Linux 3.6.6
[linux/fpc-iii.git] / fs / ext4 / extents.c
blob741bb944f97b330237dacdc22901294467023443
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
48 * used by extent splitting.
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
58 static __le32 ext4_extent_block_csum(struct inode *inode,
59 struct ext4_extent_header *eh)
61 struct ext4_inode_info *ei = EXT4_I(inode);
62 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
63 __u32 csum;
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
66 EXT4_EXTENT_TAIL_OFFSET(eh));
67 return cpu_to_le32(csum);
70 static int ext4_extent_block_csum_verify(struct inode *inode,
71 struct ext4_extent_header *eh)
73 struct ext4_extent_tail *et;
75 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
76 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
77 return 1;
79 et = find_ext4_extent_tail(eh);
80 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81 return 0;
82 return 1;
85 static void ext4_extent_block_csum_set(struct inode *inode,
86 struct ext4_extent_header *eh)
88 struct ext4_extent_tail *et;
90 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
91 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
92 return;
94 et = find_ext4_extent_tail(eh);
95 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 static int ext4_split_extent(handle_t *handle,
99 struct inode *inode,
100 struct ext4_ext_path *path,
101 struct ext4_map_blocks *map,
102 int split_flag,
103 int flags);
105 static int ext4_split_extent_at(handle_t *handle,
106 struct inode *inode,
107 struct ext4_ext_path *path,
108 ext4_lblk_t split,
109 int split_flag,
110 int flags);
112 static int ext4_ext_truncate_extend_restart(handle_t *handle,
113 struct inode *inode,
114 int needed)
116 int err;
118 if (!ext4_handle_valid(handle))
119 return 0;
120 if (handle->h_buffer_credits > needed)
121 return 0;
122 err = ext4_journal_extend(handle, needed);
123 if (err <= 0)
124 return err;
125 err = ext4_truncate_restart_trans(handle, inode, needed);
126 if (err == 0)
127 err = -EAGAIN;
129 return err;
133 * could return:
134 * - EROFS
135 * - ENOMEM
137 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
138 struct ext4_ext_path *path)
140 if (path->p_bh) {
141 /* path points to block */
142 return ext4_journal_get_write_access(handle, path->p_bh);
144 /* path points to leaf/index in inode body */
145 /* we use in-core data, no need to protect them */
146 return 0;
150 * could return:
151 * - EROFS
152 * - ENOMEM
153 * - EIO
155 #define ext4_ext_dirty(handle, inode, path) \
156 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
157 static int __ext4_ext_dirty(const char *where, unsigned int line,
158 handle_t *handle, struct inode *inode,
159 struct ext4_ext_path *path)
161 int err;
162 if (path->p_bh) {
163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
164 /* path points to block */
165 err = __ext4_handle_dirty_metadata(where, line, handle,
166 inode, path->p_bh);
167 } else {
168 /* path points to leaf/index in inode body */
169 err = ext4_mark_inode_dirty(handle, inode);
171 return err;
174 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
175 struct ext4_ext_path *path,
176 ext4_lblk_t block)
178 if (path) {
179 int depth = path->p_depth;
180 struct ext4_extent *ex;
183 * Try to predict block placement assuming that we are
184 * filling in a file which will eventually be
185 * non-sparse --- i.e., in the case of libbfd writing
186 * an ELF object sections out-of-order but in a way
187 * the eventually results in a contiguous object or
188 * executable file, or some database extending a table
189 * space file. However, this is actually somewhat
190 * non-ideal if we are writing a sparse file such as
191 * qemu or KVM writing a raw image file that is going
192 * to stay fairly sparse, since it will end up
193 * fragmenting the file system's free space. Maybe we
194 * should have some hueristics or some way to allow
195 * userspace to pass a hint to file system,
196 * especially if the latter case turns out to be
197 * common.
199 ex = path[depth].p_ext;
200 if (ex) {
201 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
202 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
204 if (block > ext_block)
205 return ext_pblk + (block - ext_block);
206 else
207 return ext_pblk - (ext_block - block);
210 /* it looks like index is empty;
211 * try to find starting block from index itself */
212 if (path[depth].p_bh)
213 return path[depth].p_bh->b_blocknr;
216 /* OK. use inode's group */
217 return ext4_inode_to_goal_block(inode);
221 * Allocation for a meta data block
223 static ext4_fsblk_t
224 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
225 struct ext4_ext_path *path,
226 struct ext4_extent *ex, int *err, unsigned int flags)
228 ext4_fsblk_t goal, newblock;
230 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
231 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
232 NULL, err);
233 return newblock;
236 static inline int ext4_ext_space_block(struct inode *inode, int check)
238 int size;
240 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 / sizeof(struct ext4_extent);
242 #ifdef AGGRESSIVE_TEST
243 if (!check && size > 6)
244 size = 6;
245 #endif
246 return size;
249 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
251 int size;
253 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
254 / sizeof(struct ext4_extent_idx);
255 #ifdef AGGRESSIVE_TEST
256 if (!check && size > 5)
257 size = 5;
258 #endif
259 return size;
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
264 int size;
266 size = sizeof(EXT4_I(inode)->i_data);
267 size -= sizeof(struct ext4_extent_header);
268 size /= sizeof(struct ext4_extent);
269 #ifdef AGGRESSIVE_TEST
270 if (!check && size > 3)
271 size = 3;
272 #endif
273 return size;
276 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278 int size;
280 size = sizeof(EXT4_I(inode)->i_data);
281 size -= sizeof(struct ext4_extent_header);
282 size /= sizeof(struct ext4_extent_idx);
283 #ifdef AGGRESSIVE_TEST
284 if (!check && size > 4)
285 size = 4;
286 #endif
287 return size;
291 * Calculate the number of metadata blocks needed
292 * to allocate @blocks
293 * Worse case is one block per extent
295 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
297 struct ext4_inode_info *ei = EXT4_I(inode);
298 int idxs;
300 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
301 / sizeof(struct ext4_extent_idx));
304 * If the new delayed allocation block is contiguous with the
305 * previous da block, it can share index blocks with the
306 * previous block, so we only need to allocate a new index
307 * block every idxs leaf blocks. At ldxs**2 blocks, we need
308 * an additional index block, and at ldxs**3 blocks, yet
309 * another index blocks.
311 if (ei->i_da_metadata_calc_len &&
312 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
313 int num = 0;
315 if ((ei->i_da_metadata_calc_len % idxs) == 0)
316 num++;
317 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
320 num++;
321 ei->i_da_metadata_calc_len = 0;
322 } else
323 ei->i_da_metadata_calc_len++;
324 ei->i_da_metadata_calc_last_lblock++;
325 return num;
329 * In the worst case we need a new set of index blocks at
330 * every level of the inode's extent tree.
332 ei->i_da_metadata_calc_len = 1;
333 ei->i_da_metadata_calc_last_lblock = lblock;
334 return ext_depth(inode) + 1;
337 static int
338 ext4_ext_max_entries(struct inode *inode, int depth)
340 int max;
342 if (depth == ext_depth(inode)) {
343 if (depth == 0)
344 max = ext4_ext_space_root(inode, 1);
345 else
346 max = ext4_ext_space_root_idx(inode, 1);
347 } else {
348 if (depth == 0)
349 max = ext4_ext_space_block(inode, 1);
350 else
351 max = ext4_ext_space_block_idx(inode, 1);
354 return max;
357 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359 ext4_fsblk_t block = ext4_ext_pblock(ext);
360 int len = ext4_ext_get_actual_len(ext);
362 if (len == 0)
363 return 0;
364 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 static int ext4_valid_extent_idx(struct inode *inode,
368 struct ext4_extent_idx *ext_idx)
370 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
372 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 static int ext4_valid_extent_entries(struct inode *inode,
376 struct ext4_extent_header *eh,
377 int depth)
379 unsigned short entries;
380 if (eh->eh_entries == 0)
381 return 1;
383 entries = le16_to_cpu(eh->eh_entries);
385 if (depth == 0) {
386 /* leaf entries */
387 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
388 while (entries) {
389 if (!ext4_valid_extent(inode, ext))
390 return 0;
391 ext++;
392 entries--;
394 } else {
395 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
396 while (entries) {
397 if (!ext4_valid_extent_idx(inode, ext_idx))
398 return 0;
399 ext_idx++;
400 entries--;
403 return 1;
406 static int __ext4_ext_check(const char *function, unsigned int line,
407 struct inode *inode, struct ext4_extent_header *eh,
408 int depth)
410 const char *error_msg;
411 int max = 0;
413 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
414 error_msg = "invalid magic";
415 goto corrupted;
417 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
418 error_msg = "unexpected eh_depth";
419 goto corrupted;
421 if (unlikely(eh->eh_max == 0)) {
422 error_msg = "invalid eh_max";
423 goto corrupted;
425 max = ext4_ext_max_entries(inode, depth);
426 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
427 error_msg = "too large eh_max";
428 goto corrupted;
430 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
431 error_msg = "invalid eh_entries";
432 goto corrupted;
434 if (!ext4_valid_extent_entries(inode, eh, depth)) {
435 error_msg = "invalid extent entries";
436 goto corrupted;
438 /* Verify checksum on non-root extent tree nodes */
439 if (ext_depth(inode) != depth &&
440 !ext4_extent_block_csum_verify(inode, eh)) {
441 error_msg = "extent tree corrupted";
442 goto corrupted;
444 return 0;
446 corrupted:
447 ext4_error_inode(inode, function, line, 0,
448 "bad header/extent: %s - magic %x, "
449 "entries %u, max %u(%u), depth %u(%u)",
450 error_msg, le16_to_cpu(eh->eh_magic),
451 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
452 max, le16_to_cpu(eh->eh_depth), depth);
454 return -EIO;
457 #define ext4_ext_check(inode, eh, depth) \
458 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
460 int ext4_ext_check_inode(struct inode *inode)
462 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
465 static int __ext4_ext_check_block(const char *function, unsigned int line,
466 struct inode *inode,
467 struct ext4_extent_header *eh,
468 int depth,
469 struct buffer_head *bh)
471 int ret;
473 if (buffer_verified(bh))
474 return 0;
475 ret = ext4_ext_check(inode, eh, depth);
476 if (ret)
477 return ret;
478 set_buffer_verified(bh);
479 return ret;
482 #define ext4_ext_check_block(inode, eh, depth, bh) \
483 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
485 #ifdef EXT_DEBUG
