2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "xfs_trans.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dir_sf.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_alloc.h"
38 #include "xfs_btree.h"
39 #include "xfs_error.h"
41 #include "xfs_iomap.h"
42 #include <linux/mpage.h>
43 #include <linux/pagevec.h>
44 #include <linux/writeback.h>
46 STATIC
void xfs_count_page_state(struct page
*, int *, int *, int *);
48 #if defined(XFS_RW_TRACE)
57 vnode_t
*vp
= LINVFS_GET_VP(inode
);
58 loff_t isize
= i_size_read(inode
);
59 loff_t offset
= page_offset(page
);
60 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
62 if (page_has_buffers(page
))
63 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
69 ktrace_enter(ip
->i_rwtrace
,
70 (void *)((unsigned long)tag
),
74 (void *)((unsigned long)mask
),
75 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
76 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
77 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
78 (void *)((unsigned long)(isize
& 0xffffffff)),
79 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
80 (void *)((unsigned long)(offset
& 0xffffffff)),
81 (void *)((unsigned long)delalloc
),
82 (void *)((unsigned long)unmapped
),
83 (void *)((unsigned long)unwritten
),
88 #define xfs_page_trace(tag, inode, page, mask)
92 * Schedule IO completion handling on a xfsdatad if this was
93 * the final hold on this ioend.
99 if (atomic_dec_and_test(&ioend
->io_remaining
))
100 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
104 * We're now finished for good with this ioend structure.
105 * Update the page state via the associated buffer_heads,
106 * release holds on the inode and bio, and finally free
107 * up memory. Do not use the ioend after this.
113 struct buffer_head
*bh
, *next
;
115 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
116 next
= bh
->b_private
;
117 bh
->b_end_io(bh
, ioend
->io_uptodate
);
120 vn_iowake(ioend
->io_vnode
);
121 mempool_free(ioend
, xfs_ioend_pool
);
125 * Buffered IO write completion for delayed allocate extents.
126 * TODO: Update ondisk isize now that we know the file data
127 * has been flushed (i.e. the notorious "NULL file" problem).
130 xfs_end_bio_delalloc(
133 xfs_ioend_t
*ioend
= data
;
135 xfs_destroy_ioend(ioend
);
139 * Buffered IO write completion for regular, written extents.
145 xfs_ioend_t
*ioend
= data
;
147 xfs_destroy_ioend(ioend
);
151 * IO write completion for unwritten extents.
153 * Issue transactions to convert a buffer range from unwritten
154 * to written extents.
157 xfs_end_bio_unwritten(
160 xfs_ioend_t
*ioend
= data
;
161 vnode_t
*vp
= ioend
->io_vnode
;
162 xfs_off_t offset
= ioend
->io_offset
;
163 size_t size
= ioend
->io_size
;
166 if (ioend
->io_uptodate
)
167 VOP_BMAP(vp
, offset
, size
, BMAPI_UNWRITTEN
, NULL
, NULL
, error
);
168 xfs_destroy_ioend(ioend
);
172 * Allocate and initialise an IO completion structure.
173 * We need to track unwritten extent write completion here initially.
174 * We'll need to extend this for updating the ondisk inode size later
184 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
187 * Set the count to 1 initially, which will prevent an I/O
188 * completion callback from happening before we have started
189 * all the I/O from calling the completion routine too early.
