2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
43 #include "blk-mq-sched.h"
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry
*blk_debugfs_root
;
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
56 DEFINE_IDA(blk_queue_ida
);
59 * For the allocated request tables
61 struct kmem_cache
*request_cachep
;
64 * For queue allocation
66 struct kmem_cache
*blk_requestq_cachep
;
69 * Controlling structure to kblockd
71 static struct workqueue_struct
*kblockd_workqueue
;
73 static void blk_clear_congested(struct request_list
*rl
, int sync
)
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
82 if (rl
== &rl
->q
->root_rl
)
83 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
87 static void blk_set_congested(struct request_list
*rl
, int sync
)
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
92 /* see blk_clear_congested() */
93 if (rl
== &rl
->q
->root_rl
)
94 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
98 void blk_queue_congestion_threshold(struct request_queue
*q
)
102 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
103 if (nr
> q
->nr_requests
)
105 q
->nr_congestion_on
= nr
;
107 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
110 q
->nr_congestion_off
= nr
;
113 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
115 memset(rq
, 0, sizeof(*rq
));
117 INIT_LIST_HEAD(&rq
->queuelist
);
118 INIT_LIST_HEAD(&rq
->timeout_list
);
121 rq
->__sector
= (sector_t
) -1;
122 INIT_HLIST_NODE(&rq
->hash
);
123 RB_CLEAR_NODE(&rq
->rb_node
);
125 rq
->internal_tag
= -1;
126 rq
->start_time
= jiffies
;
127 set_start_time_ns(rq
);
130 EXPORT_SYMBOL(blk_rq_init
);
132 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
133 unsigned int nbytes
, int error
)
136 bio
->bi_error
= error
;
138 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
139 bio_set_flag(bio
, BIO_QUIET
);
141 bio_advance(bio
, nbytes
);
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
148 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
150 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
151 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
152 (unsigned long long) rq
->cmd_flags
);
154 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq
),
156 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
157 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
158 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
160 EXPORT_SYMBOL(blk_dump_rq_flags
);
162 static void blk_delay_work(struct work_struct
*work
)
164 struct request_queue
*q
;
166 q
= container_of(work
, struct request_queue
, delay_work
.work
);
167 spin_lock_irq(q
->queue_lock
);
169 spin_unlock_irq(q
->queue_lock
);
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
182 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
184 if (likely(!blk_queue_dead(q
)))
185 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
186 msecs_to_jiffies(msecs
));
188 EXPORT_SYMBOL(blk_delay_queue
);
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
199 void blk_start_queue_async(struct request_queue
*q
)
201 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
202 blk_run_queue_async(q
);
204 EXPORT_SYMBOL(blk_start_queue_async
);
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
215 void blk_start_queue(struct request_queue
*q
)
217 WARN_ON(!irqs_disabled());
219 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
222 EXPORT_SYMBOL(blk_start_queue
);
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
238 void blk_stop_queue(struct request_queue
*q
)
240 cancel_delayed_work(&q
->delay_work
);
241 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
243 EXPORT_SYMBOL(blk_stop_queue
);
246 * blk_sync_queue - cancel any pending callbacks on a queue
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
263 void blk_sync_queue(struct request_queue
*q
)
265 del_timer_sync(&q
->timeout
);
268 struct blk_mq_hw_ctx
*hctx
;
271 queue_for_each_hw_ctx(q
, hctx
, i
) {
272 cancel_work_sync(&hctx
->run_work
);
273 cancel_delayed_work_sync(&hctx
->delay_work
);
276 cancel_delayed_work_sync(&q
->delay_work
);
279 EXPORT_SYMBOL(blk_sync_queue
);
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
292 inline void __blk_run_queue_uncond(struct request_queue
*q
)
294 if (unlikely(blk_queue_dead(q
)))
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
304 q
->request_fn_active
++;
306 q
->request_fn_active
--;
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
318 void __blk_run_queue(struct request_queue
*q
)
320 if (unlikely(blk_queue_stopped(q
)))
323 __blk_run_queue_uncond(q
);
325 EXPORT_SYMBOL(__blk_run_queue
);
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
335 void blk_run_queue_async(struct request_queue
*q
)
337 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
338 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
340 EXPORT_SYMBOL(blk_run_queue_async
);
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
350 void blk_run_queue(struct request_queue
*q
)
354 spin_lock_irqsave(q
->queue_lock
, flags
);
356 spin_unlock_irqrestore(q
->queue_lock
, flags
);
358 EXPORT_SYMBOL(blk_run_queue
);
360 void blk_put_queue(struct request_queue
*q
)
362 kobject_put(&q
->kobj
);
364 EXPORT_SYMBOL(blk_put_queue
);
367 * __blk_drain_queue - drain requests from request_queue
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
375 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
376 __releases(q
->queue_lock
)
377 __acquires(q
->queue_lock
)
381 lockdep_assert_held(q
->queue_lock
);
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
391 elv_drain_elevator(q
);
393 blkcg_drain_queue(q
);
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
402 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
405 drain
|= q
->nr_rqs_elvpriv
;
406 drain
|= q
->request_fn_active
;
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
414 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
415 drain
|= !list_empty(&q
->queue_head
);
416 for (i
= 0; i
< 2; i
++) {
417 drain
|= q
->nr_rqs
[i
];
418 drain
|= q
->in_flight
[i
];
420 drain
|= !list_empty(&fq
->flush_queue
[i
]);
427 spin_unlock_irq(q
->queue_lock
);
431 spin_lock_irq(q
->queue_lock
);
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
440 struct request_list
*rl
;
442 blk_queue_for_each_rl(rl
, q
)
443 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
444 wake_up_all(&rl
->wait
[i
]);
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
458 void blk_queue_bypass_start(struct request_queue
*q
)
460 spin_lock_irq(q
->queue_lock
);
462 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
463 spin_unlock_irq(q
->queue_lock
);
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
470 if (blk_queue_init_done(q
)) {
471 spin_lock_irq(q
->queue_lock
);
472 __blk_drain_queue(q
, false);
473 spin_unlock_irq(q
->queue_lock
);
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
485 * Leave bypass mode and restore the normal queueing behavior.
487 void blk_queue_bypass_end(struct request_queue
*q
)
489 spin_lock_irq(q
->queue_lock
);
490 if (!--q
->bypass_depth
)
491 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
492 WARN_ON_ONCE(q
->bypass_depth
< 0);
493 spin_unlock_irq(q
->queue_lock
);
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
497 void blk_set_queue_dying(struct request_queue
*q
)
499 spin_lock_irq(q
->queue_lock
);
500 queue_flag_set(QUEUE_FLAG_DYING
, q
);
501 spin_unlock_irq(q
->queue_lock
);
504 blk_mq_wake_waiters(q
);
506 struct request_list
*rl
;
508 spin_lock_irq(q
->queue_lock
);
509 blk_queue_for_each_rl(rl
, q
) {
511 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
512 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
515 spin_unlock_irq(q
->queue_lock
);
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
527 void blk_cleanup_queue(struct request_queue
*q
)
529 spinlock_t
*lock
= q
->queue_lock
;
531 /* mark @q DYING, no new request or merges will be allowed afterwards */
532 mutex_lock(&q
->sysfs_lock
);
533 blk_set_queue_dying(q
);
537 * A dying queue is permanently in bypass mode till released. Note
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
546 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
548 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
550 queue_flag_set(QUEUE_FLAG_DYING
, q
);
551 spin_unlock_irq(lock
);
552 mutex_unlock(&q
->sysfs_lock
);
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
561 __blk_drain_queue(q
, true);
562 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
563 spin_unlock_irq(lock
);
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
568 /* @q won't process any more request, flush async actions */
569 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
573 blk_mq_free_queue(q
);
574 percpu_ref_exit(&q
->q_usage_counter
);
577 if (q
->queue_lock
!= &q
->__queue_lock
)
578 q
->queue_lock
= &q
->__queue_lock
;
579 spin_unlock_irq(lock
);
581 /* @q is and will stay empty, shutdown and put */
584 EXPORT_SYMBOL(blk_cleanup_queue
);
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
589 struct request_queue
*q
= data
;
591 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
594 static void free_request_simple(void *element
, void *data
)
596 kmem_cache_free(request_cachep
, element
);
599 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
601 struct request_queue
*q
= data
;
604 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
606 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
613 static void free_request_size(void *element
, void *data
)
615 struct request_queue
*q
= data
;
618 q
->exit_rq_fn(q
, element
);
622 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
625 if (unlikely(rl
->rq_pool
))
629 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
630 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
631 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
632 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
635 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
636 alloc_request_size
, free_request_size
,
637 q
, gfp_mask
, q
->node
);
639 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
640 alloc_request_simple
, free_request_simple
,
641 q
, gfp_mask
, q
->node
);
649 void blk_exit_rl(struct request_list
*rl
)
652 mempool_destroy(rl
->rq_pool
);
655 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
657 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
659 EXPORT_SYMBOL(blk_alloc_queue
);
661 int blk_queue_enter(struct request_queue
*q
, bool nowait
)
666 if (percpu_ref_tryget_live(&q
->q_usage_counter
))
672 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
673 !atomic_read(&q
->mq_freeze_depth
) ||
675 if (blk_queue_dying(q
))
682 void blk_queue_exit(struct request_queue
*q
)
684 percpu_ref_put(&q
->q_usage_counter
);
687 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
689 struct request_queue
*q
=
690 container_of(ref
, struct request_queue
, q_usage_counter
);
692 wake_up_all(&q
->mq_freeze_wq
);
695 static void blk_rq_timed_out_timer(unsigned long data
)
697 struct request_queue
*q
= (struct request_queue
*)data
;
699 kblockd_schedule_work(&q
->timeout_work
);
702 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
704 struct request_queue
*q
;
706 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
707 gfp_mask
| __GFP_ZERO
, node_id
);
711 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
715 q
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0);
719 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
720 if (!q
->backing_dev_info
)
723 q
->backing_dev_info
->ra_pages
=
724 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
725 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
726 q
->backing_dev_info
->name
= "block";
729 setup_timer(&q
->backing_dev_info
->laptop_mode_wb_timer
,
730 laptop_mode_timer_fn
, (unsigned long) q
);
731 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
732 INIT_LIST_HEAD(&q
->queue_head
);
733 INIT_LIST_HEAD(&q
->timeout_list
);
734 INIT_LIST_HEAD(&q
->icq_list
);
735 #ifdef CONFIG_BLK_CGROUP
736 INIT_LIST_HEAD(&q
->blkg_list
);
738 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
740 kobject_init(&q
->kobj
, &blk_queue_ktype
);
742 mutex_init(&q
->sysfs_lock
);
743 spin_lock_init(&q
->__queue_lock
);
746 * By default initialize queue_lock to internal lock and driver can
747 * override it later if need be.