486 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
488 int k, l = path->p_depth;
490 ext_debug("path:");
491 for (k = 0; k <= l; k++, path++) {
492 if (path->p_idx) {
493 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
494 ext4_idx_pblock(path->p_idx));
495 } else if (path->p_ext) {
496 ext_debug(" %d:[%d]%d:%llu ",
497 le32_to_cpu(path->p_ext->ee_block),
498 ext4_ext_is_uninitialized(path->p_ext),
499 ext4_ext_get_actual_len(path->p_ext),
500 ext4_ext_pblock(path->p_ext));
501 } else
502 ext_debug(" []");
504 ext_debug("\n");
507 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
509 int depth = ext_depth(inode);
510 struct ext4_extent_header *eh;
511 struct ext4_extent *ex;
512 int i;
514 if (!path)
515 return;
517 eh = path[depth].p_hdr;
518 ex = EXT_FIRST_EXTENT(eh);
520 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
522 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
523 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
524 ext4_ext_is_uninitialized(ex),
525 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
527 ext_debug("\n");
530 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
531 ext4_fsblk_t newblock, int level)
533 int depth = ext_depth(inode);
534 struct ext4_extent *ex;
536 if (depth != level) {
537 struct ext4_extent_idx *idx;
538 idx = path[level].p_idx;
539 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
540 ext_debug("%d: move %d:%llu in new index %llu\n", level,
541 le32_to_cpu(idx->ei_block),
542 ext4_idx_pblock(idx),
543 newblock);
544 idx++;
547 return;
550 ex = path[depth].p_ext;
551 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
552 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
553 le32_to_cpu(ex->ee_block),
554 ext4_ext_pblock(ex),
555 ext4_ext_is_uninitialized(ex),
556 ext4_ext_get_actual_len(ex),
557 newblock);
558 ex++;
562 #else
563 #define ext4_ext_show_path(inode, path)
564 #define ext4_ext_show_leaf(inode, path)
565 #define ext4_ext_show_move(inode, path, newblock, level)
566 #endif
568 void ext4_ext_drop_refs(struct ext4_ext_path *path)
570 int depth = path->p_depth;
571 int i;
573 for (i = 0; i <= depth; i++, path++)
574 if (path->p_bh) {
575 brelse(path->p_bh);
576 path->p_bh = NULL;
581 * ext4_ext_binsearch_idx:
582 * binary search for the closest index of the given block
583 * the header must be checked before calling this
585 static void
586 ext4_ext_binsearch_idx(struct inode *inode,
587 struct ext4_ext_path *path, ext4_lblk_t block)
589 struct ext4_extent_header *eh = path->p_hdr;
590 struct ext4_extent_idx *r, *l, *m;
593 ext_debug("binsearch for %u(idx): ", block);
595 l = EXT_FIRST_INDEX(eh) + 1;
596 r = EXT_LAST_INDEX(eh);
597 while (l <= r) {
598 m = l + (r - l) / 2;
599 if (block < le32_to_cpu(m->ei_block))
600 r = m - 1;
601 else
602 l = m + 1;
603 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
604 m, le32_to_cpu(m->ei_block),
605 r, le32_to_cpu(r->ei_block));
608 path->p_idx = l - 1;
609 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
610 ext4_idx_pblock(path->p_idx));
612 #ifdef CHECK_BINSEARCH
614 struct ext4_extent_idx *chix, *ix;
615 int k;
617 chix = ix = EXT_FIRST_INDEX(eh);
618 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
619 if (k != 0 &&
620 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
621 printk(KERN_DEBUG "k=%d, ix=0x%p, "
622 "first=0x%p\n", k,
623 ix, EXT_FIRST_INDEX(eh));
624 printk(KERN_DEBUG "%u <= %u\n",
625 le32_to_cpu(ix->ei_block),
626 le32_to_cpu(ix[-1].ei_block));
628 BUG_ON(k && le32_to_cpu(ix->ei_block)
629 <= le32_to_cpu(ix[-1].ei_block));
630 if (block < le32_to_cpu(ix->ei_block))
631 break;
632 chix = ix;
634 BUG_ON(chix != path->p_idx);
636 #endif
641 * ext4_ext_binsearch:
642 * binary search for closest extent of the given block
643 * the header must be checked before calling this
645 static void
646 ext4_ext_binsearch(struct inode *inode,
647 struct ext4_ext_path *path, ext4_lblk_t block)
649 struct ext4_extent_header *eh = path->p_hdr;
650 struct ext4_extent *r, *l, *m;
652 if (eh->eh_entries == 0) {
654 * this leaf is empty:
655 * we get such a leaf in split/add case
657 return;
660 ext_debug("binsearch for %u: ", block);
662 l = EXT_FIRST_EXTENT(eh) + 1;
663 r = EXT_LAST_EXTENT(eh);
665 while (l <= r) {
666 m = l + (r - l) / 2;
667 if (block < le32_to_cpu(m->ee_block))
668 r = m - 1;
669 else
670 l = m + 1;
671 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
672 m, le32_to_cpu(m->ee_block),
673 r, le32_to_cpu(r->ee_block));
676 path->p_ext = l - 1;
677 ext_debug(" -> %d:%llu:[%d]%d ",
678 le32_to_cpu(path->p_ext->ee_block),
679 ext4_ext_pblock(path->p_ext),
680 ext4_ext_is_uninitialized(path->p_ext),
681 ext4_ext_get_actual_len(path->p_ext));
683 #ifdef CHECK_BINSEARCH
685 struct ext4_extent *chex, *ex;
686 int k;
688 chex = ex = EXT_FIRST_EXTENT(eh);
689 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
690 BUG_ON(k && le32_to_cpu(ex->ee_block)
691 <= le32_to_cpu(ex[-1].ee_block));
692 if (block < le32_to_cpu(ex->ee_block))
693 break;
694 chex = ex;
696 BUG_ON(chex != path->p_ext);
698 #endif
702 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
704 struct ext4_extent_header *eh;
706 eh = ext_inode_hdr(inode);
707 eh->eh_depth = 0;
708 eh->eh_entries = 0;
709 eh->eh_magic = EXT4_EXT_MAGIC;
710 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
711 ext4_mark_inode_dirty(handle, inode);
712 ext4_ext_invalidate_cache(inode);
713 return 0;
716 struct ext4_ext_path *
717 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
718 struct ext4_ext_path *path)
720 struct ext4_extent_header *eh;
721 struct buffer_head *bh;
722 short int depth, i, ppos = 0, alloc = 0;
724 eh = ext_inode_hdr(inode);
725 depth = ext_depth(inode);
727 /* account possible depth increase */
728 if (!path) {
729 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
730 GFP_NOFS);
731 if (!path)
732 return ERR_PTR(-ENOMEM);
733 alloc = 1;
735 path[0].p_hdr = eh;
736 path[0].p_bh = NULL;
738 i = depth;
739 /* walk through the tree */
740 while (i) {
741 ext_debug("depth %d: num %d, max %d\n",
742 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
744 ext4_ext_binsearch_idx(inode, path + ppos, block);
745 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
746 path[ppos].p_depth = i;
747 path[ppos].p_ext = NULL;
749 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
750 if (unlikely(!bh))
751 goto err;
752 if (!bh_uptodate_or_lock(bh)) {
753 trace_ext4_ext_load_extent(inode, block,
754 path[ppos].p_block);
755 if (bh_submit_read(bh) < 0) {
756 put_bh(bh);
757 goto err;
760 eh = ext_block_hdr(bh);
761 ppos++;
762 if (unlikely(ppos > depth)) {
763 put_bh(bh);
764 EXT4_ERROR_INODE(inode,
765 "ppos %d > depth %d", ppos, depth);
766 goto err;
768 path[ppos].p_bh = bh;
769 path[ppos].p_hdr = eh;
770 i--;
772 if (ext4_ext_check_block(inode, eh, i, bh))
773 goto err;
776 path[ppos].p_depth = i;
777 path[ppos].p_ext = NULL;
778 path[ppos].p_idx = NULL;
780 /* find extent */
781 ext4_ext_binsearch(inode, path + ppos, block);
782 /* if not an empty leaf */
783 if (path[ppos].p_ext)
784 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
786 ext4_ext_show_path(inode, path);
788 return path;
790 err:
791 ext4_ext_drop_refs(path);
792 if (alloc)
793 kfree(path);
794 return ERR_PTR(-EIO);
798 * ext4_ext_insert_index:
799 * insert new index [@logical;@ptr] into the block at @curp;
800 * check where to insert: before @curp or after @curp
802 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
803 struct ext4_ext_path *curp,
804 int logical, ext4_fsblk_t ptr)
806 struct ext4_extent_idx *ix;
807 int len, err;
809 err = ext4_ext_get_access(handle, inode, curp);
810 if (err)
811 return err;
813 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
814 EXT4_ERROR_INODE(inode,
815 "logical %d == ei_block %d!",
816 logical, le32_to_cpu(curp->p_idx->ei_block));
817 return -EIO;
820 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
821 >= le16_to_cpu(curp->p_hdr->eh_max))) {
822 EXT4_ERROR_INODE(inode,
823 "eh_entries %d >= eh_max %d!",
824 le16_to_cpu(curp->p_hdr->eh_entries),
825 le16_to_cpu(curp->p_hdr->eh_max));
826 return -EIO;
829 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
830 /* insert after */
831 ext_debug("insert new index %d after: %llu\n", logical, ptr);
832 ix = curp->p_idx + 1;
833 } else {
834 /* insert before */
835 ext_debug("insert new index %d before: %llu\n", logical, ptr);
836 ix = curp->p_idx;
839 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
840 BUG_ON(len < 0);
841 if (len > 0) {
842 ext_debug("insert new index %d: "
843 "move %d indices from 0x%p to 0x%p\n",
844 logical, len, ix, ix + 1);
845 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
848 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
849 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
850 return -EIO;
853 ix->ei_block = cpu_to_le32(logical);
854 ext4_idx_store_pblock(ix, ptr);
855 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
857 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
858 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
859 return -EIO;
862 err = ext4_ext_dirty(handle, inode, curp);
863 ext4_std_error(inode->i_sb, err);
865 return err;
869 * ext4_ext_split:
870 * inserts new subtree into the path, using free index entry
871 * at depth @at:
872 * - allocates all needed blocks (new leaf and all intermediate index blocks)
873 * - makes decision where to split
874 * - moves remaining extents and index entries (right to the split point)
875 * into the newly allocated blocks
876 * - initializes subtree
878 static int ext4_ext_split(handle_t *handle, struct inode *inode,
879 unsigned int flags,
880 struct ext4_ext_path *path,
881 struct ext4_extent *newext, int at)
883 struct buffer_head *bh = NULL;
884 int depth = ext_depth(inode);
885 struct ext4_extent_header *neh;
886 struct ext4_extent_idx *fidx;
887 int i = at, k, m, a;
888 ext4_fsblk_t newblock, oldblock;
889 __le32 border;
890 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
891 int err = 0;
893 /* make decision: where to split? */
894 /* FIXME: now decision is simplest: at current extent */
896 /* if current leaf will be split, then we should use
897 * border from split point */
898 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
899 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
900 return -EIO;
902 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
903 border = path[depth].p_ext[1].ee_block;
904 ext_debug("leaf will be split."
905 " next leaf starts at %d\n",
906 le32_to_cpu(border));
907 } else {
908 border = newext->ee_block;
909 ext_debug("leaf will be added."
910 " next leaf starts at %d\n",
911 le32_to_cpu(border));
915 * If error occurs, then we break processing
916 * and mark filesystem read-only. index won't
917 * be inserted and tree will be in consistent
918 * state. Next mount will repair buffers too.
922 * Get array to track all allocated blocks.
923 * We need this to handle errors and free blocks
924 * upon them.