191 atomic_set(&ioend
->io_remaining
, 1);
192 ioend
->io_uptodate
= 1; /* cleared if any I/O fails */
193 ioend
->io_list
= NULL
;
194 ioend
->io_type
= type
;
195 ioend
->io_vnode
= LINVFS_GET_VP(inode
);
196 ioend
->io_buffer_head
= NULL
;
197 ioend
->io_buffer_tail
= NULL
;
198 atomic_inc(&ioend
->io_vnode
->v_iocount
);
199 ioend
->io_offset
= 0;
202 if (type
== IOMAP_UNWRITTEN
)
203 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
, ioend
);
204 else if (type
== IOMAP_DELAY
)
205 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
, ioend
);
207 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
, ioend
);
220 vnode_t
*vp
= LINVFS_GET_VP(inode
);
221 int error
, nmaps
= 1;
223 VOP_BMAP(vp
, offset
, count
, flags
, mapp
, &nmaps
, error
);
224 if (!error
&& (flags
& (BMAPI_WRITE
|BMAPI_ALLOCATE
)))
234 return offset
>= iomapp
->iomap_offset
&&
235 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
239 * BIO completion handler for buffered IO.
244 unsigned int bytes_done
,
247 xfs_ioend_t
*ioend
= bio
->bi_private
;
253 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
255 /* Toss bio and pass work off to an xfsdatad thread */
256 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
257 ioend
->io_uptodate
= 0;
258 bio
->bi_private
= NULL
;
259 bio
->bi_end_io
= NULL
;
262 xfs_finish_ioend(ioend
);
267 xfs_submit_ioend_bio(
271 atomic_inc(&ioend
->io_remaining
);
273 bio
->bi_private
= ioend
;
274 bio
->bi_end_io
= xfs_end_bio
;
276 submit_bio(WRITE
, bio
);
277 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
283 struct buffer_head
*bh
)
286 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
289 bio
= bio_alloc(GFP_NOIO
, nvecs
);
293 ASSERT(bio
->bi_private
== NULL
);
294 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
295 bio
->bi_bdev
= bh
->b_bdev
;
301 xfs_start_buffer_writeback(
302 struct buffer_head
*bh
)
304 ASSERT(buffer_mapped(bh
));
305 ASSERT(buffer_locked(bh
));
306 ASSERT(!buffer_delay(bh
));
307 ASSERT(!buffer_unwritten(bh
));
309 mark_buffer_async_write(bh
);
310 set_buffer_uptodate(bh
);
311 clear_buffer_dirty(bh
);
315 xfs_start_page_writeback(
317 struct writeback_control
*wbc
,
321 ASSERT(PageLocked(page
));
322 ASSERT(!PageWriteback(page
));
323 set_page_writeback(page
);
325 clear_page_dirty(page
);
328 end_page_writeback(page
);
329 wbc
->pages_skipped
++; /* We didn't write this page */
333 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
335 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
339 * Submit all of the bios for all of the ioends we have saved up, covering the
340 * initial writepage page and also any probed pages.
342 * Because we may have multiple ioends spanning a page, we need to start
343 * writeback on all the buffers before we submit them for I/O. If we mark the
344 * buffers as we got, then we can end up with a page that only has buffers
345 * marked async write and I/O complete on can occur before we mark the other
346 * buffers async write.
348 * The end result of this is that we trip a bug in end_page_writeback() because
349 * we call it twice for the one page as the code in end_buffer_async_write()
350 * assumes that all buffers on the page are started at the same time.
352 * The fix is two passes across the ioend list - one to start writeback on the
353 * bufferheads, and then the second one submit them for I/O.
359 xfs_ioend_t
*head
= ioend
;
361 struct buffer_head
*bh
;
363 sector_t lastblock
= 0;
365 /* Pass 1 - start writeback */
367 next
= ioend
->io_list
;
368 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
369 xfs_start_buffer_writeback(bh
);
371 } while ((ioend
= next
) != NULL
);
373 /* Pass 2 - submit I/O */
376 next
= ioend
->io_list
;
379 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
383 bio
= xfs_alloc_ioend_bio(bh
);
384 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
385 xfs_submit_ioend_bio(ioend
, bio
);
389 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
390 xfs_submit_ioend_bio(ioend
, bio
);
394 lastblock
= bh
->b_blocknr
;
397 xfs_submit_ioend_bio(ioend
, bio
);
398 xfs_finish_ioend(ioend
);
399 } while ((ioend
= next
) != NULL
);
403 * Cancel submission of all buffer_heads so far in this endio.
