6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
61 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
62 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
66 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
67 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
70 static bool ignore_rlimit_data
;
71 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
73 static void unmap_region(struct mm_struct
*mm
,
74 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
75 unsigned long start
, unsigned long end
);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
97 pgprot_t protection_map
[16] = {
98 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
99 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
102 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
104 return __pgprot(pgprot_val(protection_map
[vm_flags
&
105 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
108 EXPORT_SYMBOL(vm_get_page_prot
);
110 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
112 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct
*vma
)
118 unsigned long vm_flags
= vma
->vm_flags
;
119 pgprot_t vm_page_prot
;
121 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
122 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
123 vm_flags
&= ~VM_SHARED
;
124 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
131 * Requires inode->i_mapping->i_mmap_rwsem
133 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
134 struct file
*file
, struct address_space
*mapping
)
136 if (vma
->vm_flags
& VM_DENYWRITE
)
137 atomic_inc(&file_inode(file
)->i_writecount
);
138 if (vma
->vm_flags
& VM_SHARED
)
139 mapping_unmap_writable(mapping
);
141 flush_dcache_mmap_lock(mapping
);
142 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
143 flush_dcache_mmap_unlock(mapping
);
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
150 void unlink_file_vma(struct vm_area_struct
*vma
)
152 struct file
*file
= vma
->vm_file
;
155 struct address_space
*mapping
= file
->f_mapping
;
156 i_mmap_lock_write(mapping
);
157 __remove_shared_vm_struct(vma
, file
, mapping
);
158 i_mmap_unlock_write(mapping
);
163 * Close a vm structure and free it, returning the next.
165 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
167 struct vm_area_struct
*next
= vma
->vm_next
;
170 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
171 vma
->vm_ops
->close(vma
);
174 mpol_put(vma_policy(vma
));
175 kmem_cache_free(vm_area_cachep
, vma
);
179 static int do_brk(unsigned long addr
, unsigned long len
, struct list_head
*uf
);
181 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
183 unsigned long retval
;
184 unsigned long newbrk
, oldbrk
;
185 struct mm_struct
*mm
= current
->mm
;
186 unsigned long min_brk
;
190 if (down_write_killable(&mm
->mmap_sem
))
193 #ifdef CONFIG_COMPAT_BRK
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
199 if (current
->brk_randomized
)
200 min_brk
= mm
->start_brk
;
202 min_brk
= mm
->end_data
;
204 min_brk
= mm
->start_brk
;
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
215 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
216 mm
->end_data
, mm
->start_data
))
219 newbrk
= PAGE_ALIGN(brk
);
220 oldbrk
= PAGE_ALIGN(mm
->brk
);
221 if (oldbrk
== newbrk
)
224 /* Always allow shrinking brk. */
225 if (brk
<= mm
->brk
) {
226 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
))
231 /* Check against existing mmap mappings. */
232 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
235 /* Ok, looks good - let it rip. */
236 if (do_brk(oldbrk
, newbrk
-oldbrk
, &uf
) < 0)
241 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
242 up_write(&mm
->mmap_sem
);
243 userfaultfd_unmap_complete(mm
, &uf
);
245 mm_populate(oldbrk
, newbrk
- oldbrk
);
250 up_write(&mm
->mmap_sem
);
254 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
256 unsigned long max
, subtree_gap
;
259 max
-= vma
->vm_prev
->vm_end
;
260 if (vma
->vm_rb
.rb_left
) {
261 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
262 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
263 if (subtree_gap
> max
)
266 if (vma
->vm_rb
.rb_right
) {
267 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
268 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
269 if (subtree_gap
> max
)
275 #ifdef CONFIG_DEBUG_VM_RB
276 static int browse_rb(struct mm_struct
*mm
)
278 struct rb_root
*root
= &mm
->mm_rb
;
279 int i
= 0, j
, bug
= 0;
280 struct rb_node
*nd
, *pn
= NULL
;
281 unsigned long prev
= 0, pend
= 0;
283 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
284 struct vm_area_struct
*vma
;
285 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
286 if (vma
->vm_start
< prev
) {
287 pr_emerg("vm_start %lx < prev %lx\n",
288 vma
->vm_start
, prev
);
291 if (vma
->vm_start
< pend
) {
292 pr_emerg("vm_start %lx < pend %lx\n",
293 vma
->vm_start
, pend
);
296 if (vma
->vm_start
> vma
->vm_end
) {
297 pr_emerg("vm_start %lx > vm_end %lx\n",
298 vma
->vm_start
, vma
->vm_end
);
301 spin_lock(&mm
->page_table_lock
);
302 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
303 pr_emerg("free gap %lx, correct %lx\n",
305 vma_compute_subtree_gap(vma
));
308 spin_unlock(&mm
->page_table_lock
);
311 prev
= vma
->vm_start
;
315 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
318 pr_emerg("backwards %d, forwards %d\n", j
, i
);
324 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
328 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
329 struct vm_area_struct
*vma
;
330 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
331 VM_BUG_ON_VMA(vma
!= ignore
&&
332 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
337 static void validate_mm(struct mm_struct
*mm
)
341 unsigned long highest_address
= 0;
342 struct vm_area_struct
*vma
= mm
->mmap
;
345 struct anon_vma
*anon_vma
= vma
->anon_vma
;
346 struct anon_vma_chain
*avc
;
349 anon_vma_lock_read(anon_vma
);
350 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
351 anon_vma_interval_tree_verify(avc
);
352 anon_vma_unlock_read(anon_vma
);
355 highest_address
= vma
->vm_end
;
359 if (i
!= mm
->map_count
) {
360 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
363 if (highest_address
!= mm
->highest_vm_end
) {
364 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
365 mm
->highest_vm_end
, highest_address
);
369 if (i
!= mm
->map_count
) {
371 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
374 VM_BUG_ON_MM(bug
, mm
);
377 #define validate_mm_rb(root, ignore) do { } while (0)
378 #define validate_mm(mm) do { } while (0)
381 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
382 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
385 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
386 * vma->vm_prev->vm_end values changed, without modifying the vma's position
389 static void vma_gap_update(struct vm_area_struct
*vma
)
392 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
393 * function that does exacltly what we want.
395 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
398 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
399 struct rb_root
*root
)
401 /* All rb_subtree_gap values must be consistent prior to insertion */
402 validate_mm_rb(root
, NULL
);
404 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
407 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
410 * Note rb_erase_augmented is a fairly large inline function,
411 * so make sure we instantiate it only once with our desired
412 * augmented rbtree callbacks.
414 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
417 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
418 struct rb_root
*root
,
419 struct vm_area_struct
*ignore
)
422 * All rb_subtree_gap values must be consistent prior to erase,
423 * with the possible exception of the "next" vma being erased if
424 * next->vm_start was reduced.
426 validate_mm_rb(root
, ignore
);
428 __vma_rb_erase(vma
, root
);
431 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
432 struct rb_root
*root
)
435 * All rb_subtree_gap values must be consistent prior to erase,
436 * with the possible exception of the vma being erased.
438 validate_mm_rb(root
, vma
);
440 __vma_rb_erase(vma
, root
);
444 * vma has some anon_vma assigned, and is already inserted on that
445 * anon_vma's interval trees.
447 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
448 * vma must be removed from the anon_vma's interval trees using
449 * anon_vma_interval_tree_pre_update_vma().
451 * After the update, the vma will be reinserted using
452 * anon_vma_interval_tree_post_update_vma().
454 * The entire update must be protected by exclusive mmap_sem and by
455 * the root anon_vma's mutex.
458 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
460 struct anon_vma_chain
*avc
;
462 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
463 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
467 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
469 struct anon_vma_chain
*avc
;
471 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
472 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
475 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
476 unsigned long end
, struct vm_area_struct
**pprev
,
477 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
479 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
481 __rb_link
= &mm
->mm_rb
.rb_node
;
482 rb_prev
= __rb_parent
= NULL
;
485 struct vm_area_struct
*vma_tmp
;
487 __rb_parent
= *__rb_link
;
488 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
490 if (vma_tmp
->vm_end
> addr
) {
491 /* Fail if an existing vma overlaps the area */
492 if (vma_tmp
->vm_start
< end
)
494 __rb_link
= &__rb_parent
->rb_left
;
496 rb_prev
= __rb_parent
;
497 __rb_link
= &__rb_parent
->rb_right
;
503 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
504 *rb_link
= __rb_link
;
505 *rb_parent
= __rb_parent
;
509 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
510 unsigned long addr
, unsigned long end
)
512 unsigned long nr_pages
= 0;
513 struct vm_area_struct
*vma
;
515 /* Find first overlaping mapping */
516 vma
= find_vma_intersection(mm
, addr
, end
);
520 nr_pages
= (min(end
, vma
->vm_end
) -
521 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
523 /* Iterate over the rest of the overlaps */
524 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
525 unsigned long overlap_len
;
527 if (vma
->vm_start
> end
)
530 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
531 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
537 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
538 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
540 /* Update tracking information for the gap following the new vma. */
542 vma_gap_update(vma
->vm_next
);
544 mm
->highest_vm_end
= vma
->vm_end
;
547 * vma->vm_prev wasn't known when we followed the rbtree to find the
548 * correct insertion point for that vma. As a result, we could not
549 * update the vma vm_rb parents rb_subtree_gap values on the way down.
550 * So, we first insert the vma with a zero rb_subtree_gap value
551 * (to be consistent with what we did on the way down), and then
552 * immediately update the gap to the correct value. Finally we
553 * rebalance the rbtree after all augmented values have been set.
