg_oom_lock
);
1829 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1831 struct oom_wait_info
{
1832 struct mem_cgroup
*mem
;
1836 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1837 unsigned mode
, int sync
, void *arg
)
1839 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1841 struct oom_wait_info
*oom_wait_info
;
1843 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1844 oom_wait_memcg
= oom_wait_info
->mem
;
1847 * Both of oom_wait_info->mem and wake_mem are stable under us.
1848 * Then we can use css_is_ancestor without taking care of RCU.
1850 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1851 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1853 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1856 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1858 /* for filtering, pass "memcg" as argument. */
1859 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1862 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1864 if (memcg
&& atomic_read(&memcg
->under_oom
))
1865 memcg_wakeup_oom(memcg
);
1869 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1871 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1873 struct oom_wait_info owait
;
1874 bool locked
, need_to_kill
;
1877 owait
.wait
.flags
= 0;
1878 owait
.wait
.func
= memcg_oom_wake_function
;
1879 owait
.wait
.private = current
;
1880 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1881 need_to_kill
= true;
1882 mem_cgroup_mark_under_oom(memcg
);
1884 /* At first, try to OOM lock hierarchy under memcg.*/
1885 spin_lock(&memcg_oom_lock
);
1886 locked
= mem_cgroup_oom_lock(memcg
);
1888 * Even if signal_pending(), we can't quit charge() loop without
1889 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1890 * under OOM is always welcomed, use TASK_KILLABLE here.
1892 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1893 if (!locked
|| memcg
->oom_kill_disable
)
1894 need_to_kill
= false;
1896 mem_cgroup_oom_notify(memcg
);
1897 spin_unlock(&memcg_oom_lock
);
1900 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1901 mem_cgroup_out_of_memory(memcg
, mask
);
1904 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1906 spin_lock(&memcg_oom_lock
);
1908 mem_cgroup_oom_unlock(memcg
);
1909 memcg_wakeup_oom(memcg
);
1910 spin_unlock(&memcg_oom_lock
);
1912 mem_cgroup_unmark_under_oom(memcg
);
1914 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1916 /* Give chance to dying process */
1917 schedule_timeout_uninterruptible(1);
1922 * Currently used to update mapped file statistics, but the routine can be
1923 * generalized to update other statistics as well.
1925 * Notes: Race condition
1927 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1928 * it tends to be costly. But considering some conditions, we doesn't need
1929 * to do so _always_.
1931 * Considering "charge", lock_page_cgroup() is not required because all
1932 * file-stat operations happen after a page is attached to radix-tree. There
1933 * are no race with "charge".
1935 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1936 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1937 * if there are race with "uncharge". Statistics itself is properly handled
1940 * Considering "move", this is an only case we see a race. To make the race
1941 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1942 * possibility of race condition. If there is, we take a lock.
1945 void mem_cgroup_update_page_stat(struct page
*page
,
1946 enum mem_cgroup_page_stat_item idx
, int val
)
1948 struct mem_cgroup
*memcg
;
1949 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1950 bool need_unlock
= false;
1951 unsigned long uninitialized_var(flags
);
1957 memcg
= pc
->mem_cgroup
;
1958 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1960 /* pc->mem_cgroup is unstable ? */
1961 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
1962 /* take a lock against to access pc->mem_cgroup */
1963 move_lock_page_cgroup(pc
, &flags
);
1965 memcg
= pc
->mem_cgroup
;
1966 if (!memcg
|| !PageCgroupUsed(pc
))
1971 case MEMCG_NR_FILE_MAPPED
:
1973 SetPageCgroupFileMapped(pc
);
1974 else if (!page_mapped(page
))
1975 ClearPageCgroupFileMapped(pc
);
1976 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1982 this_cpu_add(memcg
->stat
->count
[idx
], val
);
1985 if (unlikely(need_unlock
))
1986 move_unlock_page_cgroup(pc
, &flags
);
1990 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1993 * size of first charge trial. "32" comes from vmscan.c's magic value.
1994 * TODO: maybe necessary to use big numbers in big irons.
1996 #define CHARGE_BATCH 32U
1997 struct memcg_stock_pcp
{
1998 struct mem_cgroup
*cached
; /* this never be root cgroup */
1999 unsigned int nr_pages
;
2000 struct work_struct work
;
2001 unsigned long flags
;
2002 #define FLUSHING_CACHED_CHARGE (0)
2004 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2005 static DEFINE_MUTEX(percpu_charge_mutex
);
2008 * Try to consume stocked charge on this cpu. If success, one page is consumed
2009 * from local stock and true is returned. If the stock is 0 or charges from a
2010 * cgroup which is not current target, returns false. This stock will be
2013 static bool consume_stock(struct mem_cgroup
*memcg
)
2015 struct memcg_stock_pcp
*stock
;
2018 stock
= &get_cpu_var(memcg_stock
);
2019 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2021 else /* need to call res_counter_charge */
2023 put_cpu_var(memcg_stock
);
2028 * Returns stocks cached in percpu to res_counter and reset cached information.
2030 static void drain_stock(struct memcg_stock_pcp
*stock
)
2032 struct mem_cgroup
*old
= stock
->cached
;
2034 if (stock
->nr_pages
) {
2035 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2037 res_counter_uncharge(&old
->res
, bytes
);
2038 if (do_swap_account
)
2039 res_counter_uncharge(&old
->memsw
, bytes
);
2040 stock
->nr_pages
= 0;
2042 stock
->cached
= NULL
;
2046 * This must be called under preempt disabled or must be called by
2047 * a thread which is pinned to local cpu.
2049 static void drain_local_stock(struct work_struct
*dummy
)
2051 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2053 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2057 * Cache charges(val) which is from res_counter, to local per_cpu area.
2058 * This will be consumed by consume_stock() function, later.
2060 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2062 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2064 if (stock
->cached
!= memcg
) { /* reset if necessary */
2066 stock
->cached
= memcg
;
2068 stock
->nr_pages
+= nr_pages
;
2069 put_cpu_var(memcg_stock
);
2073 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2074 * of the hierarchy under it. sync flag says whether we should block
2075 * until the work is done.
2077 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2081 /* Notify other cpus that system-wide "drain" is running */
2084 for_each_online_cpu(cpu
) {
2085 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2086 struct mem_cgroup
*memcg
;
2088 memcg
= stock
->cached
;
2089 if (!memcg
|| !stock
->nr_pages
)
2091 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2093 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2095 drain_local_stock(&stock
->work
);
2097 schedule_work_on(cpu
, &stock
->work
);
2105 for_each_online_cpu(cpu
) {
2106 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2107 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2108 flush_work(&stock
->work
);
2115 * Tries to drain stocked charges in other cpus. This function is asynchronous
2116 * and just put a work per cpu for draining localy on each cpu. Caller can
2117 * expects some charges will be back to res_counter later but cannot wait for
2120 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2123 * If someone calls draining, avoid adding more kworker runs.
2125 if (!mutex_trylock(&percpu_charge_mutex
))
2127 drain_all_stock(root_memcg
, false);
2128 mutex_unlock(&percpu_charge_mutex
);
2131 /* This is a synchronous drain interface. */
2132 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2134 /* called when force_empty is called */
2135 mutex_lock(&percpu_charge_mutex
);
2136 drain_all_stock(root_memcg
, true);
2137 mutex_unlock(&percpu_charge_mutex
);
2141 * This function drains percpu counter value from DEAD cpu and
2142 * move it to local cpu. Note that this function can be preempted.
2144 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2148 spin_lock(&memcg
->pcp_counter_lock
);
2149 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2150 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2152 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2153 memcg
->nocpu_base
.count
[i
] += x
;
2155 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2156 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2158 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2159 memcg
->nocpu_base
.events
[i
] += x
;
2161 /* need to clear ON_MOVE value, works as a kind of lock. */
2162 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2163 spin_unlock(&memcg
->pcp_counter_lock
);
2166 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2168 int idx
= MEM_CGROUP_ON_MOVE
;
2170 spin_lock(&memcg
->pcp_counter_lock
);
2171 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2172 spin_unlock(&memcg
->pcp_counter_lock
);
2175 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2176 unsigned long action
,
2179 int cpu
= (unsigned long)hcpu
;
2180 struct memcg_stock_pcp
*stock
;
2181 struct mem_cgroup
*iter
;
2183 if ((action
== CPU_ONLINE
)) {
2184 for_each_mem_cgroup_all(iter
)
2185 synchronize_mem_cgroup_on_move(iter
, cpu
);
2189 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2192 for_each_mem_cgroup_all(iter
)
2193 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2195 stock
= &per_cpu(memcg_stock
, cpu
);
2201 /* See __mem_cgroup_try_charge() for details */
2203 CHARGE_OK
, /* success */
2204 CHARGE_RETRY
, /* need to retry but retry is not bad */
2205 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2206 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2207 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2210 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2211 unsigned int nr_pages
, bool oom_check
)
2213 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2214 struct mem_cgroup
*mem_over_limit
;
2215 struct res_counter
*fail_res
;
2216 unsigned long flags
= 0;
2219 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2222 if (!do_swap_account
)
2224 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2228 res_counter_uncharge(&memcg
->res
, csize
);
2229 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2230 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2232 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2234 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2235 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2237 * Never reclaim on behalf of optional batching, retry with a
2238 * single page instead.
2240 if (nr_pages
== CHARGE_BATCH
)
2241 return CHARGE_RETRY
;
2243 if (!(gfp_mask
& __GFP_WAIT
))
2244 return CHARGE_WOULDBLOCK
;
2246 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2247 gfp_mask
, flags
, NULL
);
2248 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2249 return CHARGE_RETRY
;
2251 * Even though the limit is exceeded at this point, reclaim
2252 * may have been able to free some pages. Retry the charge
2253 * before killing the task.
2255 * Only for regular pages, though: huge pages are rather
2256 * unlikely to succeed so close to the limit, and we fall back
2257 * to regular pages anyway in case of failure.