404 * Toss the endio too. Only ever called for the initial page
405 * in a writepage request, so only ever one page.
412 struct buffer_head
*bh
, *next_bh
;
415 next
= ioend
->io_list
;
416 bh
= ioend
->io_buffer_head
;
418 next_bh
= bh
->b_private
;
419 clear_buffer_async_write(bh
);
421 } while ((bh
= next_bh
) != NULL
);
423 vn_iowake(ioend
->io_vnode
);
424 mempool_free(ioend
, xfs_ioend_pool
);
425 } while ((ioend
= next
) != NULL
);
429 * Test to see if we've been building up a completion structure for
430 * earlier buffers -- if so, we try to append to this ioend if we
431 * can, otherwise we finish off any current ioend and start another.
432 * Return true if we've finished the given ioend.
437 struct buffer_head
*bh
,
440 xfs_ioend_t
**result
,
443 xfs_ioend_t
*ioend
= *result
;
445 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
446 xfs_ioend_t
*previous
= *result
;
448 ioend
= xfs_alloc_ioend(inode
, type
);
449 ioend
->io_offset
= offset
;
450 ioend
->io_buffer_head
= bh
;
451 ioend
->io_buffer_tail
= bh
;
453 previous
->io_list
= ioend
;
456 ioend
->io_buffer_tail
->b_private
= bh
;
457 ioend
->io_buffer_tail
= bh
;
460 bh
->b_private
= NULL
;
461 ioend
->io_size
+= bh
->b_size
;
466 struct buffer_head
*bh
,
474 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
475 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
476 ASSERT(iomapp
->iomap_bn
!= IOMAP_DADDR_NULL
);
478 sector_shift
= block_bits
- BBSHIFT
;
479 bn
= (iomapp
->iomap_bn
>> sector_shift
) +
480 ((offset
- iomapp
->iomap_offset
) >> block_bits
);
482 ASSERT(bn
|| (iomapp
->iomap_flags
& IOMAP_REALTIME
));
483 ASSERT((bn
<< sector_shift
) >= iomapp
->iomap_bn
);
487 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
488 set_buffer_mapped(bh
);
489 clear_buffer_delay(bh
);
490 clear_buffer_unwritten(bh
);
494 * Look for a page at index that is suitable for clustering.
499 unsigned int pg_offset
,
504 if (PageWriteback(page
))
507 if (page
->mapping
&& PageDirty(page
)) {
508 if (page_has_buffers(page
)) {
509 struct buffer_head
*bh
, *head
;
511 bh
= head
= page_buffers(page
);
513 if (!buffer_uptodate(bh
))
515 if (mapped
!= buffer_mapped(bh
))
518 if (ret
>= pg_offset
)
520 } while ((bh
= bh
->b_this_page
) != head
);
522 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
531 struct page
*startpage
,
532 struct buffer_head
*bh
,
533 struct buffer_head
*head
,
537 pgoff_t tindex
, tlast
, tloff
;
541 /* First sum forwards in this page */
543 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
546 } while ((bh
= bh
->b_this_page
) != head
);
548 /* if we reached the end of the page, sum forwards in following pages */
549 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
550 tindex
= startpage
->index
+ 1;
552 /* Prune this back to avoid pathological behavior */
553 tloff
= min(tlast
, startpage
->index
+ 64);
555 pagevec_init(&pvec
, 0);
556 while (!done
&& tindex
<= tloff
) {
557 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
559 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
562 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
563 struct page
*page
= pvec
.pages
[i
];
564 size_t pg_offset
, len
= 0;
566 if (tindex
== tlast
) {
568 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
574 pg_offset
= PAGE_CACHE_SIZE
;
576 if (page
->index
== tindex
&& !TestSetPageLocked(page
)) {
577 len
= xfs_probe_page(page
, pg_offset
, mapped
);
590 pagevec_release(&pvec
);
598 * Test if a given page is suitable for writing as part of an unwritten
599 * or delayed allocate extent.
