2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype
;
55 static unsigned int hwbug_bitmask
;
59 extern struct resource sparc_iomap
;
61 extern unsigned long last_valid_pfn
;
63 static pgd_t
*srmmu_swapper_pg_dir
;
65 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
69 const struct sparc32_cachetlb_ops
*local_ops
;
71 #define FLUSH_BEGIN(mm)
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
78 int flush_page_for_dma_global
= 1;
82 ctxd_t
*srmmu_ctx_table_phys
;
83 static ctxd_t
*srmmu_context_table
;
85 int viking_mxcc_present
;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
88 static int is_hypersparc
;
90 static int srmmu_cache_pagetables
;
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size
;
94 static unsigned long srmmu_nocache_end
;
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 void *srmmu_nocache_pool
;
103 static struct bit_map srmmu_nocache_map
;
105 static inline int srmmu_pmd_none(pmd_t pmd
)
106 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
113 pte
= __pte((SRMMU_ET_PTD
| (__nocache_pa(pgdp
) >> 4)));
114 set_pte((pte_t
*)ctxp
, pte
);
117 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
119 unsigned long ptp
; /* Physical address, shifted right by 4 */
122 ptp
= __nocache_pa(ptep
) >> 4;
123 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
124 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
125 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
129 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
131 unsigned long ptp
; /* Physical address, shifted right by 4 */
134 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
135 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
136 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
137 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
141 /* Find an entry in the third-level page table.. */
142 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
146 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
147 return (pte_t
*) pte
+
148 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
152 * size: bytes to allocate in the nocache area.
153 * align: bytes, number to align at.
154 * Returns the virtual address of the allocated area.
156 static void *__srmmu_get_nocache(int size
, int align
)
161 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
162 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
164 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
166 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
167 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
169 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
171 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
173 offset
= bit_map_string_get(&srmmu_nocache_map
,
174 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
175 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
177 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
178 size
, (int) srmmu_nocache_size
,
179 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
183 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
187 void *srmmu_get_nocache(int size
, int align
)
191 tmp
= __srmmu_get_nocache(size
, align
);
194 memset(tmp
, 0, size
);
199 void srmmu_free_nocache(void *addr
, int size
)
204 vaddr
= (unsigned long)addr
;
205 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
206 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
207 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
210 if (vaddr
+ size
> srmmu_nocache_end
) {
211 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
212 vaddr
, srmmu_nocache_end
);
215 if (!is_power_of_2(size
)) {
216 printk("Size 0x%x is not a power of 2\n", size
);
219 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
220 printk("Size 0x%x is too small\n", size
);
223 if (vaddr
& (size
- 1)) {
224 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
228 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
229 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
231 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
234 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
237 /* Return how much physical memory we have. */
238 static unsigned long __init
probe_memory(void)
240 unsigned long total
= 0;
243 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
244 total
+= sp_banks
[i
].num_bytes
;
250 * Reserve nocache dynamically proportionally to the amount of
251 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
253 static void __init
srmmu_nocache_calcsize(void)
255 unsigned long sysmemavail
= probe_memory() / 1024;
256 int srmmu_nocache_npages
;
258 srmmu_nocache_npages
=
259 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
261 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
262 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
263 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
264 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
266 /* anything above 1280 blows up */
267 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
268 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
270 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
271 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
274 static void __init
srmmu_nocache_init(void)
276 void *srmmu_nocache_bitmap
;
277 unsigned int bitmap_bits
;
281 unsigned long paddr
, vaddr
;
282 unsigned long pteval
;
284 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
286 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
287 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
288 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
290 srmmu_nocache_bitmap
=
291 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
292 SMP_CACHE_BYTES
, 0UL);
293 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
295 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
296 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
297 init_mm
.pgd
= srmmu_swapper_pg_dir
;
299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
301 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
302 vaddr
= SRMMU_NOCACHE_VADDR
;
304 while (vaddr
< srmmu_nocache_end
) {
305 pgd
= pgd_offset_k(vaddr
);
306 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
307 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
309 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
311 if (srmmu_cache_pagetables
)
312 pteval
|= SRMMU_CACHE
;
314 set_pte(__nocache_fix(pte
), __pte(pteval
));
324 pgd_t
*get_pgd_fast(void)
328 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
330 pgd_t
*init
= pgd_offset_k(0);
331 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
332 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
333 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
340 * Hardware needs alignment to 256 only, but we align to whole page size
341 * to reduce fragmentation problems due to the buddy principle.
342 * XXX Provide actual fragmentation statistics in /proc.
344 * Alignments up to the page size are the same for physical and virtual
345 * addresses of the nocache area.