555 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
556 vma
->rb_subtree_gap
= 0;
558 vma_rb_insert(vma
, &mm
->mm_rb
);
561 static void __vma_link_file(struct vm_area_struct
*vma
)
567 struct address_space
*mapping
= file
->f_mapping
;
569 if (vma
->vm_flags
& VM_DENYWRITE
)
570 atomic_dec(&file_inode(file
)->i_writecount
);
571 if (vma
->vm_flags
& VM_SHARED
)
572 atomic_inc(&mapping
->i_mmap_writable
);
574 flush_dcache_mmap_lock(mapping
);
575 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
576 flush_dcache_mmap_unlock(mapping
);
581 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
582 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
583 struct rb_node
*rb_parent
)
585 __vma_link_list(mm
, vma
, prev
, rb_parent
);
586 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
589 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
590 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
591 struct rb_node
*rb_parent
)
593 struct address_space
*mapping
= NULL
;
596 mapping
= vma
->vm_file
->f_mapping
;
597 i_mmap_lock_write(mapping
);
600 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
601 __vma_link_file(vma
);
604 i_mmap_unlock_write(mapping
);
611 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
612 * mm's list and rbtree. It has already been inserted into the interval tree.
614 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
616 struct vm_area_struct
*prev
;
617 struct rb_node
**rb_link
, *rb_parent
;
619 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
620 &prev
, &rb_link
, &rb_parent
))
622 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
626 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
627 struct vm_area_struct
*vma
,
628 struct vm_area_struct
*prev
,
630 struct vm_area_struct
*ignore
)
632 struct vm_area_struct
*next
;
634 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
637 prev
->vm_next
= next
;
641 prev
->vm_next
= next
;
646 next
->vm_prev
= prev
;
649 vmacache_invalidate(mm
);
652 static inline void __vma_unlink_prev(struct mm_struct
*mm
,
653 struct vm_area_struct
*vma
,
654 struct vm_area_struct
*prev
)
656 __vma_unlink_common(mm
, vma
, prev
, true, vma
);
660 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
661 * is already present in an i_mmap tree without adjusting the tree.
662 * The following helper function should be used when such adjustments
663 * are necessary. The "insert" vma (if any) is to be inserted
664 * before we drop the necessary locks.
666 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
667 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
668 struct vm_area_struct
*expand
)
670 struct mm_struct
*mm
= vma
->vm_mm
;
671 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
672 struct address_space
*mapping
= NULL
;
673 struct rb_root
*root
= NULL
;
674 struct anon_vma
*anon_vma
= NULL
;
675 struct file
*file
= vma
->vm_file
;
676 bool start_changed
= false, end_changed
= false;
677 long adjust_next
= 0;
680 if (next
&& !insert
) {
681 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
683 if (end
>= next
->vm_end
) {
685 * vma expands, overlapping all the next, and
686 * perhaps the one after too (mprotect case 6).
687 * The only other cases that gets here are
688 * case 1, case 7 and case 8.
690 if (next
== expand
) {
692 * The only case where we don't expand "vma"
693 * and we expand "next" instead is case 8.
695 VM_WARN_ON(end
!= next
->vm_end
);
697 * remove_next == 3 means we're
698 * removing "vma" and that to do so we
699 * swapped "vma" and "next".
702 VM_WARN_ON(file
!= next
->vm_file
);
705 VM_WARN_ON(expand
!= vma
);
707 * case 1, 6, 7, remove_next == 2 is case 6,
708 * remove_next == 1 is case 1 or 7.
710 remove_next
= 1 + (end
> next
->vm_end
);
711 VM_WARN_ON(remove_next
== 2 &&
712 end
!= next
->vm_next
->vm_end
);
713 VM_WARN_ON(remove_next
== 1 &&
714 end
!= next
->vm_end
);
715 /* trim end to next, for case 6 first pass */
723 * If next doesn't have anon_vma, import from vma after
724 * next, if the vma overlaps with it.
726 if (remove_next
== 2 && !next
->anon_vma
)
727 exporter
= next
->vm_next
;
729 } else if (end
> next
->vm_start
) {
731 * vma expands, overlapping part of the next:
732 * mprotect case 5 shifting the boundary up.
734 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
737 VM_WARN_ON(expand
!= importer
);
738 } else if (end
< vma
->vm_end
) {
740 * vma shrinks, and !insert tells it's not
741 * split_vma inserting another: so it must be
742 * mprotect case 4 shifting the boundary down.
744 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
747 VM_WARN_ON(expand
!= importer
);
751 * Easily overlooked: when mprotect shifts the boundary,
752 * make sure the expanding vma has anon_vma set if the
753 * shrinking vma had, to cover any anon pages imported.
755 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
758 importer
->anon_vma
= exporter
->anon_vma
;
759 error
= anon_vma_clone(importer
, exporter
);
765 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
768 mapping
= file
->f_mapping
;
769 root
= &mapping
->i_mmap
;
770 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
773 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
775 i_mmap_lock_write(mapping
);
778 * Put into interval tree now, so instantiated pages
779 * are visible to arm/parisc __flush_dcache_page
780 * throughout; but we cannot insert into address
781 * space until vma start or end is updated.
783 __vma_link_file(insert
);
787 anon_vma
= vma
->anon_vma
;
788 if (!anon_vma
&& adjust_next
)
789 anon_vma
= next
->anon_vma
;
791 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
792 anon_vma
!= next
->anon_vma
);
793 anon_vma_lock_write(anon_vma
);
794 anon_vma_interval_tree_pre_update_vma(vma
);
796 anon_vma_interval_tree_pre_update_vma(next
);
800 flush_dcache_mmap_lock(mapping
);
801 vma_interval_tree_remove(vma
, root
);
803 vma_interval_tree_remove(next
, root
);
806 if (start
!= vma
->vm_start
) {
807 vma
->vm_start
= start
;
808 start_changed
= true;
810 if (end
!= vma
->vm_end
) {
814 vma
->vm_pgoff
= pgoff
;
816 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
817 next
->vm_pgoff
+= adjust_next
;
822 vma_interval_tree_insert(next
, root
);
823 vma_interval_tree_insert(vma
, root
);
824 flush_dcache_mmap_unlock(mapping
);
829 * vma_merge has merged next into vma, and needs
830 * us to remove next before dropping the locks.
832 if (remove_next
!= 3)
833 __vma_unlink_prev(mm
, next
, vma
);
836 * vma is not before next if they've been
839 * pre-swap() next->vm_start was reduced so
840 * tell validate_mm_rb to ignore pre-swap()
841 * "next" (which is stored in post-swap()
844 __vma_unlink_common(mm
, next
, NULL
, false, vma
);
846 __remove_shared_vm_struct(next
, file
, mapping
);
849 * split_vma has split insert from vma, and needs
850 * us to insert it before dropping the locks
851 * (it may either follow vma or precede it).
853 __insert_vm_struct(mm
, insert
);
859 mm
->highest_vm_end
= end
;
860 else if (!adjust_next
)
861 vma_gap_update(next
);
866 anon_vma_interval_tree_post_update_vma(vma
);
868 anon_vma_interval_tree_post_update_vma(next
);
869 anon_vma_unlock_write(anon_vma
);
872 i_mmap_unlock_write(mapping
);
883 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
887 anon_vma_merge(vma
, next
);
889 mpol_put(vma_policy(next
));
890 kmem_cache_free(vm_area_cachep
, next
);
892 * In mprotect's case 6 (see comments on vma_merge),
893 * we must remove another next too. It would clutter
894 * up the code too much to do both in one go.
896 if (remove_next
!= 3) {
898 * If "next" was removed and vma->vm_end was
899 * expanded (up) over it, in turn
900 * "next->vm_prev->vm_end" changed and the
901 * "vma->vm_next" gap must be updated.
906 * For the scope of the comment "next" and
907 * "vma" considered pre-swap(): if "vma" was
908 * removed, next->vm_start was expanded (down)
909 * over it and the "next" gap must be updated.
910 * Because of the swap() the post-swap() "vma"
911 * actually points to pre-swap() "next"
912 * (post-swap() "next" as opposed is now a
917 if (remove_next
== 2) {
923 vma_gap_update(next
);
926 * If remove_next == 2 we obviously can't
929 * If remove_next == 3 we can't reach this
930 * path because pre-swap() next is always not
931 * NULL. pre-swap() "next" is not being
932 * removed and its next->vm_end is not altered
933 * (and furthermore "end" already matches
934 * next->vm_end in remove_next == 3).
936 * We reach this only in the remove_next == 1
937 * case if the "next" vma that was removed was
938 * the highest vma of the mm. However in such
939 * case next->vm_end == "end" and the extended
940 * "vma" has vma->vm_end == next->vm_end so
941 * mm->highest_vm_end doesn't need any update
942 * in remove_next == 1 case.
944 VM_WARN_ON(mm
->highest_vm_end
!= end
);
956 * If the vma has a ->close operation then the driver probably needs to release
957 * per-vma resources, so we don't attempt to merge those.
959 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
960 struct file
*file
, unsigned long vm_flags
,
961 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
964 * VM_SOFTDIRTY should not prevent from VMA merging, if we
965 * match the flags but dirty bit -- the caller should mark
966 * merged VMA as dirty. If dirty bit won't be excluded from
967 * comparison, we increase pressue on the memory system forcing
968 * the kernel to generate new VMAs when old one could be
971 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
973 if (vma
->vm_file
!= file
)
975 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
977 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
982 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
983 struct anon_vma
*anon_vma2
,
984 struct vm_area_struct
*vma
)
987 * The list_is_singular() test is to avoid merging VMA cloned from
988 * parents. This can improve scalability caused by anon_vma lock.
990 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
991 list_is_singular(&vma
->anon_vma_chain
)))
993 return anon_vma1
== anon_vma2
;
997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998 * in front of (at a lower virtual address and file offset than) the vma.
1000 * We cannot merge two vmas if they have differently assigned (non-NULL)
1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1003 * We don't check here for the merged mmap wrapping around the end of pagecache
1004 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1005 * wrap, nor mmaps which cover the final page at index -1UL.
1008 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1009 struct anon_vma
*anon_vma
, struct file
*file
,
1011 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1013 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1014 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1015 if (vma
->vm_pgoff
== vm_pgoff
)
1022 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1023 * beyond (at a higher virtual address and file offset than) the vma.