2259 if (nr_pages
== 1 && ret
)
2260 return CHARGE_RETRY
;
2263 * At task move, charge accounts can be doubly counted. So, it's
2264 * better to wait until the end of task_move if something is going on.
2266 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2267 return CHARGE_RETRY
;
2269 /* If we don't need to call oom-killer at el, return immediately */
2271 return CHARGE_NOMEM
;
2273 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2274 return CHARGE_OOM_DIE
;
2276 return CHARGE_RETRY
;
2280 * Unlike exported interface, "oom" parameter is added. if oom==true,
2281 * oom-killer can be invoked.
2283 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2285 unsigned int nr_pages
,
2286 struct mem_cgroup
**ptr
,
2289 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2290 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2291 struct mem_cgroup
*memcg
= NULL
;
2295 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2296 * in system level. So, allow to go ahead dying process in addition to
2299 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2300 || fatal_signal_pending(current
)))
2304 * We always charge the cgroup the mm_struct belongs to.
2305 * The mm_struct's mem_cgroup changes on task migration if the
2306 * thread group leader migrates. It's possible that mm is not
2307 * set, if so charge the init_mm (happens for pagecache usage).
2312 if (*ptr
) { /* css should be a valid one */
2314 VM_BUG_ON(css_is_removed(&memcg
->css
));
2315 if (mem_cgroup_is_root(memcg
))
2317 if (nr_pages
== 1 && consume_stock(memcg
))
2319 css_get(&memcg
->css
);
2321 struct task_struct
*p
;
2324 p
= rcu_dereference(mm
->owner
);
2326 * Because we don't have task_lock(), "p" can exit.
2327 * In that case, "memcg" can point to root or p can be NULL with
2328 * race with swapoff. Then, we have small risk of mis-accouning.
2329 * But such kind of mis-account by race always happens because
2330 * we don't have cgroup_mutex(). It's overkill and we allo that
2332 * (*) swapoff at el will charge against mm-struct not against
2333 * task-struct. So, mm->owner can be NULL.
2335 memcg
= mem_cgroup_from_task(p
);
2336 if (!memcg
|| mem_cgroup_is_root(memcg
)) {
2340 if (nr_pages
== 1 && consume_stock(memcg
)) {
2342 * It seems dagerous to access memcg without css_get().
2343 * But considering how consume_stok works, it's not
2344 * necessary. If consume_stock success, some charges
2345 * from this memcg are cached on this cpu. So, we
2346 * don't need to call css_get()/css_tryget() before
2347 * calling consume_stock().
2352 /* after here, we may be blocked. we need to get refcnt */
2353 if (!css_tryget(&memcg
->css
)) {
2363 /* If killed, bypass charge */
2364 if (fatal_signal_pending(current
)) {
2365 css_put(&memcg
->css
);
2370 if (oom
&& !nr_oom_retries
) {
2372 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2375 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2379 case CHARGE_RETRY
: /* not in OOM situation but retry */
2381 css_put(&memcg
->css
);
2384 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2385 css_put(&memcg
->css
);
2387 case CHARGE_NOMEM
: /* OOM routine works */
2389 css_put(&memcg
->css
);
2392 /* If oom, we never return -ENOMEM */
2395 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2396 css_put(&memcg
->css
);
2399 } while (ret
!= CHARGE_OK
);
2401 if (batch
> nr_pages
)
2402 refill_stock(memcg
, batch
- nr_pages
);
2403 css_put(&memcg
->css
);
2416 * Somemtimes we have to undo a charge we got by try_charge().
2417 * This function is for that and do uncharge, put css's refcnt.
2418 * gotten by try_charge().
2420 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2421 unsigned int nr_pages
)
2423 if (!mem_cgroup_is_root(memcg
)) {
2424 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2426 res_counter_uncharge(&memcg
->res
, bytes
);
2427 if (do_swap_account
)
2428 res_counter_uncharge(&memcg
->memsw
, bytes
);
2433 * A helper function to get mem_cgroup from ID. must be called under
2434 * rcu_read_lock(). The caller must check css_is_removed() or some if
2435 * it's concern. (dropping refcnt from swap can be called against removed
2438 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2440 struct cgroup_subsys_state
*css
;
2442 /* ID 0 is unused ID */
2445 css
= css_lookup(&mem_cgroup_subsys
, id
);
2448 return container_of(css
, struct mem_cgroup
, css
);
2451 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2453 struct mem_cgroup
*memcg
= NULL
;
2454 struct page_cgroup
*pc
;
2458 VM_BUG_ON(!PageLocked(page
));
2460 pc
= lookup_page_cgroup(page
);
2461 lock_page_cgroup(pc
);
2462 if (PageCgroupUsed(pc
)) {
2463 memcg
= pc
->mem_cgroup
;
2464 if (memcg
&& !css_tryget(&memcg
->css
))
2466 } else if (PageSwapCache(page
)) {
2467 ent
.val
= page_private(page
);
2468 id
= lookup_swap_cgroup(ent
);
2470 memcg
= mem_cgroup_lookup(id
);
2471 if (memcg
&& !css_tryget(&memcg
->css
))
2475 unlock_page_cgroup(pc
);
2479 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2481 unsigned int nr_pages
,
2482 struct page_cgroup
*pc
,
2483 enum charge_type ctype
)
2485 lock_page_cgroup(pc
);
2486 if (unlikely(PageCgroupUsed(pc
))) {
2487 unlock_page_cgroup(pc
);
2488 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2492 * we don't need page_cgroup_lock about tail pages, becase they are not
2493 * accessed by any other context at this point.
2495 pc
->mem_cgroup
= memcg
;
2497 * We access a page_cgroup asynchronously without lock_page_cgroup().
2498 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2499 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2500 * before USED bit, we need memory barrier here.
2501 * See mem_cgroup_add_lru_list(), etc.
2505 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2506 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2507 SetPageCgroupCache(pc
);
2508 SetPageCgroupUsed(pc
);
2510 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2511 ClearPageCgroupCache(pc
);
2512 SetPageCgroupUsed(pc
);
2518 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2519 unlock_page_cgroup(pc
);
2521 * "charge_statistics" updated event counter. Then, check it.
2522 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2523 * if they exceeds softlimit.
2525 memcg_check_events(memcg
, page
);
2528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2530 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2531 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2533 * Because tail pages are not marked as "used", set it. We're under
2534 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2536 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2538 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2539 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2540 unsigned long flags
;
2542 if (mem_cgroup_disabled())
2545 * We have no races with charge/uncharge but will have races with
2546 * page state accounting.
2548 move_lock_page_cgroup(head_pc
, &flags
);
2550 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2551 smp_wmb(); /* see __commit_charge() */
2552 if (PageCgroupAcctLRU(head_pc
)) {
2554 struct mem_cgroup_per_zone
*mz
;
2557 * LRU flags cannot be copied because we need to add tail
2558 *.page to LRU by generic call and our hook will be called.
2559 * We hold lru_lock, then, reduce counter directly.
2561 lru
= page_lru(head
);
2562 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2563 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2565 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2566 move_unlock_page_cgroup(head_pc
, &flags
);
2571 * mem_cgroup_move_account - move account of the page
2573 * @nr_pages: number of regular pages (>1 for huge pages)
2574 * @pc: page_cgroup of the page.
2575 * @from: mem_cgroup which the page is moved from.
2576 * @to: mem_cgroup which the page is moved to. @from != @to.
2577 * @uncharge: whether we should call uncharge and css_put against @from.
2579 * The caller must confirm following.
2580 * - page is not on LRU (isolate_page() is useful.)
2581 * - compound_lock is held when nr_pages > 1
2583 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2584 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2585 * true, this function does "uncharge" from old cgroup, but it doesn't if
2586 * @uncharge is false, so a caller should do "uncharge".
2588 static int mem_cgroup_move_account(struct page
*page
,
2589 unsigned int nr_pages
,
2590 struct page_cgroup
*pc
,
2591 struct mem_cgroup
*from
,
2592 struct mem_cgroup
*to
,
2595 unsigned long flags
;
2598 VM_BUG_ON(from
== to
);
2599 VM_BUG_ON(PageLRU(page
));
2601 * The page is isolated from LRU. So, collapse function
2602 * will not handle this page. But page splitting can happen.
2603 * Do this check under compound_page_lock(). The caller should
2607 if (nr_pages
> 1 && !PageTransHuge(page
))
2610 lock_page_cgroup(pc
);
2613 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2616 move_lock_page_cgroup(pc
, &flags
);
2618 if (PageCgroupFileMapped(pc
)) {
2619 /* Update mapped_file data for mem_cgroup */
2621 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2622 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2625 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2627 /* This is not "cancel", but cancel_charge does all we need. */
2628 __mem_cgroup_cancel_charge(from
, nr_pages
);
2630 /* caller should have done css_get */
2631 pc
->mem_cgroup
= to
;
2632 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2634 * We charges against "to" which may not have any tasks. Then, "to"
2635 * can be under rmdir(). But in current implementation, caller of
2636 * this function is just force_empty() and move charge, so it's
2637 * guaranteed that "to" is never removed. So, we don't check rmdir
2640 move_unlock_page_cgroup(pc
, &flags
);
2643 unlock_page_cgroup(pc
);
2647 memcg_check_events(to
, page
);
2648 memcg_check_events(from
, page
);
2654 * move charges to its parent.
2657 static int mem_cgroup_move_parent(struct page
*page
,
2658 struct page_cgroup
*pc
,
2659 struct mem_cgroup
*child
,
2662 struct cgroup
*cg
= child
->css
.cgroup
;
2663 struct cgroup
*pcg
= cg
->parent
;
2664 struct mem_cgroup
*parent
;
2665 unsigned int nr_pages
;
2666 unsigned long uninitialized_var(flags
);
2674 if (!get_page_unless_zero(page
))
2676 if (isolate_lru_page(page
))
2679 nr_pages
= hpage_nr_pages(page
);
2681 parent
= mem_cgroup_from_cont(pcg
);
2682 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2687 flags
= compound_lock_irqsave(page
);
2689 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2691 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2694 compound_unlock_irqrestore(page
, flags
);
2696 putback_lru_page(page
);
2704 * Charge the memory controller for page usage.