347 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
352 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
, address
)) == 0)
354 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
355 if (!pgtable_page_ctor(page
)) {
362 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
366 pgtable_page_dtor(pte
);
367 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
370 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
372 /* free non cached virtual address*/
373 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
376 /* context handling - a dynamically sized pool is used */
377 #define NO_CONTEXT -1
380 struct ctx_list
*next
;
381 struct ctx_list
*prev
;
382 unsigned int ctx_number
;
383 struct mm_struct
*ctx_mm
;
386 static struct ctx_list
*ctx_list_pool
;
387 static struct ctx_list ctx_free
;
388 static struct ctx_list ctx_used
;
390 /* At boot time we determine the number of contexts */
391 static int num_contexts
;
393 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
395 entry
->next
->prev
= entry
->prev
;
396 entry
->prev
->next
= entry
->next
;
399 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
402 (entry
->prev
= head
->prev
)->next
= entry
;
405 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
406 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
411 struct ctx_list
*ctxp
;
413 ctxp
= ctx_free
.next
;
414 if (ctxp
!= &ctx_free
) {
415 remove_from_ctx_list(ctxp
);
416 add_to_used_ctxlist(ctxp
);
417 mm
->context
= ctxp
->ctx_number
;
421 ctxp
= ctx_used
.next
;
422 if (ctxp
->ctx_mm
== old_mm
)
424 if (ctxp
== &ctx_used
)
425 panic("out of mmu contexts");
426 flush_cache_mm(ctxp
->ctx_mm
);
427 flush_tlb_mm(ctxp
->ctx_mm
);
428 remove_from_ctx_list(ctxp
);
429 add_to_used_ctxlist(ctxp
);
430 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
432 mm
->context
= ctxp
->ctx_number
;
435 static inline void free_context(int context
)
437 struct ctx_list
*ctx_old
;
439 ctx_old
= ctx_list_pool
+ context
;
440 remove_from_ctx_list(ctx_old
);
441 add_to_free_ctxlist(ctx_old
);
444 static void __init
sparc_context_init(int numctx
)
449 size
= numctx
* sizeof(struct ctx_list
);
450 ctx_list_pool
= __alloc_bootmem(size
, SMP_CACHE_BYTES
, 0UL);
452 for (ctx
= 0; ctx
< numctx
; ctx
++) {
453 struct ctx_list
*clist
;
455 clist
= (ctx_list_pool
+ ctx
);
456 clist
->ctx_number
= ctx
;
457 clist
->ctx_mm
= NULL
;
459 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
460 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
461 for (ctx
= 0; ctx
< numctx
; ctx
++)
462 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
465 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
466 struct task_struct
*tsk
)
470 if (mm
->context
== NO_CONTEXT
) {
471 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
472 alloc_context(old_mm
, mm
);
473 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
474 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
477 if (sparc_cpu_model
== sparc_leon
)
481 hyper_flush_whole_icache();
483 srmmu_set_context(mm
->context
);
486 /* Low level IO area allocation on the SRMMU. */
487 static inline void srmmu_mapioaddr(unsigned long physaddr
,
488 unsigned long virt_addr
, int bus_type
)
495 physaddr
&= PAGE_MASK
;
496 pgdp
= pgd_offset_k(virt_addr
);
497 pmdp
= pmd_offset(pgdp
, virt_addr
);
498 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
499 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
501 /* I need to test whether this is consistent over all
502 * sun4m's. The bus_type represents the upper 4 bits of
503 * 36-bit physical address on the I/O space lines...
505 tmp
|= (bus_type
<< 28);
507 __flush_page_to_ram(virt_addr
);
508 set_pte(ptep
, __pte(tmp
));
511 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
512 unsigned long xva
, unsigned int len
)
516 srmmu_mapioaddr(xpa
, xva
, bus
);
523 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
529 pgdp
= pgd_offset_k(virt_addr
);
530 pmdp
= pmd_offset(pgdp
, virt_addr
);
531 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
533 /* No need to flush uncacheable page. */
537 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
541 srmmu_unmapioaddr(virt_addr
);
542 virt_addr
+= PAGE_SIZE
;
548 extern void tsunami_flush_cache_all(void);
549 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
550 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
551 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
552 extern void tsunami_flush_page_to_ram(unsigned long page
);
553 extern void tsunami_flush_page_for_dma(unsigned long page
);
554 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
555 extern void tsunami_flush_tlb_all(void);
556 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
557 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
558 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
559 extern void tsunami_setup_blockops(void);
562 extern void swift_flush_cache_all(void);
563 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
564 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
565 unsigned long start
, unsigned long end
);
566 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
567 extern void swift_flush_page_to_ram(unsigned long page
);
568 extern void swift_flush_page_for_dma(unsigned long page
);
569 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
570 extern void swift_flush_tlb_all(void);
571 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
572 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
573 unsigned long start
, unsigned long end
);
574 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
576 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
577 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
582 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
583 cctx
= srmmu_get_context();
584 /* Is context # ever different from current context? P3 */
586 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
587 srmmu_set_context(ctx1
);
588 swift_flush_page(page
);
589 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
590 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
591 srmmu_set_context(cctx
);
593 /* Rm. prot. bits from virt. c. */
594 /* swift_flush_cache_all(); */
595 /* swift_flush_cache_page(vma, page); */
596 swift_flush_page(page
);
598 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
599 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
600 /* same as above: srmmu_flush_tlb_page() */
607 * The following are all MBUS based SRMMU modules, and therefore could
608 * be found in a multiprocessor configuration. On the whole, these
609 * chips seems to be much more touchy about DVMA and page tables
610 * with respect to cache coherency.