1025 * We cannot merge two vmas if they have differently assigned (non-NULL)
1026 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1029 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1030 struct anon_vma
*anon_vma
, struct file
*file
,
1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1034 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1035 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1037 vm_pglen
= vma_pages(vma
);
1038 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1045 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1046 * whether that can be merged with its predecessor or its successor.
1047 * Or both (it neatly fills a hole).
1049 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1050 * certain not to be mapped by the time vma_merge is called; but when
1051 * called for mprotect, it is certain to be already mapped (either at
1052 * an offset within prev, or at the start of next), and the flags of
1053 * this area are about to be changed to vm_flags - and the no-change
1054 * case has already been eliminated.
1056 * The following mprotect cases have to be considered, where AAAA is
1057 * the area passed down from mprotect_fixup, never extending beyond one
1058 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1060 * AAAA AAAA AAAA AAAA
1061 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1062 * cannot merge might become might become might become
1063 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1064 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1065 * mremap move: PPPPXXXXXXXX 8
1067 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1068 * might become case 1 below case 2 below case 3 below
1070 * It is important for case 8 that the the vma NNNN overlapping the
1071 * region AAAA is never going to extended over XXXX. Instead XXXX must
1072 * be extended in region AAAA and NNNN must be removed. This way in
1073 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1074 * rmap_locks, the properties of the merged vma will be already
1075 * correct for the whole merged range. Some of those properties like
1076 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1077 * be correct for the whole merged range immediately after the
1078 * rmap_locks are released. Otherwise if XXXX would be removed and
1079 * NNNN would be extended over the XXXX range, remove_migration_ptes
1080 * or other rmap walkers (if working on addresses beyond the "end"
1081 * parameter) may establish ptes with the wrong permissions of NNNN
1082 * instead of the right permissions of XXXX.
1084 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1085 struct vm_area_struct
*prev
, unsigned long addr
,
1086 unsigned long end
, unsigned long vm_flags
,
1087 struct anon_vma
*anon_vma
, struct file
*file
,
1088 pgoff_t pgoff
, struct mempolicy
*policy
,
1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1091 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1092 struct vm_area_struct
*area
, *next
;
1096 * We later require that vma->vm_flags == vm_flags,
1097 * so this tests vma->vm_flags & VM_SPECIAL, too.
1099 if (vm_flags
& VM_SPECIAL
)
1103 next
= prev
->vm_next
;
1107 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1108 next
= next
->vm_next
;
1110 /* verify some invariant that must be enforced by the caller */
1111 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1112 VM_WARN_ON(area
&& end
> area
->vm_end
);
1113 VM_WARN_ON(addr
>= end
);
1116 * Can it merge with the predecessor?
1118 if (prev
&& prev
->vm_end
== addr
&&
1119 mpol_equal(vma_policy(prev
), policy
) &&
1120 can_vma_merge_after(prev
, vm_flags
,
1121 anon_vma
, file
, pgoff
,
1122 vm_userfaultfd_ctx
)) {
1124 * OK, it can. Can we now merge in the successor as well?
1126 if (next
&& end
== next
->vm_start
&&
1127 mpol_equal(policy
, vma_policy(next
)) &&
1128 can_vma_merge_before(next
, vm_flags
,
1131 vm_userfaultfd_ctx
) &&
1132 is_mergeable_anon_vma(prev
->anon_vma
,
1133 next
->anon_vma
, NULL
)) {
1135 err
= __vma_adjust(prev
, prev
->vm_start
,
1136 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1138 } else /* cases 2, 5, 7 */
1139 err
= __vma_adjust(prev
, prev
->vm_start
,
1140 end
, prev
->vm_pgoff
, NULL
, prev
);
1143 khugepaged_enter_vma_merge(prev
, vm_flags
);
1148 * Can this new request be merged in front of next?
1150 if (next
&& end
== next
->vm_start
&&
1151 mpol_equal(policy
, vma_policy(next
)) &&
1152 can_vma_merge_before(next
, vm_flags
,
1153 anon_vma
, file
, pgoff
+pglen
,
1154 vm_userfaultfd_ctx
)) {
1155 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1156 err
= __vma_adjust(prev
, prev
->vm_start
,
1157 addr
, prev
->vm_pgoff
, NULL
, next
);
1158 else { /* cases 3, 8 */
1159 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1160 next
->vm_pgoff
- pglen
, NULL
, next
);
1162 * In case 3 area is already equal to next and
1163 * this is a noop, but in case 8 "area" has
1164 * been removed and next was expanded over it.
1170 khugepaged_enter_vma_merge(area
, vm_flags
);
1178 * Rough compatbility check to quickly see if it's even worth looking
1179 * at sharing an anon_vma.
1181 * They need to have the same vm_file, and the flags can only differ
1182 * in things that mprotect may change.
1184 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1185 * we can merge the two vma's. For example, we refuse to merge a vma if
1186 * there is a vm_ops->close() function, because that indicates that the
1187 * driver is doing some kind of reference counting. But that doesn't
1188 * really matter for the anon_vma sharing case.
1190 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1192 return a
->vm_end
== b
->vm_start
&&
1193 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1194 a
->vm_file
== b
->vm_file
&&
1195 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1196 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1200 * Do some basic sanity checking to see if we can re-use the anon_vma
1201 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1202 * the same as 'old', the other will be the new one that is trying
1203 * to share the anon_vma.
1205 * NOTE! This runs with mm_sem held for reading, so it is possible that
1206 * the anon_vma of 'old' is concurrently in the process of being set up
1207 * by another page fault trying to merge _that_. But that's ok: if it
1208 * is being set up, that automatically means that it will be a singleton
1209 * acceptable for merging, so we can do all of this optimistically. But
1210 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1212 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1213 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1214 * is to return an anon_vma that is "complex" due to having gone through
1217 * We also make sure that the two vma's are compatible (adjacent,
1218 * and with the same memory policies). That's all stable, even with just
1219 * a read lock on the mm_sem.
1221 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1223 if (anon_vma_compatible(a
, b
)) {
1224 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1226 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1233 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1234 * neighbouring vmas for a suitable anon_vma, before it goes off
1235 * to allocate a new anon_vma. It checks because a repetitive
1236 * sequence of mprotects and faults may otherwise lead to distinct
1237 * anon_vmas being allocated, preventing vma merge in subsequent
1240 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1242 struct anon_vma
*anon_vma
;
1243 struct vm_area_struct
*near
;
1245 near
= vma
->vm_next
;
1249 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1253 near
= vma
->vm_prev
;
1257 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1262 * There's no absolute need to look only at touching neighbours:
1263 * we could search further afield for "compatible" anon_vmas.
1264 * But it would probably just be a waste of time searching,
1265 * or lead to too many vmas hanging off the same anon_vma.
1266 * We're trying to allow mprotect remerging later on,
1267 * not trying to minimize memory used for anon_vmas.
1273 * If a hint addr is less than mmap_min_addr change hint to be as
1274 * low as possible but still greater than mmap_min_addr
1276 static inline unsigned long round_hint_to_min(unsigned long hint
)
1279 if (((void *)hint
!= NULL
) &&
1280 (hint
< mmap_min_addr
))
1281 return PAGE_ALIGN(mmap_min_addr
);
1285 static inline int mlock_future_check(struct mm_struct
*mm
,
1286 unsigned long flags
,
1289 unsigned long locked
, lock_limit
;
1291 /* mlock MCL_FUTURE? */
1292 if (flags
& VM_LOCKED
) {
1293 locked
= len
>> PAGE_SHIFT
;
1294 locked
+= mm
->locked_vm
;
1295 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1296 lock_limit
>>= PAGE_SHIFT
;
1297 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1304 * The caller must hold down_write(¤t->mm->mmap_sem).
1306 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1307 unsigned long len
, unsigned long prot
,
1308 unsigned long flags
, vm_flags_t vm_flags
,
1309 unsigned long pgoff
, unsigned long *populate
,
1310 struct list_head
*uf
)
1312 struct mm_struct
*mm
= current
->mm
;
1321 * Does the application expect PROT_READ to imply PROT_EXEC?
1323 * (the exception is when the underlying filesystem is noexec
1324 * mounted, in which case we dont add PROT_EXEC.)
1326 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1327 if (!(file
&& path_noexec(&file
->f_path
)))
1330 if (!(flags
& MAP_FIXED
))
1331 addr
= round_hint_to_min(addr
);
1333 /* Careful about overflows.. */
1334 len
= PAGE_ALIGN(len
);
1338 /* offset overflow? */
1339 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1342 /* Too many mappings? */
1343 if (mm
->map_count
> sysctl_max_map_count
)
1346 /* Obtain the address to map to. we verify (or select) it and ensure
1347 * that it represents a valid section of the address space.
1349 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1350 if (offset_in_page(addr
))
1353 if (prot
== PROT_EXEC
) {
1354 pkey
= execute_only_pkey(mm
);
1359 /* Do simple checking here so the lower-level routines won't have
1360 * to. we assume access permissions have been handled by the open
1361 * of the memory object, so we don't do any here.
1363 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1364 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1366 if (flags
& MAP_LOCKED
)
1367 if (!can_do_mlock())
1370 if (mlock_future_check(mm
, vm_flags
, len
))
1374 struct inode
*inode
= file_inode(file
);
1376 switch (flags
& MAP_TYPE
) {
1378 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1382 * Make sure we don't allow writing to an append-only
1385 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1389 * Make sure there are no mandatory locks on the file.
1391 if (locks_verify_locked(file
))
1394 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1395 if (!(file
->f_mode
& FMODE_WRITE
))
1396 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1400 if (!(file
->f_mode
& FMODE_READ
))
1402 if (path_noexec(&file
->f_path
)) {
1403 if (vm_flags
& VM_EXEC
)
1405 vm_flags
&= ~VM_MAYEXEC
;
1408 if (!file
->f_op
->mmap
)
1410 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1418 switch (flags
& MAP_TYPE
) {
1420 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1426 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1430 * Set pgoff according to addr for anon_vma.