2706 * 0 if the charge was successful
2707 * < 0 if the cgroup is over its limit
2709 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2710 gfp_t gfp_mask
, enum charge_type ctype
)
2712 struct mem_cgroup
*memcg
= NULL
;
2713 unsigned int nr_pages
= 1;
2714 struct page_cgroup
*pc
;
2718 if (PageTransHuge(page
)) {
2719 nr_pages
<<= compound_order(page
);
2720 VM_BUG_ON(!PageTransHuge(page
));
2722 * Never OOM-kill a process for a huge page. The
2723 * fault handler will fall back to regular pages.
2728 pc
= lookup_page_cgroup(page
);
2729 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2731 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2735 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2739 int mem_cgroup_newpage_charge(struct page
*page
,
2740 struct mm_struct
*mm
, gfp_t gfp_mask
)
2742 if (mem_cgroup_disabled())
2745 * If already mapped, we don't have to account.
2746 * If page cache, page->mapping has address_space.
2747 * But page->mapping may have out-of-use anon_vma pointer,
2748 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2751 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2755 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2756 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2760 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2761 enum charge_type ctype
);
2764 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2765 enum charge_type ctype
)
2767 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2769 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2770 * is already on LRU. It means the page may on some other page_cgroup's
2771 * LRU. Take care of it.
2773 mem_cgroup_lru_del_before_commit(page
);
2774 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2775 mem_cgroup_lru_add_after_commit(page
);
2779 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2782 struct mem_cgroup
*memcg
= NULL
;
2785 if (mem_cgroup_disabled())
2787 if (PageCompound(page
))
2793 if (page_is_file_cache(page
)) {
2794 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &memcg
, true);
2799 * FUSE reuses pages without going through the final
2800 * put that would remove them from the LRU list, make
2801 * sure that they get relinked properly.
2803 __mem_cgroup_commit_charge_lrucare(page
, memcg
,
2804 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2808 if (PageSwapCache(page
)) {
2809 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2811 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2812 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2814 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2815 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2821 * While swap-in, try_charge -> commit or cancel, the page is locked.
2822 * And when try_charge() successfully returns, one refcnt to memcg without
2823 * struct page_cgroup is acquired. This refcnt will be consumed by
2824 * "commit()" or removed by "cancel()"
2826 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2828 gfp_t mask
, struct mem_cgroup
**ptr
)
2830 struct mem_cgroup
*memcg
;
2835 if (mem_cgroup_disabled())
2838 if (!do_swap_account
)
2841 * A racing thread's fault, or swapoff, may have already updated
2842 * the pte, and even removed page from swap cache: in those cases
2843 * do_swap_page()'s pte_same() test will fail; but there's also a
2844 * KSM case which does need to charge the page.
2846 if (!PageSwapCache(page
))
2848 memcg
= try_get_mem_cgroup_from_page(page
);
2852 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2853 css_put(&memcg
->css
);
2858 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2862 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2863 enum charge_type ctype
)
2865 if (mem_cgroup_disabled())
2869 cgroup_exclude_rmdir(&ptr
->css
);
2871 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2873 * Now swap is on-memory. This means this page may be
2874 * counted both as mem and swap....double count.
2875 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2876 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2877 * may call delete_from_swap_cache() before reach here.
2879 if (do_swap_account
&& PageSwapCache(page
)) {
2880 swp_entry_t ent
= {.val
= page_private(page
)};
2882 struct mem_cgroup
*memcg
;
2884 id
= swap_cgroup_record(ent
, 0);
2886 memcg
= mem_cgroup_lookup(id
);
2889 * This recorded memcg can be obsolete one. So, avoid
2890 * calling css_tryget
2892 if (!mem_cgroup_is_root(memcg
))
2893 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2894 mem_cgroup_swap_statistics(memcg
, false);
2895 mem_cgroup_put(memcg
);
2900 * At swapin, we may charge account against cgroup which has no tasks.
2901 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902 * In that case, we need to call pre_destroy() again. check it here.
2904 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2907 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2909 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2910 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2913 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2915 if (mem_cgroup_disabled())
2919 __mem_cgroup_cancel_charge(memcg
, 1);
2922 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2923 unsigned int nr_pages
,
2924 const enum charge_type ctype
)
2926 struct memcg_batch_info
*batch
= NULL
;
2927 bool uncharge_memsw
= true;
2929 /* If swapout, usage of swap doesn't decrease */
2930 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2931 uncharge_memsw
= false;
2933 batch
= ¤t
->memcg_batch
;
2935 * In usual, we do css_get() when we remember memcg pointer.
2936 * But in this case, we keep res->usage until end of a series of
2937 * uncharges. Then, it's ok to ignore memcg's refcnt.
2940 batch
->memcg
= memcg
;
2942 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2943 * In those cases, all pages freed continuously can be expected to be in
2944 * the same cgroup and we have chance to coalesce uncharges.
2945 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2946 * because we want to do uncharge as soon as possible.
2949 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2950 goto direct_uncharge
;
2953 goto direct_uncharge
;
2956 * In typical case, batch->memcg == mem. This means we can
2957 * merge a series of uncharges to an uncharge of res_counter.
2958 * If not, we uncharge res_counter ony by one.
2960 if (batch
->memcg
!= memcg
)
2961 goto direct_uncharge
;
2962 /* remember freed charge and uncharge it later */
2965 batch
->memsw_nr_pages
++;
2968 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2970 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2971 if (unlikely(batch
->memcg
!= memcg
))
2972 memcg_oom_recover(memcg
);
2977 * uncharge if !page_mapped(page)
2979 static struct mem_cgroup
*
2980 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2982 struct mem_cgroup
*memcg
= NULL
;
2983 unsigned int nr_pages
= 1;
2984 struct page_cgroup
*pc
;
2986 if (mem_cgroup_disabled())
2989 if (PageSwapCache(page
))
2992 if (PageTransHuge(page
)) {
2993 nr_pages
<<= compound_order(page
);
2994 VM_BUG_ON(!PageTransHuge(page
));
2997 * Check if our page_cgroup is valid
2999 pc
= lookup_page_cgroup(page
);
3000 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
3003 lock_page_cgroup(pc
);
3005 memcg
= pc
->mem_cgroup
;
3007 if (!PageCgroupUsed(pc
))
3011 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3012 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3013 /* See mem_cgroup_prepare_migration() */
3014 if (page_mapped(page
) || PageCgroupMigration(pc
))
3017 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3018 if (!PageAnon(page
)) { /* Shared memory */
3019 if (page
->mapping
&& !page_is_file_cache(page
))
3021 } else if (page_mapped(page
)) /* Anon */
3028 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
3030 ClearPageCgroupUsed(pc
);
3032 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3033 * freed from LRU. This is safe because uncharged page is expected not
3034 * to be reused (freed soon). Exception is SwapCache, it's handled by
3035 * special functions.
3038 unlock_page_cgroup(pc
);
3040 * even after unlock, we have memcg->res.usage here and this memcg
3041 * will never be freed.
3043 memcg_check_events(memcg
, page
);
3044 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3045 mem_cgroup_swap_statistics(memcg
, true);
3046 mem_cgroup_get(memcg
);
3048 if (!mem_cgroup_is_root(memcg
))
3049 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3054 unlock_page_cgroup(pc
);
3058 void mem_cgroup_uncharge_page(struct page
*page
)
3061 if (page_mapped(page
))
3063 if (page
->mapping
&& !PageAnon(page
))
3065 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3068 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3070 VM_BUG_ON(page_mapped(page
));
3071 VM_BUG_ON(page
->mapping
);
3072 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3076 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3077 * In that cases, pages are freed continuously and we can expect pages
3078 * are in the same memcg. All these calls itself limits the number of
3079 * pages freed at once, then uncharge_start/end() is called properly.
3080 * This may be called prural(2) times in a context,
3083 void mem_cgroup_uncharge_start(void)
3085 current
->memcg_batch
.do_batch
++;
3086 /* We can do nest. */
3087 if (current
->memcg_batch
.do_batch
== 1) {
3088 current
->memcg_batch
.memcg
= NULL
;
3089 current
->memcg_batch
.nr_pages
= 0;
3090 current
->memcg_batch
.memsw_nr_pages
= 0;
3094 void mem_cgroup_uncharge_end(void)
3096 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3098 if (!batch
->do_batch
)
3102 if (batch
->do_batch
) /* If stacked, do nothing. */
3108 * This "batch->memcg" is valid without any css_get/put etc...
3109 * bacause we hide charges behind us.
3111 if (batch
->nr_pages
)
3112 res_counter_uncharge(&batch
->memcg
->res
,
3113 batch
->nr_pages
* PAGE_SIZE
);
3114 if (batch
->memsw_nr_pages
)
3115 res_counter_uncharge(&batch
->memcg
->memsw
,
3116 batch
->memsw_nr_pages
* PAGE_SIZE
);
3117 memcg_oom_recover(batch
->memcg
);
3118 /* forget this pointer (for sanity check) */
3119 batch
->memcg
= NULL
;
3124 * called after __delete_from_swap_cache() and drop "page" account.
3125 * memcg information is recorded to swap_cgroup of "ent"
3128 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3130 struct mem_cgroup
*memcg
;
3131 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3133 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3134 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3136 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3139 * record memcg information, if swapout && memcg != NULL,
3140 * mem_cgroup_get() was called in uncharge().
3142 if (do_swap_account
&& swapout
&& memcg
)
3143 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3149 * called from swap_entry_free(). remove record in swap_cgroup and
3150 * uncharge "memsw" account.
3152 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3154 struct mem_cgroup
*memcg
;
3157 if (!do_swap_account
)
3160 id
= swap_cgroup_record(ent
, 0);
3162 memcg
= mem_cgroup_lookup(id
);
3165 * We uncharge this because swap is freed.