749 q
->queue_lock
= &q
->__queue_lock
;
752 * A queue starts its life with bypass turned on to avoid
753 * unnecessary bypass on/off overhead and nasty surprises during
754 * init. The initial bypass will be finished when the queue is
755 * registered by blk_register_queue().
758 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
760 init_waitqueue_head(&q
->mq_freeze_wq
);
763 * Init percpu_ref in atomic mode so that it's faster to shutdown.
764 * See blk_register_queue() for details.
766 if (percpu_ref_init(&q
->q_usage_counter
,
767 blk_queue_usage_counter_release
,
768 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
771 if (blkcg_init_queue(q
))
777 percpu_ref_exit(&q
->q_usage_counter
);
779 bdi_put(q
->backing_dev_info
);
781 bioset_free(q
->bio_split
);
783 ida_simple_remove(&blk_queue_ida
, q
->id
);
785 kmem_cache_free(blk_requestq_cachep
, q
);
788 EXPORT_SYMBOL(blk_alloc_queue_node
);
791 * blk_init_queue - prepare a request queue for use with a block device
792 * @rfn: The function to be called to process requests that have been
793 * placed on the queue.
794 * @lock: Request queue spin lock
797 * If a block device wishes to use the standard request handling procedures,
798 * which sorts requests and coalesces adjacent requests, then it must
799 * call blk_init_queue(). The function @rfn will be called when there
800 * are requests on the queue that need to be processed. If the device
801 * supports plugging, then @rfn may not be called immediately when requests
802 * are available on the queue, but may be called at some time later instead.
803 * Plugged queues are generally unplugged when a buffer belonging to one
804 * of the requests on the queue is needed, or due to memory pressure.
806 * @rfn is not required, or even expected, to remove all requests off the
807 * queue, but only as many as it can handle at a time. If it does leave
808 * requests on the queue, it is responsible for arranging that the requests
809 * get dealt with eventually.
811 * The queue spin lock must be held while manipulating the requests on the
812 * request queue; this lock will be taken also from interrupt context, so irq
813 * disabling is needed for it.
815 * Function returns a pointer to the initialized request queue, or %NULL if
819 * blk_init_queue() must be paired with a blk_cleanup_queue() call
820 * when the block device is deactivated (such as at module unload).
823 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
825 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
827 EXPORT_SYMBOL(blk_init_queue
);
829 struct request_queue
*
830 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
832 struct request_queue
*q
;
834 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
840 q
->queue_lock
= lock
;
841 if (blk_init_allocated_queue(q
) < 0) {
842 blk_cleanup_queue(q
);
848 EXPORT_SYMBOL(blk_init_queue_node
);
850 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
853 int blk_init_allocated_queue(struct request_queue
*q
)
855 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
859 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
860 goto out_free_flush_queue
;
862 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
863 goto out_exit_flush_rq
;
865 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
866 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
869 * This also sets hw/phys segments, boundary and size
871 blk_queue_make_request(q
, blk_queue_bio
);
873 q
->sg_reserved_size
= INT_MAX
;
875 /* Protect q->elevator from elevator_change */
876 mutex_lock(&q
->sysfs_lock
);
879 if (elevator_init(q
, NULL
)) {
880 mutex_unlock(&q
->sysfs_lock
);
881 goto out_exit_flush_rq
;
884 mutex_unlock(&q
->sysfs_lock
);
889 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
890 out_free_flush_queue
:
891 blk_free_flush_queue(q
->fq
);
895 EXPORT_SYMBOL(blk_init_allocated_queue
);
897 bool blk_get_queue(struct request_queue
*q
)
899 if (likely(!blk_queue_dying(q
))) {
906 EXPORT_SYMBOL(blk_get_queue
);
908 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
910 if (rq
->rq_flags
& RQF_ELVPRIV
) {
911 elv_put_request(rl
->q
, rq
);
913 put_io_context(rq
->elv
.icq
->ioc
);
916 mempool_free(rq
, rl
->rq_pool
);
920 * ioc_batching returns true if the ioc is a valid batching request and
921 * should be given priority access to a request.
923 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
929 * Make sure the process is able to allocate at least 1 request
930 * even if the batch times out, otherwise we could theoretically
933 return ioc
->nr_batch_requests
== q
->nr_batching
||
934 (ioc
->nr_batch_requests
> 0
935 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
939 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
940 * will cause the process to be a "batcher" on all queues in the system. This
941 * is the behaviour we want though - once it gets a wakeup it should be given
944 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
946 if (!ioc
|| ioc_batching(q
, ioc
))
949 ioc
->nr_batch_requests
= q
->nr_batching
;
950 ioc
->last_waited
= jiffies
;
953 static void __freed_request(struct request_list
*rl
, int sync
)
955 struct request_queue
*q
= rl
->q
;
957 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
958 blk_clear_congested(rl
, sync
);
960 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
961 if (waitqueue_active(&rl
->wait
[sync
]))
962 wake_up(&rl
->wait
[sync
]);
964 blk_clear_rl_full(rl
, sync
);
969 * A request has just been released. Account for it, update the full and
970 * congestion status, wake up any waiters. Called under q->queue_lock.
972 static void freed_request(struct request_list
*rl
, bool sync
,
973 req_flags_t rq_flags
)
975 struct request_queue
*q
= rl
->q
;
979 if (rq_flags
& RQF_ELVPRIV
)
982 __freed_request(rl
, sync
);
984 if (unlikely(rl
->starved
[sync
^ 1]))
985 __freed_request(rl
, sync
^ 1);
988 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
990 struct request_list
*rl
;
991 int on_thresh
, off_thresh
;
993 spin_lock_irq(q
->queue_lock
);
995 blk_queue_congestion_threshold(q
);
996 on_thresh
= queue_congestion_on_threshold(q
);
997 off_thresh
= queue_congestion_off_threshold(q
);
999 blk_queue_for_each_rl(rl
, q
) {
1000 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1001 blk_set_congested(rl
, BLK_RW_SYNC
);
1002 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1003 blk_clear_congested(rl
, BLK_RW_SYNC
);
1005 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1006 blk_set_congested(rl
, BLK_RW_ASYNC
);
1007 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1008 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1010 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1011 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1013 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1014 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1017 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1018 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1020 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1021 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1025 spin_unlock_irq(q
->queue_lock
);
1030 * __get_request - get a free request
1031 * @rl: request list to allocate from
1032 * @op: operation and flags
1033 * @bio: bio to allocate request for (can be %NULL)
1034 * @gfp_mask: allocation mask
1036 * Get a free request from @q. This function may fail under memory
1037 * pressure or if @q is dead.
1039 * Must be called with @q->queue_lock held and,
1040 * Returns ERR_PTR on failure, with @q->queue_lock held.
1041 * Returns request pointer on success, with @q->queue_lock *not held*.
1043 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1044 struct bio
*bio
, gfp_t gfp_mask
)
1046 struct request_queue
*q
= rl
->q
;
1048 struct elevator_type
*et
= q
->elevator
->type
;
1049 struct io_context
*ioc
= rq_ioc(bio
);
1050 struct io_cq
*icq
= NULL
;
1051 const bool is_sync
= op_is_sync(op
);
1053 req_flags_t rq_flags
= RQF_ALLOCED
;
1055 if (unlikely(blk_queue_dying(q
)))
1056 return ERR_PTR(-ENODEV
);
1058 may_queue
= elv_may_queue(q
, op
);
1059 if (may_queue
== ELV_MQUEUE_NO
)
1062 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1063 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1070 if (!blk_rl_full(rl
, is_sync
)) {
1071 ioc_set_batching(q
, ioc
);
1072 blk_set_rl_full(rl
, is_sync
);
1074 if (may_queue
!= ELV_MQUEUE_MUST
1075 && !ioc_batching(q
, ioc
)) {
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1081 return ERR_PTR(-ENOMEM
);
1085 blk_set_congested(rl
, is_sync
);
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1093 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1094 return ERR_PTR(-ENOMEM
);
1096 q
->nr_rqs
[is_sync
]++;
1097 rl
->count
[is_sync
]++;
1098 rl
->starved
[is_sync
] = 0;
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1107 * Flush requests do not use the elevator so skip initialization.