614 extern void viking_flush_cache_all(void);
615 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
616 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
618 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
619 extern void viking_flush_page_to_ram(unsigned long page
);
620 extern void viking_flush_page_for_dma(unsigned long page
);
621 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
622 extern void viking_flush_page(unsigned long page
);
623 extern void viking_mxcc_flush_page(unsigned long page
);
624 extern void viking_flush_tlb_all(void);
625 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
626 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
628 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
630 extern void sun4dsmp_flush_tlb_all(void);
631 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
632 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
634 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
638 extern void hypersparc_flush_cache_all(void);
639 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
640 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
641 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
642 extern void hypersparc_flush_page_to_ram(unsigned long page
);
643 extern void hypersparc_flush_page_for_dma(unsigned long page
);
644 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
645 extern void hypersparc_flush_tlb_all(void);
646 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
647 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
648 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
649 extern void hypersparc_setup_blockops(void);
652 * NOTE: All of this startup code assumes the low 16mb (approx.) of
653 * kernel mappings are done with one single contiguous chunk of
654 * ram. On small ram machines (classics mainly) we only get
655 * around 8mb mapped for us.
658 static void __init
early_pgtable_allocfail(char *type
)
660 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
664 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
671 while (start
< end
) {
672 pgdp
= pgd_offset_k(start
);
673 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
674 pmdp
= __srmmu_get_nocache(
675 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
677 early_pgtable_allocfail("pmd");
678 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
679 pgd_set(__nocache_fix(pgdp
), pmdp
);
681 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
682 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
683 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
685 early_pgtable_allocfail("pte");
686 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
687 pmd_set(__nocache_fix(pmdp
), ptep
);
689 if (start
> (0xffffffffUL
- PMD_SIZE
))
691 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
695 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
702 while (start
< end
) {
703 pgdp
= pgd_offset_k(start
);
704 if (pgd_none(*pgdp
)) {
705 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
707 early_pgtable_allocfail("pmd");
708 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
711 pmdp
= pmd_offset(pgdp
, start
);
712 if (srmmu_pmd_none(*pmdp
)) {
713 ptep
= __srmmu_get_nocache(PTE_SIZE
,
716 early_pgtable_allocfail("pte");
717 memset(ptep
, 0, PTE_SIZE
);
720 if (start
> (0xffffffffUL
- PMD_SIZE
))
722 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
726 /* These flush types are not available on all chips... */
727 static inline unsigned long srmmu_probe(unsigned long vaddr
)
729 unsigned long retval
;
731 if (sparc_cpu_model
!= sparc_leon
) {
734 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
736 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
738 retval
= leon_swprobe(vaddr
, NULL
);
744 * This is much cleaner than poking around physical address space
745 * looking at the prom's page table directly which is what most
746 * other OS's do. Yuck... this is much better.
748 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
751 unsigned long probed
;
756 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
758 while (start
<= end
) {
760 break; /* probably wrap around */
761 if (start
== 0xfef00000)
762 start
= KADB_DEBUGGER_BEGVM
;
763 probed
= srmmu_probe(start
);
765 /* continue probing until we find an entry */
770 /* A red snapper, see what it really is. */
772 addr
= start
- PAGE_SIZE
;
774 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
775 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
779 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
780 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
784 pgdp
= pgd_offset_k(start
);
786 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
787 start
+= SRMMU_PGDIR_SIZE
;
790 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
791 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
792 SRMMU_PMD_TABLE_SIZE
);
794 early_pgtable_allocfail("pmd");
795 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
796 pgd_set(__nocache_fix(pgdp
), pmdp
);
798 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
799 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
800 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
802 early_pgtable_allocfail("pte");
803 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
804 pmd_set(__nocache_fix(pmdp
), ptep
);
807 /* We bend the rule where all 16 PTPs in a pmd_t point
808 * inside the same PTE page, and we leak a perfectly
809 * good hardware PTE piece. Alternatives seem worse.