1432 pgoff
= addr
>> PAGE_SHIFT
;
1440 * Set 'VM_NORESERVE' if we should not account for the
1441 * memory use of this mapping.
1443 if (flags
& MAP_NORESERVE
) {
1444 /* We honor MAP_NORESERVE if allowed to overcommit */
1445 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1446 vm_flags
|= VM_NORESERVE
;
1448 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449 if (file
&& is_file_hugepages(file
))
1450 vm_flags
|= VM_NORESERVE
;
1453 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1454 if (!IS_ERR_VALUE(addr
) &&
1455 ((vm_flags
& VM_LOCKED
) ||
1456 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1461 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1462 unsigned long, prot
, unsigned long, flags
,
1463 unsigned long, fd
, unsigned long, pgoff
)
1465 struct file
*file
= NULL
;
1466 unsigned long retval
;
1468 if (!(flags
& MAP_ANONYMOUS
)) {
1469 audit_mmap_fd(fd
, flags
);
1473 if (is_file_hugepages(file
))
1474 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1476 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1478 } else if (flags
& MAP_HUGETLB
) {
1479 struct user_struct
*user
= NULL
;
1482 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1486 len
= ALIGN(len
, huge_page_size(hs
));
1488 * VM_NORESERVE is used because the reservations will be
1489 * taken when vm_ops->mmap() is called
1490 * A dummy user value is used because we are not locking
1491 * memory so no accounting is necessary
1493 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1495 &user
, HUGETLB_ANONHUGE_INODE
,
1496 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1498 return PTR_ERR(file
);
1501 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1503 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct
{
1515 unsigned long flags
;
1517 unsigned long offset
;
1520 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1522 struct mmap_arg_struct a
;
1524 if (copy_from_user(&a
, arg
, sizeof(a
)))
1526 if (offset_in_page(a
.offset
))
1529 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1530 a
.offset
>> PAGE_SHIFT
);
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1535 * Some shared mappigns will want the pages marked read-only
1536 * to track write events. If so, we'll downgrade vm_page_prot
1537 * to the private version (using protection_map[] without the
1540 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1542 vm_flags_t vm_flags
= vma
->vm_flags
;
1543 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1545 /* If it was private or non-writable, the write bit is already clear */
1546 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1549 /* The backer wishes to know when pages are first written to? */
1550 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1553 /* The open routine did something to the protections that pgprot_modify
1554 * won't preserve? */
1555 if (pgprot_val(vm_page_prot
) !=
1556 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1559 /* Do we need to track softdirty? */
1560 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1563 /* Specialty mapping? */
1564 if (vm_flags
& VM_PFNMAP
)
1567 /* Can the mapping track the dirty pages? */
1568 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1569 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1573 * We account for memory if it's a private writeable mapping,
1574 * not hugepages and VM_NORESERVE wasn't set.
1576 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1579 * hugetlb has its own accounting separate from the core VM
1580 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1582 if (file
&& is_file_hugepages(file
))
1585 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1588 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1589 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1590 struct list_head
*uf
)
1592 struct mm_struct
*mm
= current
->mm
;
1593 struct vm_area_struct
*vma
, *prev
;
1595 struct rb_node
**rb_link
, *rb_parent
;
1596 unsigned long charged
= 0;
1598 /* Check against address space limit. */
1599 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1600 unsigned long nr_pages
;
1603 * MAP_FIXED may remove pages of mappings that intersects with
1604 * requested mapping. Account for the pages it would unmap.
1606 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1608 if (!may_expand_vm(mm
, vm_flags
,
1609 (len
>> PAGE_SHIFT
) - nr_pages
))
1613 /* Clear old maps */
1614 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1616 if (do_munmap(mm
, addr
, len
, uf
))
1621 * Private writable mapping: check memory availability
1623 if (accountable_mapping(file
, vm_flags
)) {
1624 charged
= len
>> PAGE_SHIFT
;
1625 if (security_vm_enough_memory_mm(mm
, charged
))
1627 vm_flags
|= VM_ACCOUNT
;
1631 * Can we just expand an old mapping?
1633 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1634 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1639 * Determine the object being mapped and call the appropriate
1640 * specific mapper. the address has already been validated, but
1641 * not unmapped, but the maps are removed from the list.
1643 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1650 vma
->vm_start
= addr
;
1651 vma
->vm_end
= addr
+ len
;
1652 vma
->vm_flags
= vm_flags
;
1653 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1654 vma
->vm_pgoff
= pgoff
;
1655 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1658 if (vm_flags
& VM_DENYWRITE
) {
1659 error
= deny_write_access(file
);
1663 if (vm_flags
& VM_SHARED
) {
1664 error
= mapping_map_writable(file
->f_mapping
);
1666 goto allow_write_and_free_vma
;
1669 /* ->mmap() can change vma->vm_file, but must guarantee that
1670 * vma_link() below can deny write-access if VM_DENYWRITE is set
1671 * and map writably if VM_SHARED is set. This usually means the
1672 * new file must not have been exposed to user-space, yet.
1674 vma
->vm_file
= get_file(file
);
1675 error
= call_mmap(file
, vma
);
1677 goto unmap_and_free_vma
;
1679 /* Can addr have changed??
1681 * Answer: Yes, several device drivers can do it in their
1682 * f_op->mmap method. -DaveM
1683 * Bug: If addr is changed, prev, rb_link, rb_parent should
1684 * be updated for vma_link()
1686 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1688 addr
= vma
->vm_start
;
1689 vm_flags
= vma
->vm_flags
;
1690 } else if (vm_flags
& VM_SHARED
) {
1691 error
= shmem_zero_setup(vma
);
1696 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1697 /* Once vma denies write, undo our temporary denial count */
1699 if (vm_flags
& VM_SHARED
)
1700 mapping_unmap_writable(file
->f_mapping
);
1701 if (vm_flags
& VM_DENYWRITE
)
1702 allow_write_access(file
);
1704 file
= vma
->vm_file
;
1706 perf_event_mmap(vma
);
1708 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1709 if (vm_flags
& VM_LOCKED
) {
1710 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1711 vma
== get_gate_vma(current
->mm
)))
1712 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1714 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1721 * New (or expanded) vma always get soft dirty status.
1722 * Otherwise user-space soft-dirty page tracker won't
1723 * be able to distinguish situation when vma area unmapped,
1724 * then new mapped in-place (which must be aimed as
1725 * a completely new data area).
1727 vma
->vm_flags
|= VM_SOFTDIRTY
;
1729 vma_set_page_prot(vma
);
1734 vma
->vm_file
= NULL
;
1737 /* Undo any partial mapping done by a device driver. */
1738 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1740 if (vm_flags
& VM_SHARED
)
1741 mapping_unmap_writable(file
->f_mapping
);
1742 allow_write_and_free_vma
:
1743 if (vm_flags
& VM_DENYWRITE
)
1744 allow_write_access(file
);
1746 kmem_cache_free(vm_area_cachep
, vma
);
1749 vm_unacct_memory(charged
);
1753 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1756 * We implement the search by looking for an rbtree node that
1757 * immediately follows a suitable gap. That is,
1758 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1759 * - gap_end = vma->vm_start >= info->low_limit + length;
1760 * - gap_end - gap_start >= length
1763 struct mm_struct
*mm
= current
->mm
;
1764 struct vm_area_struct
*vma
;
1765 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1767 /* Adjust search length to account for worst case alignment overhead */
1768 length
= info
->length
+ info
->align_mask
;
1769 if (length
< info
->length
)
1772 /* Adjust search limits by the desired length */
1773 if (info
->high_limit
< length
)
1775 high_limit
= info
->high_limit
- length
;
1777 if (info
->low_limit
> high_limit
)
1779 low_limit
= info
->low_limit
+ length
;
1781 /* Check if rbtree root looks promising */
1782 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1784 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1785 if (vma
->rb_subtree_gap
< length
)
1789 /* Visit left subtree if it looks promising */
1790 gap_end
= vma
->vm_start
;
1791 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1792 struct vm_area_struct
*left
=
1793 rb_entry(vma
->vm_rb
.rb_left
,
1794 struct vm_area_struct
, vm_rb
);
1795 if (left
->rb_subtree_gap
>= length
) {
1801 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1803 /* Check if current node has a suitable gap */
1804 if (gap_start
> high_limit
)
1806 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1809 /* Visit right subtree if it looks promising */
1810 if (vma
->vm_rb
.rb_right
) {
1811 struct vm_area_struct
*right
=
1812 rb_entry(vma
->vm_rb
.rb_right
,
1813 struct vm_area_struct
, vm_rb
);
1814 if (right
->rb_subtree_gap
>= length
) {
1820 /* Go back up the rbtree to find next candidate node */
1822 struct rb_node
*prev
= &vma
->vm_rb
;
1823 if (!rb_parent(prev
))
1825 vma
= rb_entry(rb_parent(prev
),
1826 struct vm_area_struct
, vm_rb
);
1827 if (prev
== vma
->vm_rb
.rb_left
) {
1828 gap_start
= vma
->vm_prev
->vm_end
;
1829 gap_end
= vma
->vm_start
;
1836 /* Check highest gap, which does not precede any rbtree node */
1837 gap_start
= mm
->highest_vm_end
;
1838 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1839 if (gap_start
> high_limit
)
1843 /* We found a suitable gap. Clip it with the original low_limit. */
1844 if (gap_start
< info
->low_limit
)
1845 gap_start
= info
->low_limit
;
1847 /* Adjust gap address to the desired alignment */
1848 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1850 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1851 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1855 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1857 struct mm_struct
*mm
= current
->mm
;
1858 struct vm_area_struct
*vma
;
1859 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1861 /* Adjust search length to account for worst case alignment overhead */
1862 length
= info
->length
+ info
->align_mask
;
1863 if (length
< info
->length
)
1867 * Adjust search limits by the desired length.
1868 * See implementation comment at top of unmapped_area().