3166 * This memcg can be obsolete one. We avoid calling css_tryget
3168 if (!mem_cgroup_is_root(memcg
))
3169 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3170 mem_cgroup_swap_statistics(memcg
, false);
3171 mem_cgroup_put(memcg
);
3177 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3178 * @entry: swap entry to be moved
3179 * @from: mem_cgroup which the entry is moved from
3180 * @to: mem_cgroup which the entry is moved to
3181 * @need_fixup: whether we should fixup res_counters and refcounts.
3183 * It succeeds only when the swap_cgroup's record for this entry is the same
3184 * as the mem_cgroup's id of @from.
3186 * Returns 0 on success, -EINVAL on failure.
3188 * The caller must have charged to @to, IOW, called res_counter_charge() about
3189 * both res and memsw, and called css_get().
3191 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3192 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3194 unsigned short old_id
, new_id
;
3196 old_id
= css_id(&from
->css
);
3197 new_id
= css_id(&to
->css
);
3199 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3200 mem_cgroup_swap_statistics(from
, false);
3201 mem_cgroup_swap_statistics(to
, true);
3203 * This function is only called from task migration context now.
3204 * It postpones res_counter and refcount handling till the end
3205 * of task migration(mem_cgroup_clear_mc()) for performance
3206 * improvement. But we cannot postpone mem_cgroup_get(to)
3207 * because if the process that has been moved to @to does
3208 * swap-in, the refcount of @to might be decreased to 0.
3212 if (!mem_cgroup_is_root(from
))
3213 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3214 mem_cgroup_put(from
);
3216 * we charged both to->res and to->memsw, so we should
3219 if (!mem_cgroup_is_root(to
))
3220 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3227 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3228 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3235 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3238 int mem_cgroup_prepare_migration(struct page
*page
,
3239 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3241 struct mem_cgroup
*memcg
= NULL
;
3242 struct page_cgroup
*pc
;
3243 enum charge_type ctype
;
3248 VM_BUG_ON(PageTransHuge(page
));
3249 if (mem_cgroup_disabled())
3252 pc
= lookup_page_cgroup(page
);
3253 lock_page_cgroup(pc
);
3254 if (PageCgroupUsed(pc
)) {
3255 memcg
= pc
->mem_cgroup
;
3256 css_get(&memcg
->css
);
3258 * At migrating an anonymous page, its mapcount goes down
3259 * to 0 and uncharge() will be called. But, even if it's fully
3260 * unmapped, migration may fail and this page has to be
3261 * charged again. We set MIGRATION flag here and delay uncharge
3262 * until end_migration() is called
3264 * Corner Case Thinking
3266 * When the old page was mapped as Anon and it's unmap-and-freed
3267 * while migration was ongoing.
3268 * If unmap finds the old page, uncharge() of it will be delayed
3269 * until end_migration(). If unmap finds a new page, it's
3270 * uncharged when it make mapcount to be 1->0. If unmap code
3271 * finds swap_migration_entry, the new page will not be mapped
3272 * and end_migration() will find it(mapcount==0).
3275 * When the old page was mapped but migraion fails, the kernel
3276 * remaps it. A charge for it is kept by MIGRATION flag even
3277 * if mapcount goes down to 0. We can do remap successfully
3278 * without charging it again.
3281 * The "old" page is under lock_page() until the end of
3282 * migration, so, the old page itself will not be swapped-out.
3283 * If the new page is swapped out before end_migraton, our
3284 * hook to usual swap-out path will catch the event.
3287 SetPageCgroupMigration(pc
);
3289 unlock_page_cgroup(pc
);
3291 * If the page is not charged at this point,
3298 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3299 css_put(&memcg
->css
);/* drop extra refcnt */
3300 if (ret
|| *ptr
== NULL
) {
3301 if (PageAnon(page
)) {
3302 lock_page_cgroup(pc
);
3303 ClearPageCgroupMigration(pc
);
3304 unlock_page_cgroup(pc
);
3306 * The old page may be fully unmapped while we kept it.
3308 mem_cgroup_uncharge_page(page
);
3313 * We charge new page before it's used/mapped. So, even if unlock_page()
3314 * is called before end_migration, we can catch all events on this new
3315 * page. In the case new page is migrated but not remapped, new page's
3316 * mapcount will be finally 0 and we call uncharge in end_migration().
3318 pc
= lookup_page_cgroup(newpage
);
3320 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3321 else if (page_is_file_cache(page
))
3322 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3324 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3325 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3329 /* remove redundant charge if migration failed*/
3330 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3331 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3333 struct page
*used
, *unused
;
3334 struct page_cgroup
*pc
;
3338 /* blocks rmdir() */
3339 cgroup_exclude_rmdir(&memcg
->css
);
3340 if (!migration_ok
) {
3348 * We disallowed uncharge of pages under migration because mapcount
3349 * of the page goes down to zero, temporarly.
3350 * Clear the flag and check the page should be charged.
3352 pc
= lookup_page_cgroup(oldpage
);
3353 lock_page_cgroup(pc
);
3354 ClearPageCgroupMigration(pc
);
3355 unlock_page_cgroup(pc
);
3357 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3360 * If a page is a file cache, radix-tree replacement is very atomic
3361 * and we can skip this check. When it was an Anon page, its mapcount
3362 * goes down to 0. But because we added MIGRATION flage, it's not
3363 * uncharged yet. There are several case but page->mapcount check
3364 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3365 * check. (see prepare_charge() also)
3368 mem_cgroup_uncharge_page(used
);
3370 * At migration, we may charge account against cgroup which has no
3372 * So, rmdir()->pre_destroy() can be called while we do this charge.
3373 * In that case, we need to call pre_destroy() again. check it here.
3375 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3379 * At replace page cache, newpage is not under any memcg but it's on
3380 * LRU. So, this function doesn't touch res_counter but handles LRU
3381 * in correct way. Both pages are locked so we cannot race with uncharge.
3383 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
3384 struct page
*newpage
)
3386 struct mem_cgroup
*memcg
;
3387 struct page_cgroup
*pc
;
3389 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3390 unsigned long flags
;
3392 if (mem_cgroup_disabled())
3395 pc
= lookup_page_cgroup(oldpage
);
3396 /* fix accounting on old pages */
3397 lock_page_cgroup(pc
);
3398 memcg
= pc
->mem_cgroup
;
3399 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -1);
3400 ClearPageCgroupUsed(pc
);
3401 unlock_page_cgroup(pc
);
3403 if (PageSwapBacked(oldpage
))
3404 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3406 zone
= page_zone(newpage
);
3407 pc
= lookup_page_cgroup(newpage
);
3409 * Even if newpage->mapping was NULL before starting replacement,
3410 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3411 * LRU while we overwrite pc->mem_cgroup.
3413 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3414 if (PageLRU(newpage
))
3415 del_page_from_lru_list(zone
, newpage
, page_lru(newpage
));
3416 __mem_cgroup_commit_charge(memcg
, newpage
, 1, pc
, type
);
3417 if (PageLRU(newpage
))
3418 add_page_to_lru_list(zone
, newpage
, page_lru(newpage
));
3419 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3422 #ifdef CONFIG_DEBUG_VM
3423 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3425 struct page_cgroup
*pc
;
3427 pc
= lookup_page_cgroup(page
);
3428 if (likely(pc
) && PageCgroupUsed(pc
))
3433 bool mem_cgroup_bad_page_check(struct page
*page
)
3435 if (mem_cgroup_disabled())
3438 return lookup_page_cgroup_used(page
) != NULL
;
3441 void mem_cgroup_print_bad_page(struct page
*page
)
3443 struct page_cgroup
*pc
;
3445 pc
= lookup_page_cgroup_used(page
);
3450 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3451 pc
, pc
->flags
, pc
->mem_cgroup
);
3453 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3456 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3461 printk(KERN_CONT
"(%s)\n",
3462 (ret
< 0) ? "cannot get the path" : path
);
3468 static DEFINE_MUTEX(set_limit_mutex
);
3470 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3471 unsigned long long val
)
3474 u64 memswlimit
, memlimit
;
3476 int children
= mem_cgroup_count_children(memcg
);
3477 u64 curusage
, oldusage
;
3481 * For keeping hierarchical_reclaim simple, how long we should retry
3482 * is depends on callers. We set our retry-count to be function
3483 * of # of children which we should visit in this loop.
3485 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3487 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3490 while (retry_count
) {
3491 if (signal_pending(current
)) {
3496 * Rather than hide all in some function, I do this in
3497 * open coded manner. You see what this really does.
3498 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3500 mutex_lock(&set_limit_mutex
);
3501 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3502 if (memswlimit
< val
) {
3504 mutex_unlock(&set_limit_mutex
);
3508 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3512 ret
= res_counter_set_limit(&memcg
->res
, val
);
3514 if (memswlimit
== val
)
3515 memcg
->memsw_is_minimum
= true;
3517 memcg
->memsw_is_minimum
= false;
3519 mutex_unlock(&set_limit_mutex
);
3524 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3525 MEM_CGROUP_RECLAIM_SHRINK
,
3527 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3528 /* Usage is reduced ? */
3529 if (curusage
>= oldusage
)
3532 oldusage
= curusage
;
3534 if (!ret
&& enlarge
)
3535 memcg_oom_recover(memcg
);
3540 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3541 unsigned long long val
)
3544 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3545 int children
= mem_cgroup_count_children(memcg
);
3549 /* see mem_cgroup_resize_res_limit */
3550 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3551 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3552 while (retry_count
) {
3553 if (signal_pending(current
)) {
3558 * Rather than hide all in some function, I do this in
3559 * open coded manner. You see what this really does.