811 unsigned int x
; /* Index of HW PMD in soft cluster */
813 x
= (start
>> PMD_SHIFT
) & 15;
814 val
= &pmdp
->pmdv
[x
];
815 *(unsigned long *)__nocache_fix(val
) = probed
;
816 start
+= SRMMU_REAL_PMD_SIZE
;
819 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
820 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
825 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
827 /* Create a third-level SRMMU 16MB page mapping. */
828 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
830 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
831 unsigned long big_pte
;
833 big_pte
= KERNEL_PTE(phys_base
>> 4);
834 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
837 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
838 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
840 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
841 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
842 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
843 /* Map "low" memory only */
844 const unsigned long min_vaddr
= PAGE_OFFSET
;
845 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
847 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
850 if (vend
> max_vaddr
|| vend
< min_vaddr
)
853 while (vstart
< vend
) {
854 do_large_mapping(vstart
, pstart
);
855 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
860 static void __init
map_kernel(void)
865 do_large_mapping(PAGE_OFFSET
, phys_base
);
868 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
869 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
873 void (*poke_srmmu
)(void) = NULL
;
875 void __init
srmmu_paging_init(void)
883 unsigned long pages_avail
;
885 init_mm
.context
= (unsigned long) NO_CONTEXT
;
886 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
888 if (sparc_cpu_model
== sun4d
)
889 num_contexts
= 65536; /* We know it is Viking */
891 /* Find the number of contexts on the srmmu. */
892 cpunode
= prom_getchild(prom_root_node
);
894 while (cpunode
!= 0) {
895 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
896 if (!strcmp(node_str
, "cpu")) {
897 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
900 cpunode
= prom_getsibling(cpunode
);
905 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
910 last_valid_pfn
= bootmem_init(&pages_avail
);
912 srmmu_nocache_calcsize();
913 srmmu_nocache_init();
914 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
917 /* ctx table has to be physically aligned to its size */
918 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
919 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa(srmmu_context_table
);
921 for (i
= 0; i
< num_contexts
; i
++)
922 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
925 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
927 /* Stop from hanging here... */
928 local_ops
->tlb_all();
934 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
935 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
937 srmmu_allocate_ptable_skeleton(
938 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
939 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
941 pgd
= pgd_offset_k(PKMAP_BASE
);
942 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
943 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
944 pkmap_page_table
= pte
;
949 sparc_context_init(num_contexts
);
954 unsigned long zones_size
[MAX_NR_ZONES
];
955 unsigned long zholes_size
[MAX_NR_ZONES
];
956 unsigned long npages
;
959 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
960 zones_size
[znum
] = zholes_size
[znum
] = 0;
962 npages
= max_low_pfn
- pfn_base
;
964 zones_size
[ZONE_DMA
] = npages
;
965 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
967 npages
= highend_pfn
- max_low_pfn
;
968 zones_size
[ZONE_HIGHMEM
] = npages
;
969 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
971 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
975 void mmu_info(struct seq_file
*m
)
980 "nocache total\t: %ld\n"
981 "nocache used\t: %d\n",
985 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
988 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
990 mm
->context
= NO_CONTEXT
;
994 void destroy_context(struct mm_struct
*mm
)
998 if (mm
->context
!= NO_CONTEXT
) {
1000 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1002 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
1003 free_context(mm
->context
);
1004 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1005 mm
->context
= NO_CONTEXT
;
1009 /* Init various srmmu chip types. */
1010 static void __init
srmmu_is_bad(void)
1012 prom_printf("Could not determine SRMMU chip type.\n");
1016 static void __init
init_vac_layout(void)
1023 unsigned long max_size
= 0;
1024 unsigned long min_line_size
= 0x10000000;
1027 nd
= prom_getchild(prom_root_node
);
1028 while ((nd
= prom_getsibling(nd
)) != 0) {
1029 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1030 if (!strcmp(node_str
, "cpu")) {
1031 vac_line_size
= prom_getint(nd
, "cache-line-size");
1032 if (vac_line_size
== -1) {
1033 prom_printf("can't determine cache-line-size, halting.\n");
1036 cache_lines
= prom_getint(nd
, "cache-nlines");
1037 if (cache_lines
== -1) {
1038 prom_printf("can't determine cache-nlines, halting.\n");
1042 vac_cache_size
= cache_lines
* vac_line_size
;
1044 if (vac_cache_size
> max_size
)
1045 max_size
= vac_cache_size
;
1046 if (vac_line_size
< min_line_size
)
1047 min_line_size
= vac_line_size
;
1048 //FIXME: cpus not contiguous!!