1870 gap_end
= info
->high_limit
;
1871 if (gap_end
< length
)
1873 high_limit
= gap_end
- length
;
1875 if (info
->low_limit
> high_limit
)
1877 low_limit
= info
->low_limit
+ length
;
1879 /* Check highest gap, which does not precede any rbtree node */
1880 gap_start
= mm
->highest_vm_end
;
1881 if (gap_start
<= high_limit
)
1884 /* Check if rbtree root looks promising */
1885 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1887 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1888 if (vma
->rb_subtree_gap
< length
)
1892 /* Visit right subtree if it looks promising */
1893 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1894 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1895 struct vm_area_struct
*right
=
1896 rb_entry(vma
->vm_rb
.rb_right
,
1897 struct vm_area_struct
, vm_rb
);
1898 if (right
->rb_subtree_gap
>= length
) {
1905 /* Check if current node has a suitable gap */
1906 gap_end
= vma
->vm_start
;
1907 if (gap_end
< low_limit
)
1909 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1912 /* Visit left subtree if it looks promising */
1913 if (vma
->vm_rb
.rb_left
) {
1914 struct vm_area_struct
*left
=
1915 rb_entry(vma
->vm_rb
.rb_left
,
1916 struct vm_area_struct
, vm_rb
);
1917 if (left
->rb_subtree_gap
>= length
) {
1923 /* Go back up the rbtree to find next candidate node */
1925 struct rb_node
*prev
= &vma
->vm_rb
;
1926 if (!rb_parent(prev
))
1928 vma
= rb_entry(rb_parent(prev
),
1929 struct vm_area_struct
, vm_rb
);
1930 if (prev
== vma
->vm_rb
.rb_right
) {
1931 gap_start
= vma
->vm_prev
?
1932 vma
->vm_prev
->vm_end
: 0;
1939 /* We found a suitable gap. Clip it with the original high_limit. */
1940 if (gap_end
> info
->high_limit
)
1941 gap_end
= info
->high_limit
;
1944 /* Compute highest gap address at the desired alignment */
1945 gap_end
-= info
->length
;
1946 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1948 VM_BUG_ON(gap_end
< info
->low_limit
);
1949 VM_BUG_ON(gap_end
< gap_start
);
1953 /* Get an address range which is currently unmapped.
1954 * For shmat() with addr=0.
1956 * Ugly calling convention alert:
1957 * Return value with the low bits set means error value,
1959 * if (ret & ~PAGE_MASK)
1962 * This function "knows" that -ENOMEM has the bits set.
1964 #ifndef HAVE_ARCH_UNMAPPED_AREA
1966 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1967 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1969 struct mm_struct
*mm
= current
->mm
;
1970 struct vm_area_struct
*vma
;
1971 struct vm_unmapped_area_info info
;
1973 if (len
> TASK_SIZE
- mmap_min_addr
)
1976 if (flags
& MAP_FIXED
)
1980 addr
= PAGE_ALIGN(addr
);
1981 vma
= find_vma(mm
, addr
);
1982 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1983 (!vma
|| addr
+ len
<= vma
->vm_start
))
1989 info
.low_limit
= mm
->mmap_base
;
1990 info
.high_limit
= TASK_SIZE
;
1991 info
.align_mask
= 0;
1992 return vm_unmapped_area(&info
);
1997 * This mmap-allocator allocates new areas top-down from below the
1998 * stack's low limit (the base):
2000 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2002 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
2003 const unsigned long len
, const unsigned long pgoff
,
2004 const unsigned long flags
)
2006 struct vm_area_struct
*vma
;
2007 struct mm_struct
*mm
= current
->mm
;
2008 unsigned long addr
= addr0
;
2009 struct vm_unmapped_area_info info
;
2011 /* requested length too big for entire address space */
2012 if (len
> TASK_SIZE
- mmap_min_addr
)
2015 if (flags
& MAP_FIXED
)
2018 /* requesting a specific address */
2020 addr
= PAGE_ALIGN(addr
);
2021 vma
= find_vma(mm
, addr
);
2022 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
2023 (!vma
|| addr
+ len
<= vma
->vm_start
))
2027 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2029 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2030 info
.high_limit
= mm
->mmap_base
;
2031 info
.align_mask
= 0;
2032 addr
= vm_unmapped_area(&info
);
2035 * A failed mmap() very likely causes application failure,
2036 * so fall back to the bottom-up function here. This scenario
2037 * can happen with large stack limits and large mmap()
2040 if (offset_in_page(addr
)) {
2041 VM_BUG_ON(addr
!= -ENOMEM
);
2043 info
.low_limit
= TASK_UNMAPPED_BASE
;
2044 info
.high_limit
= TASK_SIZE
;
2045 addr
= vm_unmapped_area(&info
);
2053 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2054 unsigned long pgoff
, unsigned long flags
)
2056 unsigned long (*get_area
)(struct file
*, unsigned long,
2057 unsigned long, unsigned long, unsigned long);
2059 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2063 /* Careful about overflows.. */
2064 if (len
> TASK_SIZE
)
2067 get_area
= current
->mm
->get_unmapped_area
;
2069 if (file
->f_op
->get_unmapped_area
)
2070 get_area
= file
->f_op
->get_unmapped_area
;
2071 } else if (flags
& MAP_SHARED
) {
2073 * mmap_region() will call shmem_zero_setup() to create a file,
2074 * so use shmem's get_unmapped_area in case it can be huge.
2075 * do_mmap_pgoff() will clear pgoff, so match alignment.
2078 get_area
= shmem_get_unmapped_area
;
2081 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2082 if (IS_ERR_VALUE(addr
))
2085 if (addr
> TASK_SIZE
- len
)
2087 if (offset_in_page(addr
))
2090 error
= security_mmap_addr(addr
);
2091 return error
? error
: addr
;
2094 EXPORT_SYMBOL(get_unmapped_area
);
2096 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2097 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2099 struct rb_node
*rb_node
;
2100 struct vm_area_struct
*vma
;
2102 /* Check the cache first. */
2103 vma
= vmacache_find(mm
, addr
);
2107 rb_node
= mm
->mm_rb
.rb_node
;
2110 struct vm_area_struct
*tmp
;
2112 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2114 if (tmp
->vm_end
> addr
) {
2116 if (tmp
->vm_start
<= addr
)
2118 rb_node
= rb_node
->rb_left
;
2120 rb_node
= rb_node
->rb_right
;
2124 vmacache_update(addr
, vma
);
2128 EXPORT_SYMBOL(find_vma
);
2131 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2133 struct vm_area_struct
*
2134 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2135 struct vm_area_struct
**pprev
)
2137 struct vm_area_struct
*vma
;
2139 vma
= find_vma(mm
, addr
);
2141 *pprev
= vma
->vm_prev
;
2143 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2146 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2147 rb_node
= rb_node
->rb_right
;
2154 * Verify that the stack growth is acceptable and
2155 * update accounting. This is shared with both the
2156 * grow-up and grow-down cases.
2158 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2160 struct mm_struct
*mm
= vma
->vm_mm
;
2161 struct rlimit
*rlim
= current
->signal
->rlim
;
2162 unsigned long new_start
, actual_size
;
2164 /* address space limit tests */
2165 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2168 /* Stack limit test */
2170 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2171 actual_size
-= PAGE_SIZE
;
2172 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2175 /* mlock limit tests */
2176 if (vma
->vm_flags
& VM_LOCKED
) {
2177 unsigned long locked
;
2178 unsigned long limit
;
2179 locked
= mm
->locked_vm
+ grow
;
2180 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2181 limit
>>= PAGE_SHIFT
;
2182 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2186 /* Check to ensure the stack will not grow into a hugetlb-only region */
2187 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2189 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2193 * Overcommit.. This must be the final test, as it will
2194 * update security statistics.
2196 if (security_vm_enough_memory_mm(mm
, grow
))
2202 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2204 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2205 * vma is the last one with address > vma->vm_end. Have to extend vma.
2207 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2209 struct mm_struct
*mm
= vma
->vm_mm
;
2212 if (!(vma
->vm_flags
& VM_GROWSUP
))
2215 /* Guard against wrapping around to address 0. */
2216 if (address
< PAGE_ALIGN(address
+4))
2217 address
= PAGE_ALIGN(address
+4);
2221 /* We must make sure the anon_vma is allocated. */
2222 if (unlikely(anon_vma_prepare(vma
)))
2226 * vma->vm_start/vm_end cannot change under us because the caller
2227 * is required to hold the mmap_sem in read mode. We need the
2228 * anon_vma lock to serialize against concurrent expand_stacks.
2230 anon_vma_lock_write(vma
->anon_vma
);
2232 /* Somebody else might have raced and expanded it already */
2233 if (address
> vma
->vm_end
) {
2234 unsigned long size
, grow
;
2236 size
= address
- vma
->vm_start
;
2237 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2240 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2241 error
= acct_stack_growth(vma
, size
, grow
);
2244 * vma_gap_update() doesn't support concurrent
2245 * updates, but we only hold a shared mmap_sem
2246 * lock here, so we need to protect against
2247 * concurrent vma expansions.
2248 * anon_vma_lock_write() doesn't help here, as
2249 * we don't guarantee that all growable vmas
2250 * in a mm share the same root anon vma.
2251 * So, we reuse mm->page_table_lock to guard
2252 * against concurrent vma expansions.
2254 spin_lock(&mm
->page_table_lock
);
2255 if (vma
->vm_flags
& VM_LOCKED
)
2256 mm
->locked_vm
+= grow
;
2257 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2258 anon_vma_interval_tree_pre_update_vma(vma
);
2259 vma
->vm_end
= address
;
2260 anon_vma_interval_tree_post_update_vma(vma
);
2262 vma_gap_update(vma
->vm_next
);
2264 mm
->highest_vm_end
= address
;
2265 spin_unlock(&mm
->page_table_lock
);
2267 perf_event_mmap(vma
);
2271 anon_vma_unlock_write(vma
->anon_vma
);
2272 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2276 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2279 * vma is the first one with address < vma->vm_start. Have to extend vma.
