atomisp: remove fixedbds kernel code
[linux/fpc-iii.git] / mm / swap_state.c
blob473b71e052a8ed29df7c496af747e2b43491c782
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
23 #include <asm/pgtable.h>
26 * swapper_space is a fiction, retained to simplify the path through
27 * vmscan's shrink_page_list.
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .set_page_dirty = swap_set_page_dirty,
32 #ifdef CONFIG_MIGRATION
33 .migratepage = migrate_page,
34 #endif
37 struct address_space *swapper_spaces[MAX_SWAPFILES];
38 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
42 static struct {
43 unsigned long add_total;
44 unsigned long del_total;
45 unsigned long find_success;
46 unsigned long find_total;
47 } swap_cache_info;
49 unsigned long total_swapcache_pages(void)
51 unsigned int i, j, nr;
52 unsigned long ret = 0;
53 struct address_space *spaces;
55 rcu_read_lock();
56 for (i = 0; i < MAX_SWAPFILES; i++) {
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
63 nr = nr_swapper_spaces[i];
64 spaces = rcu_dereference(swapper_spaces[i]);
65 if (!nr || !spaces)
66 continue;
67 for (j = 0; j < nr; j++)
68 ret += spaces[j].nrpages;
70 rcu_read_unlock();
71 return ret;
74 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
76 void show_swap_cache_info(void)
78 printk("%lu pages in swap cache\n", total_swapcache_pages());
79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
80 swap_cache_info.add_total, swap_cache_info.del_total,
81 swap_cache_info.find_success, swap_cache_info.find_total);
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT - 10));
84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
89 * but sets SwapCache flag and private instead of mapping and index.
91 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
93 int error;
94 struct address_space *address_space;
96 VM_BUG_ON_PAGE(!PageLocked(page), page);
97 VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
100 get_page(page);
101 SetPageSwapCache(page);
102 set_page_private(page, entry.val);
104 address_space = swap_address_space(entry);
105 spin_lock_irq(&address_space->tree_lock);
106 error = radix_tree_insert(&address_space->page_tree,
107 swp_offset(entry), page);
108 if (likely(!error)) {
109 address_space->nrpages++;
110 __inc_node_page_state(page, NR_FILE_PAGES);
111 INC_CACHE_INFO(add_total);
113 spin_unlock_irq(&address_space->tree_lock);
115 if (unlikely(error)) {
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
121 VM_BUG_ON(error == -EEXIST);
122 set_page_private(page, 0UL);
123 ClearPageSwapCache(page);
124 put_page(page);
127 return error;
131 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
133 int error;
135 error = radix_tree_maybe_preload(gfp_mask);
136 if (!error) {
137 error = __add_to_swap_cache(page, entry);
138 radix_tree_preload_end();
140 return error;
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
147 void __delete_from_swap_cache(struct page *page)
149 swp_entry_t entry;
150 struct address_space *address_space;
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 VM_BUG_ON_PAGE(PageWriteback(page), page);
156 entry.val = page_private(page);
157 address_space = swap_address_space(entry);
158 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
159 set_page_private(page, 0);
160 ClearPageSwapCache(page);
161 address_space->nrpages--;
162 __dec_node_page_state(page, NR_FILE_PAGES);
163 INC_CACHE_INFO(del_total);
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
173 int add_to_swap(struct page *page, struct list_head *list)
175 swp_entry_t entry;
176 int err;
178 VM_BUG_ON_PAGE(!PageLocked(page), page);
179 VM_BUG_ON_PAGE(!PageUptodate(page), page);
181 entry = get_swap_page();
182 if (!entry.val)
183 return 0;
185 if (mem_cgroup_try_charge_swap(page, entry)) {
186 swapcache_free(entry);
187 return 0;
190 if (unlikely(PageTransHuge(page)))
191 if (unlikely(split_huge_page_to_list(page, list))) {
192 swapcache_free(entry);
193 return 0;
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
205 * Add it to the swap cache.
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
210 if (!err) {
211 return 1;
212 } else { /* -ENOMEM radix-tree allocation failure */
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
217 swapcache_free(entry);
218 return 0;
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
228 void delete_from_swap_cache(struct page *page)
230 swp_entry_t entry;
231 struct address_space *address_space;
233 entry.val = page_private(page);
235 address_space = swap_address_space(entry);
236 spin_lock_irq(&address_space->tree_lock);
237 __delete_from_swap_cache(page);
238 spin_unlock_irq(&address_space->tree_lock);
240 swapcache_free(entry);
241 put_page(page);
245 * If we are the only user, then try to free up the swap cache.