1050 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1058 prom_printf("No CPU nodes found, halting.\n");
1062 vac_cache_size
= max_size
;
1063 vac_line_size
= min_line_size
;
1065 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1066 (int)vac_cache_size
, (int)vac_line_size
);
1069 static void poke_hypersparc(void)
1071 volatile unsigned long clear
;
1072 unsigned long mreg
= srmmu_get_mmureg();
1074 hyper_flush_unconditional_combined();
1076 mreg
&= ~(HYPERSPARC_CWENABLE
);
1077 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1078 mreg
|= (HYPERSPARC_CMODE
);
1080 srmmu_set_mmureg(mreg
);
1082 #if 0 /* XXX I think this is bad news... -DaveM */
1083 hyper_clear_all_tags();
1086 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1087 hyper_flush_whole_icache();
1088 clear
= srmmu_get_faddr();
1089 clear
= srmmu_get_fstatus();
1092 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1093 .cache_all
= hypersparc_flush_cache_all
,
1094 .cache_mm
= hypersparc_flush_cache_mm
,
1095 .cache_page
= hypersparc_flush_cache_page
,
1096 .cache_range
= hypersparc_flush_cache_range
,
1097 .tlb_all
= hypersparc_flush_tlb_all
,
1098 .tlb_mm
= hypersparc_flush_tlb_mm
,
1099 .tlb_page
= hypersparc_flush_tlb_page
,
1100 .tlb_range
= hypersparc_flush_tlb_range
,
1101 .page_to_ram
= hypersparc_flush_page_to_ram
,
1102 .sig_insns
= hypersparc_flush_sig_insns
,
1103 .page_for_dma
= hypersparc_flush_page_for_dma
,
1106 static void __init
init_hypersparc(void)
1108 srmmu_name
= "ROSS HyperSparc";
1109 srmmu_modtype
= HyperSparc
;
1114 sparc32_cachetlb_ops
= &hypersparc_ops
;
1116 poke_srmmu
= poke_hypersparc
;
1118 hypersparc_setup_blockops();
1121 static void poke_swift(void)
1125 /* Clear any crap from the cache or else... */
1126 swift_flush_cache_all();
1128 /* Enable I & D caches */
1129 mreg
= srmmu_get_mmureg();
1130 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1132 * The Swift branch folding logic is completely broken. At
1133 * trap time, if things are just right, if can mistakenly
1134 * think that a trap is coming from kernel mode when in fact
1135 * it is coming from user mode (it mis-executes the branch in
1136 * the trap code). So you see things like crashme completely
1137 * hosing your machine which is completely unacceptable. Turn
1138 * this shit off... nice job Fujitsu.
1140 mreg
&= ~(SWIFT_BF
);
1141 srmmu_set_mmureg(mreg
);
1144 static const struct sparc32_cachetlb_ops swift_ops
= {
1145 .cache_all
= swift_flush_cache_all
,
1146 .cache_mm
= swift_flush_cache_mm
,
1147 .cache_page
= swift_flush_cache_page
,
1148 .cache_range
= swift_flush_cache_range
,
1149 .tlb_all
= swift_flush_tlb_all
,
1150 .tlb_mm
= swift_flush_tlb_mm
,
1151 .tlb_page
= swift_flush_tlb_page
,
1152 .tlb_range
= swift_flush_tlb_range
,
1153 .page_to_ram
= swift_flush_page_to_ram
,
1154 .sig_insns
= swift_flush_sig_insns
,
1155 .page_for_dma
= swift_flush_page_for_dma
,
1158 #define SWIFT_MASKID_ADDR 0x10003018
1159 static void __init
init_swift(void)
1161 unsigned long swift_rev
;
1163 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1164 "srl %0, 0x18, %0\n\t" :
1166 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1167 srmmu_name
= "Fujitsu Swift";
1168 switch (swift_rev
) {
1173 srmmu_modtype
= Swift_lots_o_bugs
;
1174 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1176 * Gee george, I wonder why Sun is so hush hush about
1177 * this hardware bug... really braindamage stuff going
1178 * on here. However I think we can find a way to avoid
1179 * all of the workaround overhead under Linux. Basically,
1180 * any page fault can cause kernel pages to become user
1181 * accessible (the mmu gets confused and clears some of
1182 * the ACC bits in kernel ptes). Aha, sounds pretty
1183 * horrible eh? But wait, after extensive testing it appears
1184 * that if you use pgd_t level large kernel pte's (like the
1185 * 4MB pages on the Pentium) the bug does not get tripped
1186 * at all. This avoids almost all of the major overhead.
1187 * Welcome to a world where your vendor tells you to,
1188 * "apply this kernel patch" instead of "sorry for the
1189 * broken hardware, send it back and we'll give you
1190 * properly functioning parts"
1195 srmmu_modtype
= Swift_bad_c
;
1196 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1198 * You see Sun allude to this hardware bug but never
1199 * admit things directly, they'll say things like,
1200 * "the Swift chip cache problems" or similar.
1204 srmmu_modtype
= Swift_ok
;
1208 sparc32_cachetlb_ops
= &swift_ops
;
1209 flush_page_for_dma_global
= 0;
1212 * Are you now convinced that the Swift is one of the
1213 * biggest VLSI abortions of all time? Bravo Fujitsu!
1214 * Fujitsu, the !#?!%$'d up processor people. I bet if
1215 * you examined the microcode of the Swift you'd find
1216 * XXX's all over the place.