2281 int expand_downwards(struct vm_area_struct
*vma
,
2282 unsigned long address
)
2284 struct mm_struct
*mm
= vma
->vm_mm
;
2287 address
&= PAGE_MASK
;
2288 error
= security_mmap_addr(address
);
2292 /* We must make sure the anon_vma is allocated. */
2293 if (unlikely(anon_vma_prepare(vma
)))
2297 * vma->vm_start/vm_end cannot change under us because the caller
2298 * is required to hold the mmap_sem in read mode. We need the
2299 * anon_vma lock to serialize against concurrent expand_stacks.
2301 anon_vma_lock_write(vma
->anon_vma
);
2303 /* Somebody else might have raced and expanded it already */
2304 if (address
< vma
->vm_start
) {
2305 unsigned long size
, grow
;
2307 size
= vma
->vm_end
- address
;
2308 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2311 if (grow
<= vma
->vm_pgoff
) {
2312 error
= acct_stack_growth(vma
, size
, grow
);
2315 * vma_gap_update() doesn't support concurrent
2316 * updates, but we only hold a shared mmap_sem
2317 * lock here, so we need to protect against
2318 * concurrent vma expansions.
2319 * anon_vma_lock_write() doesn't help here, as
2320 * we don't guarantee that all growable vmas
2321 * in a mm share the same root anon vma.
2322 * So, we reuse mm->page_table_lock to guard
2323 * against concurrent vma expansions.
2325 spin_lock(&mm
->page_table_lock
);
2326 if (vma
->vm_flags
& VM_LOCKED
)
2327 mm
->locked_vm
+= grow
;
2328 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2329 anon_vma_interval_tree_pre_update_vma(vma
);
2330 vma
->vm_start
= address
;
2331 vma
->vm_pgoff
-= grow
;
2332 anon_vma_interval_tree_post_update_vma(vma
);
2333 vma_gap_update(vma
);
2334 spin_unlock(&mm
->page_table_lock
);
2336 perf_event_mmap(vma
);
2340 anon_vma_unlock_write(vma
->anon_vma
);
2341 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2347 * Note how expand_stack() refuses to expand the stack all the way to
2348 * abut the next virtual mapping, *unless* that mapping itself is also
2349 * a stack mapping. We want to leave room for a guard page, after all
2350 * (the guard page itself is not added here, that is done by the
2351 * actual page faulting logic)
2353 * This matches the behavior of the guard page logic (see mm/memory.c:
2354 * check_stack_guard_page()), which only allows the guard page to be
2355 * removed under these circumstances.
2357 #ifdef CONFIG_STACK_GROWSUP
2358 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2360 struct vm_area_struct
*next
;
2362 address
&= PAGE_MASK
;
2363 next
= vma
->vm_next
;
2364 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2365 if (!(next
->vm_flags
& VM_GROWSUP
))
2368 return expand_upwards(vma
, address
);
2371 struct vm_area_struct
*
2372 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2374 struct vm_area_struct
*vma
, *prev
;
2377 vma
= find_vma_prev(mm
, addr
, &prev
);
2378 if (vma
&& (vma
->vm_start
<= addr
))
2380 if (!prev
|| expand_stack(prev
, addr
))
2382 if (prev
->vm_flags
& VM_LOCKED
)
2383 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2387 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2389 struct vm_area_struct
*prev
;
2391 address
&= PAGE_MASK
;
2392 prev
= vma
->vm_prev
;
2393 if (prev
&& prev
->vm_end
== address
) {
2394 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2397 return expand_downwards(vma
, address
);
2400 struct vm_area_struct
*
2401 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2403 struct vm_area_struct
*vma
;
2404 unsigned long start
;
2407 vma
= find_vma(mm
, addr
);
2410 if (vma
->vm_start
<= addr
)
2412 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2414 start
= vma
->vm_start
;
2415 if (expand_stack(vma
, addr
))
2417 if (vma
->vm_flags
& VM_LOCKED
)
2418 populate_vma_page_range(vma
, addr
, start
, NULL
);
2423 EXPORT_SYMBOL_GPL(find_extend_vma
);
2426 * Ok - we have the memory areas we should free on the vma list,
2427 * so release them, and do the vma updates.
2429 * Called with the mm semaphore held.
2431 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2433 unsigned long nr_accounted
= 0;
2435 /* Update high watermark before we lower total_vm */
2436 update_hiwater_vm(mm
);
2438 long nrpages
= vma_pages(vma
);
2440 if (vma
->vm_flags
& VM_ACCOUNT
)
2441 nr_accounted
+= nrpages
;
2442 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2443 vma
= remove_vma(vma
);
2445 vm_unacct_memory(nr_accounted
);
2450 * Get rid of page table information in the indicated region.
2452 * Called with the mm semaphore held.
2454 static void unmap_region(struct mm_struct
*mm
,
2455 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2456 unsigned long start
, unsigned long end
)
2458 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2459 struct mmu_gather tlb
;
2462 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2463 update_hiwater_rss(mm
);
2464 unmap_vmas(&tlb
, vma
, start
, end
);
2465 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2466 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2467 tlb_finish_mmu(&tlb
, start
, end
);
2471 * Create a list of vma's touched by the unmap, removing them from the mm's
2472 * vma list as we go..
2475 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2476 struct vm_area_struct
*prev
, unsigned long end
)
2478 struct vm_area_struct
**insertion_point
;
2479 struct vm_area_struct
*tail_vma
= NULL
;
2481 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2482 vma
->vm_prev
= NULL
;
2484 vma_rb_erase(vma
, &mm
->mm_rb
);
2488 } while (vma
&& vma
->vm_start
< end
);
2489 *insertion_point
= vma
;
2491 vma
->vm_prev
= prev
;
2492 vma_gap_update(vma
);
2494 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2495 tail_vma
->vm_next
= NULL
;
2497 /* Kill the cache */
2498 vmacache_invalidate(mm
);
2502 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2503 * has already been checked or doesn't make sense to fail.
2505 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2506 unsigned long addr
, int new_below
)
2508 struct vm_area_struct
*new;
2511 if (is_vm_hugetlb_page(vma
) && (addr
&
2512 ~(huge_page_mask(hstate_vma(vma
)))))
2515 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2519 /* most fields are the same, copy all, and then fixup */
2522 INIT_LIST_HEAD(&new->anon_vma_chain
);
2527 new->vm_start
= addr
;
2528 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2531 err
= vma_dup_policy(vma
, new);
2535 err
= anon_vma_clone(new, vma
);
2540 get_file(new->vm_file
);
2542 if (new->vm_ops
&& new->vm_ops
->open
)
2543 new->vm_ops
->open(new);
2546 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2547 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2549 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2555 /* Clean everything up if vma_adjust failed. */
2556 if (new->vm_ops
&& new->vm_ops
->close
)
2557 new->vm_ops
->close(new);
2560 unlink_anon_vmas(new);
2562 mpol_put(vma_policy(new));
2564 kmem_cache_free(vm_area_cachep
, new);
2569 * Split a vma into two pieces at address 'addr', a new vma is allocated
2570 * either for the first part or the tail.
2572 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2573 unsigned long addr
, int new_below
)
2575 if (mm
->map_count
>= sysctl_max_map_count
)
2578 return __split_vma(mm
, vma
, addr
, new_below
);
2581 /* Munmap is split into 2 main parts -- this part which finds
2582 * what needs doing, and the areas themselves, which do the
2583 * work. This now handles partial unmappings.
2584 * Jeremy Fitzhardinge <jeremy@goop.org>
2586 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2587 struct list_head
*uf
)
2590 struct vm_area_struct
*vma
, *prev
, *last
;
2592 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2595 len
= PAGE_ALIGN(len
);
2599 /* Find the first overlapping VMA */
2600 vma
= find_vma(mm
, start
);
2603 prev
= vma
->vm_prev
;
2604 /* we have start < vma->vm_end */
2606 /* if it doesn't overlap, we have nothing.. */
2608 if (vma
->vm_start
>= end
)
2612 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2619 * If we need to split any vma, do it now to save pain later.
2621 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2622 * unmapped vm_area_struct will remain in use: so lower split_vma
2623 * places tmp vma above, and higher split_vma places tmp vma below.
2625 if (start
> vma
->vm_start
) {
2629 * Make sure that map_count on return from munmap() will
2630 * not exceed its limit; but let map_count go just above
2631 * its limit temporarily, to help free resources as expected.
2633 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2636 error
= __split_vma(mm
, vma
, start
, 0);
2642 /* Does it split the last one? */
2643 last
= find_vma(mm
, end
);
2644 if (last
&& end
> last
->vm_start
) {
2645 int error
= __split_vma(mm
, last
, end
, 1);
2649 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2652 * unlock any mlock()ed ranges before detaching vmas
2654 if (mm
->locked_vm
) {
2655 struct vm_area_struct
*tmp
= vma
;
2656 while (tmp
&& tmp
->vm_start
< end
) {
2657 if (tmp
->vm_flags
& VM_LOCKED
) {
2658 mm
->locked_vm
-= vma_pages(tmp
);
2659 munlock_vma_pages_all(tmp
);
2666 * Remove the vma's, and unmap the actual pages
2668 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2669 unmap_region(mm
, vma
, prev
, start
, end
);
2671 arch_unmap(mm
, vma
, start
, end
);
2673 /* Fix up all other VM information */
2674 remove_vma_list(mm
, vma
);
2679 int vm_munmap(unsigned long start
, size_t len
)
2682 struct mm_struct
*mm
= current
->mm
;
2685 if (down_write_killable(&mm
->mmap_sem
))
2688 ret
= do_munmap(mm
, start
, len
, &uf
);
2689 up_write(&mm
->mmap_sem
);
2690 userfaultfd_unmap_complete(mm
, &uf
);
2693 EXPORT_SYMBOL(vm_munmap
);
2695 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2697 profile_munmap(addr
);
2698 return vm_munmap(addr
, len
);
2703 * Emulation of deprecated remap_file_pages() syscall.