606 if (PageWriteback(page
))
609 if (page
->mapping
&& page_has_buffers(page
)) {
610 struct buffer_head
*bh
, *head
;
613 bh
= head
= page_buffers(page
);
615 if (buffer_unwritten(bh
))
616 acceptable
= (type
== IOMAP_UNWRITTEN
);
617 else if (buffer_delay(bh
))
618 acceptable
= (type
== IOMAP_DELAY
);
619 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
620 acceptable
= (type
== 0);
623 } while ((bh
= bh
->b_this_page
) != head
);
633 * Allocate & map buffers for page given the extent map. Write it out.
634 * except for the original page of a writepage, this is called on
635 * delalloc/unwritten pages only, for the original page it is possible
636 * that the page has no mapping at all.
644 xfs_ioend_t
**ioendp
,
645 struct writeback_control
*wbc
,
649 struct buffer_head
*bh
, *head
;
650 xfs_off_t end_offset
;
651 unsigned long p_offset
;
653 int bbits
= inode
->i_blkbits
;
655 int count
= 0, done
= 0, uptodate
= 1;
656 xfs_off_t offset
= page_offset(page
);
658 if (page
->index
!= tindex
)
660 if (TestSetPageLocked(page
))
662 if (PageWriteback(page
))
663 goto fail_unlock_page
;
664 if (page
->mapping
!= inode
->i_mapping
)
665 goto fail_unlock_page
;
666 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
667 goto fail_unlock_page
;
670 * page_dirty is initially a count of buffers on the page before
671 * EOF and is decrememted as we move each into a cleanable state.
675 * End offset is the highest offset that this page should represent.
676 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
677 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
678 * hence give us the correct page_dirty count. On any other page,
679 * it will be zero and in that case we need page_dirty to be the
680 * count of buffers on the page.
682 end_offset
= min_t(unsigned long long,
683 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
686 len
= 1 << inode
->i_blkbits
;
687 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
689 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
690 page_dirty
= p_offset
/ len
;
692 bh
= head
= page_buffers(page
);
694 if (offset
>= end_offset
)
696 if (!buffer_uptodate(bh
))
698 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
703 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
704 if (buffer_unwritten(bh
))
705 type
= IOMAP_UNWRITTEN
;
709 if (!xfs_iomap_valid(mp
, offset
)) {
714 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
715 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
717 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
719 xfs_add_to_ioend(inode
, bh
, offset
,
722 set_buffer_dirty(bh
);
724 mark_buffer_dirty(bh
);
730 if (buffer_mapped(bh
) && all_bh
&& startio
) {
732 xfs_add_to_ioend(inode
, bh
, offset
,
740 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
742 if (uptodate
&& bh
== head
)
743 SetPageUptodate(page
);
747 struct backing_dev_info
*bdi
;
749 bdi
= inode
->i_mapping
->backing_dev_info
;
751 if (bdi_write_congested(bdi
)) {
752 wbc
->encountered_congestion
= 1;
754 } else if (wbc
->nr_to_write
<= 0) {
758 xfs_start_page_writeback(page
, wbc
, !page_dirty
, count
);
769 * Convert & write out a cluster of pages in the same extent as defined
770 * by mp and following the start page.
777 xfs_ioend_t
**ioendp
,
778 struct writeback_control
*wbc
,
786 pagevec_init(&pvec
, 0);
787 while (!done
&& tindex
<= tlast
) {
788 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
790 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
793 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
794 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
795 iomapp
, ioendp
, wbc
, startio
, all_bh
);
800 pagevec_release(&pvec
);
806 * Calling this without startio set means we are being asked to make a dirty
807 * page ready for freeing it's buffers. When called with startio set then
808 * we are coming from writepage.