926 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
927 if (!ablocks)
928 return -ENOMEM;
930 /* allocate all needed blocks */
931 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
932 for (a = 0; a < depth - at; a++) {
933 newblock = ext4_ext_new_meta_block(handle, inode, path,
934 newext, &err, flags);
935 if (newblock == 0)
936 goto cleanup;
937 ablocks[a] = newblock;
940 /* initialize new leaf */
941 newblock = ablocks[--a];
942 if (unlikely(newblock == 0)) {
943 EXT4_ERROR_INODE(inode, "newblock == 0!");
944 err = -EIO;
945 goto cleanup;
947 bh = sb_getblk(inode->i_sb, newblock);
948 if (!bh) {
949 err = -EIO;
950 goto cleanup;
952 lock_buffer(bh);
954 err = ext4_journal_get_create_access(handle, bh);
955 if (err)
956 goto cleanup;
958 neh = ext_block_hdr(bh);
959 neh->eh_entries = 0;
960 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
961 neh->eh_magic = EXT4_EXT_MAGIC;
962 neh->eh_depth = 0;
964 /* move remainder of path[depth] to the new leaf */
965 if (unlikely(path[depth].p_hdr->eh_entries !=
966 path[depth].p_hdr->eh_max)) {
967 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
968 path[depth].p_hdr->eh_entries,
969 path[depth].p_hdr->eh_max);
970 err = -EIO;
971 goto cleanup;
973 /* start copy from next extent */
974 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
975 ext4_ext_show_move(inode, path, newblock, depth);
976 if (m) {
977 struct ext4_extent *ex;
978 ex = EXT_FIRST_EXTENT(neh);
979 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
980 le16_add_cpu(&neh->eh_entries, m);
983 ext4_extent_block_csum_set(inode, neh);
984 set_buffer_uptodate(bh);
985 unlock_buffer(bh);
987 err = ext4_handle_dirty_metadata(handle, inode, bh);
988 if (err)
989 goto cleanup;
990 brelse(bh);
991 bh = NULL;
993 /* correct old leaf */
994 if (m) {
995 err = ext4_ext_get_access(handle, inode, path + depth);
996 if (err)
997 goto cleanup;
998 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
999 err = ext4_ext_dirty(handle, inode, path + depth);
1000 if (err)
1001 goto cleanup;
1005 /* create intermediate indexes */
1006 k = depth - at - 1;
1007 if (unlikely(k < 0)) {
1008 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1009 err = -EIO;
1010 goto cleanup;
1012 if (k)
1013 ext_debug("create %d intermediate indices\n", k);
1014 /* insert new index into current index block */
1015 /* current depth stored in i var */
1016 i = depth - 1;
1017 while (k--) {
1018 oldblock = newblock;
1019 newblock = ablocks[--a];
1020 bh = sb_getblk(inode->i_sb, newblock);
1021 if (!bh) {
1022 err = -EIO;
1023 goto cleanup;
1025 lock_buffer(bh);
1027 err = ext4_journal_get_create_access(handle, bh);
1028 if (err)
1029 goto cleanup;
1031 neh = ext_block_hdr(bh);
1032 neh->eh_entries = cpu_to_le16(1);
1033 neh->eh_magic = EXT4_EXT_MAGIC;
1034 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1035 neh->eh_depth = cpu_to_le16(depth - i);
1036 fidx = EXT_FIRST_INDEX(neh);
1037 fidx->ei_block = border;
1038 ext4_idx_store_pblock(fidx, oldblock);
1040 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1041 i, newblock, le32_to_cpu(border), oldblock);
1043 /* move remainder of path[i] to the new index block */
1044 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1045 EXT_LAST_INDEX(path[i].p_hdr))) {
1046 EXT4_ERROR_INODE(inode,
1047 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1048 le32_to_cpu(path[i].p_ext->ee_block));
1049 err = -EIO;
1050 goto cleanup;
1052 /* start copy indexes */
1053 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1054 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1055 EXT_MAX_INDEX(path[i].p_hdr));
1056 ext4_ext_show_move(inode, path, newblock, i);
1057 if (m) {
1058 memmove(++fidx, path[i].p_idx,
1059 sizeof(struct ext4_extent_idx) * m);
1060 le16_add_cpu(&neh->eh_entries, m);
1062 ext4_extent_block_csum_set(inode, neh);
1063 set_buffer_uptodate(bh);
1064 unlock_buffer(bh);
1066 err = ext4_handle_dirty_metadata(handle, inode, bh);
1067 if (err)
1068 goto cleanup;
1069 brelse(bh);
1070 bh = NULL;
1072 /* correct old index */
1073 if (m) {
1074 err = ext4_ext_get_access(handle, inode, path + i);
1075 if (err)
1076 goto cleanup;
1077 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1078 err = ext4_ext_dirty(handle, inode, path + i);
1079 if (err)
1080 goto cleanup;
1083 i--;
1086 /* insert new index */
1087 err = ext4_ext_insert_index(handle, inode, path + at,
1088 le32_to_cpu(border), newblock);
1090 cleanup:
1091 if (bh) {
1092 if (buffer_locked(bh))
1093 unlock_buffer(bh);
1094 brelse(bh);
1097 if (err) {
1098 /* free all allocated blocks in error case */
1099 for (i = 0; i < depth; i++) {
1100 if (!ablocks[i])
1101 continue;
1102 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1103 EXT4_FREE_BLOCKS_METADATA);
1106 kfree(ablocks);
1108 return err;
1112 * ext4_ext_grow_indepth:
1113 * implements tree growing procedure:
1114 * - allocates new block
1115 * - moves top-level data (index block or leaf) into the new block
1116 * - initializes new top-level, creating index that points to the
1117 * just created block
1119 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1120 unsigned int flags,
1121 struct ext4_extent *newext)
1123 struct ext4_extent_header *neh;
1124 struct buffer_head *bh;
1125 ext4_fsblk_t newblock;
1126 int err = 0;
1128 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1129 newext, &err, flags);
1130 if (newblock == 0)
1131 return err;
1133 bh = sb_getblk(inode->i_sb, newblock);
1134 if (!bh) {
1135 err = -EIO;
1136 ext4_std_error(inode->i_sb, err);
1137 return err;
1139 lock_buffer(bh);
1141 err = ext4_journal_get_create_access(handle, bh);
1142 if (err) {
1143 unlock_buffer(bh);
1144 goto out;
1147 /* move top-level index/leaf into new block */
1148 memmove(bh->b_data, EXT4_I(inode)->i_data,
1149 sizeof(EXT4_I(inode)->i_data));
1151 /* set size of new block */
1152 neh = ext_block_hdr(bh);
1153 /* old root could have indexes or leaves
1154 * so calculate e_max right way */
1155 if (ext_depth(inode))
1156 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1157 else
1158 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1159 neh->eh_magic = EXT4_EXT_MAGIC;
1160 ext4_extent_block_csum_set(inode, neh);
1161 set_buffer_uptodate(bh);
1162 unlock_buffer(bh);
1164 err = ext4_handle_dirty_metadata(handle, inode, bh);
1165 if (err)
1166 goto out;
1168 /* Update top-level index: num,max,pointer */
1169 neh = ext_inode_hdr(inode);
1170 neh->eh_entries = cpu_to_le16(1);
1171 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1172 if (neh->eh_depth == 0) {
1173 /* Root extent block becomes index block */
1174 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1175 EXT_FIRST_INDEX(neh)->ei_block =
1176 EXT_FIRST_EXTENT(neh)->ee_block;
1178 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1179 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1180 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1181 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1183 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1184 ext4_mark_inode_dirty(handle, inode);
1185 out:
1186 brelse(bh);
1188 return err;
1192 * ext4_ext_create_new_leaf:
1193 * finds empty index and adds new leaf.
1194 * if no free index is found, then it requests in-depth growing.
1196 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1197 unsigned int flags,
1198 struct ext4_ext_path *path,
1199 struct ext4_extent *newext)
1201 struct ext4_ext_path *curp;
1202 int depth, i, err = 0;
1204 repeat:
1205 i = depth = ext_depth(inode);
1207 /* walk up to the tree and look for free index entry */
1208 curp = path + depth;
1209 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1210 i--;
1211 curp--;
1214 /* we use already allocated block for index block,
1215 * so subsequent data blocks should be contiguous */
1216 if (EXT_HAS_FREE_INDEX(curp)) {
1217 /* if we found index with free entry, then use that
1218 * entry: create all needed subtree and add new leaf */
1219 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1220 if (err)
1221 goto out;
1223 /* refill path */
1224 ext4_ext_drop_refs(path);
1225 path = ext4_ext_find_extent(inode,
1226 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1227 path);
1228 if (IS_ERR(path))
1229 err = PTR_ERR(path);
1230 } else {
1231 /* tree is full, time to grow in depth */
1232 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1233 if (err)
1234 goto out;
1236 /* refill path */
1237 ext4_ext_drop_refs(path);
1238 path = ext4_ext_find_extent(inode,
1239 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1240 path);
1241 if (IS_ERR(path)) {
1242 err = PTR_ERR(path);
1243 goto out;
1247 * only first (depth 0 -> 1) produces free space;
1248 * in all other cases we have to split the grown tree
1250 depth = ext_depth(inode);
1251 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1252 /* now we need to split */
1253 goto repeat;
1257 out:
1258 return err;
1262 * search the closest allocated block to the left for *logical
1263 * and returns it at @logical + it's physical address at @phys
1264 * if *logical is the smallest allocated block, the function
1265 * returns 0 at @phys
1266 * return value contains 0 (success) or error code
1268 static int ext4_ext_search_left(struct inode *inode,
1269 struct ext4_ext_path *path,
1270 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1272 struct ext4_extent_idx *ix;
1273 struct ext4_extent *ex;
1274 int depth, ee_len;
1276 if (unlikely(path == NULL)) {
1277 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1278 return -EIO;
1280 depth = path->p_depth;
1281 *phys = 0;
1283 if (depth == 0 && path->p_ext == NULL)
1284 return 0;
1286 /* usually extent in the path covers blocks smaller
1287 * then *logical, but it can be that extent is the
1288 * first one in the file */
1290 ex = path[depth].p_ext;
1291 ee_len = ext4_ext_get_actual_len(ex);
1292 if (*logical < le32_to_cpu(ex->ee_block)) {
1293 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1294 EXT4_ERROR_INODE(inode,
1295 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1296 *logical, le32_to_cpu(ex->ee_block));
1297 return -EIO;
1299 while (--depth >= 0) {
1300 ix = path[depth].p_idx;
1301 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1302 EXT4_ERROR_INODE(inode,
1303 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1304 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1305 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1306 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1307 depth);
1308 return -EIO;
1311 return 0;
1314 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315 EXT4_ERROR_INODE(inode,
1316 "logical %d < ee_block %d + ee_len %d!",
1317 *logical, le32_to_cpu(ex->ee_block), ee_len);
1318 return -EIO;
1321 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1322 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1323 return 0;
1327 * search the closest allocated block to the right for *logical
1328 * and returns it at @logical + it's physical address at @phys
1329 * if *logical is the largest allocated block, the function
1330 * returns 0 at @phys
1331 * return value contains 0 (success) or error code
1333 static int ext4_ext_search_right(struct inode *inode,
1334 struct ext4_ext_path *path,
1335 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1336 struct ext4_extent **ret_ex)
1338 struct buffer_head *bh = NULL;
1339 struct ext4_extent_header *eh;
1340 struct ext4_extent_idx *ix;
1341 struct ext4_extent *ex;
1342 ext4_fsblk_t block;
1343 int depth; /* Note, NOT eh_depth; depth from top of tree */
1344 int ee_len;
1346 if (unlikely(path == NULL)) {
1347 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1348 return -EIO;
1350 depth = path->p_depth;
1351 *phys = 0;
1353 if (depth == 0 && path->p_ext == NULL)
1354 return 0;
1356 /* usually extent in the path covers blocks smaller
1357 * then *logical, but it can be that extent is the
1358 * first one in the file */
1360 ex = path[depth].p_ext;
1361 ee_len = ext4_ext_get_actual_len(ex);
1362 if (*logical < le32_to_cpu(ex->ee_block)) {
1363 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1364 EXT4_ERROR_INODE(inode,
1365 "first_extent(path[%d].p_hdr) != ex",
1366 depth);
1367 return -EIO;
1369 while (--depth >= 0) {
1370 ix = path[depth].p_idx;
1371 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1372 EXT4_ERROR_INODE(inode,
1373 "ix != EXT_FIRST_INDEX *logical %d!",
1374 *logical);
1375 return -EIO;
1378 goto found_extent;
1381 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1382 EXT4_ERROR_INODE(inode,
1383 "logical %d < ee_block %d + ee_len %d!",
1384 *logical, le32_to_cpu(ex->ee_block), ee_len);
1385 return -EIO;
1388 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1389 /* next allocated block in this leaf */
1390 ex++;
1391 goto found_extent;
1394 /* go up and search for index to the right */
1395 while (--depth >= 0) {
1396 ix = path[depth].p_idx;
1397 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1398 goto got_index;
1401 /* we've gone up to the root and found no index to the right */
1402 return 0;
1404 got_index:
1405 /* we've found index to the right, let's
1406 * follow it and find the closest allocated
1407 * block to the right */
1408 ix++;
1409 block = ext4_idx_pblock(ix);
1410 while (++depth < path->p_depth) {
1411 bh = sb_bread(inode->i_sb, block);
1412 if (bh == NULL)
1413 return -EIO;
1414 eh = ext_block_hdr(bh);
1415 /* subtract from p_depth to get proper eh_depth */
1416 if (ext4_ext_check_block(inode, eh,
1417 path->p_depth - depth, bh)) {
1418 put_bh(bh);
1419 return -EIO;
1421 ix = EXT_FIRST_INDEX(eh);
1422 block = ext4_idx_pblock(ix);
1423 put_bh(bh);
1426 bh = sb_bread(inode->i_sb, block);
1427 if (bh == NULL)
1428 return -EIO;
1429 eh = ext_block_hdr(bh);
1430 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1431 put_bh(bh);
1432 return -EIO;
1434 ex = EXT_FIRST_EXTENT(eh);
1435 found_extent:
1436 *logical = le32_to_cpu(ex->ee_block);
1437 *phys = ext4_ext_pblock(ex);
1438 *ret_ex = ex;
1439 if (bh)
1440 put_bh(bh);
1441 return 0;
1445 * ext4_ext_next_allocated_block:
1446 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1447 * NOTE: it considers block number from index entry as
1448 * allocated block. Thus, index entries have to be consistent
1449 * with leaves.