2705 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2706 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2709 struct mm_struct
*mm
= current
->mm
;
2710 struct vm_area_struct
*vma
;
2711 unsigned long populate
= 0;
2712 unsigned long ret
= -EINVAL
;
2715 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2716 current
->comm
, current
->pid
);
2720 start
= start
& PAGE_MASK
;
2721 size
= size
& PAGE_MASK
;
2723 if (start
+ size
<= start
)
2726 /* Does pgoff wrap? */
2727 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2730 if (down_write_killable(&mm
->mmap_sem
))
2733 vma
= find_vma(mm
, start
);
2735 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2738 if (start
< vma
->vm_start
)
2741 if (start
+ size
> vma
->vm_end
) {
2742 struct vm_area_struct
*next
;
2744 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2745 /* hole between vmas ? */
2746 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2749 if (next
->vm_file
!= vma
->vm_file
)
2752 if (next
->vm_flags
!= vma
->vm_flags
)
2755 if (start
+ size
<= next
->vm_end
)
2763 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2764 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2765 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2767 flags
&= MAP_NONBLOCK
;
2768 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2769 if (vma
->vm_flags
& VM_LOCKED
) {
2770 struct vm_area_struct
*tmp
;
2771 flags
|= MAP_LOCKED
;
2773 /* drop PG_Mlocked flag for over-mapped range */
2774 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2775 tmp
= tmp
->vm_next
) {
2777 * Split pmd and munlock page on the border
2780 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2782 munlock_vma_pages_range(tmp
,
2783 max(tmp
->vm_start
, start
),
2784 min(tmp
->vm_end
, start
+ size
));
2788 file
= get_file(vma
->vm_file
);
2789 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2790 prot
, flags
, pgoff
, &populate
, NULL
);
2793 up_write(&mm
->mmap_sem
);
2795 mm_populate(ret
, populate
);
2796 if (!IS_ERR_VALUE(ret
))
2801 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2803 #ifdef CONFIG_DEBUG_VM
2804 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2806 up_read(&mm
->mmap_sem
);
2812 * this is really a simplified "do_mmap". it only handles
2813 * anonymous maps. eventually we may be able to do some
2814 * brk-specific accounting here.
2816 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
, struct list_head
*uf
)
2818 struct mm_struct
*mm
= current
->mm
;
2819 struct vm_area_struct
*vma
, *prev
;
2821 struct rb_node
**rb_link
, *rb_parent
;
2822 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2825 len
= PAGE_ALIGN(request
);
2831 /* Until we need other flags, refuse anything except VM_EXEC. */
2832 if ((flags
& (~VM_EXEC
)) != 0)
2834 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2836 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2837 if (offset_in_page(error
))
2840 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2845 * mm->mmap_sem is required to protect against another thread
2846 * changing the mappings in case we sleep.
2848 verify_mm_writelocked(mm
);
2851 * Clear old maps. this also does some error checking for us
2853 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2855 if (do_munmap(mm
, addr
, len
, uf
))
2859 /* Check against address space limits *after* clearing old maps... */
2860 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2863 if (mm
->map_count
> sysctl_max_map_count
)
2866 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2869 /* Can we just expand an old private anonymous mapping? */
2870 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2871 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2876 * create a vma struct for an anonymous mapping
2878 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2880 vm_unacct_memory(len
>> PAGE_SHIFT
);
2884 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2886 vma
->vm_start
= addr
;
2887 vma
->vm_end
= addr
+ len
;
2888 vma
->vm_pgoff
= pgoff
;
2889 vma
->vm_flags
= flags
;
2890 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2891 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2893 perf_event_mmap(vma
);
2894 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2895 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2896 if (flags
& VM_LOCKED
)
2897 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2898 vma
->vm_flags
|= VM_SOFTDIRTY
;
2902 static int do_brk(unsigned long addr
, unsigned long len
, struct list_head
*uf
)
2904 return do_brk_flags(addr
, len
, 0, uf
);
2907 int vm_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
)
2909 struct mm_struct
*mm
= current
->mm
;
2914 if (down_write_killable(&mm
->mmap_sem
))
2917 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
2918 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2919 up_write(&mm
->mmap_sem
);
2920 userfaultfd_unmap_complete(mm
, &uf
);
2921 if (populate
&& !ret
)
2922 mm_populate(addr
, len
);
2925 EXPORT_SYMBOL(vm_brk_flags
);
2927 int vm_brk(unsigned long addr
, unsigned long len
)
2929 return vm_brk_flags(addr
, len
, 0);
2931 EXPORT_SYMBOL(vm_brk
);
2933 /* Release all mmaps. */
2934 void exit_mmap(struct mm_struct
*mm
)
2936 struct mmu_gather tlb
;
2937 struct vm_area_struct
*vma
;
2938 unsigned long nr_accounted
= 0;
2940 /* mm's last user has gone, and its about to be pulled down */
2941 mmu_notifier_release(mm
);
2943 if (mm
->locked_vm
) {
2946 if (vma
->vm_flags
& VM_LOCKED
)
2947 munlock_vma_pages_all(vma
);
2955 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2960 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2961 /* update_hiwater_rss(mm) here? but nobody should be looking */
2962 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2963 unmap_vmas(&tlb
, vma
, 0, -1);
2965 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2966 tlb_finish_mmu(&tlb
, 0, -1);
2969 * Walk the list again, actually closing and freeing it,
2970 * with preemption enabled, without holding any MM locks.
2973 if (vma
->vm_flags
& VM_ACCOUNT
)
2974 nr_accounted
+= vma_pages(vma
);
2975 vma
= remove_vma(vma
);
2977 vm_unacct_memory(nr_accounted
);
2980 /* Insert vm structure into process list sorted by address
2981 * and into the inode's i_mmap tree. If vm_file is non-NULL
2982 * then i_mmap_rwsem is taken here.
2984 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2986 struct vm_area_struct
*prev
;
2987 struct rb_node
**rb_link
, *rb_parent
;
2989 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2990 &prev
, &rb_link
, &rb_parent
))
2992 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2993 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2997 * The vm_pgoff of a purely anonymous vma should be irrelevant
2998 * until its first write fault, when page's anon_vma and index
2999 * are set. But now set the vm_pgoff it will almost certainly
3000 * end up with (unless mremap moves it elsewhere before that
3001 * first wfault), so /proc/pid/maps tells a consistent story.
3003 * By setting it to reflect the virtual start address of the
3004 * vma, merges and splits can happen in a seamless way, just
3005 * using the existing file pgoff checks and manipulations.
3006 * Similarly in do_mmap_pgoff and in do_brk.
3008 if (vma_is_anonymous(vma
)) {
3009 BUG_ON(vma
->anon_vma
);
3010 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3013 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3018 * Copy the vma structure to a new location in the same mm,
3019 * prior to moving page table entries, to effect an mremap move.
3021 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3022 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3023 bool *need_rmap_locks
)
3025 struct vm_area_struct
*vma
= *vmap
;
3026 unsigned long vma_start
= vma
->vm_start
;
3027 struct mm_struct
*mm
= vma
->vm_mm
;
3028 struct vm_area_struct
*new_vma
, *prev
;
3029 struct rb_node
**rb_link
, *rb_parent
;
3030 bool faulted_in_anon_vma
= true;
3033 * If anonymous vma has not yet been faulted, update new pgoff
3034 * to match new location, to increase its chance of merging.
3036 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3037 pgoff
= addr
>> PAGE_SHIFT
;
3038 faulted_in_anon_vma
= false;
3041 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3042 return NULL
; /* should never get here */
3043 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3044 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3045 vma
->vm_userfaultfd_ctx
);
3048 * Source vma may have been merged into new_vma
3050 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3051 vma_start
< new_vma
->vm_end
)) {
3053 * The only way we can get a vma_merge with
3054 * self during an mremap is if the vma hasn't
3055 * been faulted in yet and we were allowed to
3056 * reset the dst vma->vm_pgoff to the
3057 * destination address of the mremap to allow
3058 * the merge to happen. mremap must change the
3059 * vm_pgoff linearity between src and dst vmas
3060 * (in turn preventing a vma_merge) to be
3061 * safe. It is only safe to keep the vm_pgoff
3062 * linear if there are no pages mapped yet.
3064 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3065 *vmap
= vma
= new_vma
;
3067 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3069 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
3073 new_vma
->vm_start
= addr
;
3074 new_vma
->vm_end
= addr
+ len
;
3075 new_vma
->vm_pgoff
= pgoff
;
3076 if (vma_dup_policy(vma
, new_vma
))
3078 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
3079 if (anon_vma_clone(new_vma
, vma
))
3080 goto out_free_mempol
;
3081 if (new_vma
->vm_file
)
3082 get_file(new_vma
->vm_file
);
3083 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3084 new_vma
->vm_ops
->open(new_vma
);
3085 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3086 *need_rmap_locks
= false;
3091 mpol_put(vma_policy(new_vma
));
3093 kmem_cache_free(vm_area_cachep
, new_vma
);
3099 * Return true if the calling process may expand its vm space by the passed
3102 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3104 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3107 if (is_data_mapping(flags
) &&
3108 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3109 /* Workaround for Valgrind */
3110 if (rlimit(RLIMIT_DATA
) == 0 &&
3111 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3113 if (!ignore_rlimit_data
) {
3114 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3115 current
->comm
, current
->pid
,
3116 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3117 rlimit(RLIMIT_DATA
));
3125 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3127 mm
->total_vm
+= npages
;
3129 if (is_exec_mapping(flags
))
3130 mm
->exec_vm
+= npages
;
3131 else if (is_stack_mapping(flags
))
3132 mm
->stack_vm
+= npages
;
3133 else if (is_data_mapping(flags
))
3134 mm
->data_vm
+= npages
;
3137 static int special_mapping_fault(struct vm_fault
*vmf
);
3140 * Having a close hook prevents vma merging regardless of flags.