810 * When called with startio set it is important that we write the WHOLE
812 * The bh->b_state's cannot know if any of the blocks or which block for
813 * that matter are dirty due to mmap writes, and therefore bh uptodate is
814 * only vaild if the page itself isn't completely uptodate. Some layers
815 * may clear the page dirty flag prior to calling write page, under the
816 * assumption the entire page will be written out; by not writing out the
817 * whole page the page can be reused before all valid dirty data is
818 * written out. Note: in the case of a page that has been dirty'd by
819 * mapwrite and but partially setup by block_prepare_write the
820 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
821 * valid state, thus the whole page must be written out thing.
825 xfs_page_state_convert(
828 struct writeback_control
*wbc
,
830 int unmapped
) /* also implies page uptodate */
832 struct buffer_head
*bh
, *head
;
834 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
836 unsigned long p_offset
= 0;
838 __uint64_t end_offset
;
839 pgoff_t end_index
, last_index
, tlast
;
841 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
842 int page_dirty
, count
= 0, trylock_flag
= 0;
843 int all_bh
= unmapped
;
845 /* wait for other IO threads? */
846 if (startio
&& (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
))
847 trylock_flag
|= BMAPI_TRYLOCK
;
849 /* Is this page beyond the end of the file? */
850 offset
= i_size_read(inode
);
851 end_index
= offset
>> PAGE_CACHE_SHIFT
;
852 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
853 if (page
->index
>= end_index
) {
854 if ((page
->index
>= end_index
+ 1) ||
855 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
863 * page_dirty is initially a count of buffers on the page before
864 * EOF and is decrememted as we move each into a cleanable state.
868 * End offset is the highest offset that this page should represent.
869 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
870 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
871 * hence give us the correct page_dirty count. On any other page,
872 * it will be zero and in that case we need page_dirty to be the
873 * count of buffers on the page.
875 end_offset
= min_t(unsigned long long,
876 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
877 len
= 1 << inode
->i_blkbits
;
878 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
880 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
881 page_dirty
= p_offset
/ len
;
883 bh
= head
= page_buffers(page
);
884 offset
= page_offset(page
);
888 /* TODO: cleanup count and page_dirty */
891 if (offset
>= end_offset
)
893 if (!buffer_uptodate(bh
))
895 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
897 * the iomap is actually still valid, but the ioend
898 * isn't. shouldn't happen too often.
905 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
908 * First case, map an unwritten extent and prepare for
909 * extent state conversion transaction on completion.
911 * Second case, allocate space for a delalloc buffer.
912 * We can return EAGAIN here in the release page case.
914 * Third case, an unmapped buffer was found, and we are
915 * in a path where we need to write the whole page out.
917 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
918 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
919 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
921 * Make sure we don't use a read-only iomap
923 if (flags
== BMAPI_READ
)
926 if (buffer_unwritten(bh
)) {
927 type
= IOMAP_UNWRITTEN
;
928 flags
= BMAPI_WRITE
|BMAPI_IGNSTATE
;
929 } else if (buffer_delay(bh
)) {
931 flags
= BMAPI_ALLOCATE
;
933 flags
|= trylock_flag
;
936 flags
= BMAPI_WRITE
|BMAPI_MMAP
;
940 if (type
== IOMAP_NEW
) {
941 size
= xfs_probe_cluster(inode
,
947 err
= xfs_map_blocks(inode
, offset
, size
,
951 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
954 xfs_map_at_offset(bh
, offset
,
955 inode
->i_blkbits
, &iomap
);
957 xfs_add_to_ioend(inode
, bh
, offset
,
961 set_buffer_dirty(bh
);
963 mark_buffer_dirty(bh
);
968 } else if (buffer_uptodate(bh
) && startio
) {
970 * we got here because the buffer is already mapped.
971 * That means it must already have extents allocated
972 * underneath it. Map the extent by reading it.