1451 static ext4_lblk_t
1452 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1454 int depth;
1456 BUG_ON(path == NULL);
1457 depth = path->p_depth;
1459 if (depth == 0 && path->p_ext == NULL)
1460 return EXT_MAX_BLOCKS;
1462 while (depth >= 0) {
1463 if (depth == path->p_depth) {
1464 /* leaf */
1465 if (path[depth].p_ext &&
1466 path[depth].p_ext !=
1467 EXT_LAST_EXTENT(path[depth].p_hdr))
1468 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1469 } else {
1470 /* index */
1471 if (path[depth].p_idx !=
1472 EXT_LAST_INDEX(path[depth].p_hdr))
1473 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1475 depth--;
1478 return EXT_MAX_BLOCKS;
1482 * ext4_ext_next_leaf_block:
1483 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1485 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1487 int depth;
1489 BUG_ON(path == NULL);
1490 depth = path->p_depth;
1492 /* zero-tree has no leaf blocks at all */
1493 if (depth == 0)
1494 return EXT_MAX_BLOCKS;
1496 /* go to index block */
1497 depth--;
1499 while (depth >= 0) {
1500 if (path[depth].p_idx !=
1501 EXT_LAST_INDEX(path[depth].p_hdr))
1502 return (ext4_lblk_t)
1503 le32_to_cpu(path[depth].p_idx[1].ei_block);
1504 depth--;
1507 return EXT_MAX_BLOCKS;
1511 * ext4_ext_correct_indexes:
1512 * if leaf gets modified and modified extent is first in the leaf,
1513 * then we have to correct all indexes above.
1514 * TODO: do we need to correct tree in all cases?
1516 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1517 struct ext4_ext_path *path)
1519 struct ext4_extent_header *eh;
1520 int depth = ext_depth(inode);
1521 struct ext4_extent *ex;
1522 __le32 border;
1523 int k, err = 0;
1525 eh = path[depth].p_hdr;
1526 ex = path[depth].p_ext;
1528 if (unlikely(ex == NULL || eh == NULL)) {
1529 EXT4_ERROR_INODE(inode,
1530 "ex %p == NULL or eh %p == NULL", ex, eh);
1531 return -EIO;
1534 if (depth == 0) {
1535 /* there is no tree at all */
1536 return 0;
1539 if (ex != EXT_FIRST_EXTENT(eh)) {
1540 /* we correct tree if first leaf got modified only */
1541 return 0;
1545 * TODO: we need correction if border is smaller than current one
1547 k = depth - 1;
1548 border = path[depth].p_ext->ee_block;
1549 err = ext4_ext_get_access(handle, inode, path + k);
1550 if (err)
1551 return err;
1552 path[k].p_idx->ei_block = border;
1553 err = ext4_ext_dirty(handle, inode, path + k);
1554 if (err)
1555 return err;
1557 while (k--) {
1558 /* change all left-side indexes */
1559 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1560 break;
1561 err = ext4_ext_get_access(handle, inode, path + k);
1562 if (err)
1563 break;
1564 path[k].p_idx->ei_block = border;
1565 err = ext4_ext_dirty(handle, inode, path + k);
1566 if (err)
1567 break;
1570 return err;
1574 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1575 struct ext4_extent *ex2)
1577 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1580 * Make sure that either both extents are uninitialized, or
1581 * both are _not_.
1583 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1584 return 0;
1586 if (ext4_ext_is_uninitialized(ex1))
1587 max_len = EXT_UNINIT_MAX_LEN;
1588 else
1589 max_len = EXT_INIT_MAX_LEN;
1591 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1592 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1594 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1595 le32_to_cpu(ex2->ee_block))
1596 return 0;
1599 * To allow future support for preallocated extents to be added
1600 * as an RO_COMPAT feature, refuse to merge to extents if
1601 * this can result in the top bit of ee_len being set.
1603 if (ext1_ee_len + ext2_ee_len > max_len)
1604 return 0;
1605 #ifdef AGGRESSIVE_TEST
1606 if (ext1_ee_len >= 4)
1607 return 0;
1608 #endif
1610 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1611 return 1;
1612 return 0;
1616 * This function tries to merge the "ex" extent to the next extent in the tree.
1617 * It always tries to merge towards right. If you want to merge towards
1618 * left, pass "ex - 1" as argument instead of "ex".
1619 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1620 * 1 if they got merged.
1622 static int ext4_ext_try_to_merge_right(struct inode *inode,
1623 struct ext4_ext_path *path,
1624 struct ext4_extent *ex)
1626 struct ext4_extent_header *eh;
1627 unsigned int depth, len;
1628 int merge_done = 0;
1629 int uninitialized = 0;
1631 depth = ext_depth(inode);
1632 BUG_ON(path[depth].p_hdr == NULL);
1633 eh = path[depth].p_hdr;
1635 while (ex < EXT_LAST_EXTENT(eh)) {
1636 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1637 break;
1638 /* merge with next extent! */
1639 if (ext4_ext_is_uninitialized(ex))
1640 uninitialized = 1;
1641 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1642 + ext4_ext_get_actual_len(ex + 1));
1643 if (uninitialized)
1644 ext4_ext_mark_uninitialized(ex);
1646 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1647 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1648 * sizeof(struct ext4_extent);
1649 memmove(ex + 1, ex + 2, len);
1651 le16_add_cpu(&eh->eh_entries, -1);
1652 merge_done = 1;
1653 WARN_ON(eh->eh_entries == 0);
1654 if (!eh->eh_entries)
1655 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1658 return merge_done;
1662 * This function tries to merge the @ex extent to neighbours in the tree.
1663 * return 1 if merge left else 0.
1665 static int ext4_ext_try_to_merge(struct inode *inode,
1666 struct ext4_ext_path *path,
1667 struct ext4_extent *ex) {
1668 struct ext4_extent_header *eh;
1669 unsigned int depth;
1670 int merge_done = 0;
1671 int ret = 0;
1673 depth = ext_depth(inode);
1674 BUG_ON(path[depth].p_hdr == NULL);
1675 eh = path[depth].p_hdr;
1677 if (ex > EXT_FIRST_EXTENT(eh))
1678 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1680 if (!merge_done)
1681 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1683 return ret;
1687 * check if a portion of the "newext" extent overlaps with an
1688 * existing extent.
1690 * If there is an overlap discovered, it updates the length of the newext
1691 * such that there will be no overlap, and then returns 1.
1692 * If there is no overlap found, it returns 0.
1694 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1695 struct inode *inode,
1696 struct ext4_extent *newext,
1697 struct ext4_ext_path *path)
1699 ext4_lblk_t b1, b2;
1700 unsigned int depth, len1;
1701 unsigned int ret = 0;
1703 b1 = le32_to_cpu(newext->ee_block);
1704 len1 = ext4_ext_get_actual_len(newext);
1705 depth = ext_depth(inode);
1706 if (!path[depth].p_ext)
1707 goto out;
1708 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1709 b2 &= ~(sbi->s_cluster_ratio - 1);
1712 * get the next allocated block if the extent in the path
1713 * is before the requested block(s)
1715 if (b2 < b1) {
1716 b2 = ext4_ext_next_allocated_block(path);
1717 if (b2 == EXT_MAX_BLOCKS)
1718 goto out;
1719 b2 &= ~(sbi->s_cluster_ratio - 1);
1722 /* check for wrap through zero on extent logical start block*/
1723 if (b1 + len1 < b1) {
1724 len1 = EXT_MAX_BLOCKS - b1;
1725 newext->ee_len = cpu_to_le16(len1);
1726 ret = 1;
1729 /* check for overlap */
1730 if (b1 + len1 > b2) {
1731 newext->ee_len = cpu_to_le16(b2 - b1);
1732 ret = 1;
1734 out:
1735 return ret;
1739 * ext4_ext_insert_extent:
1740 * tries to merge requsted extent into the existing extent or
1741 * inserts requested extent as new one into the tree,
1742 * creating new leaf in the no-space case.
1744 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1745 struct ext4_ext_path *path,
1746 struct ext4_extent *newext, int flag)
1748 struct ext4_extent_header *eh;
1749 struct ext4_extent *ex, *fex;
1750 struct ext4_extent *nearex; /* nearest extent */
1751 struct ext4_ext_path *npath = NULL;
1752 int depth, len, err;
1753 ext4_lblk_t next;
1754 unsigned uninitialized = 0;
1755 int flags = 0;
1757 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1758 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1759 return -EIO;
1761 depth = ext_depth(inode);
1762 ex = path[depth].p_ext;
1763 if (unlikely(path[depth].p_hdr == NULL)) {
1764 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1765 return -EIO;
1768 /* try to insert block into found extent and return */
1769 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1770 && ext4_can_extents_be_merged(inode, ex, newext)) {
1771 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1772 ext4_ext_is_uninitialized(newext),
1773 ext4_ext_get_actual_len(newext),
1774 le32_to_cpu(ex->ee_block),
1775 ext4_ext_is_uninitialized(ex),
1776 ext4_ext_get_actual_len(ex),
1777 ext4_ext_pblock(ex));
1778 err = ext4_ext_get_access(handle, inode, path + depth);
1779 if (err)
1780 return err;
1783 * ext4_can_extents_be_merged should have checked that either
1784 * both extents are uninitialized, or both aren't. Thus we
1785 * need to check only one of them here.