1108 * This allows a request to share the flush and elevator data.
1110 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1111 * it will be created after releasing queue_lock.
1113 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1114 rq_flags
|= RQF_ELVPRIV
;
1115 q
->nr_rqs_elvpriv
++;
1116 if (et
->icq_cache
&& ioc
)
1117 icq
= ioc_lookup_icq(ioc
, q
);
1120 if (blk_queue_io_stat(q
))
1121 rq_flags
|= RQF_IO_STAT
;
1122 spin_unlock_irq(q
->queue_lock
);
1124 /* allocate and init request */
1125 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1130 blk_rq_set_rl(rq
, rl
);
1131 blk_rq_set_prio(rq
, ioc
);
1133 rq
->rq_flags
= rq_flags
;
1136 if (rq_flags
& RQF_ELVPRIV
) {
1137 if (unlikely(et
->icq_cache
&& !icq
)) {
1139 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1145 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1148 /* @rq->elv.icq holds io_context until @rq is freed */
1150 get_io_context(icq
->ioc
);
1154 * ioc may be NULL here, and ioc_batching will be false. That's
1155 * OK, if the queue is under the request limit then requests need
1156 * not count toward the nr_batch_requests limit. There will always
1157 * be some limit enforced by BLK_BATCH_TIME.
1159 if (ioc_batching(q
, ioc
))
1160 ioc
->nr_batch_requests
--;
1162 trace_block_getrq(q
, bio
, op
);
1167 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1168 * and may fail indefinitely under memory pressure and thus
1169 * shouldn't stall IO. Treat this request as !elvpriv. This will
1170 * disturb iosched and blkcg but weird is bettern than dead.
1172 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1173 __func__
, dev_name(q
->backing_dev_info
->dev
));
1175 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1178 spin_lock_irq(q
->queue_lock
);
1179 q
->nr_rqs_elvpriv
--;
1180 spin_unlock_irq(q
->queue_lock
);
1185 * Allocation failed presumably due to memory. Undo anything we
1186 * might have messed up.
1188 * Allocating task should really be put onto the front of the wait
1189 * queue, but this is pretty rare.
1191 spin_lock_irq(q
->queue_lock
);
1192 freed_request(rl
, is_sync
, rq_flags
);
1195 * in the very unlikely event that allocation failed and no
1196 * requests for this direction was pending, mark us starved so that
1197 * freeing of a request in the other direction will notice
1198 * us. another possible fix would be to split the rq mempool into
1202 if (unlikely(rl
->count
[is_sync
] == 0))
1203 rl
->starved
[is_sync
] = 1;
1204 return ERR_PTR(-ENOMEM
);
1208 * get_request - get a free request
1209 * @q: request_queue to allocate request from
1210 * @op: operation and flags
1211 * @bio: bio to allocate request for (can be %NULL)
1212 * @gfp_mask: allocation mask
1214 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1215 * this function keeps retrying under memory pressure and fails iff @q is dead.
1217 * Must be called with @q->queue_lock held and,
1218 * Returns ERR_PTR on failure, with @q->queue_lock held.
1219 * Returns request pointer on success, with @q->queue_lock *not held*.
1221 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1222 struct bio
*bio
, gfp_t gfp_mask
)
1224 const bool is_sync
= op_is_sync(op
);
1226 struct request_list
*rl
;
1229 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1231 rq
= __get_request(rl
, op
, bio
, gfp_mask
);
1235 if (!gfpflags_allow_blocking(gfp_mask
) || unlikely(blk_queue_dying(q
))) {
1240 /* wait on @rl and retry */
1241 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1242 TASK_UNINTERRUPTIBLE
);
1244 trace_block_sleeprq(q
, bio
, op
);
1246 spin_unlock_irq(q
->queue_lock
);
1250 * After sleeping, we become a "batching" process and will be able
1251 * to allocate at least one request, and up to a big batch of them
1252 * for a small period time. See ioc_batching, ioc_set_batching
1254 ioc_set_batching(q
, current
->io_context
);
1256 spin_lock_irq(q
->queue_lock
);
1257 finish_wait(&rl
->wait
[is_sync
], &wait
);
1262 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1267 /* create ioc upfront */
1268 create_io_context(gfp_mask
, q
->node
);
1270 spin_lock_irq(q
->queue_lock
);
1271 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1273 spin_unlock_irq(q
->queue_lock
);
1277 /* q->queue_lock is unlocked at this point */
1279 rq
->__sector
= (sector_t
) -1;
1280 rq
->bio
= rq
->biotail
= NULL
;
1284 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1287 return blk_mq_alloc_request(q
, rw
,
1288 (gfp_mask
& __GFP_DIRECT_RECLAIM
) ?
1289 0 : BLK_MQ_REQ_NOWAIT
);
1291 return blk_old_get_request(q
, rw
, gfp_mask
);
1293 EXPORT_SYMBOL(blk_get_request
);
1296 * blk_requeue_request - put a request back on queue
1297 * @q: request queue where request should be inserted
1298 * @rq: request to be inserted
1301 * Drivers often keep queueing requests until the hardware cannot accept
1302 * more, when that condition happens we need to put the request back
1303 * on the queue. Must be called with queue lock held.
1305 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1307 blk_delete_timer(rq
);
1308 blk_clear_rq_complete(rq
);
1309 trace_block_rq_requeue(q
, rq
);
1310 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
1312 if (rq
->rq_flags
& RQF_QUEUED
)
1313 blk_queue_end_tag(q
, rq
);
1315 BUG_ON(blk_queued_rq(rq
));
1317 elv_requeue_request(q
, rq
);
1319 EXPORT_SYMBOL(blk_requeue_request
);
1321 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1324 blk_account_io_start(rq
, true);
1325 __elv_add_request(q
, rq
, where
);
1328 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1333 if (now
== part
->stamp
)
1336 inflight
= part_in_flight(part
);
1338 __part_stat_add(cpu
, part
, time_in_queue
,
1339 inflight
* (now
- part
->stamp
));
1340 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1346 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1347 * @cpu: cpu number for stats access
1348 * @part: target partition
1350 * The average IO queue length and utilisation statistics are maintained
1351 * by observing the current state of the queue length and the amount of
1352 * time it has been in this state for.
1354 * Normally, that accounting is done on IO completion, but that can result
1355 * in more than a second's worth of IO being accounted for within any one
1356 * second, leading to >100% utilisation. To deal with that, we call this
1357 * function to do a round-off before returning the results when reading
1358 * /proc/diskstats. This accounts immediately for all queue usage up to
1359 * the current jiffies and restarts the counters again.
1361 void part_round_stats(int cpu
, struct hd_struct
*part
)
1363 unsigned long now
= jiffies
;
1366 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1367 part_round_stats_single(cpu
, part
, now
);
1369 EXPORT_SYMBOL_GPL(part_round_stats
);
1372 static void blk_pm_put_request(struct request
*rq
)
1374 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1375 pm_runtime_mark_last_busy(rq
->q
->dev
);
1378 static inline void blk_pm_put_request(struct request
*rq
) {}
1382 * queue lock must be held
1384 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1386 req_flags_t rq_flags
= req
->rq_flags
;
1392 blk_mq_free_request(req
);
1396 blk_pm_put_request(req
);
1398 elv_completed_request(q
, req
);
1400 /* this is a bio leak */
1401 WARN_ON(req
->bio
!= NULL
);
1403 wbt_done(q
->rq_wb
, &req
->issue_stat
);
1406 * Request may not have originated from ll_rw_blk. if not,
1407 * it didn't come out of our reserved rq pools
1409 if (rq_flags
& RQF_ALLOCED
) {
1410 struct request_list
*rl
= blk_rq_rl(req
);
1411 bool sync
= op_is_sync(req
->cmd_flags
);
1413 BUG_ON(!list_empty(&req
->queuelist
));
1414 BUG_ON(ELV_ON_HASH(req
));
1416 blk_free_request(rl
, req
);
1417 freed_request(rl
, sync
, rq_flags
);
1421 EXPORT_SYMBOL_GPL(__blk_put_request
);
1423 void blk_put_request(struct request
*req
)
1425 struct request_queue
*q
= req
->q
;
1428 blk_mq_free_request(req
);
1430 unsigned long flags
;
1432 spin_lock_irqsave(q
->queue_lock
, flags
);
1433 __blk_put_request(q
, req
);
1434 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1437 EXPORT_SYMBOL(blk_put_request
);
1439 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1442 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1444 if (!ll_back_merge_fn(q
, req
, bio
))
1447 trace_block_bio_backmerge(q
, req
, bio
);
1449 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1450 blk_rq_set_mixed_merge(req
);
1452 req
->biotail
->bi_next
= bio
;
1454 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1455 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1457 blk_account_io_start(req
, false);
1461 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1464 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1466 if (!ll_front_merge_fn(q
, req
, bio
))
1469 trace_block_bio_frontmerge(q
, req
, bio
);
1471 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1472 blk_rq_set_mixed_merge(req
);
1474 bio
->bi_next
= req
->bio
;
1477 req
->__sector
= bio
->bi_iter
.bi_sector
;
1478 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1479 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1481 blk_account_io_start(req
, false);
1485 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1488 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1490 if (segments
>= queue_max_discard_segments(q
))
1492 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1493 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1496 req
->biotail
->bi_next
= bio
;
1498 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1499 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1500 req
->nr_phys_segments
= segments
+ 1;
1502 blk_account_io_start(req
, false);
1505 req_set_nomerge(q
, req
);
1510 * blk_attempt_plug_merge - try to merge with %current's plugged list
1511 * @q: request_queue new bio is being queued at
1512 * @bio: new bio being queued
1513 * @request_count: out parameter for number of traversed plugged requests
1514 * @same_queue_rq: pointer to &struct request that gets filled in when
1515 * another request associated with @q is found on the plug list
1516 * (optional, may be %NULL)
1518 * Determine whether @bio being queued on @q can be merged with a request
1519 * on %current's plugged list. Returns %true if merge was successful,
1522 * Plugging coalesces IOs from the same issuer for the same purpose without
1523 * going through @q->queue_lock. As such it's more of an issuing mechanism
1524 * than scheduling, and the request, while may have elvpriv data, is not
1525 * added on the elevator at this point. In addition, we don't have
1526 * reliable access to the elevator outside queue lock. Only check basic
1527 * merging parameters without querying the elevator.