1218 poke_srmmu
= poke_swift
;
1221 static void turbosparc_flush_cache_all(void)
1223 flush_user_windows();
1224 turbosparc_idflash_clear();
1227 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1230 flush_user_windows();
1231 turbosparc_idflash_clear();
1235 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1237 FLUSH_BEGIN(vma
->vm_mm
)
1238 flush_user_windows();
1239 turbosparc_idflash_clear();
1243 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1245 FLUSH_BEGIN(vma
->vm_mm
)
1246 flush_user_windows();
1247 if (vma
->vm_flags
& VM_EXEC
)
1248 turbosparc_flush_icache();
1249 turbosparc_flush_dcache();
1253 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1254 static void turbosparc_flush_page_to_ram(unsigned long page
)
1256 #ifdef TURBOSPARC_WRITEBACK
1257 volatile unsigned long clear
;
1259 if (srmmu_probe(page
))
1260 turbosparc_flush_page_cache(page
);
1261 clear
= srmmu_get_fstatus();
1265 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1269 static void turbosparc_flush_page_for_dma(unsigned long page
)
1271 turbosparc_flush_dcache();
1274 static void turbosparc_flush_tlb_all(void)
1276 srmmu_flush_whole_tlb();
1279 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1282 srmmu_flush_whole_tlb();
1286 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1288 FLUSH_BEGIN(vma
->vm_mm
)
1289 srmmu_flush_whole_tlb();
1293 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1295 FLUSH_BEGIN(vma
->vm_mm
)
1296 srmmu_flush_whole_tlb();
1301 static void poke_turbosparc(void)
1303 unsigned long mreg
= srmmu_get_mmureg();
1304 unsigned long ccreg
;
1306 /* Clear any crap from the cache or else... */
1307 turbosparc_flush_cache_all();
1308 /* Temporarily disable I & D caches */
1309 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1310 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1311 srmmu_set_mmureg(mreg
);
1313 ccreg
= turbosparc_get_ccreg();
1315 #ifdef TURBOSPARC_WRITEBACK
1316 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1317 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1318 /* Write-back D-cache, emulate VLSI
1319 * abortion number three, not number one */
1321 /* For now let's play safe, optimize later */
1322 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1323 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1324 ccreg
&= ~(TURBOSPARC_uS2
);
1325 /* Emulate VLSI abortion number three, not number one */
1328 switch (ccreg
& 7) {
1329 case 0: /* No SE cache */
1330 case 7: /* Test mode */
1333 ccreg
|= (TURBOSPARC_SCENABLE
);
1335 turbosparc_set_ccreg(ccreg
);
1337 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1338 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1339 srmmu_set_mmureg(mreg
);
1342 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1343 .cache_all
= turbosparc_flush_cache_all
,
1344 .cache_mm
= turbosparc_flush_cache_mm
,
1345 .cache_page
= turbosparc_flush_cache_page
,
1346 .cache_range
= turbosparc_flush_cache_range
,
1347 .tlb_all
= turbosparc_flush_tlb_all
,
1348 .tlb_mm
= turbosparc_flush_tlb_mm
,
1349 .tlb_page
= turbosparc_flush_tlb_page
,
1350 .tlb_range
= turbosparc_flush_tlb_range
,
1351 .page_to_ram
= turbosparc_flush_page_to_ram
,
1352 .sig_insns
= turbosparc_flush_sig_insns
,
1353 .page_for_dma
= turbosparc_flush_page_for_dma
,
1356 static void __init
init_turbosparc(void)
1358 srmmu_name
= "Fujitsu TurboSparc";
1359 srmmu_modtype
= TurboSparc
;
1360 sparc32_cachetlb_ops
= &turbosparc_ops
;
1361 poke_srmmu
= poke_turbosparc
;
1364 static void poke_tsunami(void)
1366 unsigned long mreg
= srmmu_get_mmureg();
1368 tsunami_flush_icache();
1369 tsunami_flush_dcache();
1370 mreg
&= ~TSUNAMI_ITD
;
1371 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1372 srmmu_set_mmureg(mreg
);
1375 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1376 .cache_all
= tsunami_flush_cache_all
,
1377 .cache_mm
= tsunami_flush_cache_mm
,
1378 .cache_page
= tsunami_flush_cache_page
,
1379 .cache_range
= tsunami_flush_cache_range
,
1380 .tlb_all
= tsunami_flush_tlb_all
,
1381 .tlb_mm
= tsunami_flush_tlb_mm
,
1382 .tlb_page
= tsunami_flush_tlb_page
,
1383 .tlb_range
= tsunami_flush_tlb_range
,
1384 .page_to_ram
= tsunami_flush_page_to_ram
,
1385 .sig_insns
= tsunami_flush_sig_insns
,
1386 .page_for_dma
= tsunami_flush_page_for_dma
,
1389 static void __init
init_tsunami(void)
1392 * Tsunami's pretty sane, Sun and TI actually got it
1393 * somewhat right this time. Fujitsu should have
1394 * taken some lessons from them.
1397 srmmu_name
= "TI Tsunami";
1398 srmmu_modtype
= Tsunami
;
1399 sparc32_cachetlb_ops
= &tsunami_ops
;
1400 poke_srmmu
= poke_tsunami
;
1402 tsunami_setup_blockops();
1405 static void poke_viking(void)
1407 unsigned long mreg
= srmmu_get_mmureg();
1408 static int smp_catch
;
1410 if (viking_mxcc_present
) {
1411 unsigned long mxcc_control
= mxcc_get_creg();
1413 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1414 mxcc_control
&= ~(MXCC_CTL_RRC
);
1415 mxcc_set_creg(mxcc_control
);
1418 * We don't need memory parity checks.
1419 * XXX This is a mess, have to dig out later. ecd.