1787 if (ext4_ext_is_uninitialized(ex))
1788 uninitialized = 1;
1789 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1790 + ext4_ext_get_actual_len(newext));
1791 if (uninitialized)
1792 ext4_ext_mark_uninitialized(ex);
1793 eh = path[depth].p_hdr;
1794 nearex = ex;
1795 goto merge;
1798 depth = ext_depth(inode);
1799 eh = path[depth].p_hdr;
1800 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1801 goto has_space;
1803 /* probably next leaf has space for us? */
1804 fex = EXT_LAST_EXTENT(eh);
1805 next = EXT_MAX_BLOCKS;
1806 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1807 next = ext4_ext_next_leaf_block(path);
1808 if (next != EXT_MAX_BLOCKS) {
1809 ext_debug("next leaf block - %u\n", next);
1810 BUG_ON(npath != NULL);
1811 npath = ext4_ext_find_extent(inode, next, NULL);
1812 if (IS_ERR(npath))
1813 return PTR_ERR(npath);
1814 BUG_ON(npath->p_depth != path->p_depth);
1815 eh = npath[depth].p_hdr;
1816 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1817 ext_debug("next leaf isn't full(%d)\n",
1818 le16_to_cpu(eh->eh_entries));
1819 path = npath;
1820 goto has_space;
1822 ext_debug("next leaf has no free space(%d,%d)\n",
1823 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1827 * There is no free space in the found leaf.
1828 * We're gonna add a new leaf in the tree.
1830 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1831 flags = EXT4_MB_USE_ROOT_BLOCKS;
1832 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1833 if (err)
1834 goto cleanup;
1835 depth = ext_depth(inode);
1836 eh = path[depth].p_hdr;
1838 has_space:
1839 nearex = path[depth].p_ext;
1841 err = ext4_ext_get_access(handle, inode, path + depth);
1842 if (err)
1843 goto cleanup;
1845 if (!nearex) {
1846 /* there is no extent in this leaf, create first one */
1847 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1848 le32_to_cpu(newext->ee_block),
1849 ext4_ext_pblock(newext),
1850 ext4_ext_is_uninitialized(newext),
1851 ext4_ext_get_actual_len(newext));
1852 nearex = EXT_FIRST_EXTENT(eh);
1853 } else {
1854 if (le32_to_cpu(newext->ee_block)
1855 > le32_to_cpu(nearex->ee_block)) {
1856 /* Insert after */
1857 ext_debug("insert %u:%llu:[%d]%d before: "
1858 "nearest %p\n",
1859 le32_to_cpu(newext->ee_block),
1860 ext4_ext_pblock(newext),
1861 ext4_ext_is_uninitialized(newext),
1862 ext4_ext_get_actual_len(newext),
1863 nearex);
1864 nearex++;
1865 } else {
1866 /* Insert before */
1867 BUG_ON(newext->ee_block == nearex->ee_block);
1868 ext_debug("insert %u:%llu:[%d]%d after: "
1869 "nearest %p\n",
1870 le32_to_cpu(newext->ee_block),
1871 ext4_ext_pblock(newext),
1872 ext4_ext_is_uninitialized(newext),
1873 ext4_ext_get_actual_len(newext),
1874 nearex);
1876 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1877 if (len > 0) {
1878 ext_debug("insert %u:%llu:[%d]%d: "
1879 "move %d extents from 0x%p to 0x%p\n",
1880 le32_to_cpu(newext->ee_block),
1881 ext4_ext_pblock(newext),
1882 ext4_ext_is_uninitialized(newext),
1883 ext4_ext_get_actual_len(newext),
1884 len, nearex, nearex + 1);
1885 memmove(nearex + 1, nearex,
1886 len * sizeof(struct ext4_extent));
1890 le16_add_cpu(&eh->eh_entries, 1);
1891 path[depth].p_ext = nearex;
1892 nearex->ee_block = newext->ee_block;
1893 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1894 nearex->ee_len = newext->ee_len;
1896 merge:
1897 /* try to merge extents */
1898 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1899 ext4_ext_try_to_merge(inode, path, nearex);
1902 /* time to correct all indexes above */
1903 err = ext4_ext_correct_indexes(handle, inode, path);
1904 if (err)
1905 goto cleanup;
1907 err = ext4_ext_dirty(handle, inode, path + depth);
1909 cleanup:
1910 if (npath) {
1911 ext4_ext_drop_refs(npath);
1912 kfree(npath);
1914 ext4_ext_invalidate_cache(inode);
1915 return err;
1918 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1919 ext4_lblk_t num, ext_prepare_callback func,
1920 void *cbdata)
1922 struct ext4_ext_path *path = NULL;
1923 struct ext4_ext_cache cbex;
1924 struct ext4_extent *ex;
1925 ext4_lblk_t next, start = 0, end = 0;
1926 ext4_lblk_t last = block + num;
1927 int depth, exists, err = 0;
1929 BUG_ON(func == NULL);
1930 BUG_ON(inode == NULL);
1932 while (block < last && block != EXT_MAX_BLOCKS) {
1933 num = last - block;
1934 /* find extent for this block */
1935 down_read(&EXT4_I(inode)->i_data_sem);
1936 path = ext4_ext_find_extent(inode, block, path);
1937 up_read(&EXT4_I(inode)->i_data_sem);
1938 if (IS_ERR(path)) {
1939 err = PTR_ERR(path);
1940 path = NULL;
1941 break;
1944 depth = ext_depth(inode);
1945 if (unlikely(path[depth].p_hdr == NULL)) {
1946 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1947 err = -EIO;
1948 break;
1950 ex = path[depth].p_ext;
1951 next = ext4_ext_next_allocated_block(path);
1953 exists = 0;
1954 if (!ex) {
1955 /* there is no extent yet, so try to allocate
1956 * all requested space */
1957 start = block;
1958 end = block + num;
1959 } else if (le32_to_cpu(ex->ee_block) > block) {
1960 /* need to allocate space before found extent */
1961 start = block;
1962 end = le32_to_cpu(ex->ee_block);
1963 if (block + num < end)
1964 end = block + num;
1965 } else if (block >= le32_to_cpu(ex->ee_block)
1966 + ext4_ext_get_actual_len(ex)) {
1967 /* need to allocate space after found extent */
1968 start = block;
1969 end = block + num;
1970 if (end >= next)
1971 end = next;
1972 } else if (block >= le32_to_cpu(ex->ee_block)) {
1974 * some part of requested space is covered
1975 * by found extent
1977 start = block;
1978 end = le32_to_cpu(ex->ee_block)
1979 + ext4_ext_get_actual_len(ex);
1980 if (block + num < end)
1981 end = block + num;
1982 exists = 1;
1983 } else {
1984 BUG();
1986 BUG_ON(end <= start);
1988 if (!exists) {
1989 cbex.ec_block = start;
1990 cbex.ec_len = end - start;
1991 cbex.ec_start = 0;
1992 } else {
1993 cbex.ec_block = le32_to_cpu(ex->ee_block);
1994 cbex.ec_len = ext4_ext_get_actual_len(ex);
1995 cbex.ec_start = ext4_ext_pblock(ex);
1998 if (unlikely(cbex.ec_len == 0)) {
1999 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2000 err = -EIO;
2001 break;
2003 err = func(inode, next, &cbex, ex, cbdata);
2004 ext4_ext_drop_refs(path);
2006 if (err < 0)
2007 break;
2009 if (err == EXT_REPEAT)
2010 continue;
2011 else if (err == EXT_BREAK) {
2012 err = 0;
2013 break;
2016 if (ext_depth(inode) != depth) {
2017 /* depth was changed. we have to realloc path */
2018 kfree(path);
2019 path = NULL;
2022 block = cbex.ec_block + cbex.ec_len;
2025 if (path) {
2026 ext4_ext_drop_refs(path);
2027 kfree(path);
2030 return err;
2033 static void
2034 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2035 __u32 len, ext4_fsblk_t start)
2037 struct ext4_ext_cache *cex;
2038 BUG_ON(len == 0);
2039 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2040 trace_ext4_ext_put_in_cache(inode, block, len, start);
2041 cex = &EXT4_I(inode)->i_cached_extent;
2042 cex->ec_block = block;
2043 cex->ec_len = len;
2044 cex->ec_start = start;
2045 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2049 * ext4_ext_put_gap_in_cache:
2050 * calculate boundaries of the gap that the requested block fits into
2051 * and cache this gap
2053 static void
2054 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2055 ext4_lblk_t block)
2057 int depth = ext_depth(inode);
2058 unsigned long len;
2059 ext4_lblk_t lblock;
2060 struct ext4_extent *ex;
2062 ex = path[depth].p_ext;
2063 if (ex == NULL) {
2064 /* there is no extent yet, so gap is [0;-] */
2065 lblock = 0;
2066 len = EXT_MAX_BLOCKS;
2067 ext_debug("cache gap(whole file):");
2068 } else if (block < le32_to_cpu(ex->ee_block)) {
2069 lblock = block;
2070 len = le32_to_cpu(ex->ee_block) - block;
2071 ext_debug("cache gap(before): %u [%u:%u]",
2072 block,
2073 le32_to_cpu(ex->ee_block),
2074 ext4_ext_get_actual_len(ex));
2075 } else if (block >= le32_to_cpu(ex->ee_block)
2076 + ext4_ext_get_actual_len(ex)) {
2077 ext4_lblk_t next;
2078 lblock = le32_to_cpu(ex->ee_block)
2079 + ext4_ext_get_actual_len(ex);
2081 next = ext4_ext_next_allocated_block(path);
2082 ext_debug("cache gap(after): [%u:%u] %u",
2083 le32_to_cpu(ex->ee_block),
2084 ext4_ext_get_actual_len(ex),
2085 block);
2086 BUG_ON(next == lblock);
2087 len = next - lblock;
2088 } else {
2089 lblock = len = 0;
2090 BUG();
2093 ext_debug(" -> %u:%lu\n", lblock, len);
2094 ext4_ext_put_in_cache(inode, lblock, len, 0);
2098 * ext4_ext_check_cache()
2099 * Checks to see if the given block is in the cache.
2100 * If it is, the cached extent is stored in the given
2101 * cache extent pointer. If the cached extent is a hole,
2102 * this routine should be used instead of
2103 * ext4_ext_in_cache if the calling function needs to
2104 * know the size of the hole.
2106 * @inode: The files inode
2107 * @block: The block to look for in the cache
2108 * @ex: Pointer where the cached extent will be stored
2109 * if it contains block
2111 * Return 0 if cache is invalid; 1 if the cache is valid
2113 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2114 struct ext4_ext_cache *ex){
2115 struct ext4_ext_cache *cex;
2116 struct ext4_sb_info *sbi;
2117 int ret = 0;
2120 * We borrow i_block_reservation_lock to protect i_cached_extent
2122 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2123 cex = &EXT4_I(inode)->i_cached_extent;
2124 sbi = EXT4_SB(inode->i_sb);
2126 /* has cache valid data? */
2127 if (cex->ec_len == 0)
2128 goto errout;
2130 if (in_range(block, cex->ec_block, cex->ec_len)) {
2131 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2132 ext_debug("%u cached by %u:%u:%llu\n",
2133 block,
2134 cex->ec_block, cex->ec_len, cex->ec_start);
2135 ret = 1;
2137 errout:
2138 trace_ext4_ext_in_cache(inode, block, ret);
2139 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2140 return ret;
2144 * ext4_ext_in_cache()
2145 * Checks to see if the given block is in the cache.