1529 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1531 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1532 unsigned int *request_count
,
1533 struct request
**same_queue_rq
)
1535 struct blk_plug
*plug
;
1537 struct list_head
*plug_list
;
1539 plug
= current
->plug
;
1545 plug_list
= &plug
->mq_list
;
1547 plug_list
= &plug
->list
;
1549 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1550 bool merged
= false;
1555 * Only blk-mq multiple hardware queues case checks the
1556 * rq in the same queue, there should be only one such
1560 *same_queue_rq
= rq
;
1563 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1566 switch (blk_try_merge(rq
, bio
)) {
1567 case ELEVATOR_BACK_MERGE
:
1568 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1570 case ELEVATOR_FRONT_MERGE
:
1571 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1573 case ELEVATOR_DISCARD_MERGE
:
1574 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1587 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1589 struct blk_plug
*plug
;
1591 struct list_head
*plug_list
;
1592 unsigned int ret
= 0;
1594 plug
= current
->plug
;
1599 plug_list
= &plug
->mq_list
;
1601 plug_list
= &plug
->list
;
1603 list_for_each_entry(rq
, plug_list
, queuelist
) {
1611 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1613 if (bio
->bi_opf
& REQ_RAHEAD
)
1614 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1617 req
->__sector
= bio
->bi_iter
.bi_sector
;
1618 if (ioprio_valid(bio_prio(bio
)))
1619 req
->ioprio
= bio_prio(bio
);
1620 blk_rq_bio_prep(req
->q
, req
, bio
);
1623 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1625 struct blk_plug
*plug
;
1626 int where
= ELEVATOR_INSERT_SORT
;
1627 struct request
*req
, *free
;
1628 unsigned int request_count
= 0;
1629 unsigned int wb_acct
;
1632 * low level driver can indicate that it wants pages above a
1633 * certain limit bounced to low memory (ie for highmem, or even
1634 * ISA dma in theory)
1636 blk_queue_bounce(q
, &bio
);
1638 blk_queue_split(q
, &bio
, q
->bio_split
);
1640 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1641 bio
->bi_error
= -EIO
;
1643 return BLK_QC_T_NONE
;
1646 if (op_is_flush(bio
->bi_opf
)) {
1647 spin_lock_irq(q
->queue_lock
);
1648 where
= ELEVATOR_INSERT_FLUSH
;
1653 * Check if we can merge with the plugged list before grabbing
1656 if (!blk_queue_nomerges(q
)) {
1657 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1658 return BLK_QC_T_NONE
;
1660 request_count
= blk_plug_queued_count(q
);
1662 spin_lock_irq(q
->queue_lock
);
1664 switch (elv_merge(q
, &req
, bio
)) {
1665 case ELEVATOR_BACK_MERGE
:
1666 if (!bio_attempt_back_merge(q
, req
, bio
))
1668 elv_bio_merged(q
, req
, bio
);
1669 free
= attempt_back_merge(q
, req
);
1671 __blk_put_request(q
, free
);
1673 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
1675 case ELEVATOR_FRONT_MERGE
:
1676 if (!bio_attempt_front_merge(q
, req
, bio
))
1678 elv_bio_merged(q
, req
, bio
);
1679 free
= attempt_front_merge(q
, req
);
1681 __blk_put_request(q
, free
);
1683 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
1690 wb_acct
= wbt_wait(q
->rq_wb
, bio
, q
->queue_lock
);
1693 * Grab a free request. This is might sleep but can not fail.
1694 * Returns with the queue unlocked.
1696 req
= get_request(q
, bio
->bi_opf
, bio
, GFP_NOIO
);
1698 __wbt_done(q
->rq_wb
, wb_acct
);
1699 bio
->bi_error
= PTR_ERR(req
);
1704 wbt_track(&req
->issue_stat
, wb_acct
);
1707 * After dropping the lock and possibly sleeping here, our request
1708 * may now be mergeable after it had proven unmergeable (above).
1709 * We don't worry about that case for efficiency. It won't happen
1710 * often, and the elevators are able to handle it.
1712 init_request_from_bio(req
, bio
);
1714 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1715 req
->cpu
= raw_smp_processor_id();
1717 plug
= current
->plug
;
1720 * If this is the first request added after a plug, fire
1723 * @request_count may become stale because of schedule
1724 * out, so check plug list again.
1726 if (!request_count
|| list_empty(&plug
->list
))
1727 trace_block_plug(q
);
1729 struct request
*last
= list_entry_rq(plug
->list
.prev
);
1730 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
1731 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
1732 blk_flush_plug_list(plug
, false);
1733 trace_block_plug(q
);
1736 list_add_tail(&req
->queuelist
, &plug
->list
);
1737 blk_account_io_start(req
, true);
1739 spin_lock_irq(q
->queue_lock
);
1740 add_acct_request(q
, req
, where
);
1743 spin_unlock_irq(q
->queue_lock
);
1746 return BLK_QC_T_NONE
;
1750 * If bio->bi_dev is a partition, remap the location
1752 static inline void blk_partition_remap(struct bio
*bio
)
1754 struct block_device
*bdev
= bio
->bi_bdev
;
1757 * Zone reset does not include bi_size so bio_sectors() is always 0.
1758 * Include a test for the reset op code and perform the remap if needed.
1760 if (bdev
!= bdev
->bd_contains
&&
1761 (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
)) {
1762 struct hd_struct
*p
= bdev
->bd_part
;
1764 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1765 bio
->bi_bdev
= bdev
->bd_contains
;
1767 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1769 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1773 static void handle_bad_sector(struct bio
*bio
)
1775 char b
[BDEVNAME_SIZE
];
1777 printk(KERN_INFO
"attempt to access beyond end of device\n");
1778 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
1779 bdevname(bio
->bi_bdev
, b
),
1781 (unsigned long long)bio_end_sector(bio
),
1782 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1785 #ifdef CONFIG_FAIL_MAKE_REQUEST
1787 static DECLARE_FAULT_ATTR(fail_make_request
);
1789 static int __init
setup_fail_make_request(char *str
)
1791 return setup_fault_attr(&fail_make_request
, str
);
1793 __setup("fail_make_request=", setup_fail_make_request
);
1795 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1797 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1800 static int __init
fail_make_request_debugfs(void)
1802 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1803 NULL
, &fail_make_request
);
1805 return PTR_ERR_OR_ZERO(dir
);
1808 late_initcall(fail_make_request_debugfs
);
1810 #else /* CONFIG_FAIL_MAKE_REQUEST */
1812 static inline bool should_fail_request(struct hd_struct
*part
,
1818 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1821 * Check whether this bio extends beyond the end of the device.
1823 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1830 /* Test device or partition size, when known. */
1831 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1833 sector_t sector
= bio
->bi_iter
.bi_sector
;
1835 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1837 * This may well happen - the kernel calls bread()
1838 * without checking the size of the device, e.g., when
1839 * mounting a device.
1841 handle_bad_sector(bio
);
1849 static noinline_for_stack
bool
1850 generic_make_request_checks(struct bio
*bio
)
1852 struct request_queue
*q
;
1853 int nr_sectors
= bio_sectors(bio
);
1855 char b
[BDEVNAME_SIZE
];
1856 struct hd_struct
*part
;
1860 if (bio_check_eod(bio
, nr_sectors
))
1863 q
= bdev_get_queue(bio
->bi_bdev
);
1866 "generic_make_request: Trying to access "
1867 "nonexistent block-device %s (%Lu)\n",
1868 bdevname(bio
->bi_bdev
, b
),
1869 (long long) bio
->bi_iter
.bi_sector
);
1873 part
= bio
->bi_bdev
->bd_part
;
1874 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1875 should_fail_request(&part_to_disk(part
)->part0
,
1876 bio
->bi_iter
.bi_size
))
1880 * If this device has partitions, remap block n
1881 * of partition p to block n+start(p) of the disk.