974 if (!iomap_valid
|| type
!= 0) {
976 size
= xfs_probe_cluster(inode
, page
, bh
,
978 err
= xfs_map_blocks(inode
, offset
, size
,
982 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
986 if (!test_and_set_bit(BH_Lock
, &bh
->b_state
)) {
987 ASSERT(buffer_mapped(bh
));
990 xfs_add_to_ioend(inode
, bh
, offset
, type
,
991 &ioend
, !iomap_valid
);
997 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
998 (unmapped
|| startio
)) {
1005 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1007 if (uptodate
&& bh
== head
)
1008 SetPageUptodate(page
);
1011 xfs_start_page_writeback(page
, wbc
, 1, count
);
1013 if (ioend
&& iomap_valid
) {
1014 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1016 tlast
= min_t(pgoff_t
, offset
, last_index
);
1017 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1018 wbc
, startio
, all_bh
, tlast
);
1022 xfs_submit_ioend(iohead
);
1028 xfs_cancel_ioend(iohead
);
1031 * If it's delalloc and we have nowhere to put it,
1032 * throw it away, unless the lower layers told
1035 if (err
!= -EAGAIN
) {
1037 block_invalidatepage(page
, 0);
1038 ClearPageUptodate(page
);
1045 struct inode
*inode
,
1047 unsigned long blocks
,
1048 struct buffer_head
*bh_result
,
1051 bmapi_flags_t flags
)
1053 vnode_t
*vp
= LINVFS_GET_VP(inode
);
1060 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1062 size
= (ssize_t
) min_t(xfs_off_t
, LONG_MAX
,
1063 (xfs_off_t
)blocks
<< inode
->i_blkbits
);
1065 size
= 1 << inode
->i_blkbits
;
1067 VOP_BMAP(vp
, offset
, size
,
1068 create
? flags
: BMAPI_READ
, &iomap
, &retpbbm
, error
);
1075 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1079 /* For unwritten extents do not report a disk address on
1080 * the read case (treat as if we're reading into a hole).
1082 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1083 delta
= offset
- iomap
.iomap_offset
;
1084 delta
>>= inode
->i_blkbits
;
1086 bn
= iomap
.iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
);
1088 BUG_ON(!bn
&& !(iomap
.iomap_flags
& IOMAP_REALTIME
));
1089 bh_result
->b_blocknr
= bn
;
1090 set_buffer_mapped(bh_result
);
1092 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1094 bh_result
->b_private
= inode
;
1095 set_buffer_unwritten(bh_result
);
1096 set_buffer_delay(bh_result
);
1100 /* If this is a realtime file, data might be on a new device */
1101 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1103 /* If we previously allocated a block out beyond eof and
1104 * we are now coming back to use it then we will need to
1105 * flag it as new even if it has a disk address.
1108 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1109 (offset
>= i_size_read(inode
)) || (iomap
.iomap_flags
& IOMAP_NEW
)))
1110 set_buffer_new(bh_result
);
1112 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1115 set_buffer_uptodate(bh_result
);
1116 set_buffer_mapped(bh_result
);
1117 set_buffer_delay(bh_result
);
1122 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1123 offset
= min_t(xfs_off_t
,
1124 iomap
.iomap_bsize
- iomap
.iomap_delta
,
1125 (xfs_off_t
)blocks
<< inode
->i_blkbits
);
1126 bh_result
->b_size
= (u32
) min_t(xfs_off_t
, UINT_MAX
, offset
);
1134 struct inode
*inode
,
1136 struct buffer_head
*bh_result
,
1139 return __linvfs_get_block(inode
, iblock
, 0, bh_result
,
1140 create
, 0, BMAPI_WRITE
);
1144 linvfs_get_blocks_direct(
1145 struct inode
*inode
,
1147 unsigned long max_blocks
,
1148 struct buffer_head
*bh_result
,
1151 return __linvfs_get_block(inode
, iblock
, max_blocks
, bh_result
,
1152 create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1156 linvfs_end_io_direct(
1162 xfs_ioend_t
*ioend
= iocb
->private;
1165 * Non-NULL private data means we need to issue a transaction to
1166 * convert a range from unwritten to written extents. This needs
1167 * to happen from process contect but aio+dio I/O completion
1168 * happens from irq context so we need to defer it to a workqueue.