2146 * If it is, the cached extent is stored in the given
2147 * extent pointer.
2149 * @inode: The files inode
2150 * @block: The block to look for in the cache
2151 * @ex: Pointer where the cached extent will be stored
2152 * if it contains block
2154 * Return 0 if cache is invalid; 1 if the cache is valid
2156 static int
2157 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2158 struct ext4_extent *ex)
2160 struct ext4_ext_cache cex;
2161 int ret = 0;
2163 if (ext4_ext_check_cache(inode, block, &cex)) {
2164 ex->ee_block = cpu_to_le32(cex.ec_block);
2165 ext4_ext_store_pblock(ex, cex.ec_start);
2166 ex->ee_len = cpu_to_le16(cex.ec_len);
2167 ret = 1;
2170 return ret;
2175 * ext4_ext_rm_idx:
2176 * removes index from the index block.
2178 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2179 struct ext4_ext_path *path)
2181 int err;
2182 ext4_fsblk_t leaf;
2184 /* free index block */
2185 path--;
2186 leaf = ext4_idx_pblock(path->p_idx);
2187 if (unlikely(path->p_hdr->eh_entries == 0)) {
2188 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2189 return -EIO;
2191 err = ext4_ext_get_access(handle, inode, path);
2192 if (err)
2193 return err;
2195 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2196 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2197 len *= sizeof(struct ext4_extent_idx);
2198 memmove(path->p_idx, path->p_idx + 1, len);
2201 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2202 err = ext4_ext_dirty(handle, inode, path);
2203 if (err)
2204 return err;
2205 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2206 trace_ext4_ext_rm_idx(inode, leaf);
2208 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2209 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2210 return err;
2214 * ext4_ext_calc_credits_for_single_extent:
2215 * This routine returns max. credits that needed to insert an extent
2216 * to the extent tree.
2217 * When pass the actual path, the caller should calculate credits
2218 * under i_data_sem.
2220 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2221 struct ext4_ext_path *path)
2223 if (path) {
2224 int depth = ext_depth(inode);
2225 int ret = 0;
2227 /* probably there is space in leaf? */
2228 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2229 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2232 * There are some space in the leaf tree, no
2233 * need to account for leaf block credit
2235 * bitmaps and block group descriptor blocks
2236 * and other metadata blocks still need to be
2237 * accounted.
2239 /* 1 bitmap, 1 block group descriptor */
2240 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2241 return ret;
2245 return ext4_chunk_trans_blocks(inode, nrblocks);
2249 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2251 * if nrblocks are fit in a single extent (chunk flag is 1), then
2252 * in the worse case, each tree level index/leaf need to be changed
2253 * if the tree split due to insert a new extent, then the old tree
2254 * index/leaf need to be updated too
2256 * If the nrblocks are discontiguous, they could cause
2257 * the whole tree split more than once, but this is really rare.
2259 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2261 int index;
2262 int depth = ext_depth(inode);
2264 if (chunk)
2265 index = depth * 2;
2266 else
2267 index = depth * 3;
2269 return index;
2272 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2273 struct ext4_extent *ex,
2274 ext4_fsblk_t *partial_cluster,
2275 ext4_lblk_t from, ext4_lblk_t to)
2277 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2278 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2279 ext4_fsblk_t pblk;
2280 int flags = EXT4_FREE_BLOCKS_FORGET;
2282 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2283 flags |= EXT4_FREE_BLOCKS_METADATA;
2285 * For bigalloc file systems, we never free a partial cluster
2286 * at the beginning of the extent. Instead, we make a note
2287 * that we tried freeing the cluster, and check to see if we
2288 * need to free it on a subsequent call to ext4_remove_blocks,
2289 * or at the end of the ext4_truncate() operation.
2291 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2293 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2295 * If we have a partial cluster, and it's different from the
2296 * cluster of the last block, we need to explicitly free the
2297 * partial cluster here.
2299 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2300 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2301 ext4_free_blocks(handle, inode, NULL,
2302 EXT4_C2B(sbi, *partial_cluster),
2303 sbi->s_cluster_ratio, flags);
2304 *partial_cluster = 0;
2307 #ifdef EXTENTS_STATS
2309 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2310 spin_lock(&sbi->s_ext_stats_lock);
2311 sbi->s_ext_blocks += ee_len;
2312 sbi->s_ext_extents++;
2313 if (ee_len < sbi->s_ext_min)
2314 sbi->s_ext_min = ee_len;
2315 if (ee_len > sbi->s_ext_max)
2316 sbi->s_ext_max = ee_len;
2317 if (ext_depth(inode) > sbi->s_depth_max)
2318 sbi->s_depth_max = ext_depth(inode);
2319 spin_unlock(&sbi->s_ext_stats_lock);
2321 #endif
2322 if (from >= le32_to_cpu(ex->ee_block)
2323 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2324 /* tail removal */
2325 ext4_lblk_t num;
2327 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2328 pblk = ext4_ext_pblock(ex) + ee_len - num;
2329 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2330 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2332 * If the block range to be freed didn't start at the
2333 * beginning of a cluster, and we removed the entire
2334 * extent, save the partial cluster here, since we
2335 * might need to delete if we determine that the
2336 * truncate operation has removed all of the blocks in
2337 * the cluster.
2339 if (pblk & (sbi->s_cluster_ratio - 1) &&
2340 (ee_len == num))
2341 *partial_cluster = EXT4_B2C(sbi, pblk);
2342 else
2343 *partial_cluster = 0;
2344 } else if (from == le32_to_cpu(ex->ee_block)
2345 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2346 /* head removal */
2347 ext4_lblk_t num;
2348 ext4_fsblk_t start;
2350 num = to - from;
2351 start = ext4_ext_pblock(ex);
2353 ext_debug("free first %u blocks starting %llu\n", num, start);
2354 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2356 } else {
2357 printk(KERN_INFO "strange request: removal(2) "
2358 "%u-%u from %u:%u\n",
2359 from, to, le32_to_cpu(ex->ee_block), ee_len);
2361 return 0;
2366 * ext4_ext_rm_leaf() Removes the extents associated with the
2367 * blocks appearing between "start" and "end", and splits the extents
2368 * if "start" and "end" appear in the same extent
2370 * @handle: The journal handle
2371 * @inode: The files inode
2372 * @path: The path to the leaf
2373 * @start: The first block to remove
2374 * @end: The last block to remove
2376 static int
2377 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2378 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2379 ext4_lblk_t start, ext4_lblk_t end)
2381 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2382 int err = 0, correct_index = 0;
2383 int depth = ext_depth(inode), credits;
2384 struct ext4_extent_header *eh;
2385 ext4_lblk_t a, b;
2386 unsigned num;
2387 ext4_lblk_t ex_ee_block;
2388 unsigned short ex_ee_len;
2389 unsigned uninitialized = 0;
2390 struct ext4_extent *ex;
2392 /* the header must be checked already in ext4_ext_remove_space() */
2393 ext_debug("truncate since %u in leaf to %u\n", start, end);
2394 if (!path[depth].p_hdr)
2395 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2396 eh = path[depth].p_hdr;
2397 if (unlikely(path[depth].p_hdr == NULL)) {
2398 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2399 return -EIO;
2401 /* find where to start removing */
2402 ex = EXT_LAST_EXTENT(eh);
2404 ex_ee_block = le32_to_cpu(ex->ee_block);
2405 ex_ee_len = ext4_ext_get_actual_len(ex);
2407 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2409 while (ex >= EXT_FIRST_EXTENT(eh) &&
2410 ex_ee_block + ex_ee_len > start) {
2412 if (ext4_ext_is_uninitialized(ex))
2413 uninitialized = 1;
2414 else
2415 uninitialized = 0;
2417 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2418 uninitialized, ex_ee_len);
2419 path[depth].p_ext = ex;
2421 a = ex_ee_block > start ? ex_ee_block : start;
2422 b = ex_ee_block+ex_ee_len - 1 < end ?
2423 ex_ee_block+ex_ee_len - 1 : end;
2425 ext_debug(" border %u:%u\n", a, b);
2427 /* If this extent is beyond the end of the hole, skip it */
2428 if (end < ex_ee_block) {
2429 ex--;
2430 ex_ee_block = le32_to_cpu(ex->ee_block);
2431 ex_ee_len = ext4_ext_get_actual_len(ex);
2432 continue;
2433 } else if (b != ex_ee_block + ex_ee_len - 1) {
2434 EXT4_ERROR_INODE(inode,
2435 "can not handle truncate %u:%u "
2436 "on extent %u:%u",
2437 start, end, ex_ee_block,
2438 ex_ee_block + ex_ee_len - 1);
2439 err = -EIO;
2440 goto out;
2441 } else if (a != ex_ee_block) {
2442 /* remove tail of the extent */
2443 num = a - ex_ee_block;
2444 } else {
2445 /* remove whole extent: excellent! */
2446 num = 0;
2449 * 3 for leaf, sb, and inode plus 2 (bmap and group
2450 * descriptor) for each block group; assume two block
2451 * groups plus ex_ee_len/blocks_per_block_group for
2452 * the worst case
2454 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2455 if (ex == EXT_FIRST_EXTENT(eh)) {
2456 correct_index = 1;
2457 credits += (ext_depth(inode)) + 1;
2459 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2461 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2462 if (err)
2463 goto out;
2465 err = ext4_ext_get_access(handle, inode, path + depth);
2466 if (err)
2467 goto out;
2469 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2470 a, b);
2471 if (err)
2472 goto out;
2474 if (num == 0)
2475 /* this extent is removed; mark slot entirely unused */
2476 ext4_ext_store_pblock(ex, 0);
2478 ex->ee_len = cpu_to_le16(num);
2480 * Do not mark uninitialized if all the blocks in the
2481 * extent have been removed.
2483 if (uninitialized && num)
2484 ext4_ext_mark_uninitialized(ex);
2486 * If the extent was completely released,
2487 * we need to remove it from the leaf
2489 if (num == 0) {
2490 if (end != EXT_MAX_BLOCKS - 1) {
2492 * For hole punching, we need to scoot all the
2493 * extents up when an extent is removed so that
2494 * we dont have blank extents in the middle
2496 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2497 sizeof(struct ext4_extent));
2499 /* Now get rid of the one at the end */
2500 memset(EXT_LAST_EXTENT(eh), 0,
2501 sizeof(struct ext4_extent));
2503 le16_add_cpu(&eh->eh_entries, -1);
2504 } else
2505 *partial_cluster = 0;
2507 err = ext4_ext_dirty(handle, inode, path + depth);
2508 if (err)
2509 goto out;
2511 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2512 ext4_ext_pblock(ex));
2513 ex--;
2514 ex_ee_block = le32_to_cpu(ex->ee_block);
2515 ex_ee_len = ext4_ext_get_actual_len(ex);
2518 if (correct_index && eh->eh_entries)
2519 err = ext4_ext_correct_indexes(handle, inode, path);
2522 * If there is still a entry in the leaf node, check to see if
2523 * it references the partial cluster. This is the only place
2524 * where it could; if it doesn't, we can free the cluster.