247 * Its ok to check for PageSwapCache without the page lock
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
250 * - Marcelo
252 static inline void free_swap_cache(struct page *page)
254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 try_to_free_swap(page);
256 unlock_page(page);
261 * Perform a free_page(), also freeing any swap cache associated with
262 * this page if it is the last user of the page.
264 void free_page_and_swap_cache(struct page *page)
266 free_swap_cache(page);
267 if (!is_huge_zero_page(page))
268 put_page(page);
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
275 void free_pages_and_swap_cache(struct page **pages, int nr)
277 struct page **pagep = pages;
278 int i;
280 lru_add_drain();
281 for (i = 0; i < nr; i++)
282 free_swap_cache(pagep[i]);
283 release_pages(pagep, nr, false);
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
292 struct page * lookup_swap_cache(swp_entry_t entry)
294 struct page *page;
296 page = find_get_page(swap_address_space(entry), swp_offset(entry));
298 if (page) {
299 INC_CACHE_INFO(find_success);
300 if (TestClearPageReadahead(page))
301 atomic_inc(&swapin_readahead_hits);
304 INC_CACHE_INFO(find_total);
305 return page;
308 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr,
310 bool *new_page_allocated)
312 struct page *found_page, *new_page = NULL;
313 struct address_space *swapper_space = swap_address_space(entry);
314 int err;
315 *new_page_allocated = false;
317 do {
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
323 found_page = find_get_page(swapper_space, swp_offset(entry));
324 if (found_page)
325 break;
328 * Just skip read ahead for unused swap slot.
329 * During swap_off when swap_slot_cache is disabled,
330 * we have to handle the race between putting
331 * swap entry in swap cache and marking swap slot
332 * as SWAP_HAS_CACHE. That's done in later part of code or
333 * else swap_off will be aborted if we return NULL.
335 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
336 break;
339 * Get a new page to read into from swap.
341 if (!new_page) {
342 new_page = alloc_page_vma(gfp_mask, vma, addr);
343 if (!new_page)
344 break; /* Out of memory */
348 * call radix_tree_preload() while we can wait.
350 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
351 if (err)
352 break;
355 * Swap entry may have been freed since our caller observed it.
357 err = swapcache_prepare(entry);
358 if (err == -EEXIST) {
359 radix_tree_preload_end();
361 * We might race against get_swap_page() and stumble
362 * across a SWAP_HAS_CACHE swap_map entry whose page
363 * has not been brought into the swapcache yet, while
364 * the other end is scheduled away waiting on discard
365 * I/O completion at scan_swap_map().
367 * In order to avoid turning this transitory state
368 * into a permanent loop around this -EEXIST case
369 * if !CONFIG_PREEMPT and the I/O completion happens
370 * to be waiting on the CPU waitqueue where we are now
371 * busy looping, we just conditionally invoke the
372 * scheduler here, if there are some more important
373 * tasks to run.
375 cond_resched();
376 continue;
378 if (err) { /* swp entry is obsolete ? */
379 radix_tree_preload_end();
380 break;
383 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
384 __SetPageLocked(new_page);
385 __SetPageSwapBacked(new_page);
386 err = __add_to_swap_cache(new_page, entry);
387 if (likely(!err)) {
388 radix_tree_preload_end();
390 * Initiate read into locked page and return.
392 lru_cache_add_anon(new_page);
393 *new_page_allocated = true;
394 return new_page;
396 radix_tree_preload_end();
397 __ClearPageLocked(new_page);
399 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
400 * clear SWAP_HAS_CACHE flag.
402 swapcache_free(entry);
403 } while (err != -ENOMEM);
405 if (new_page)
406 put_page(new_page);
407 return found_page;
411 * Locate a page of swap in physical memory, reserving swap cache space
412 * and reading the disk if it is not already cached.
413 * A failure return means that either the page allocation failed or that
414 * the swap entry is no longer in use.