3560 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3562 mutex_lock(&set_limit_mutex
);
3563 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3564 if (memlimit
> val
) {
3566 mutex_unlock(&set_limit_mutex
);
3569 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3570 if (memswlimit
< val
)
3572 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3574 if (memlimit
== val
)
3575 memcg
->memsw_is_minimum
= true;
3577 memcg
->memsw_is_minimum
= false;
3579 mutex_unlock(&set_limit_mutex
);
3584 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3585 MEM_CGROUP_RECLAIM_NOSWAP
|
3586 MEM_CGROUP_RECLAIM_SHRINK
,
3588 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3589 /* Usage is reduced ? */
3590 if (curusage
>= oldusage
)
3593 oldusage
= curusage
;
3595 if (!ret
&& enlarge
)
3596 memcg_oom_recover(memcg
);
3600 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3602 unsigned long *total_scanned
)
3604 unsigned long nr_reclaimed
= 0;
3605 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3606 unsigned long reclaimed
;
3608 struct mem_cgroup_tree_per_zone
*mctz
;
3609 unsigned long long excess
;
3610 unsigned long nr_scanned
;
3615 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3617 * This loop can run a while, specially if mem_cgroup's continuously
3618 * keep exceeding their soft limit and putting the system under
3625 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3630 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3632 MEM_CGROUP_RECLAIM_SOFT
,
3634 nr_reclaimed
+= reclaimed
;
3635 *total_scanned
+= nr_scanned
;
3636 spin_lock(&mctz
->lock
);
3639 * If we failed to reclaim anything from this memory cgroup
3640 * it is time to move on to the next cgroup
3646 * Loop until we find yet another one.
3648 * By the time we get the soft_limit lock
3649 * again, someone might have aded the
3650 * group back on the RB tree. Iterate to
3651 * make sure we get a different mem.
3652 * mem_cgroup_largest_soft_limit_node returns
3653 * NULL if no other cgroup is present on
3657 __mem_cgroup_largest_soft_limit_node(mctz
);
3659 css_put(&next_mz
->mem
->css
);
3660 else /* next_mz == NULL or other memcg */
3664 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3665 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3667 * One school of thought says that we should not add
3668 * back the node to the tree if reclaim returns 0.
3669 * But our reclaim could return 0, simply because due
3670 * to priority we are exposing a smaller subset of
3671 * memory to reclaim from. Consider this as a longer
3674 /* If excess == 0, no tree ops */
3675 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3676 spin_unlock(&mctz
->lock
);
3677 css_put(&mz
->mem
->css
);
3680 * Could not reclaim anything and there are no more
3681 * mem cgroups to try or we seem to be looping without
3682 * reclaiming anything.
3684 if (!nr_reclaimed
&&
3686 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3688 } while (!nr_reclaimed
);
3690 css_put(&next_mz
->mem
->css
);
3691 return nr_reclaimed
;
3695 * This routine traverse page_cgroup in given list and drop them all.
3696 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3698 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3699 int node
, int zid
, enum lru_list lru
)
3702 struct mem_cgroup_per_zone
*mz
;
3703 struct page_cgroup
*pc
, *busy
;
3704 unsigned long flags
, loop
;
3705 struct list_head
*list
;
3708 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3709 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3710 list
= &mz
->lists
[lru
];
3712 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3713 /* give some margin against EBUSY etc...*/
3720 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3721 if (list_empty(list
)) {
3722 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3725 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3727 list_move(&pc
->lru
, list
);
3729 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3732 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3734 page
= lookup_cgroup_page(pc
);
3736 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3740 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3741 /* found lock contention or "pc" is obsolete. */
3748 if (!ret
&& !list_empty(list
))
3754 * make mem_cgroup's charge to be 0 if there is no task.
3755 * This enables deleting this mem_cgroup.
3757 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3760 int node
, zid
, shrink
;
3761 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3762 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3764 css_get(&memcg
->css
);
3767 /* should free all ? */
3773 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3776 if (signal_pending(current
))
3778 /* This is for making all *used* pages to be on LRU. */
3779 lru_add_drain_all();
3780 drain_all_stock_sync(memcg
);
3782 mem_cgroup_start_move(memcg
);
3783 for_each_node_state(node
, N_HIGH_MEMORY
) {
3784 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3787 ret
= mem_cgroup_force_empty_list(memcg
,
3796 mem_cgroup_end_move(memcg
);
3797 memcg_oom_recover(memcg
);
3798 /* it seems parent cgroup doesn't have enough mem */
3802 /* "ret" should also be checked to ensure all lists are empty. */
3803 } while (memcg
->res
.usage
> 0 || ret
);
3805 css_put(&memcg
->css
);
3809 /* returns EBUSY if there is a task or if we come here twice. */
3810 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3814 /* we call try-to-free pages for make this cgroup empty */
3815 lru_add_drain_all();
3816 /* try to free all pages in this cgroup */
3818 while (nr_retries
&& memcg
->res
.usage
> 0) {
3821 if (signal_pending(current
)) {
3825 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3829 /* maybe some writeback is necessary */
3830 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3835 /* try move_account...there may be some *locked* pages. */
3839 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3841 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3845 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3847 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3850 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3854 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3855 struct cgroup
*parent
= cont
->parent
;
3856 struct mem_cgroup
*parent_memcg
= NULL
;
3859 parent_memcg
= mem_cgroup_from_cont(parent
);
3863 * If parent's use_hierarchy is set, we can't make any modifications
3864 * in the child subtrees. If it is unset, then the change can
3865 * occur, provided the current cgroup has no children.
3867 * For the root cgroup, parent_mem is NULL, we allow value to be
3868 * set if there are no children.
3870 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3871 (val
== 1 || val
== 0)) {
3872 if (list_empty(&cont
->children
))
3873 memcg
->use_hierarchy
= val
;
3884 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3885 enum mem_cgroup_stat_index idx
)
3887 struct mem_cgroup
*iter
;
3890 /* Per-cpu values can be negative, use a signed accumulator */
3891 for_each_mem_cgroup_tree(iter
, memcg
)
3892 val
+= mem_cgroup_read_stat(iter
, idx
);
3894 if (val
< 0) /* race ? */
3899 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3903 if (!mem_cgroup_is_root(memcg
)) {
3905 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3907 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3910 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3911 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3914 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3916 return val
<< PAGE_SHIFT
;
3919 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3921 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3925 type
= MEMFILE_TYPE(cft
->private);
3926 name
= MEMFILE_ATTR(cft
->private);
3929 if (name
== RES_USAGE
)
3930 val
= mem_cgroup_usage(memcg
, false);
3932 val
= res_counter_read_u64(&memcg
->res
, name
);
3935 if (name
== RES_USAGE
)
3936 val
= mem_cgroup_usage(memcg
, true);
3938 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3947 * The user of this function is...
3950 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3953 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3955 unsigned long long val
;
3958 type
= MEMFILE_TYPE(cft
->private);
3959 name
= MEMFILE_ATTR(cft
->private);
3962 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3966 /* This function does all necessary parse...reuse it */
3967 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3971 ret
= mem_cgroup_resize_limit(memcg
, val
);
3973 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3975 case RES_SOFT_LIMIT
:
3976 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3980 * For memsw, soft limits are hard to implement in terms
3981 * of semantics, for now, we support soft limits for
3982 * control without swap
3985 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3990 ret
= -EINVAL
; /* should be BUG() ? */
3996 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3997 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3999 struct cgroup
*cgroup
;
4000 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4002 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4003 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4004 cgroup
= memcg
->css
.cgroup
;
4005 if (!memcg
->use_hierarchy
)
4008 while (cgroup
->parent
) {
4009 cgroup
= cgroup
->parent
;
4010 memcg
= mem_cgroup_from_cont(cgroup
);
4011 if (!memcg
->use_hierarchy
)
4013 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4014 min_limit
= min(min_limit
, tmp
);
4015 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4016 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4019 *mem_limit
= min_limit
;
4020 *memsw_limit
= min_memsw_limit
;
4024 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
4026 struct mem_cgroup
*memcg
;
4029 memcg
= mem_cgroup_from_cont(cont
);
4030 type
= MEMFILE_TYPE(event
);
4031 name
= MEMFILE_ATTR(event
);
4035 res_counter_reset_max(&memcg
->res
);
4037 res_counter_reset_max(&memcg
->memsw
);
4041 res_counter_reset_failcnt(&memcg
->res
);
4043 res_counter_reset_failcnt(&memcg
->memsw
);
4050 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4053 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4057 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4058 struct cftype
*cft
, u64 val
)
4060 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4062 if (val
>= (1 << NR_MOVE_TYPE
))
4065 * We check this value several times in both in can_attach() and
4066 * attach(), so we need cgroup lock to prevent this value from being
4070 memcg
->move_charge_at_immigrate
= val
;
4076 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4077 struct cftype
*cft
, u64 val
)
4084 /* For read statistics */
4102 struct mcs_total_stat
{
4103 s64 stat
[NR_MCS_STAT
];
4109 } memcg_stat_strings
[NR_MCS_STAT
] = {
4110 {"cache", "total_cache"},
4111 {"rss", "total_rss"},
4112 {"mapped_file", "total_mapped_file"},
4113 {"pgpgin", "total_pgpgin"},
4114 {"pgpgout", "total_pgpgout"},
4115 {"swap", "total_swap"},
4116 {"pgfault", "total_pgfault"},
4117 {"pgmajfault", "total_pgmajfault"},
4118 {"inactive_anon", "total_inactive_anon"},
4119 {"active_anon", "total_active_anon"},
4120 {"inactive_file", "total_inactive_file"},
4121 {"active_file", "total_active_file"},
4122 {"unevictable", "total_unevictable"}
4127 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4132 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4133 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4134 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4135 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4136 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4137 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4138 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4139 s
->stat
[MCS_PGPGIN
] += val
;
4140 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4141 s
->stat
[MCS_PGPGOUT
] += val
;
4142 if (do_swap_account
) {
4143 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4144 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4146 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4147 s
->stat
[MCS_PGFAULT
] += val
;
4148 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4149 s
->stat
[MCS_PGMAJFAULT
] += val
;
4152 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4153 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4154 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4155 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4156 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4157 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4158 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4159 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4160 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4161 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4165 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4167 struct mem_cgroup
*iter
;
4169 for_each_mem_cgroup_tree(iter
, memcg
)
4170 mem_cgroup_get_local_stat(iter
, s
);
4174 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4177 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4178 unsigned long node_nr
;
4179 struct cgroup
*cont
= m
->private;
4180 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4182 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4183 seq_printf(m
, "total=%lu", total_nr
);
4184 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4185 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4186 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4190 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4191 seq_printf(m
, "file=%lu", file_nr
);
4192 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4193 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4195 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4199 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4200 seq_printf(m
, "anon=%lu", anon_nr
);
4201 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4202 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4204 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4208 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4209 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4210 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4211 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4212 BIT(LRU_UNEVICTABLE
));
4213 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4218 #endif /* CONFIG_NUMA */
4220 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4221 struct cgroup_map_cb
*cb
)
4223 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4224 struct mcs_total_stat mystat
;
4227 memset(&mystat
, 0, sizeof(mystat
));
4228 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4231 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4232 if (i
== MCS_SWAP
&& !do_swap_account
)
4234 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4237 /* Hierarchical information */
4239 unsigned long long limit
, memsw_limit
;
4240 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4241 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4242 if (do_swap_account
)
4243 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4246 memset(&mystat
, 0, sizeof(mystat
));
4247 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4248 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4249 if (i
== MCS_SWAP
&& !do_swap_account
)
4251 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4254 #ifdef CONFIG_DEBUG_VM
4257 struct mem_cgroup_per_zone
*mz
;
4258 unsigned long recent_rotated
[2] = {0, 0};
4259 unsigned long recent_scanned
[2] = {0, 0};
4261 for_each_online_node(nid
)
4262 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4263 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4265 recent_rotated
[0] +=
4266 mz
->reclaim_stat
.recent_rotated
[0];
4267 recent_rotated
[1] +=
4268 mz
->reclaim_stat
.recent_rotated
[1];
4269 recent_scanned
[0] +=
4270 mz
->reclaim_stat
.recent_scanned
[0];
4271 recent_scanned
[1] +=
4272 mz
->reclaim_stat
.recent_scanned
[1];
4274 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4275 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4276 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4277 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4284 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4286 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4288 return mem_cgroup_swappiness(memcg
);
4291 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4294 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4295 struct mem_cgroup
*parent
;
4300 if (cgrp
->parent
== NULL
)
4303 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4307 /* If under hierarchy, only empty-root can set this value */
4308 if ((parent
->use_hierarchy
) ||
4309 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4314 memcg
->swappiness
= val
;
4321 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4323 struct mem_cgroup_threshold_ary
*t
;
4329 t
= rcu_dereference(memcg
->thresholds
.primary
);
4331 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4336 usage
= mem_cgroup_usage(memcg
, swap
);
4339 * current_threshold points to threshold just below usage.