2526 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2527 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2528 *partial_cluster)) {
2529 int flags = EXT4_FREE_BLOCKS_FORGET;
2531 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2532 flags |= EXT4_FREE_BLOCKS_METADATA;
2534 ext4_free_blocks(handle, inode, NULL,
2535 EXT4_C2B(sbi, *partial_cluster),
2536 sbi->s_cluster_ratio, flags);
2537 *partial_cluster = 0;
2540 /* if this leaf is free, then we should
2541 * remove it from index block above */
2542 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2543 err = ext4_ext_rm_idx(handle, inode, path + depth);
2545 out:
2546 return err;
2550 * ext4_ext_more_to_rm:
2551 * returns 1 if current index has to be freed (even partial)
2553 static int
2554 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2556 BUG_ON(path->p_idx == NULL);
2558 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2559 return 0;
2562 * if truncate on deeper level happened, it wasn't partial,
2563 * so we have to consider current index for truncation
2565 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2566 return 0;
2567 return 1;
2570 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2571 ext4_lblk_t end)
2573 struct super_block *sb = inode->i_sb;
2574 int depth = ext_depth(inode);
2575 struct ext4_ext_path *path = NULL;
2576 ext4_fsblk_t partial_cluster = 0;
2577 handle_t *handle;
2578 int i = 0, err;
2580 ext_debug("truncate since %u to %u\n", start, end);
2582 /* probably first extent we're gonna free will be last in block */
2583 handle = ext4_journal_start(inode, depth + 1);
2584 if (IS_ERR(handle))
2585 return PTR_ERR(handle);
2587 again:
2588 ext4_ext_invalidate_cache(inode);
2590 trace_ext4_ext_remove_space(inode, start, depth);
2593 * Check if we are removing extents inside the extent tree. If that
2594 * is the case, we are going to punch a hole inside the extent tree
2595 * so we have to check whether we need to split the extent covering
2596 * the last block to remove so we can easily remove the part of it
2597 * in ext4_ext_rm_leaf().
2599 if (end < EXT_MAX_BLOCKS - 1) {
2600 struct ext4_extent *ex;
2601 ext4_lblk_t ee_block;
2603 /* find extent for this block */
2604 path = ext4_ext_find_extent(inode, end, NULL);
2605 if (IS_ERR(path)) {
2606 ext4_journal_stop(handle);
2607 return PTR_ERR(path);
2609 depth = ext_depth(inode);
2610 ex = path[depth].p_ext;
2611 if (!ex) {
2612 ext4_ext_drop_refs(path);
2613 kfree(path);
2614 path = NULL;
2615 goto cont;
2618 ee_block = le32_to_cpu(ex->ee_block);
2621 * See if the last block is inside the extent, if so split
2622 * the extent at 'end' block so we can easily remove the
2623 * tail of the first part of the split extent in
2624 * ext4_ext_rm_leaf().
2626 if (end >= ee_block &&
2627 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2628 int split_flag = 0;
2630 if (ext4_ext_is_uninitialized(ex))
2631 split_flag = EXT4_EXT_MARK_UNINIT1 |
2632 EXT4_EXT_MARK_UNINIT2;
2635 * Split the extent in two so that 'end' is the last
2636 * block in the first new extent
2638 err = ext4_split_extent_at(handle, inode, path,
2639 end + 1, split_flag,
2640 EXT4_GET_BLOCKS_PRE_IO |
2641 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2643 if (err < 0)
2644 goto out;
2647 cont:
2650 * We start scanning from right side, freeing all the blocks
2651 * after i_size and walking into the tree depth-wise.
2653 depth = ext_depth(inode);
2654 if (path) {
2655 int k = i = depth;
2656 while (--k > 0)
2657 path[k].p_block =
2658 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2659 } else {
2660 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2661 GFP_NOFS);
2662 if (path == NULL) {
2663 ext4_journal_stop(handle);
2664 return -ENOMEM;
2666 path[0].p_depth = depth;
2667 path[0].p_hdr = ext_inode_hdr(inode);
2668 i = 0;
2670 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2671 err = -EIO;
2672 goto out;
2675 err = 0;
2677 while (i >= 0 && err == 0) {
2678 if (i == depth) {
2679 /* this is leaf block */
2680 err = ext4_ext_rm_leaf(handle, inode, path,
2681 &partial_cluster, start,
2682 end);
2683 /* root level has p_bh == NULL, brelse() eats this */
2684 brelse(path[i].p_bh);
2685 path[i].p_bh = NULL;
2686 i--;
2687 continue;
2690 /* this is index block */
2691 if (!path[i].p_hdr) {
2692 ext_debug("initialize header\n");
2693 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2696 if (!path[i].p_idx) {
2697 /* this level hasn't been touched yet */
2698 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2699 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2700 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2701 path[i].p_hdr,
2702 le16_to_cpu(path[i].p_hdr->eh_entries));
2703 } else {
2704 /* we were already here, see at next index */
2705 path[i].p_idx--;
2708 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2709 i, EXT_FIRST_INDEX(path[i].p_hdr),
2710 path[i].p_idx);
2711 if (ext4_ext_more_to_rm(path + i)) {
2712 struct buffer_head *bh;
2713 /* go to the next level */
2714 ext_debug("move to level %d (block %llu)\n",
2715 i + 1, ext4_idx_pblock(path[i].p_idx));
2716 memset(path + i + 1, 0, sizeof(*path));
2717 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2718 if (!bh) {
2719 /* should we reset i_size? */
2720 err = -EIO;
2721 break;
2723 if (WARN_ON(i + 1 > depth)) {
2724 err = -EIO;
2725 break;
2727 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2728 depth - i - 1, bh)) {
2729 err = -EIO;
2730 break;
2732 path[i + 1].p_bh = bh;
2734 /* save actual number of indexes since this
2735 * number is changed at the next iteration */
2736 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2737 i++;
2738 } else {
2739 /* we finished processing this index, go up */
2740 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2741 /* index is empty, remove it;
2742 * handle must be already prepared by the
2743 * truncatei_leaf() */
2744 err = ext4_ext_rm_idx(handle, inode, path + i);
2746 /* root level has p_bh == NULL, brelse() eats this */
2747 brelse(path[i].p_bh);
2748 path[i].p_bh = NULL;
2749 i--;
2750 ext_debug("return to level %d\n", i);
2754 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2755 path->p_hdr->eh_entries);
2757 /* If we still have something in the partial cluster and we have removed
2758 * even the first extent, then we should free the blocks in the partial
2759 * cluster as well. */
2760 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2761 int flags = EXT4_FREE_BLOCKS_FORGET;
2763 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2764 flags |= EXT4_FREE_BLOCKS_METADATA;
2766 ext4_free_blocks(handle, inode, NULL,
2767 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2768 EXT4_SB(sb)->s_cluster_ratio, flags);
2769 partial_cluster = 0;
2772 /* TODO: flexible tree reduction should be here */
2773 if (path->p_hdr->eh_entries == 0) {
2775 * truncate to zero freed all the tree,
2776 * so we need to correct eh_depth
2778 err = ext4_ext_get_access(handle, inode, path);
2779 if (err == 0) {
2780 ext_inode_hdr(inode)->eh_depth = 0;
2781 ext_inode_hdr(inode)->eh_max =
2782 cpu_to_le16(ext4_ext_space_root(inode, 0));
2783 err = ext4_ext_dirty(handle, inode, path);
2786 out:
2787 ext4_ext_drop_refs(path);
2788 kfree(path);
2789 if (err == -EAGAIN) {
2790 path = NULL;
2791 goto again;
2793 ext4_journal_stop(handle);
2795 return err;
2799 * called at mount time
2801 void ext4_ext_init(struct super_block *sb)
2804 * possible initialization would be here
2807 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2808 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2809 printk(KERN_INFO "EXT4-fs: file extents enabled"
2810 #ifdef AGGRESSIVE_TEST
2811 ", aggressive tests"
2812 #endif
2813 #ifdef CHECK_BINSEARCH
2814 ", check binsearch"
2815 #endif
2816 #ifdef EXTENTS_STATS
2817 ", stats"
2818 #endif
2819 "\n");
2820 #endif
2821 #ifdef EXTENTS_STATS
2822 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2823 EXT4_SB(sb)->s_ext_min = 1 << 30;
2824 EXT4_SB(sb)->s_ext_max = 0;
2825 #endif
2830 * called at umount time
2832 void ext4_ext_release(struct super_block *sb)
2834 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2835 return;
2837 #ifdef EXTENTS_STATS
2838 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2839 struct ext4_sb_info *sbi = EXT4_SB(sb);
2840 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2841 sbi->s_ext_blocks, sbi->s_ext_extents,
2842 sbi->s_ext_blocks / sbi->s_ext_extents);
2843 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2844 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2846 #endif
2849 /* FIXME!! we need to try to merge to left or right after zero-out */
2850 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2852 ext4_fsblk_t ee_pblock;
2853 unsigned int ee_len;
2854 int ret;
2856 ee_len = ext4_ext_get_actual_len(ex);
2857 ee_pblock = ext4_ext_pblock(ex);
2859 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2860 if (ret > 0)
2861 ret = 0;
2863 return ret;
2867 * ext4_split_extent_at() splits an extent at given block.
2869 * @handle: the journal handle
2870 * @inode: the file inode
2871 * @path: the path to the extent
2872 * @split: the logical block where the extent is splitted.
2873 * @split_flags: indicates if the extent could be zeroout if split fails, and
2874 * the states(init or uninit) of new extents.
2875 * @flags: flags used to insert new extent to extent tree.
2878 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2879 * of which are deterimined by split_flag.
2881 * There are two cases:
2882 * a> the extent are splitted into two extent.
2883 * b> split is not needed, and just mark the extent.
2885 * return 0 on success.
2887 static int ext4_split_extent_at(handle_t *handle,
2888 struct inode *inode,
2889 struct ext4_ext_path *path,
2890 ext4_lblk_t split,
2891 int split_flag,
2892 int flags)
2894 ext4_fsblk_t newblock;
2895 ext4_lblk_t ee_block;
2896 struct ext4_extent *ex, newex, orig_ex;
2897 struct ext4_extent *ex2 = NULL;
2898 unsigned int ee_len, depth;
2899 int err = 0;
2901 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2902 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2904 ext_debug("ext4_split_extents_at: inode %lu, logical"
2905 "block %llu\n", inode->i_ino, (unsigned long long)split);
2907 ext4_ext_show_leaf(inode, path);
2909 depth = ext_depth(inode);
2910 ex = path[depth].p_ext;
2911 ee_block = le32_to_cpu(ex->ee_block);
2912 ee_len = ext4_ext_get_actual_len(ex);
2913 newblock = split - ee_block + ext4_ext_pblock(ex);
2915 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2917 err = ext4_ext_get_access(handle, inode, path + depth);
2918 if (err)
2919 goto out;
2921 if (split == ee_block) {
2923 * case b: block @split is the block that the extent begins with
2924 * then we just change the state of the extent, and splitting
2925 * is not needed.