1169 * This is not nessecary for synchronous direct I/O, but we do
1170 * it anyway to keep the code uniform and simpler.
1172 * The core direct I/O code might be changed to always call the
1173 * completion handler in the future, in which case all this can
1176 if (private && size
> 0) {
1177 ioend
->io_offset
= offset
;
1178 ioend
->io_size
= size
;
1179 xfs_finish_ioend(ioend
);
1182 xfs_destroy_ioend(ioend
);
1186 * blockdev_direct_IO can return an error even afer the I/O
1187 * completion handler was called. Thus we need to protect
1188 * against double-freeing.
1190 iocb
->private = NULL
;
1197 const struct iovec
*iov
,
1199 unsigned long nr_segs
)
1201 struct file
*file
= iocb
->ki_filp
;
1202 struct inode
*inode
= file
->f_mapping
->host
;
1203 vnode_t
*vp
= LINVFS_GET_VP(inode
);
1209 VOP_BMAP(vp
, offset
, 0, BMAPI_DEVICE
, &iomap
, &maps
, error
);
1213 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1215 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1216 iomap
.iomap_target
->bt_bdev
,
1217 iov
, offset
, nr_segs
,
1218 linvfs_get_blocks_direct
,
1219 linvfs_end_io_direct
);
1221 if (unlikely(ret
<= 0 && iocb
->private))
1222 xfs_destroy_ioend(iocb
->private);
1229 struct address_space
*mapping
,
1232 struct inode
*inode
= (struct inode
*)mapping
->host
;
1233 vnode_t
*vp
= LINVFS_GET_VP(inode
);
1236 vn_trace_entry(vp
, "linvfs_bmap", (inst_t
*)__return_address
);
1238 VOP_RWLOCK(vp
, VRWLOCK_READ
);
1239 VOP_FLUSH_PAGES(vp
, (xfs_off_t
)0, -1, 0, FI_REMAPF
, error
);
1240 VOP_RWUNLOCK(vp
, VRWLOCK_READ
);
1241 return generic_block_bmap(mapping
, block
, linvfs_get_block
);
1246 struct file
*unused
,
1249 return mpage_readpage(page
, linvfs_get_block
);
1254 struct file
*unused
,
1255 struct address_space
*mapping
,
1256 struct list_head
*pages
,
1259 return mpage_readpages(mapping
, pages
, nr_pages
, linvfs_get_block
);
1263 xfs_count_page_state(
1269 struct buffer_head
*bh
, *head
;
1271 *delalloc
= *unmapped
= *unwritten
= 0;
1273 bh
= head
= page_buffers(page
);
1275 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
1277 else if (buffer_unwritten(bh
) && !buffer_delay(bh
))
1278 clear_buffer_unwritten(bh
);
1279 else if (buffer_unwritten(bh
))
1281 else if (buffer_delay(bh
))
1283 } while ((bh
= bh
->b_this_page
) != head
);
1288 * writepage: Called from one of two places:
1290 * 1. we are flushing a delalloc buffer head.
1292 * 2. we are writing out a dirty page. Typically the page dirty
1293 * state is cleared before we get here. In this case is it
1294 * conceivable we have no buffer heads.
1296 * For delalloc space on the page we need to allocate space and
1297 * flush it. For unmapped buffer heads on the page we should
1298 * allocate space if the page is uptodate. For any other dirty
1299 * buffer heads on the page we should flush them.