1883 blk_partition_remap(bio
);
1885 if (bio_check_eod(bio
, nr_sectors
))
1889 * Filter flush bio's early so that make_request based
1890 * drivers without flush support don't have to worry
1893 if (op_is_flush(bio
->bi_opf
) &&
1894 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
1895 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
1902 switch (bio_op(bio
)) {
1903 case REQ_OP_DISCARD
:
1904 if (!blk_queue_discard(q
))
1907 case REQ_OP_SECURE_ERASE
:
1908 if (!blk_queue_secure_erase(q
))
1911 case REQ_OP_WRITE_SAME
:
1912 if (!bdev_write_same(bio
->bi_bdev
))
1915 case REQ_OP_ZONE_REPORT
:
1916 case REQ_OP_ZONE_RESET
:
1917 if (!bdev_is_zoned(bio
->bi_bdev
))
1920 case REQ_OP_WRITE_ZEROES
:
1921 if (!bdev_write_zeroes_sectors(bio
->bi_bdev
))
1929 * Various block parts want %current->io_context and lazy ioc
1930 * allocation ends up trading a lot of pain for a small amount of
1931 * memory. Just allocate it upfront. This may fail and block
1932 * layer knows how to live with it.
1934 create_io_context(GFP_ATOMIC
, q
->node
);
1936 if (!blkcg_bio_issue_check(q
, bio
))
1939 trace_block_bio_queue(q
, bio
);
1945 bio
->bi_error
= err
;
1951 * generic_make_request - hand a buffer to its device driver for I/O
1952 * @bio: The bio describing the location in memory and on the device.
1954 * generic_make_request() is used to make I/O requests of block
1955 * devices. It is passed a &struct bio, which describes the I/O that needs
1958 * generic_make_request() does not return any status. The
1959 * success/failure status of the request, along with notification of
1960 * completion, is delivered asynchronously through the bio->bi_end_io
1961 * function described (one day) else where.
1963 * The caller of generic_make_request must make sure that bi_io_vec
1964 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1965 * set to describe the device address, and the
1966 * bi_end_io and optionally bi_private are set to describe how
1967 * completion notification should be signaled.
1969 * generic_make_request and the drivers it calls may use bi_next if this
1970 * bio happens to be merged with someone else, and may resubmit the bio to
1971 * a lower device by calling into generic_make_request recursively, which
1972 * means the bio should NOT be touched after the call to ->make_request_fn.
1974 blk_qc_t
generic_make_request(struct bio
*bio
)
1977 * bio_list_on_stack[0] contains bios submitted by the current
1979 * bio_list_on_stack[1] contains bios that were submitted before
1980 * the current make_request_fn, but that haven't been processed
1983 struct bio_list bio_list_on_stack
[2];
1984 blk_qc_t ret
= BLK_QC_T_NONE
;
1986 if (!generic_make_request_checks(bio
))
1990 * We only want one ->make_request_fn to be active at a time, else
1991 * stack usage with stacked devices could be a problem. So use
1992 * current->bio_list to keep a list of requests submited by a
1993 * make_request_fn function. current->bio_list is also used as a
1994 * flag to say if generic_make_request is currently active in this
1995 * task or not. If it is NULL, then no make_request is active. If
1996 * it is non-NULL, then a make_request is active, and new requests
1997 * should be added at the tail
1999 if (current
->bio_list
) {
2000 bio_list_add(¤t
->bio_list
[0], bio
);
2004 /* following loop may be a bit non-obvious, and so deserves some
2006 * Before entering the loop, bio->bi_next is NULL (as all callers
2007 * ensure that) so we have a list with a single bio.
2008 * We pretend that we have just taken it off a longer list, so
2009 * we assign bio_list to a pointer to the bio_list_on_stack,
2010 * thus initialising the bio_list of new bios to be
2011 * added. ->make_request() may indeed add some more bios
2012 * through a recursive call to generic_make_request. If it
2013 * did, we find a non-NULL value in bio_list and re-enter the loop
2014 * from the top. In this case we really did just take the bio
2015 * of the top of the list (no pretending) and so remove it from
2016 * bio_list, and call into ->make_request() again.
2018 BUG_ON(bio
->bi_next
);
2019 bio_list_init(&bio_list_on_stack
[0]);
2020 current
->bio_list
= bio_list_on_stack
;
2022 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
2024 if (likely(blk_queue_enter(q
, false) == 0)) {
2025 struct bio_list lower
, same
;
2027 /* Create a fresh bio_list for all subordinate requests */
2028 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2029 bio_list_init(&bio_list_on_stack
[0]);
2030 ret
= q
->make_request_fn(q
, bio
);
2034 /* sort new bios into those for a lower level
2035 * and those for the same level
2037 bio_list_init(&lower
);
2038 bio_list_init(&same
);
2039 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2040 if (q
== bdev_get_queue(bio
->bi_bdev
))
2041 bio_list_add(&same
, bio
);
2043 bio_list_add(&lower
, bio
);
2044 /* now assemble so we handle the lowest level first */
2045 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2046 bio_list_merge(&bio_list_on_stack
[0], &same
);
2047 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2051 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2053 current
->bio_list
= NULL
; /* deactivate */
2058 EXPORT_SYMBOL(generic_make_request
);
2061 * submit_bio - submit a bio to the block device layer for I/O
2062 * @bio: The &struct bio which describes the I/O
2064 * submit_bio() is very similar in purpose to generic_make_request(), and
2065 * uses that function to do most of the work. Both are fairly rough
2066 * interfaces; @bio must be presetup and ready for I/O.
2069 blk_qc_t
submit_bio(struct bio
*bio
)
2072 * If it's a regular read/write or a barrier with data attached,
2073 * go through the normal accounting stuff before submission.
2075 if (bio_has_data(bio
)) {
2078 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2079 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
2081 count
= bio_sectors(bio
);
2083 if (op_is_write(bio_op(bio
))) {
2084 count_vm_events(PGPGOUT
, count
);
2086 task_io_account_read(bio
->bi_iter
.bi_size
);
2087 count_vm_events(PGPGIN
, count
);
2090 if (unlikely(block_dump
)) {
2091 char b
[BDEVNAME_SIZE
];
2092 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2093 current
->comm
, task_pid_nr(current
),
2094 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2095 (unsigned long long)bio
->bi_iter
.bi_sector
,
2096 bdevname(bio
->bi_bdev
, b
),
2101 return generic_make_request(bio
);
2103 EXPORT_SYMBOL(submit_bio
);
2106 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2107 * for new the queue limits
2109 * @rq: the request being checked
2112 * @rq may have been made based on weaker limitations of upper-level queues
2113 * in request stacking drivers, and it may violate the limitation of @q.
2114 * Since the block layer and the underlying device driver trust @rq
2115 * after it is inserted to @q, it should be checked against @q before
2116 * the insertion using this generic function.
2118 * Request stacking drivers like request-based dm may change the queue
2119 * limits when retrying requests on other queues. Those requests need
2120 * to be checked against the new queue limits again during dispatch.
2122 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2125 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2126 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2131 * queue's settings related to segment counting like q->bounce_pfn
2132 * may differ from that of other stacking queues.
2133 * Recalculate it to check the request correctly on this queue's
2136 blk_recalc_rq_segments(rq
);
2137 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2138 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2146 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2147 * @q: the queue to submit the request
2148 * @rq: the request being queued
2150 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2152 unsigned long flags
;
2153 int where
= ELEVATOR_INSERT_BACK
;
2155 if (blk_cloned_rq_check_limits(q
, rq
))
2159 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2163 if (blk_queue_io_stat(q
))
2164 blk_account_io_start(rq
, true);
2165 blk_mq_sched_insert_request(rq
, false, true, false, false);
2169 spin_lock_irqsave(q
->queue_lock
, flags
);
2170 if (unlikely(blk_queue_dying(q
))) {
2171 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2176 * Submitting request must be dequeued before calling this function
2177 * because it will be linked to another request_queue
2179 BUG_ON(blk_queued_rq(rq
));
2181 if (op_is_flush(rq
->cmd_flags
))
2182 where
= ELEVATOR_INSERT_FLUSH
;
2184 add_acct_request(q
, rq
, where
);
2185 if (where
== ELEVATOR_INSERT_FLUSH
)
2187 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2191 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2194 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2195 * @rq: request to examine
2198 * A request could be merge of IOs which require different failure
2199 * handling. This function determines the number of bytes which
2200 * can be failed from the beginning of the request without
2201 * crossing into area which need to be retried further.
2204 * The number of bytes to fail.
2207 * queue_lock must be held.
2209 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2211 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2212 unsigned int bytes
= 0;
2215 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2216 return blk_rq_bytes(rq
);
2219 * Currently the only 'mixing' which can happen is between
2220 * different fastfail types. We can safely fail portions
2221 * which have all the failfast bits that the first one has -
2222 * the ones which are at least as eager to fail as the first
2225 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2226 if ((bio
->bi_opf
& ff
) != ff
)
2228 bytes
+= bio
->bi_iter
.bi_size
;
2231 /* this could lead to infinite loop */
2232 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2235 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2237 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2239 if (blk_do_io_stat(req
)) {
2240 const int rw
= rq_data_dir(req
);
2241 struct hd_struct
*part
;
2244 cpu
= part_stat_lock();
2246 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2251 void blk_account_io_done(struct request
*req
)
2254 * Account IO completion. flush_rq isn't accounted as a
2255 * normal IO on queueing nor completion. Accounting the
2256 * containing request is enough.