3142 static void special_mapping_close(struct vm_area_struct
*vma
)
3146 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3148 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3151 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3153 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3156 return sm
->mremap(sm
, new_vma
);
3160 static const struct vm_operations_struct special_mapping_vmops
= {
3161 .close
= special_mapping_close
,
3162 .fault
= special_mapping_fault
,
3163 .mremap
= special_mapping_mremap
,
3164 .name
= special_mapping_name
,
3167 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3168 .close
= special_mapping_close
,
3169 .fault
= special_mapping_fault
,
3172 static int special_mapping_fault(struct vm_fault
*vmf
)
3174 struct vm_area_struct
*vma
= vmf
->vma
;
3176 struct page
**pages
;
3178 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3179 pages
= vma
->vm_private_data
;
3181 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3184 return sm
->fault(sm
, vmf
->vma
, vmf
);
3189 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3193 struct page
*page
= *pages
;
3199 return VM_FAULT_SIGBUS
;
3202 static struct vm_area_struct
*__install_special_mapping(
3203 struct mm_struct
*mm
,
3204 unsigned long addr
, unsigned long len
,
3205 unsigned long vm_flags
, void *priv
,
3206 const struct vm_operations_struct
*ops
)
3209 struct vm_area_struct
*vma
;
3211 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3212 if (unlikely(vma
== NULL
))
3213 return ERR_PTR(-ENOMEM
);
3215 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3217 vma
->vm_start
= addr
;
3218 vma
->vm_end
= addr
+ len
;
3220 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3221 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3224 vma
->vm_private_data
= priv
;
3226 ret
= insert_vm_struct(mm
, vma
);
3230 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3232 perf_event_mmap(vma
);
3237 kmem_cache_free(vm_area_cachep
, vma
);
3238 return ERR_PTR(ret
);
3241 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3242 const struct vm_special_mapping
*sm
)
3244 return vma
->vm_private_data
== sm
&&
3245 (vma
->vm_ops
== &special_mapping_vmops
||
3246 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3250 * Called with mm->mmap_sem held for writing.
3251 * Insert a new vma covering the given region, with the given flags.
3252 * Its pages are supplied by the given array of struct page *.
3253 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3254 * The region past the last page supplied will always produce SIGBUS.
3255 * The array pointer and the pages it points to are assumed to stay alive
3256 * for as long as this mapping might exist.
3258 struct vm_area_struct
*_install_special_mapping(
3259 struct mm_struct
*mm
,
3260 unsigned long addr
, unsigned long len
,
3261 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3263 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3264 &special_mapping_vmops
);
3267 int install_special_mapping(struct mm_struct
*mm
,
3268 unsigned long addr
, unsigned long len
,
3269 unsigned long vm_flags
, struct page
**pages
)
3271 struct vm_area_struct
*vma
= __install_special_mapping(
3272 mm
, addr
, len
, vm_flags
, (void *)pages
,
3273 &legacy_special_mapping_vmops
);
3275 return PTR_ERR_OR_ZERO(vma
);
3278 static DEFINE_MUTEX(mm_all_locks_mutex
);
3280 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3282 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3284 * The LSB of head.next can't change from under us
3285 * because we hold the mm_all_locks_mutex.
3287 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3289 * We can safely modify head.next after taking the
3290 * anon_vma->root->rwsem. If some other vma in this mm shares
3291 * the same anon_vma we won't take it again.
3293 * No need of atomic instructions here, head.next
3294 * can't change from under us thanks to the
3295 * anon_vma->root->rwsem.
3297 if (__test_and_set_bit(0, (unsigned long *)
3298 &anon_vma
->root
->rb_root
.rb_node
))
3303 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3305 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3307 * AS_MM_ALL_LOCKS can't change from under us because
3308 * we hold the mm_all_locks_mutex.
3310 * Operations on ->flags have to be atomic because
3311 * even if AS_MM_ALL_LOCKS is stable thanks to the
3312 * mm_all_locks_mutex, there may be other cpus
3313 * changing other bitflags in parallel to us.
3315 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3317 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3322 * This operation locks against the VM for all pte/vma/mm related
3323 * operations that could ever happen on a certain mm. This includes
3324 * vmtruncate, try_to_unmap, and all page faults.
3326 * The caller must take the mmap_sem in write mode before calling
3327 * mm_take_all_locks(). The caller isn't allowed to release the
3328 * mmap_sem until mm_drop_all_locks() returns.
3330 * mmap_sem in write mode is required in order to block all operations
3331 * that could modify pagetables and free pages without need of
3332 * altering the vma layout. It's also needed in write mode to avoid new
3333 * anon_vmas to be associated with existing vmas.
3335 * A single task can't take more than one mm_take_all_locks() in a row
3336 * or it would deadlock.
3338 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3339 * mapping->flags avoid to take the same lock twice, if more than one
3340 * vma in this mm is backed by the same anon_vma or address_space.
3342 * We take locks in following order, accordingly to comment at beginning
3344 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3346 * - all i_mmap_rwsem locks;
3347 * - all anon_vma->rwseml
3349 * We can take all locks within these types randomly because the VM code
3350 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3351 * mm_all_locks_mutex.
3353 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3354 * that may have to take thousand of locks.
3356 * mm_take_all_locks() can fail if it's interrupted by signals.
3358 int mm_take_all_locks(struct mm_struct
*mm
)
3360 struct vm_area_struct
*vma
;
3361 struct anon_vma_chain
*avc
;
3363 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3365 mutex_lock(&mm_all_locks_mutex
);
3367 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3368 if (signal_pending(current
))
3370 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3371 is_vm_hugetlb_page(vma
))
3372 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3375 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3376 if (signal_pending(current
))
3378 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3379 !is_vm_hugetlb_page(vma
))
3380 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3383 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3384 if (signal_pending(current
))
3387 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3388 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3394 mm_drop_all_locks(mm
);
3398 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3400 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3402 * The LSB of head.next can't change to 0 from under
3403 * us because we hold the mm_all_locks_mutex.
3405 * We must however clear the bitflag before unlocking
3406 * the vma so the users using the anon_vma->rb_root will
3407 * never see our bitflag.
3409 * No need of atomic instructions here, head.next
3410 * can't change from under us until we release the
3411 * anon_vma->root->rwsem.
3413 if (!__test_and_clear_bit(0, (unsigned long *)
3414 &anon_vma
->root
->rb_root
.rb_node
))
3416 anon_vma_unlock_write(anon_vma
);
3420 static void vm_unlock_mapping(struct address_space
*mapping
)
3422 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3424 * AS_MM_ALL_LOCKS can't change to 0 from under us
3425 * because we hold the mm_all_locks_mutex.
3427 i_mmap_unlock_write(mapping
);
3428 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3435 * The mmap_sem cannot be released by the caller until
3436 * mm_drop_all_locks() returns.
3438 void mm_drop_all_locks(struct mm_struct
*mm
)
3440 struct vm_area_struct
*vma
;
3441 struct anon_vma_chain
*avc
;
3443 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3444 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3446 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3448 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3449 vm_unlock_anon_vma(avc
->anon_vma
);
3450 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3451 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3454 mutex_unlock(&mm_all_locks_mutex
);
3458 * initialise the percpu counter for VM
3460 void __init
mmap_init(void)
3464 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3469 * Initialise sysctl_user_reserve_kbytes.
3471 * This is intended to prevent a user from starting a single memory hogging
3472 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3475 * The default value is min(3% of free memory, 128MB)
3476 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3478 static int init_user_reserve(void)
3480 unsigned long free_kbytes
;
3482 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3484 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3487 subsys_initcall(init_user_reserve
);
3490 * Initialise sysctl_admin_reserve_kbytes.
3492 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3493 * to log in and kill a memory hogging process.
3495 * Systems with more than 256MB will reserve 8MB, enough to recover
3496 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3497 * only reserve 3% of free pages by default.
3499 static int init_admin_reserve(void)
3501 unsigned long free_kbytes
;
3503 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3505 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3508 subsys_initcall(init_admin_reserve
);
3511 * Reinititalise user and admin reserves if memory is added or removed.
3513 * The default user reserve max is 128MB, and the default max for the
3514 * admin reserve is 8MB. These are usually, but not always, enough to
3515 * enable recovery from a memory hogging process using login/sshd, a shell,
3516 * and tools like top. It may make sense to increase or even disable the
3517 * reserve depending on the existence of swap or variations in the recovery
3518 * tools. So, the admin may have changed them.
3520 * If memory is added and the reserves have been eliminated or increased above
3521 * the default max, then we'll trust the admin.
3523 * If memory is removed and there isn't enough free memory, then we
3524 * need to reset the reserves.
3526 * Otherwise keep the reserve set by the admin.
3528 static int reserve_mem_notifier(struct notifier_block
*nb
,
3529 unsigned long action
, void *data
)
3531 unsigned long tmp
, free_kbytes
;
3535 /* Default max is 128MB. Leave alone if modified by operator. */
3536 tmp
= sysctl_user_reserve_kbytes
;
3537 if (0 < tmp
&& tmp
< (1UL << 17))
3538 init_user_reserve();
3540 /* Default max is 8MB. Leave alone if modified by operator. */
3541 tmp
= sysctl_admin_reserve_kbytes
;
3542 if (0 < tmp
&& tmp
< (1UL << 13))
3543 init_admin_reserve();
3547 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3549 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3550 init_user_reserve();
3551 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3552 sysctl_user_reserve_kbytes
);
3555 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3556 init_admin_reserve();
3557 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3558 sysctl_admin_reserve_kbytes
);
3567 static struct notifier_block reserve_mem_nb
= {
3568 .notifier_call
= reserve_mem_notifier
,
3571 static int __meminit
init_reserve_notifier(void)
3573 if (register_hotmemory_notifier(&reserve_mem_nb
))
3574 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3578 subsys_initcall(init_reserve_notifier
);