416 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
417 struct vm_area_struct *vma, unsigned long addr)
419 bool page_was_allocated;
420 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
421 vma, addr, &page_was_allocated);
423 if (page_was_allocated)
424 swap_readpage(retpage);
426 return retpage;
429 static unsigned long swapin_nr_pages(unsigned long offset)
431 static unsigned long prev_offset;
432 unsigned int pages, max_pages, last_ra;
433 static atomic_t last_readahead_pages;
435 max_pages = 1 << READ_ONCE(page_cluster);
436 if (max_pages <= 1)
437 return 1;
440 * This heuristic has been found to work well on both sequential and
441 * random loads, swapping to hard disk or to SSD: please don't ask
442 * what the "+ 2" means, it just happens to work well, that's all.
444 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
445 if (pages == 2) {
447 * We can have no readahead hits to judge by: but must not get
448 * stuck here forever, so check for an adjacent offset instead
449 * (and don't even bother to check whether swap type is same).
451 if (offset != prev_offset + 1 && offset != prev_offset - 1)
452 pages = 1;
453 prev_offset = offset;
454 } else {
455 unsigned int roundup = 4;
456 while (roundup < pages)
457 roundup <<= 1;
458 pages = roundup;
461 if (pages > max_pages)
462 pages = max_pages;
464 /* Don't shrink readahead too fast */
465 last_ra = atomic_read(&last_readahead_pages) / 2;
466 if (pages < last_ra)
467 pages = last_ra;
468 atomic_set(&last_readahead_pages, pages);
470 return pages;
474 * swapin_readahead - swap in pages in hope we need them soon
475 * @entry: swap entry of this memory
476 * @gfp_mask: memory allocation flags
477 * @vma: user vma this address belongs to
478 * @addr: target address for mempolicy
480 * Returns the struct page for entry and addr, after queueing swapin.
482 * Primitive swap readahead code. We simply read an aligned block of
483 * (1 << page_cluster) entries in the swap area. This method is chosen
484 * because it doesn't cost us any seek time. We also make sure to queue
485 * the 'original' request together with the readahead ones...
487 * This has been extended to use the NUMA policies from the mm triggering
488 * the readahead.
490 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
492 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
493 struct vm_area_struct *vma, unsigned long addr)
495 struct page *page;
496 unsigned long entry_offset = swp_offset(entry);
497 unsigned long offset = entry_offset;
498 unsigned long start_offset, end_offset;
499 unsigned long mask;
500 struct blk_plug plug;
502 mask = swapin_nr_pages(offset) - 1;
503 if (!mask)
504 goto skip;
506 /* Read a page_cluster sized and aligned cluster around offset. */
507 start_offset = offset & ~mask;
508 end_offset = offset | mask;
509 if (!start_offset) /* First page is swap header. */
510 start_offset++;
512 blk_start_plug(&plug);
513 for (offset = start_offset; offset <= end_offset ; offset++) {
514 /* Ok, do the async read-ahead now */
515 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
516 gfp_mask, vma, addr);
517 if (!page)
518 continue;
519 if (offset != entry_offset)
520 SetPageReadahead(page);
521 put_page(page);
523 blk_finish_plug(&plug);
525 lru_add_drain(); /* Push any new pages onto the LRU now */
526 skip:
527 return read_swap_cache_async(entry, gfp_mask, vma, addr);
530 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
532 struct address_space *spaces, *space;
533 unsigned int i, nr;
535 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
536 spaces = vzalloc(sizeof(struct address_space) * nr);
537 if (!spaces)
538 return -ENOMEM;
539 for (i = 0; i < nr; i++) {
540 space = spaces + i;
541 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
542 atomic_set(&space->i_mmap_writable, 0);
543 space->a_ops = &swap_aops;
544 /* swap cache doesn't use writeback related tags */
545 mapping_set_no_writeback_tags(space);
546 spin_lock_init(&space->tree_lock);
548 nr_swapper_spaces[type] = nr;
549 rcu_assign_pointer(swapper_spaces[type], spaces);
551 return 0;
554 void exit_swap_address_space(unsigned int type)
556 struct address_space *spaces;
558 spaces = swapper_spaces[type];
559 nr_swapper_spaces[type] = 0;
560 rcu_assign_pointer(swapper_spaces[type], NULL);
561 synchronize_rcu();
562 kvfree(spaces);