2258 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2259 unsigned long duration
= jiffies
- req
->start_time
;
2260 const int rw
= rq_data_dir(req
);
2261 struct hd_struct
*part
;
2264 cpu
= part_stat_lock();
2267 part_stat_inc(cpu
, part
, ios
[rw
]);
2268 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2269 part_round_stats(cpu
, part
);
2270 part_dec_in_flight(part
, rw
);
2272 hd_struct_put(part
);
2279 * Don't process normal requests when queue is suspended
2280 * or in the process of suspending/resuming
2282 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2285 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2286 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->rq_flags
& RQF_PM
))))
2292 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2299 void blk_account_io_start(struct request
*rq
, bool new_io
)
2301 struct hd_struct
*part
;
2302 int rw
= rq_data_dir(rq
);
2305 if (!blk_do_io_stat(rq
))
2308 cpu
= part_stat_lock();
2312 part_stat_inc(cpu
, part
, merges
[rw
]);
2314 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2315 if (!hd_struct_try_get(part
)) {
2317 * The partition is already being removed,
2318 * the request will be accounted on the disk only
2320 * We take a reference on disk->part0 although that
2321 * partition will never be deleted, so we can treat
2322 * it as any other partition.
2324 part
= &rq
->rq_disk
->part0
;
2325 hd_struct_get(part
);
2327 part_round_stats(cpu
, part
);
2328 part_inc_in_flight(part
, rw
);
2336 * blk_peek_request - peek at the top of a request queue
2337 * @q: request queue to peek at
2340 * Return the request at the top of @q. The returned request
2341 * should be started using blk_start_request() before LLD starts
2345 * Pointer to the request at the top of @q if available. Null
2349 * queue_lock must be held.
2351 struct request
*blk_peek_request(struct request_queue
*q
)
2356 while ((rq
= __elv_next_request(q
)) != NULL
) {
2358 rq
= blk_pm_peek_request(q
, rq
);
2362 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2364 * This is the first time the device driver
2365 * sees this request (possibly after
2366 * requeueing). Notify IO scheduler.
2368 if (rq
->rq_flags
& RQF_SORTED
)
2369 elv_activate_rq(q
, rq
);
2372 * just mark as started even if we don't start
2373 * it, a request that has been delayed should
2374 * not be passed by new incoming requests
2376 rq
->rq_flags
|= RQF_STARTED
;
2377 trace_block_rq_issue(q
, rq
);
2380 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2381 q
->end_sector
= rq_end_sector(rq
);
2382 q
->boundary_rq
= NULL
;
2385 if (rq
->rq_flags
& RQF_DONTPREP
)
2388 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2390 * make sure space for the drain appears we
2391 * know we can do this because max_hw_segments
2392 * has been adjusted to be one fewer than the
2395 rq
->nr_phys_segments
++;
2401 ret
= q
->prep_rq_fn(q
, rq
);
2402 if (ret
== BLKPREP_OK
) {
2404 } else if (ret
== BLKPREP_DEFER
) {
2406 * the request may have been (partially) prepped.
2407 * we need to keep this request in the front to
2408 * avoid resource deadlock. RQF_STARTED will
2409 * prevent other fs requests from passing this one.
2411 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2412 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2414 * remove the space for the drain we added
2415 * so that we don't add it again
2417 --rq
->nr_phys_segments
;
2422 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2423 int err
= (ret
== BLKPREP_INVALID
) ? -EREMOTEIO
: -EIO
;
2425 rq
->rq_flags
|= RQF_QUIET
;
2427 * Mark this request as started so we don't trigger
2428 * any debug logic in the end I/O path.
2430 blk_start_request(rq
);
2431 __blk_end_request_all(rq
, err
);
2433 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2440 EXPORT_SYMBOL(blk_peek_request
);
2442 void blk_dequeue_request(struct request
*rq
)
2444 struct request_queue
*q
= rq
->q
;
2446 BUG_ON(list_empty(&rq
->queuelist
));
2447 BUG_ON(ELV_ON_HASH(rq
));
2449 list_del_init(&rq
->queuelist
);
2452 * the time frame between a request being removed from the lists
2453 * and to it is freed is accounted as io that is in progress at
2456 if (blk_account_rq(rq
)) {
2457 q
->in_flight
[rq_is_sync(rq
)]++;
2458 set_io_start_time_ns(rq
);
2463 * blk_start_request - start request processing on the driver
2464 * @req: request to dequeue
2467 * Dequeue @req and start timeout timer on it. This hands off the
2468 * request to the driver.
2470 * Block internal functions which don't want to start timer should
2471 * call blk_dequeue_request().
2474 * queue_lock must be held.
2476 void blk_start_request(struct request
*req
)
2478 blk_dequeue_request(req
);
2480 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2481 blk_stat_set_issue_time(&req
->issue_stat
);
2482 req
->rq_flags
|= RQF_STATS
;
2483 wbt_issue(req
->q
->rq_wb
, &req
->issue_stat
);
2486 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2489 EXPORT_SYMBOL(blk_start_request
);
2492 * blk_fetch_request - fetch a request from a request queue
2493 * @q: request queue to fetch a request from
2496 * Return the request at the top of @q. The request is started on
2497 * return and LLD can start processing it immediately.
2500 * Pointer to the request at the top of @q if available. Null
2504 * queue_lock must be held.
2506 struct request
*blk_fetch_request(struct request_queue
*q
)
2510 rq
= blk_peek_request(q
);
2512 blk_start_request(rq
);
2515 EXPORT_SYMBOL(blk_fetch_request
);
2518 * blk_update_request - Special helper function for request stacking drivers
2519 * @req: the request being processed
2520 * @error: %0 for success, < %0 for error
2521 * @nr_bytes: number of bytes to complete @req
2524 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2525 * the request structure even if @req doesn't have leftover.
2526 * If @req has leftover, sets it up for the next range of segments.
2528 * This special helper function is only for request stacking drivers
2529 * (e.g. request-based dm) so that they can handle partial completion.
2530 * Actual device drivers should use blk_end_request instead.
2532 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2533 * %false return from this function.
2536 * %false - this request doesn't have any more data
2537 * %true - this request has more data
2539 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2543 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2549 * For fs requests, rq is just carrier of independent bio's
2550 * and each partial completion should be handled separately.
2551 * Reset per-request error on each partial completion.
2553 * TODO: tj: This is too subtle. It would be better to let
2554 * low level drivers do what they see fit.
2556 if (!blk_rq_is_passthrough(req
))
2559 if (error
&& !blk_rq_is_passthrough(req
) &&
2560 !(req
->rq_flags
& RQF_QUIET
)) {
2565 error_type
= "recoverable transport";
2568 error_type
= "critical target";
2571 error_type
= "critical nexus";
2574 error_type
= "timeout";
2577 error_type
= "critical space allocation";
2580 error_type
= "critical medium";
2587 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
2588 __func__
, error_type
, req
->rq_disk
?
2589 req
->rq_disk
->disk_name
: "?",
2590 (unsigned long long)blk_rq_pos(req
));
2594 blk_account_io_completion(req
, nr_bytes
);
2598 struct bio
*bio
= req
->bio
;
2599 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2601 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2602 req
->bio
= bio
->bi_next
;
2604 req_bio_endio(req
, bio
, bio_bytes
, error
);
2606 total_bytes
+= bio_bytes
;
2607 nr_bytes
-= bio_bytes
;
2618 * Reset counters so that the request stacking driver
2619 * can find how many bytes remain in the request
2622 req
->__data_len
= 0;
2626 WARN_ON_ONCE(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
);
2628 req
->__data_len
-= total_bytes
;
2630 /* update sector only for requests with clear definition of sector */
2631 if (!blk_rq_is_passthrough(req
))
2632 req
->__sector
+= total_bytes
>> 9;
2634 /* mixed attributes always follow the first bio */
2635 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
2636 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2637 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
2641 * If total number of sectors is less than the first segment
2642 * size, something has gone terribly wrong.
2644 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2645 blk_dump_rq_flags(req
, "request botched");
2646 req
->__data_len
= blk_rq_cur_bytes(req
);
2649 /* recalculate the number of segments */
2650 blk_recalc_rq_segments(req
);
2654 EXPORT_SYMBOL_GPL(blk_update_request
);
2656 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2657 unsigned int nr_bytes
,
2658 unsigned int bidi_bytes
)
2660 if (blk_update_request(rq
, error
, nr_bytes
))
2663 /* Bidi request must be completed as a whole */
2664 if (unlikely(blk_bidi_rq(rq
)) &&
2665 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2668 if (blk_queue_add_random(rq
->q
))
2669 add_disk_randomness(rq
->rq_disk
);
2675 * blk_unprep_request - unprepare a request
2678 * This function makes a request ready for complete resubmission (or
2679 * completion). It happens only after all error handling is complete,
2680 * so represents the appropriate moment to deallocate any resources
2681 * that were allocated to the request in the prep_rq_fn. The queue
2682 * lock is held when calling this.