4340 * If it's not true, a threshold was crossed after last
4341 * call of __mem_cgroup_threshold().
4343 i
= t
->current_threshold
;
4346 * Iterate backward over array of thresholds starting from
4347 * current_threshold and check if a threshold is crossed.
4348 * If none of thresholds below usage is crossed, we read
4349 * only one element of the array here.
4351 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4352 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4354 /* i = current_threshold + 1 */
4358 * Iterate forward over array of thresholds starting from
4359 * current_threshold+1 and check if a threshold is crossed.
4360 * If none of thresholds above usage is crossed, we read
4361 * only one element of the array here.
4363 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4364 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4366 /* Update current_threshold */
4367 t
->current_threshold
= i
- 1;
4372 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4375 __mem_cgroup_threshold(memcg
, false);
4376 if (do_swap_account
)
4377 __mem_cgroup_threshold(memcg
, true);
4379 memcg
= parent_mem_cgroup(memcg
);
4383 static int compare_thresholds(const void *a
, const void *b
)
4385 const struct mem_cgroup_threshold
*_a
= a
;
4386 const struct mem_cgroup_threshold
*_b
= b
;
4388 return _a
->threshold
- _b
->threshold
;
4391 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4393 struct mem_cgroup_eventfd_list
*ev
;
4395 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4396 eventfd_signal(ev
->eventfd
, 1);
4400 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4402 struct mem_cgroup
*iter
;
4404 for_each_mem_cgroup_tree(iter
, memcg
)
4405 mem_cgroup_oom_notify_cb(iter
);
4408 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4409 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4411 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4412 struct mem_cgroup_thresholds
*thresholds
;
4413 struct mem_cgroup_threshold_ary
*new;
4414 int type
= MEMFILE_TYPE(cft
->private);
4415 u64 threshold
, usage
;
4418 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4422 mutex_lock(&memcg
->thresholds_lock
);
4425 thresholds
= &memcg
->thresholds
;
4426 else if (type
== _MEMSWAP
)
4427 thresholds
= &memcg
->memsw_thresholds
;
4431 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4433 /* Check if a threshold crossed before adding a new one */
4434 if (thresholds
->primary
)
4435 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4437 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4439 /* Allocate memory for new array of thresholds */
4440 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4448 /* Copy thresholds (if any) to new array */
4449 if (thresholds
->primary
) {
4450 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4451 sizeof(struct mem_cgroup_threshold
));
4454 /* Add new threshold */
4455 new->entries
[size
- 1].eventfd
= eventfd
;
4456 new->entries
[size
- 1].threshold
= threshold
;
4458 /* Sort thresholds. Registering of new threshold isn't time-critical */
4459 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4460 compare_thresholds
, NULL
);
4462 /* Find current threshold */
4463 new->current_threshold
= -1;
4464 for (i
= 0; i
< size
; i
++) {
4465 if (new->entries
[i
].threshold
< usage
) {
4467 * new->current_threshold will not be used until
4468 * rcu_assign_pointer(), so it's safe to increment
4471 ++new->current_threshold
;
4475 /* Free old spare buffer and save old primary buffer as spare */
4476 kfree(thresholds
->spare
);
4477 thresholds
->spare
= thresholds
->primary
;
4479 rcu_assign_pointer(thresholds
->primary
, new);
4481 /* To be sure that nobody uses thresholds */
4485 mutex_unlock(&memcg
->thresholds_lock
);
4490 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4491 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4493 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4494 struct mem_cgroup_thresholds
*thresholds
;
4495 struct mem_cgroup_threshold_ary
*new;
4496 int type
= MEMFILE_TYPE(cft
->private);
4500 mutex_lock(&memcg
->thresholds_lock
);
4502 thresholds
= &memcg
->thresholds
;
4503 else if (type
== _MEMSWAP
)
4504 thresholds
= &memcg
->memsw_thresholds
;
4509 * Something went wrong if we trying to unregister a threshold
4510 * if we don't have thresholds
4512 BUG_ON(!thresholds
);
4514 if (!thresholds
->primary
)
4517 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4519 /* Check if a threshold crossed before removing */
4520 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4522 /* Calculate new number of threshold */
4524 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4525 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4529 new = thresholds
->spare
;
4531 /* Set thresholds array to NULL if we don't have thresholds */
4540 /* Copy thresholds and find current threshold */
4541 new->current_threshold
= -1;
4542 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4543 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4546 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4547 if (new->entries
[j
].threshold
< usage
) {
4549 * new->current_threshold will not be used
4550 * until rcu_assign_pointer(), so it's safe to increment
4553 ++new->current_threshold
;
4559 /* Swap primary and spare array */
4560 thresholds
->spare
= thresholds
->primary
;
4561 /* If all events are unregistered, free the spare array */
4563 kfree(thresholds
->spare
);
4564 thresholds
->spare
= NULL
;
4567 rcu_assign_pointer(thresholds
->primary
, new);
4569 /* To be sure that nobody uses thresholds */
4572 mutex_unlock(&memcg
->thresholds_lock
);
4575 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4576 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4578 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4579 struct mem_cgroup_eventfd_list
*event
;
4580 int type
= MEMFILE_TYPE(cft
->private);
4582 BUG_ON(type
!= _OOM_TYPE
);
4583 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4587 spin_lock(&memcg_oom_lock
);
4589 event
->eventfd
= eventfd
;
4590 list_add(&event
->list
, &memcg
->oom_notify
);
4592 /* already in OOM ? */
4593 if (atomic_read(&memcg
->under_oom
))
4594 eventfd_signal(eventfd
, 1);
4595 spin_unlock(&memcg_oom_lock
);
4600 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4601 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4603 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4604 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4605 int type
= MEMFILE_TYPE(cft
->private);
4607 BUG_ON(type
!= _OOM_TYPE
);
4609 spin_lock(&memcg_oom_lock
);
4611 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4612 if (ev
->eventfd
== eventfd
) {
4613 list_del(&ev
->list
);
4618 spin_unlock(&memcg_oom_lock
);
4621 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4622 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4624 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4626 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4628 if (atomic_read(&memcg
->under_oom
))
4629 cb
->fill(cb
, "under_oom", 1);
4631 cb
->fill(cb
, "under_oom", 0);
4635 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4636 struct cftype
*cft
, u64 val
)
4638 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4639 struct mem_cgroup
*parent
;
4641 /* cannot set to root cgroup and only 0 and 1 are allowed */
4642 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4645 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4648 /* oom-kill-disable is a flag for subhierarchy. */
4649 if ((parent
->use_hierarchy
) ||
4650 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4654 memcg
->oom_kill_disable
= val
;
4656 memcg_oom_recover(memcg
);
4662 static const struct file_operations mem_control_numa_stat_file_operations
= {
4664 .llseek
= seq_lseek
,
4665 .release
= single_release
,
4668 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4670 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4672 file
->f_op
= &mem_control_numa_stat_file_operations
;
4673 return single_open(file
, mem_control_numa_stat_show
, cont
);
4675 #endif /* CONFIG_NUMA */
4677 static struct cftype mem_cgroup_files
[] = {
4679 .name
= "usage_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4681 .read_u64
= mem_cgroup_read
,
4682 .register_event
= mem_cgroup_usage_register_event
,
4683 .unregister_event
= mem_cgroup_usage_unregister_event
,
4686 .name
= "max_usage_in_bytes",
4687 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4688 .trigger
= mem_cgroup_reset
,
4689 .read_u64
= mem_cgroup_read
,
4692 .name
= "limit_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4694 .write_string
= mem_cgroup_write
,
4695 .read_u64
= mem_cgroup_read
,
4698 .name
= "soft_limit_in_bytes",
4699 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4700 .write_string
= mem_cgroup_write
,
4701 .read_u64
= mem_cgroup_read
,
4705 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4706 .trigger
= mem_cgroup_reset
,
4707 .read_u64
= mem_cgroup_read
,
4711 .read_map
= mem_control_stat_show
,
4714 .name
= "force_empty",
4715 .trigger
= mem_cgroup_force_empty_write
,
4718 .name
= "use_hierarchy",
4719 .write_u64
= mem_cgroup_hierarchy_write
,
4720 .read_u64
= mem_cgroup_hierarchy_read
,
4723 .name
= "swappiness",
4724 .read_u64