1420 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423 /* We do cache ptables on MXCC. */
1424 mreg
|= VIKING_TCENABLE
;
1426 unsigned long bpreg
;
1428 mreg
&= ~(VIKING_TCENABLE
);
1430 /* Must disable mixed-cmd mode here for other cpu's. */
1431 bpreg
= viking_get_bpreg();
1432 bpreg
&= ~(VIKING_ACTION_MIX
);
1433 viking_set_bpreg(bpreg
);
1435 /* Just in case PROM does something funny. */
1440 mreg
|= VIKING_SPENABLE
;
1441 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1442 mreg
|= VIKING_SBENABLE
;
1443 mreg
&= ~(VIKING_ACENABLE
);
1444 srmmu_set_mmureg(mreg
);
1447 static struct sparc32_cachetlb_ops viking_ops
= {
1448 .cache_all
= viking_flush_cache_all
,
1449 .cache_mm
= viking_flush_cache_mm
,
1450 .cache_page
= viking_flush_cache_page
,
1451 .cache_range
= viking_flush_cache_range
,
1452 .tlb_all
= viking_flush_tlb_all
,
1453 .tlb_mm
= viking_flush_tlb_mm
,
1454 .tlb_page
= viking_flush_tlb_page
,
1455 .tlb_range
= viking_flush_tlb_range
,
1456 .page_to_ram
= viking_flush_page_to_ram
,
1457 .sig_insns
= viking_flush_sig_insns
,
1458 .page_for_dma
= viking_flush_page_for_dma
,
1462 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1463 * perform the local TLB flush and all the other cpus will see it.
1464 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1465 * that requires that we add some synchronization to these flushes.
1467 * The bug is that the fifo which keeps track of all the pending TLB
1468 * broadcasts in the system is an entry or two too small, so if we
1469 * have too many going at once we'll overflow that fifo and lose a TLB
1470 * flush resulting in corruption.
1472 * Our workaround is to take a global spinlock around the TLB flushes,
1473 * which guarentees we won't ever have too many pending. It's a big
1474 * hammer, but a semaphore like system to make sure we only have N TLB
1475 * flushes going at once will require SMP locking anyways so there's
1476 * no real value in trying any harder than this.
1478 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops
= {
1479 .cache_all
= viking_flush_cache_all
,
1480 .cache_mm
= viking_flush_cache_mm
,
1481 .cache_page
= viking_flush_cache_page
,
1482 .cache_range
= viking_flush_cache_range
,
1483 .tlb_all
= sun4dsmp_flush_tlb_all
,
1484 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1485 .tlb_page
= sun4dsmp_flush_tlb_page
,
1486 .tlb_range
= sun4dsmp_flush_tlb_range
,
1487 .page_to_ram
= viking_flush_page_to_ram
,
1488 .sig_insns
= viking_flush_sig_insns
,
1489 .page_for_dma
= viking_flush_page_for_dma
,
1493 static void __init
init_viking(void)
1495 unsigned long mreg
= srmmu_get_mmureg();
1497 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1498 if (mreg
& VIKING_MMODE
) {
1499 srmmu_name
= "TI Viking";
1500 viking_mxcc_present
= 0;
1504 * We need this to make sure old viking takes no hits
1505 * on it's cache for dma snoops to workaround the
1506 * "load from non-cacheable memory" interrupt bug.
1507 * This is only necessary because of the new way in
1508 * which we use the IOMMU.
1510 viking_ops
.page_for_dma
= viking_flush_page
;
1512 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1514 flush_page_for_dma_global
= 0;
1516 srmmu_name
= "TI Viking/MXCC";
1517 viking_mxcc_present
= 1;
1518 srmmu_cache_pagetables
= 1;
1521 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1524 if (sparc_cpu_model
== sun4d
)
1525 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1526 &viking_sun4d_smp_ops
;
1529 poke_srmmu
= poke_viking
;
1532 /* Probe for the srmmu chip version. */
1533 static void __init
get_srmmu_type(void)
1535 unsigned long mreg
, psr
;
1536 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1538 srmmu_modtype
= SRMMU_INVAL_MOD
;
1541 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1542 mod_typ
= (mreg
& 0xf0000000) >> 28;
1543 mod_rev
= (mreg
& 0x0f000000) >> 24;
1544 psr_typ
= (psr
>> 28) & 0xf;
1545 psr_vers
= (psr
>> 24) & 0xf;
1547 /* First, check for sparc-leon. */
1548 if (sparc_cpu_model
== sparc_leon
) {
1553 /* Second, check for HyperSparc or Cypress. */
1557 /* UP or MP Hypersparc */
1569 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1576 /* Now Fujitsu TurboSparc. It might happen that it is
1577 * in Swift emulation mode, so we will check later...