2684 void blk_unprep_request(struct request
*req
)
2686 struct request_queue
*q
= req
->q
;
2688 req
->rq_flags
&= ~RQF_DONTPREP
;
2689 if (q
->unprep_rq_fn
)
2690 q
->unprep_rq_fn(q
, req
);
2692 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2695 * queue lock must be held
2697 void blk_finish_request(struct request
*req
, int error
)
2699 struct request_queue
*q
= req
->q
;
2701 if (req
->rq_flags
& RQF_STATS
)
2702 blk_stat_add(&q
->rq_stats
[rq_data_dir(req
)], req
);
2704 if (req
->rq_flags
& RQF_QUEUED
)
2705 blk_queue_end_tag(q
, req
);
2707 BUG_ON(blk_queued_rq(req
));
2709 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
2710 laptop_io_completion(req
->q
->backing_dev_info
);
2712 blk_delete_timer(req
);
2714 if (req
->rq_flags
& RQF_DONTPREP
)
2715 blk_unprep_request(req
);
2717 blk_account_io_done(req
);
2720 wbt_done(req
->q
->rq_wb
, &req
->issue_stat
);
2721 req
->end_io(req
, error
);
2723 if (blk_bidi_rq(req
))
2724 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2726 __blk_put_request(q
, req
);
2729 EXPORT_SYMBOL(blk_finish_request
);
2732 * blk_end_bidi_request - Complete a bidi request
2733 * @rq: the request to complete
2734 * @error: %0 for success, < %0 for error
2735 * @nr_bytes: number of bytes to complete @rq
2736 * @bidi_bytes: number of bytes to complete @rq->next_rq
2739 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2740 * Drivers that supports bidi can safely call this member for any
2741 * type of request, bidi or uni. In the later case @bidi_bytes is
2745 * %false - we are done with this request
2746 * %true - still buffers pending for this request
2748 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2749 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2751 struct request_queue
*q
= rq
->q
;
2752 unsigned long flags
;
2754 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2757 spin_lock_irqsave(q
->queue_lock
, flags
);
2758 blk_finish_request(rq
, error
);
2759 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2765 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2766 * @rq: the request to complete
2767 * @error: %0 for success, < %0 for error
2768 * @nr_bytes: number of bytes to complete @rq
2769 * @bidi_bytes: number of bytes to complete @rq->next_rq
2772 * Identical to blk_end_bidi_request() except that queue lock is
2773 * assumed to be locked on entry and remains so on return.
2776 * %false - we are done with this request
2777 * %true - still buffers pending for this request
2779 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2780 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2782 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2785 blk_finish_request(rq
, error
);
2791 * blk_end_request - Helper function for drivers to complete the request.
2792 * @rq: the request being processed
2793 * @error: %0 for success, < %0 for error
2794 * @nr_bytes: number of bytes to complete
2797 * Ends I/O on a number of bytes attached to @rq.
2798 * If @rq has leftover, sets it up for the next range of segments.
2801 * %false - we are done with this request
2802 * %true - still buffers pending for this request
2804 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2806 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2808 EXPORT_SYMBOL(blk_end_request
);
2811 * blk_end_request_all - Helper function for drives to finish the request.
2812 * @rq: the request to finish
2813 * @error: %0 for success, < %0 for error
2816 * Completely finish @rq.
2818 void blk_end_request_all(struct request
*rq
, int error
)
2821 unsigned int bidi_bytes
= 0;
2823 if (unlikely(blk_bidi_rq(rq
)))
2824 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2826 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2829 EXPORT_SYMBOL(blk_end_request_all
);
2832 * blk_end_request_cur - Helper function to finish the current request chunk.
2833 * @rq: the request to finish the current chunk for
2834 * @error: %0 for success, < %0 for error
2837 * Complete the current consecutively mapped chunk from @rq.
2840 * %false - we are done with this request
2841 * %true - still buffers pending for this request
2843 bool blk_end_request_cur(struct request
*rq
, int error
)
2845 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2847 EXPORT_SYMBOL(blk_end_request_cur
);
2850 * blk_end_request_err - Finish a request till the next failure boundary.
2851 * @rq: the request to finish till the next failure boundary for
2852 * @error: must be negative errno
2855 * Complete @rq till the next failure boundary.
2858 * %false - we are done with this request
2859 * %true - still buffers pending for this request
2861 bool blk_end_request_err(struct request
*rq
, int error
)
2863 WARN_ON(error
>= 0);
2864 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2866 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2869 * __blk_end_request - Helper function for drivers to complete the request.
2870 * @rq: the request being processed
2871 * @error: %0 for success, < %0 for error
2872 * @nr_bytes: number of bytes to complete
2875 * Must be called with queue lock held unlike blk_end_request().
2878 * %false - we are done with this request
2879 * %true - still buffers pending for this request
2881 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2883 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2885 EXPORT_SYMBOL(__blk_end_request
);
2888 * __blk_end_request_all - Helper function for drives to finish the request.
2889 * @rq: the request to finish
2890 * @error: %0 for success, < %0 for error
2893 * Completely finish @rq. Must be called with queue lock held.
2895 void __blk_end_request_all(struct request
*rq
, int error
)
2898 unsigned int bidi_bytes
= 0;
2900 if (unlikely(blk_bidi_rq(rq
)))
2901 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2903 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2906 EXPORT_SYMBOL(__blk_end_request_all
);
2909 * __blk_end_request_cur - Helper function to finish the current request chunk.
2910 * @rq: the request to finish the current chunk for
2911 * @error: %0 for success, < %0 for error
2914 * Complete the current consecutively mapped chunk from @rq. Must
2915 * be called with queue lock held.
2918 * %false - we are done with this request
2919 * %true - still buffers pending for this request
2921 bool __blk_end_request_cur(struct request
*rq
, int error
)
2923 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2925 EXPORT_SYMBOL(__blk_end_request_cur
);
2928 * __blk_end_request_err - Finish a request till the next failure boundary.
2929 * @rq: the request to finish till the next failure boundary for
2930 * @error: must be negative errno
2933 * Complete @rq till the next failure boundary. Must be called
2934 * with queue lock held.
2937 * %false - we are done with this request
2938 * %true - still buffers pending for this request
2940 bool __blk_end_request_err(struct request
*rq
, int error
)
2942 WARN_ON(error
>= 0);
2943 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2945 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2947 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2950 if (bio_has_data(bio
))
2951 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2953 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2954 rq
->bio
= rq
->biotail
= bio
;
2957 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2960 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2962 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2963 * @rq: the request to be flushed
2966 * Flush all pages in @rq.
2968 void rq_flush_dcache_pages(struct request
*rq
)
2970 struct req_iterator iter
;
2971 struct bio_vec bvec
;
2973 rq_for_each_segment(bvec
, rq
, iter
)
2974 flush_dcache_page(bvec
.bv_page
);
2976 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2980 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2981 * @q : the queue of the device being checked
2984 * Check if underlying low-level drivers of a device are busy.
2985 * If the drivers want to export their busy state, they must set own
2986 * exporting function using blk_queue_lld_busy() first.
2988 * Basically, this function is used only by request stacking drivers
2989 * to stop dispatching requests to underlying devices when underlying
2990 * devices are busy. This behavior helps more I/O merging on the queue
2991 * of the request stacking driver and prevents I/O throughput regression
2992 * on burst I/O load.
2995 * 0 - Not busy (The request stacking driver should dispatch request)
2996 * 1 - Busy (The request stacking driver should stop dispatching request)
2998 int blk_lld_busy(struct request_queue
*q
)
3001 return q
->lld_busy_fn(q
);
3005 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3008 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3009 * @rq: the clone request to be cleaned up
3012 * Free all bios in @rq for a cloned request.
3014 void blk_rq_unprep_clone(struct request
*rq
)
3018 while ((bio
= rq
->bio
) != NULL
) {
3019 rq
->bio
= bio
->bi_next
;
3024 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3027 * Copy attributes of the original request to the clone request.
3028 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3030 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3032 dst
->cpu
= src
->cpu
;
3033 dst
->__sector
= blk_rq_pos(src
);
3034 dst
->__data_len
= blk_rq_bytes(src
);
3035 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3036 dst
->ioprio
= src
->ioprio
;
3037 dst
->extra_len
= src
->extra_len
;
3041 * blk_rq_prep_clone - Helper function to setup clone request
3042 * @rq: the request to be setup
3043 * @rq_src: original request to be cloned
3044 * @bs: bio_set that bios for clone are allocated from
3045 * @gfp_mask: memory allocation mask for bio
3046 * @bio_ctr: setup function to be called for each clone bio.
3047 * Returns %0 for success, non %0 for failure.
3048 * @data: private data to be passed to @bio_ctr
3051 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3052 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3053 * are not copied, and copying such parts is the caller's responsibility.
3054 * Also, pages which the original bios are pointing to are not copied
3055 * and the cloned bios just point same pages.
3056 * So cloned bios must be completed before original bios, which means
3057 * the caller must complete @rq before @rq_src.
3059 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3060 struct bio_set
*bs
, gfp_t gfp_mask
,
3061 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3064 struct bio
*bio
, *bio_src
;
3069 __rq_for_each_bio(bio_src
, rq_src
) {
3070 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3074 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3078 rq
->biotail
->bi_next
= bio
;
3081 rq
->bio
= rq
->biotail
= bio
;
3084 __blk_rq_prep_clone(rq
, rq_src
);
3091 blk_rq_unprep_clone(rq
);
3095 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3097 int kblockd_schedule_work(struct work_struct
*work
)
3099 return queue_work(kblockd_workqueue
, work
);
3101 EXPORT_SYMBOL(kblockd_schedule_work
);
3103 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3105 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3107 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3109 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
3110 unsigned long delay
)
3112 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
3114 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
3116 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3117 unsigned long delay
)
3119 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3121 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
3124 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3125 * @plug: The &struct blk_plug that needs to be initialized
3128 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3129 * pending I/O should the task end up blocking between blk_start_plug() and
3130 * blk_finish_plug(). This is important from a performance perspective, but
3131 * also ensures that we don't deadlock. For instance, if the task is blocking
3132 * for a memory allocation, memory reclaim could end up wanting to free a
3133 * page belonging to that request that is currently residing in our private
3134 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3135 * this kind of deadlock.