1301 * If we detect that a transaction would be required to flush
1302 * the page, we have to check the process flags first, if we
1303 * are already in a transaction or disk I/O during allocations
1304 * is off, we need to fail the writepage and redirty the page.
1310 struct writeback_control
*wbc
)
1314 int delalloc
, unmapped
, unwritten
;
1315 struct inode
*inode
= page
->mapping
->host
;
1317 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1320 * We need a transaction if:
1321 * 1. There are delalloc buffers on the page
1322 * 2. The page is uptodate and we have unmapped buffers
1323 * 3. The page is uptodate and we have no buffers
1324 * 4. There are unwritten buffers on the page
1327 if (!page_has_buffers(page
)) {
1331 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1332 if (!PageUptodate(page
))
1334 need_trans
= delalloc
+ unmapped
+ unwritten
;
1338 * If we need a transaction and the process flags say
1339 * we are already in a transaction, or no IO is allowed
1340 * then mark the page dirty again and leave the page
1343 if (PFLAGS_TEST_FSTRANS() && need_trans
)
1347 * Delay hooking up buffer heads until we have
1348 * made our go/no-go decision.
1350 if (!page_has_buffers(page
))
1351 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1354 * Convert delayed allocate, unwritten or unmapped space
1355 * to real space and flush out to disk.
1357 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1358 if (error
== -EAGAIN
)
1360 if (unlikely(error
< 0))
1366 redirty_page_for_writepage(wbc
, page
);
1375 linvfs_invalidate_page(
1377 unsigned long offset
)
1379 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1380 page
->mapping
->host
, page
, offset
);
1381 return block_invalidatepage(page
, offset
);
1385 * Called to move a page into cleanable state - and from there
1386 * to be released. Possibly the page is already clean. We always
1387 * have buffer heads in this call.
1389 * Returns 0 if the page is ok to release, 1 otherwise.
1391 * Possible scenarios are:
1393 * 1. We are being called to release a page which has been written
1394 * to via regular I/O. buffer heads will be dirty and possibly
1395 * delalloc. If no delalloc buffer heads in this case then we
1396 * can just return zero.
1398 * 2. We are called to release a page which has been written via
1399 * mmap, all we need to do is ensure there is no delalloc
1400 * state in the buffer heads, if not we can let the caller
1401 * free them and we should come back later via writepage.
1404 linvfs_release_page(
1408 struct inode
*inode
= page
->mapping
->host
;
1409 int dirty
, delalloc
, unmapped
, unwritten
;
1410 struct writeback_control wbc
= {
1411 .sync_mode
= WB_SYNC_ALL
,
1415 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, gfp_mask
);
1417 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1418 if (!delalloc
&& !unwritten
)
1421 if (!(gfp_mask
& __GFP_FS
))
1424 /* If we are already inside a transaction or the thread cannot
1425 * do I/O, we cannot release this page.
1427 if (PFLAGS_TEST_FSTRANS())
1431 * Convert delalloc space to real space, do not flush the
1432 * data out to disk, that will be done by the caller.
1433 * Never need to allocate space here - we will always
1434 * come back to writepage in that case.
1436 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1437 if (dirty
== 0 && !unwritten
)
1442 return try_to_free_buffers(page
);
1446 linvfs_prepare_write(
1452 return block_prepare_write(page
, from
, to
, linvfs_get_block
);
1455 struct address_space_operations linvfs_aops
= {
1456 .readpage
= linvfs_readpage
,
1457 .readpages
= linvfs_readpages
,
1458 .writepage
= linvfs_writepage
,
1459 .sync_page
= block_sync_page
,
1460 .releasepage
= linvfs_release_page
,
1461 .invalidatepage
= linvfs_invalidate_page
,
1462 .prepare_write
= linvfs_prepare_write
,
1463 .commit_write
= generic_commit_write
,
1464 .bmap
= linvfs_bmap
,
1465 .direct_IO
= linvfs_direct_IO
,
1466 .migratepage
= buffer_migrate_page
,