1579 if (psr_typ
== 0 && psr_vers
== 5) {
1584 /* Next check for Fujitsu Swift. */
1585 if (psr_typ
== 0 && psr_vers
== 4) {
1589 /* Look if it is not a TurboSparc emulating Swift... */
1590 cpunode
= prom_getchild(prom_root_node
);
1591 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1592 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1593 if (!strcmp(node_str
, "cpu")) {
1594 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1595 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1607 /* Now the Viking family of srmmu. */
1610 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1615 /* Finally the Tsunami. */
1616 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1626 /* Local cross-calls. */
1627 static void smp_flush_page_for_dma(unsigned long page
)
1629 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1630 local_ops
->page_for_dma(page
);
1633 static void smp_flush_cache_all(void)
1635 xc0((smpfunc_t
) local_ops
->cache_all
);
1636 local_ops
->cache_all();
1639 static void smp_flush_tlb_all(void)
1641 xc0((smpfunc_t
) local_ops
->tlb_all
);
1642 local_ops
->tlb_all();
1645 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1647 if (mm
->context
!= NO_CONTEXT
) {
1649 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1650 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1651 if (!cpumask_empty(&cpu_mask
))
1652 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1653 local_ops
->cache_mm(mm
);
1657 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1659 if (mm
->context
!= NO_CONTEXT
) {
1661 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1662 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1663 if (!cpumask_empty(&cpu_mask
)) {
1664 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1665 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1666 cpumask_copy(mm_cpumask(mm
),
1667 cpumask_of(smp_processor_id()));
1669 local_ops
->tlb_mm(mm
);
1673 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1674 unsigned long start
,
1677 struct mm_struct
*mm
= vma
->vm_mm
;
1679 if (mm
->context
!= NO_CONTEXT
) {
1681 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1683 if (!cpumask_empty(&cpu_mask
))
1684 xc3((smpfunc_t
) local_ops
->cache_range
,
1685 (unsigned long) vma
, start
, end
);
1686 local_ops
->cache_range(vma
, start
, end
);
1690 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1691 unsigned long start
,
1694 struct mm_struct
*mm
= vma
->vm_mm
;
1696 if (mm
->context
!= NO_CONTEXT
) {
1698 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1699 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1700 if (!cpumask_empty(&cpu_mask
))
1701 xc3((smpfunc_t
) local_ops
->tlb_range
,
1702 (unsigned long) vma
, start
, end
);
1703 local_ops
->tlb_range(vma
, start
, end
);
1707 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1709 struct mm_struct
*mm
= vma
->vm_mm
;
1711 if (mm
->context
!= NO_CONTEXT
) {
1713 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1714 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1715 if (!cpumask_empty(&cpu_mask
))
1716 xc2((smpfunc_t
) local_ops
->cache_page
,
1717 (unsigned long) vma
, page
);
1718 local_ops
->cache_page(vma
, page
);
1722 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1724 struct mm_struct
*mm
= vma
->vm_mm
;
1726 if (mm
->context
!= NO_CONTEXT
) {
1728 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1729 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1730 if (!cpumask_empty(&cpu_mask
))
1731 xc2((smpfunc_t
) local_ops
->tlb_page
,
1732 (unsigned long) vma
, page
);
1733 local_ops
->tlb_page(vma
, page
);
1737 static void smp_flush_page_to_ram(unsigned long page
)
1739 /* Current theory is that those who call this are the one's
1740 * who have just dirtied their cache with the pages contents
1741 * in kernel space, therefore we only run this on local cpu.
1743 * XXX This experiment failed, research further... -DaveM
1746 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1748 local_ops
->page_to_ram(page
);
1751 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1754 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1755 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1756 if (!cpumask_empty(&cpu_mask
))
1757 xc2((smpfunc_t
) local_ops
->sig_insns
,
1758 (unsigned long) mm
, insn_addr
);
1759 local_ops
->sig_insns(mm
, insn_addr
);
1762 static struct sparc32_cachetlb_ops smp_cachetlb_ops
= {
1763 .cache_all
= smp_flush_cache_all
,
1764 .cache_mm
= smp_flush_cache_mm
,
1765 .cache_page
= smp_flush_cache_page
,
1766 .cache_range
= smp_flush_cache_range
,
1767 .tlb_all
= smp_flush_tlb_all
,
1768 .tlb_mm
= smp_flush_tlb_mm
,
1769 .tlb_page
= smp_flush_tlb_page
,
1770 .tlb_range
= smp_flush_tlb_range
,
1771 .page_to_ram
= smp_flush_page_to_ram
,
1772 .sig_insns
= smp_flush_sig_insns
,
1773 .page_for_dma
= smp_flush_page_for_dma
,
1777 /* Load up routines and constants for sun4m and sun4d mmu */
1778 void __init
load_mmu(void)
1784 /* El switcheroo... */
1785 local_ops
= sparc32_cachetlb_ops
;
1787 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1788 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1789 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1790 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1791 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1794 if (poke_srmmu
== poke_viking
) {
1795 /* Avoid unnecessary cross calls. */
1796 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1797 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1798 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1799 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1801 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1802 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1803 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1806 /* It really is const after this point. */
1807 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1811 if (sparc_cpu_model
== sun4d
)
1816 if (sparc_cpu_model
== sun4d
)
1818 else if (sparc_cpu_model
== sparc_leon
)