3137 void blk_start_plug(struct blk_plug
*plug
)
3139 struct task_struct
*tsk
= current
;
3142 * If this is a nested plug, don't actually assign it.
3147 INIT_LIST_HEAD(&plug
->list
);
3148 INIT_LIST_HEAD(&plug
->mq_list
);
3149 INIT_LIST_HEAD(&plug
->cb_list
);
3151 * Store ordering should not be needed here, since a potential
3152 * preempt will imply a full memory barrier
3156 EXPORT_SYMBOL(blk_start_plug
);
3158 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3160 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3161 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3163 return !(rqa
->q
< rqb
->q
||
3164 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3168 * If 'from_schedule' is true, then postpone the dispatch of requests
3169 * until a safe kblockd context. We due this to avoid accidental big
3170 * additional stack usage in driver dispatch, in places where the originally
3171 * plugger did not intend it.
3173 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3175 __releases(q
->queue_lock
)
3177 trace_block_unplug(q
, depth
, !from_schedule
);
3180 blk_run_queue_async(q
);
3183 spin_unlock(q
->queue_lock
);
3186 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3188 LIST_HEAD(callbacks
);
3190 while (!list_empty(&plug
->cb_list
)) {
3191 list_splice_init(&plug
->cb_list
, &callbacks
);
3193 while (!list_empty(&callbacks
)) {
3194 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3197 list_del(&cb
->list
);
3198 cb
->callback(cb
, from_schedule
);
3203 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3206 struct blk_plug
*plug
= current
->plug
;
3207 struct blk_plug_cb
*cb
;
3212 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3213 if (cb
->callback
== unplug
&& cb
->data
== data
)
3216 /* Not currently on the callback list */
3217 BUG_ON(size
< sizeof(*cb
));
3218 cb
= kzalloc(size
, GFP_ATOMIC
);
3221 cb
->callback
= unplug
;
3222 list_add(&cb
->list
, &plug
->cb_list
);
3226 EXPORT_SYMBOL(blk_check_plugged
);
3228 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3230 struct request_queue
*q
;
3231 unsigned long flags
;
3236 flush_plug_callbacks(plug
, from_schedule
);
3238 if (!list_empty(&plug
->mq_list
))
3239 blk_mq_flush_plug_list(plug
, from_schedule
);
3241 if (list_empty(&plug
->list
))
3244 list_splice_init(&plug
->list
, &list
);
3246 list_sort(NULL
, &list
, plug_rq_cmp
);
3252 * Save and disable interrupts here, to avoid doing it for every
3253 * queue lock we have to take.
3255 local_irq_save(flags
);
3256 while (!list_empty(&list
)) {
3257 rq
= list_entry_rq(list
.next
);
3258 list_del_init(&rq
->queuelist
);
3262 * This drops the queue lock
3265 queue_unplugged(q
, depth
, from_schedule
);
3268 spin_lock(q
->queue_lock
);
3272 * Short-circuit if @q is dead
3274 if (unlikely(blk_queue_dying(q
))) {
3275 __blk_end_request_all(rq
, -ENODEV
);
3280 * rq is already accounted, so use raw insert
3282 if (op_is_flush(rq
->cmd_flags
))
3283 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3285 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3291 * This drops the queue lock
3294 queue_unplugged(q
, depth
, from_schedule
);
3296 local_irq_restore(flags
);
3299 void blk_finish_plug(struct blk_plug
*plug
)
3301 if (plug
!= current
->plug
)
3303 blk_flush_plug_list(plug
, false);
3305 current
->plug
= NULL
;
3307 EXPORT_SYMBOL(blk_finish_plug
);
3311 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3312 * @q: the queue of the device
3313 * @dev: the device the queue belongs to
3316 * Initialize runtime-PM-related fields for @q and start auto suspend for
3317 * @dev. Drivers that want to take advantage of request-based runtime PM
3318 * should call this function after @dev has been initialized, and its
3319 * request queue @q has been allocated, and runtime PM for it can not happen
3320 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3321 * cases, driver should call this function before any I/O has taken place.
3323 * This function takes care of setting up using auto suspend for the device,
3324 * the autosuspend delay is set to -1 to make runtime suspend impossible
3325 * until an updated value is either set by user or by driver. Drivers do
3326 * not need to touch other autosuspend settings.
3328 * The block layer runtime PM is request based, so only works for drivers
3329 * that use request as their IO unit instead of those directly use bio's.
3331 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3334 q
->rpm_status
= RPM_ACTIVE
;
3335 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3336 pm_runtime_use_autosuspend(q
->dev
);
3338 EXPORT_SYMBOL(blk_pm_runtime_init
);
3341 * blk_pre_runtime_suspend - Pre runtime suspend check
3342 * @q: the queue of the device
3345 * This function will check if runtime suspend is allowed for the device
3346 * by examining if there are any requests pending in the queue. If there
3347 * are requests pending, the device can not be runtime suspended; otherwise,
3348 * the queue's status will be updated to SUSPENDING and the driver can
3349 * proceed to suspend the device.
3351 * For the not allowed case, we mark last busy for the device so that
3352 * runtime PM core will try to autosuspend it some time later.
3354 * This function should be called near the start of the device's
3355 * runtime_suspend callback.
3358 * 0 - OK to runtime suspend the device
3359 * -EBUSY - Device should not be runtime suspended
3361 int blk_pre_runtime_suspend(struct request_queue
*q
)
3368 spin_lock_irq(q
->queue_lock
);
3369 if (q
->nr_pending
) {
3371 pm_runtime_mark_last_busy(q
->dev
);
3373 q
->rpm_status
= RPM_SUSPENDING
;
3375 spin_unlock_irq(q
->queue_lock
);
3378 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3381 * blk_post_runtime_suspend - Post runtime suspend processing
3382 * @q: the queue of the device
3383 * @err: return value of the device's runtime_suspend function
3386 * Update the queue's runtime status according to the return value of the
3387 * device's runtime suspend function and mark last busy for the device so
3388 * that PM core will try to auto suspend the device at a later time.
3390 * This function should be called near the end of the device's
3391 * runtime_suspend callback.
3393 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3398 spin_lock_irq(q
->queue_lock
);
3400 q
->rpm_status
= RPM_SUSPENDED
;
3402 q
->rpm_status
= RPM_ACTIVE
;
3403 pm_runtime_mark_last_busy(q
->dev
);
3405 spin_unlock_irq(q
->queue_lock
);
3407 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3410 * blk_pre_runtime_resume - Pre runtime resume processing
3411 * @q: the queue of the device
3414 * Update the queue's runtime status to RESUMING in preparation for the
3415 * runtime resume of the device.
3417 * This function should be called near the start of the device's
3418 * runtime_resume callback.
3420 void blk_pre_runtime_resume(struct request_queue
*q
)
3425 spin_lock_irq(q
->queue_lock
);
3426 q
->rpm_status
= RPM_RESUMING
;
3427 spin_unlock_irq(q
->queue_lock
);
3429 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3432 * blk_post_runtime_resume - Post runtime resume processing
3433 * @q: the queue of the device
3434 * @err: return value of the device's runtime_resume function
3437 * Update the queue's runtime status according to the return value of the
3438 * device's runtime_resume function. If it is successfully resumed, process
3439 * the requests that are queued into the device's queue when it is resuming
3440 * and then mark last busy and initiate autosuspend for it.
3442 * This function should be called near the end of the device's
3443 * runtime_resume callback.
3445 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3450 spin_lock_irq(q
->queue_lock
);
3452 q
->rpm_status
= RPM_ACTIVE
;
3454 pm_runtime_mark_last_busy(q
->dev
);
3455 pm_request_autosuspend(q
->dev
);
3457 q
->rpm_status
= RPM_SUSPENDED
;
3459 spin_unlock_irq(q
->queue_lock
);
3461 EXPORT_SYMBOL(blk_post_runtime_resume
);
3464 * blk_set_runtime_active - Force runtime status of the queue to be active
3465 * @q: the queue of the device
3467 * If the device is left runtime suspended during system suspend the resume
3468 * hook typically resumes the device and corrects runtime status
3469 * accordingly. However, that does not affect the queue runtime PM status
3470 * which is still "suspended". This prevents processing requests from the
3473 * This function can be used in driver's resume hook to correct queue
3474 * runtime PM status and re-enable peeking requests from the queue. It
3475 * should be called before first request is added to the queue.
3477 void blk_set_runtime_active(struct request_queue
*q
)
3479 spin_lock_irq(q
->queue_lock
);
3480 q
->rpm_status
= RPM_ACTIVE
;
3481 pm_runtime_mark_last_busy(q
->dev
);
3482 pm_request_autosuspend(q
->dev
);
3483 spin_unlock_irq(q
->queue_lock
);
3485 EXPORT_SYMBOL(blk_set_runtime_active
);
3488 int __init
blk_dev_init(void)
3490 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3491 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3492 FIELD_SIZEOF(struct request
, cmd_flags
));
3493 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3494 FIELD_SIZEOF(struct bio
, bi_opf
));
3496 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3497 kblockd_workqueue
= alloc_workqueue("kblockd",
3498 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3499 if (!kblockd_workqueue
)
3500 panic("Failed to create kblockd\n");
3502 request_cachep
= kmem_cache_create("blkdev_requests",
3503 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3505 blk_requestq_cachep
= kmem_cache_create("request_queue",
3506 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3508 #ifdef CONFIG_DEBUG_FS
3509 blk_debugfs_root
= debugfs_create_dir("block", NULL
);