= mem_cgroup_swappiness_read
,
4725 .write_u64
= mem_cgroup_swappiness_write
,
4728 .name
= "move_charge_at_immigrate",
4729 .read_u64
= mem_cgroup_move_charge_read
,
4730 .write_u64
= mem_cgroup_move_charge_write
,
4733 .name
= "oom_control",
4734 .read_map
= mem_cgroup_oom_control_read
,
4735 .write_u64
= mem_cgroup_oom_control_write
,
4736 .register_event
= mem_cgroup_oom_register_event
,
4737 .unregister_event
= mem_cgroup_oom_unregister_event
,
4738 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4742 .name
= "numa_stat",
4743 .open
= mem_control_numa_stat_open
,
4749 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4750 static struct cftype memsw_cgroup_files
[] = {
4752 .name
= "memsw.usage_in_bytes",
4753 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4754 .read_u64
= mem_cgroup_read
,
4755 .register_event
= mem_cgroup_usage_register_event
,
4756 .unregister_event
= mem_cgroup_usage_unregister_event
,
4759 .name
= "memsw.max_usage_in_bytes",
4760 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4761 .trigger
= mem_cgroup_reset
,
4762 .read_u64
= mem_cgroup_read
,
4765 .name
= "memsw.limit_in_bytes",
4766 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4767 .write_string
= mem_cgroup_write
,
4768 .read_u64
= mem_cgroup_read
,
4771 .name
= "memsw.failcnt",
4772 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4773 .trigger
= mem_cgroup_reset
,
4774 .read_u64
= mem_cgroup_read
,
4778 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4780 if (!do_swap_account
)
4782 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4783 ARRAY_SIZE(memsw_cgroup_files
));
4786 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4792 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4794 struct mem_cgroup_per_node
*pn
;
4795 struct mem_cgroup_per_zone
*mz
;
4797 int zone
, tmp
= node
;
4799 * This routine is called against possible nodes.
4800 * But it's BUG to call kmalloc() against offline node.
4802 * TODO: this routine can waste much memory for nodes which will
4803 * never be onlined. It's better to use memory hotplug callback
4806 if (!node_state(node
, N_NORMAL_MEMORY
))
4808 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4812 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4813 mz
= &pn
->zoneinfo
[zone
];
4815 INIT_LIST_HEAD(&mz
->lists
[l
]);
4816 mz
->usage_in_excess
= 0;
4817 mz
->on_tree
= false;
4820 memcg
->info
.nodeinfo
[node
] = pn
;
4824 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4826 kfree(memcg
->info
.nodeinfo
[node
]);
4829 static struct mem_cgroup
*mem_cgroup_alloc(void)
4831 struct mem_cgroup
*mem
;
4832 int size
= sizeof(struct mem_cgroup
);
4834 /* Can be very big if MAX_NUMNODES is very big */
4835 if (size
< PAGE_SIZE
)
4836 mem
= kzalloc(size
, GFP_KERNEL
);
4838 mem
= vzalloc(size
);
4843 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4846 spin_lock_init(&mem
->pcp_counter_lock
);
4850 if (size
< PAGE_SIZE
)
4858 * At destroying mem_cgroup, references from swap_cgroup can remain.
4859 * (scanning all at force_empty is too costly...)
4861 * Instead of clearing all references at force_empty, we remember
4862 * the number of reference from swap_cgroup and free mem_cgroup when
4863 * it goes down to 0.
4865 * Removal of cgroup itself succeeds regardless of refs from swap.
4868 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4872 mem_cgroup_remove_from_trees(memcg
);
4873 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4875 for_each_node_state(node
, N_POSSIBLE
)
4876 free_mem_cgroup_per_zone_info(memcg
, node
);
4878 free_percpu(memcg
->stat
);
4879 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4885 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4887 atomic_inc(&memcg
->refcnt
);
4890 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4892 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4893 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4894 __mem_cgroup_free(memcg
);
4896 mem_cgroup_put(parent
);
4900 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4902 __mem_cgroup_put(memcg
, 1);
4906 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4908 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4910 if (!memcg
->res
.parent
)
4912 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4915 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4916 static void __init
enable_swap_cgroup(void)
4918 if (!mem_cgroup_disabled() && really_do_swap_account
)
4919 do_swap_account
= 1;
4922 static void __init
enable_swap_cgroup(void)
4927 static int mem_cgroup_soft_limit_tree_init(void)
4929 struct mem_cgroup_tree_per_node
*rtpn
;
4930 struct mem_cgroup_tree_per_zone
*rtpz
;
4931 int tmp
, node
, zone
;
4933 for_each_node_state(node
, N_POSSIBLE
) {
4935 if (!node_state(node
, N_NORMAL_MEMORY
))
4937 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4941 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4943 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4944 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4945 rtpz
->rb_root
= RB_ROOT
;
4946 spin_lock_init(&rtpz
->lock
);
4952 static struct cgroup_subsys_state
* __ref
4953 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4955 struct mem_cgroup
*memcg
, *parent
;
4956 long error
= -ENOMEM
;
4959 memcg
= mem_cgroup_alloc();
4961 return ERR_PTR(error
);
4963 for_each_node_state(node
, N_POSSIBLE
)
4964 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4968 if (cont
->parent
== NULL
) {
4970 enable_swap_cgroup();
4972 if (mem_cgroup_soft_limit_tree_init())
4974 root_mem_cgroup
= memcg
;
4975 for_each_possible_cpu(cpu
) {
4976 struct memcg_stock_pcp
*stock
=
4977 &per_cpu(memcg_stock
, cpu
);
4978 INIT_WORK(&stock
->work
, drain_local_stock
);
4980 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4982 parent
= mem_cgroup_from_cont(cont
->parent
);
4983 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4984 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4987 if (parent
&& parent
->use_hierarchy
) {
4988 res_counter_init(&memcg
->res
, &parent
->res
);
4989 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4991 * We increment refcnt of the parent to ensure that we can
4992 * safely access it on res_counter_charge/uncharge.
4993 * This refcnt will be decremented when freeing this
4994 * mem_cgroup(see mem_cgroup_put).
4996 mem_cgroup_get(parent
);
4998 res_counter_init(&memcg
->res
, NULL
);
4999 res_counter_init(&memcg
->memsw
, NULL
);
5001 memcg
->last_scanned_child
= 0;
5002 memcg
->last_scanned_node
= MAX_NUMNODES
;
5003 INIT_LIST_HEAD(&memcg
->oom_notify
);
5006 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5007 atomic_set(&memcg
->refcnt
, 1);
5008 memcg
->move_charge_at_immigrate
= 0;
5009 mutex_init(&memcg
->thresholds_lock
);
5012 __mem_cgroup_free(memcg
);
5013 return ERR_PTR(error
);
5016 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
5017 struct cgroup
*cont
)
5019 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5021 return mem_cgroup_force_empty(memcg
, false);
5024 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
5025 struct cgroup
*cont
)
5027 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5029 mem_cgroup_put(memcg
);
5032 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
5033 struct cgroup
*cont
)
5037 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
5038 ARRAY_SIZE(mem_cgroup_files
));
5041 ret
= register_memsw_files(cont
, ss
);
5046 /* Handlers for move charge at task migration. */
5047 #define PRECHARGE_COUNT_AT_ONCE 256
5048 static int mem_cgroup_do_precharge(unsigned long count
)
5051 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5052 struct mem_cgroup
*memcg
= mc
.to
;
5054 if (mem_cgroup_is_root(memcg
)) {
5055 mc
.precharge
+= count
;
5056 /* we don't need css_get for root */
5059 /* try to charge at once */
5061 struct res_counter
*dummy
;
5063 * "memcg" cannot be under rmdir() because we've already checked
5064 * by cgroup_lock_live_cgroup() that it is not removed and we
5065 * are still under the same cgroup_mutex. So we can postpone
5068 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5070 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5071 PAGE_SIZE
* count
, &dummy
)) {
5072 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5075 mc
.precharge
+= count
;
5079 /* fall back to one by one charge */
5081 if (signal_pending(current
)) {
5085 if (!batch_count
--) {
5086 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5089 ret
= __mem_cgroup_try_charge(NULL
,
5090 GFP_KERNEL
, 1, &memcg
, false);
5092 /* mem_cgroup_clear_mc() will do uncharge later */
5100 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5101 * @vma: the vma the pte to be checked belongs
5102 * @addr: the address corresponding to the pte to be checked
5103 * @ptent: the pte to be checked
5104 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5107 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5108 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5109 * move charge. if @target is not NULL, the page is stored in target->page
5110 * with extra refcnt got(Callers should handle it).
5111 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5112 * target for charge migration. if @target is not NULL, the entry is stored
5115 * Called with pte lock held.
5122 enum mc_target_type
{
5123 MC_TARGET_NONE
, /* not used */
5128 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5129 unsigned long addr
, pte_t ptent
)
5131 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5133 if (!page
|| !page_mapped(page
))
5135 if (PageAnon(page
)) {
5136 /* we don't move shared anon */
5137 if (!move_anon() || page_mapcount(page
) > 2)
5139 } else if (!move_file())
5140 /* we ignore mapcount for file pages */
5142 if (!get_page_unless_zero(page
))
5148 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5149 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5152 struct page
*page
= NULL
;
5153 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5155 if (!move_anon() || non_swap_entry(ent
))
5157 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5158 if (usage_count
> 1) { /* we don't move shared anon */
5163 if (do_swap_account
)
5164 entry
->val
= ent
.val
;
5169 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5170 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5172 struct page
*page
= NULL
;
5173 struct inode
*inode
;
5174 struct address_space
*mapping
;
5177 if (!vma
->vm_file
) /* anonymous vma */
5182 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5183 mapping
= vma
->vm_file
->f_mapping
;
5184 if (pte_none(ptent
))
5185 pgoff
= linear_page_index(vma
, addr
);
5186 else /* pte_file(ptent) is true */
5187 pgoff
= pte_to_pgoff(ptent
);
5189 /* page is moved even if it's not RSS of this task(page-faulted). */
5190 page
= find_get_page(mapping
, pgoff
);
5193 /* shmem/tmpfs may report page out on swap: account for that too. */
5194 if (radix_tree_exceptional_entry(page
)) {
5195 swp_entry_t swap
= radix_to_swp_entry(page
);
5196 if (do_swap_account
)
5198 page
= find_get_page(&swapper_space
, swap
.val
);
5204 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5205 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5207 struct page
*page
= NULL
;
5208 struct page_cgroup
*pc
;
5210 swp_entry_t ent
= { .val
= 0 };
5212 if (pte_present(ptent
))
5213 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5214 else if (is_swap_pte(ptent
))
5215 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5216 else if (pte_none(ptent
) || pte_file(ptent
))
5217 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5219 if (!page
&& !ent
.val
)
5222 pc
= lookup_page_cgroup(page
);
5224 * Do only loose check w/o page_cgroup lock.
5225 * mem_cgroup_move_account() checks the pc is valid or not under
5228 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5229 ret
= MC_TARGET_PAGE
;
5231 target
->page
= page
;
5233 if (!ret
|| !target
)
5236 /* There is a swap entry and a page doesn't exist or isn't charged */
5237 if (ent
.val
&& !ret
&&
5238 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5239 ret
= MC_TARGET_SWAP
;
5246 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5247 unsigned long addr
, unsigned long end
,
5248 struct mm_walk
*walk
)
5250 struct vm_area_struct
*vma
= walk
->private;
5254 split_huge_page_pmd(walk
->mm
, pmd
);
5255 if (pmd_trans_unstable(pmd
))
5258 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5259 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5260 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5261 mc
.precharge
++; /* increment precharge temporarily */
5262 pte_unmap_unlock(pte
- 1, ptl
);
5268 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5270 unsigned long precharge
;
5271 struct vm_area_struct
*vma
;
5273 down_read(&mm
->mmap_sem
);
5274 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5275 struct mm_walk mem_cgroup_count_precharge_walk
= {
5276 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5280 if (is_vm_hugetlb_page(vma
))
5282 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5283 &mem_cgroup_count_precharge_walk
);
5285 up_read(&mm
->mmap_sem
);
5287 precharge
= mc
.precharge
;
5293 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5295 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5297 VM_BUG_ON(mc
.moving_task
);
5298 mc
.moving_task
= current
;
5299 return mem_cgroup_do_precharge(precharge
);
5302 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5303 static void __mem_cgroup_clear_mc(void)
5305 struct mem_cgroup
*from
= mc
.from
;
5306 struct mem_cgroup
*to
= mc
.to
;
5308 /* we must uncharge all the leftover precharges from mc.to */
5310 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5314 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5315 * we must uncharge here.
5317 if (mc
.moved_charge
) {
5318 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5319 mc
.moved_charge
= 0;
5321 /* we must fixup refcnts and charges */
5322 if (mc
.moved_swap
) {
5323 /* uncharge swap account from the old cgroup */
5324 if (!mem_cgroup_is_root(mc
.from
))
5325 res_counter_uncharge(&mc
.from
->memsw
,
5326 PAGE_SIZE
* mc
.moved_swap
);
5327 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5329 if (!mem_cgroup_is_root(mc
.to
)) {
5331 * we charged both to->res and to->memsw, so we should
5334 res_counter_uncharge(&mc
.to
->res
,
5335 PAGE_SIZE
* mc
.moved_swap
);
5337 /* we've already done mem_cgroup_get(mc.to) */
5340 memcg_oom_recover(from
);
5341 memcg_oom_recover(to
);
5342 wake_up_all(&mc
.waitq
);
5345 static void mem_cgroup_clear_mc(void)
5347 struct mem_cgroup
*from
= mc
.from
;
5350 * we must clear moving_task before waking up waiters at the end of
5353 mc
.moving_task
= NULL
;
5354 __mem_cgroup_clear_mc();
5355 spin_lock(&mc
.lock
);
5358 spin_unlock(&mc
.lock
);
5359 mem_cgroup_end_move(from
);
5362 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5363 struct cgroup
*cgroup
,
5364 struct task_struct
*p
)
5367 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5369 if (memcg
->move_charge_at_immigrate
) {
5370 struct mm_struct
*mm
;
5371 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5373 VM_BUG_ON(from
== memcg
);
5375 mm
= get_task_mm(p
);
5378 /* We move charges only when we move a owner of the mm */
5379 if (mm
->owner
== p
) {
5382 VM_BUG_ON(mc
.precharge
);
5383 VM_BUG_ON(mc
.moved_charge
);
5384 VM_BUG_ON(mc
.moved_swap
);
5385 mem_cgroup_start_move(from
);
5386 spin_lock(&mc
.lock
);
5389 spin_unlock(&mc
.lock
);
5390 /* We set mc.moving_task later */
5392 ret
= mem_cgroup_precharge_mc(mm
);
5394 mem_cgroup_clear_mc();
5401 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5402 struct cgroup
*cgroup
,
5403 struct task_struct
*p
)
5405 mem_cgroup_clear_mc();
5408 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5409 unsigned long addr
, unsigned long end
,
5410 struct mm_walk
*walk
)
5413 struct vm_area_struct
*vma
= walk
->private;
5417 split_huge_page_pmd(walk
->mm
, pmd
);
5418 if (pmd_trans_unstable(pmd
))
5421 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5422 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5423 pte_t ptent
= *(pte
++);
5424 union mc_target target
;
5427 struct page_cgroup
*pc
;
5433 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5435 case MC_TARGET_PAGE
:
5437 if (isolate_lru_page(page
))
5439 pc
= lookup_page_cgroup(page
);
5440 if (!mem_cgroup_move_account(page
, 1, pc
,
5441 mc
.from
, mc
.to
, false)) {
5443 /* we uncharge from mc.from later. */
5446 putback_lru_page(page
);
5447 put
: /* is_target_pte_for_mc() gets the page */
5450 case MC_TARGET_SWAP
:
5452 if (!mem_cgroup_move_swap_account(ent
,
5453 mc
.from
, mc
.to
, false)) {
5455 /* we fixup refcnts and charges later. */
5463 pte_unmap_unlock(pte
- 1, ptl
);
5468 * We have consumed all precharges we got in can_attach().
5469 * We try charge one by one, but don't do any additional
5470 * charges to mc.to if we have failed in charge once in attach()
5473 ret
= mem_cgroup_do_precharge(1);
5481 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5483 struct vm_area_struct
*vma
;
5485 lru_add_drain_all();
5487 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5489 * Someone who are holding the mmap_sem might be waiting in
5490 * waitq. So we cancel all extra charges, wake up all waiters,
5491 * and retry. Because we cancel precharges, we might not be able
5492 * to move enough charges, but moving charge is a best-effort
5493 * feature anyway, so it wouldn't be a big problem.
5495 __mem_cgroup_clear_mc();
5499 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5501 struct mm_walk mem_cgroup_move_charge_walk
= {
5502 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5506 if (is_vm_hugetlb_page(vma
))
5508 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5509 &mem_cgroup_move_charge_walk
);
5512 * means we have consumed all precharges and failed in
5513 * doing additional charge. Just abandon here.
5517 up_read(&mm
->mmap_sem
);
5520 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5521 struct cgroup
*cont
,
5522 struct cgroup
*old_cont
,
5523 struct task_struct
*p
)
5525 struct mm_struct
*mm
= get_task_mm(p
);
5529 mem_cgroup_move_charge(mm
);
5534 mem_cgroup_clear_mc();
5536 #else /* !CONFIG_MMU */
5537 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5538 struct cgroup
*cgroup
,
5539 struct task_struct
*p
)
5543 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5544 struct cgroup
*cgroup
,
5545 struct task_struct
*p
)
5548 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5549 struct cgroup
*cont
,
5550 struct cgroup
*old_cont
,
5551 struct task_struct
*p
)
5556 struct cgroup_subsys mem_cgroup_subsys
= {
5558 .subsys_id
= mem_cgroup_subsys_id
,
5559 .create
= mem_cgroup_create
,
5560 .pre_destroy
= mem_cgroup_pre_destroy
,
5561 .destroy
= mem_cgroup_destroy
,
5562 .populate
= mem_cgroup_populate
,
5563 .can_attach
= mem_cgroup_can_attach
,
5564 .cancel_attach
= mem_cgroup_cancel_attach
,
5565 .attach
= mem_cgroup_move_task
,
5570 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5571 static int __init
enable_swap_account(char *s
)
5573 /* consider enabled if no parameter or 1 is given */
5574 if (!strcmp(s
, "1"))
5575 really_do_swap_account
= 1;
5576 else if (!strcmp(s
, "0"))
5577 really_do_swap_account
= 0;
5580 __setup("swapaccount=", enable_swap_account
);