2927 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2928 ext4_ext_mark_uninitialized(ex);
2929 else
2930 ext4_ext_mark_initialized(ex);
2932 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2933 ext4_ext_try_to_merge(inode, path, ex);
2935 err = ext4_ext_dirty(handle, inode, path + depth);
2936 goto out;
2939 /* case a */
2940 memcpy(&orig_ex, ex, sizeof(orig_ex));
2941 ex->ee_len = cpu_to_le16(split - ee_block);
2942 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2943 ext4_ext_mark_uninitialized(ex);
2946 * path may lead to new leaf, not to original leaf any more
2947 * after ext4_ext_insert_extent() returns,
2949 err = ext4_ext_dirty(handle, inode, path + depth);
2950 if (err)
2951 goto fix_extent_len;
2953 ex2 = &newex;
2954 ex2->ee_block = cpu_to_le32(split);
2955 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2956 ext4_ext_store_pblock(ex2, newblock);
2957 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2958 ext4_ext_mark_uninitialized(ex2);
2960 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2961 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2962 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2963 if (split_flag & EXT4_EXT_DATA_VALID1)
2964 err = ext4_ext_zeroout(inode, ex2);
2965 else
2966 err = ext4_ext_zeroout(inode, ex);
2967 } else
2968 err = ext4_ext_zeroout(inode, &orig_ex);
2970 if (err)
2971 goto fix_extent_len;
2972 /* update the extent length and mark as initialized */
2973 ex->ee_len = cpu_to_le16(ee_len);
2974 ext4_ext_try_to_merge(inode, path, ex);
2975 err = ext4_ext_dirty(handle, inode, path + depth);
2976 goto out;
2977 } else if (err)
2978 goto fix_extent_len;
2980 out:
2981 ext4_ext_show_leaf(inode, path);
2982 return err;
2984 fix_extent_len:
2985 ex->ee_len = orig_ex.ee_len;
2986 ext4_ext_dirty(handle, inode, path + depth);
2987 return err;
2991 * ext4_split_extents() splits an extent and mark extent which is covered
2992 * by @map as split_flags indicates
2994 * It may result in splitting the extent into multiple extents (upto three)
2995 * There are three possibilities:
2996 * a> There is no split required
2997 * b> Splits in two extents: Split is happening at either end of the extent
2998 * c> Splits in three extents: Somone is splitting in middle of the extent
3001 static int ext4_split_extent(handle_t *handle,
3002 struct inode *inode,
3003 struct ext4_ext_path *path,
3004 struct ext4_map_blocks *map,
3005 int split_flag,
3006 int flags)
3008 ext4_lblk_t ee_block;
3009 struct ext4_extent *ex;
3010 unsigned int ee_len, depth;
3011 int err = 0;
3012 int uninitialized;
3013 int split_flag1, flags1;
3015 depth = ext_depth(inode);
3016 ex = path[depth].p_ext;
3017 ee_block = le32_to_cpu(ex->ee_block);
3018 ee_len = ext4_ext_get_actual_len(ex);
3019 uninitialized = ext4_ext_is_uninitialized(ex);
3021 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3022 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3023 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3024 if (uninitialized)
3025 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3026 EXT4_EXT_MARK_UNINIT2;
3027 if (split_flag & EXT4_EXT_DATA_VALID2)
3028 split_flag1 |= EXT4_EXT_DATA_VALID1;
3029 err = ext4_split_extent_at(handle, inode, path,
3030 map->m_lblk + map->m_len, split_flag1, flags1);
3031 if (err)
3032 goto out;
3035 ext4_ext_drop_refs(path);
3036 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3037 if (IS_ERR(path))
3038 return PTR_ERR(path);
3040 if (map->m_lblk >= ee_block) {
3041 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3042 EXT4_EXT_DATA_VALID2);
3043 if (uninitialized)
3044 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3045 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3046 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3047 err = ext4_split_extent_at(handle, inode, path,
3048 map->m_lblk, split_flag1, flags);
3049 if (err)
3050 goto out;
3053 ext4_ext_show_leaf(inode, path);
3054 out:
3055 return err ? err : map->m_len;
3058 #define EXT4_EXT_ZERO_LEN 7
3060 * This function is called by ext4_ext_map_blocks() if someone tries to write
3061 * to an uninitialized extent. It may result in splitting the uninitialized
3062 * extent into multiple extents (up to three - one initialized and two
3063 * uninitialized).
3064 * There are three possibilities:
3065 * a> There is no split required: Entire extent should be initialized
3066 * b> Splits in two extents: Write is happening at either end of the extent
3067 * c> Splits in three extents: Somone is writing in middle of the extent
3069 * Pre-conditions:
3070 * - The extent pointed to by 'path' is uninitialized.
3071 * - The extent pointed to by 'path' contains a superset
3072 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3074 * Post-conditions on success:
3075 * - the returned value is the number of blocks beyond map->l_lblk
3076 * that are allocated and initialized.
3077 * It is guaranteed to be >= map->m_len.
3079 static int ext4_ext_convert_to_initialized(handle_t *handle,
3080 struct inode *inode,
3081 struct ext4_map_blocks *map,
3082 struct ext4_ext_path *path)
3084 struct ext4_extent_header *eh;
3085 struct ext4_map_blocks split_map;
3086 struct ext4_extent zero_ex;
3087 struct ext4_extent *ex;
3088 ext4_lblk_t ee_block, eof_block;
3089 unsigned int ee_len, depth;
3090 int allocated;
3091 int err = 0;
3092 int split_flag = 0;
3094 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3095 "block %llu, max_blocks %u\n", inode->i_ino,
3096 (unsigned long long)map->m_lblk, map->m_len);
3098 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3099 inode->i_sb->s_blocksize_bits;
3100 if (eof_block < map->m_lblk + map->m_len)
3101 eof_block = map->m_lblk + map->m_len;
3103 depth = ext_depth(inode);
3104 eh = path[depth].p_hdr;
3105 ex = path[depth].p_ext;
3106 ee_block = le32_to_cpu(ex->ee_block);
3107 ee_len = ext4_ext_get_actual_len(ex);
3108 allocated = ee_len - (map->m_lblk - ee_block);
3110 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3112 /* Pre-conditions */
3113 BUG_ON(!ext4_ext_is_uninitialized(ex));
3114 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3117 * Attempt to transfer newly initialized blocks from the currently
3118 * uninitialized extent to its left neighbor. This is much cheaper
3119 * than an insertion followed by a merge as those involve costly
3120 * memmove() calls. This is the common case in steady state for
3121 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3122 * writes.
3124 * Limitations of the current logic:
3125 * - L1: we only deal with writes at the start of the extent.
3126 * The approach could be extended to writes at the end
3127 * of the extent but this scenario was deemed less common.
3128 * - L2: we do not deal with writes covering the whole extent.
3129 * This would require removing the extent if the transfer
3130 * is possible.
3131 * - L3: we only attempt to merge with an extent stored in the
3132 * same extent tree node.
3134 if ((map->m_lblk == ee_block) && /*L1*/
3135 (map->m_len < ee_len) && /*L2*/
3136 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3137 struct ext4_extent *prev_ex;
3138 ext4_lblk_t prev_lblk;
3139 ext4_fsblk_t prev_pblk, ee_pblk;
3140 unsigned int prev_len, write_len;
3142 prev_ex = ex - 1;
3143 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3144 prev_len = ext4_ext_get_actual_len(prev_ex);
3145 prev_pblk = ext4_ext_pblock(prev_ex);
3146 ee_pblk = ext4_ext_pblock(ex);
3147 write_len = map->m_len;
3150 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3151 * upon those conditions:
3152 * - C1: prev_ex is initialized,
3153 * - C2: prev_ex is logically abutting ex,
3154 * - C3: prev_ex is physically abutting ex,
3155 * - C4: prev_ex can receive the additional blocks without
3156 * overflowing the (initialized) length limit.
3158 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3159 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3160 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3161 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3162 err = ext4_ext_get_access(handle, inode, path + depth);
3163 if (err)
3164 goto out;
3166 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3167 map, ex, prev_ex);
3169 /* Shift the start of ex by 'write_len' blocks */
3170 ex->ee_block = cpu_to_le32(ee_block + write_len);
3171 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3172 ex->ee_len = cpu_to_le16(ee_len - write_len);
3173 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3175 /* Extend prev_ex by 'write_len' blocks */
3176 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3178 /* Mark the block containing both extents as dirty */
3179 ext4_ext_dirty(handle, inode, path + depth);
3181 /* Update path to point to the right extent */
3182 path[depth].p_ext = prev_ex;
3184 /* Result: number of initialized blocks past m_lblk */
3185 allocated = write_len;
3186 goto out;
3190 WARN_ON(map->m_lblk < ee_block);
3192 * It is safe to convert extent to initialized via explicit
3193 * zeroout only if extent is fully insde i_size or new_size.
3195 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3197 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3198 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3199 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3200 err = ext4_ext_zeroout(inode, ex);
3201 if (err)
3202 goto out;
3204 err = ext4_ext_get_access(handle, inode, path + depth);
3205 if (err)
3206 goto out;
3207 ext4_ext_mark_initialized(ex);
3208 ext4_ext_try_to_merge(inode, path, ex);
3209 err = ext4_ext_dirty(handle, inode, path + depth);
3210 goto out;
3214 * four cases:
3215 * 1. split the extent into three extents.
3216 * 2. split the extent into two extents, zeroout the first half.
3217 * 3. split the extent into two extents, zeroout the second half.
3218 * 4. split the extent into two extents with out zeroout.
3220 split_map.m_lblk = map->m_lblk;
3221 split_map.m_len = map->m_len;
3223 if (allocated > map->m_len) {
3224 if (allocated <= EXT4_EXT_ZERO_LEN &&
3225 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3226 /* case 3 */
3227 zero_ex.ee_block =
3228 cpu_to_le32(map->m_lblk);
3229 zero_ex.ee_len = cpu_to_le16(allocated);
3230 ext4_ext_store_pblock(&zero_ex,
3231 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3232 err = ext4_ext_zeroout(inode, &zero_ex);
3233 if (err)
3234 goto out;
3235 split_map.m_lblk = map->m_lblk;
3236 split_map.m_len = allocated;
3237 } else if ((map->m_lblk - ee_block + map->m_len <
3238 EXT4_EXT_ZERO_LEN) &&
3239 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3240 /* case 2 */
3241 if (map->m_lblk != ee_block) {
3242 zero_ex.ee_block = ex->ee_block;
3243 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3244 ee_block);
3245 ext4_ext_store_pblock(&zero_ex,
3246 ext4_ext_pblock(ex));
3247 err = ext4_ext_zeroout(inode, &zero_ex);
3248 if (err)
3249 goto out;
3252 split_map.m_lblk = ee_block;
3253 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3254 allocated = map->m_len;
3258 allocated = ext4_split_extent(handle, inode, path,
3259 &split_map, split_flag, 0);
3260 if (allocated < 0)
3261 err = allocated;
3263 out:
3264 return err ? err : allocated;
3268 * This function is called by ext4_ext_map_blocks() from
3269 * ext4_get_blocks_dio_write() when DIO to write
3270 * to an uninitialized extent.
3272 * Writing to an uninitialized extent may result in splitting the uninitialized
3273 * extent into multiple /initialized uninitialized extents (up to three)
3274 * There are three possibilities:
3275 * a> There is no split required: Entire extent should be uninitialized
3276 * b> Splits in two extents: Write is happening at either end of the extent
3277 * c> Splits in three extents: Somone is writing in middle of the extent
3279 * One of more index blocks maybe needed if the extent tree grow after
3280 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3281 * complete, we need to split the uninitialized extent before DIO submit
3282 * the IO. The uninitialized extent called at this time will be split
3283 * into three uninitialized extent(at most). After IO complete, the part
3284 * being filled will be convert to initialized by the end_io callback function
3285 * via ext4_convert_unwritten_extents().
3287 * Returns the size of uninitialized extent to be written on success.
3289 static int ext4_split_unwritten_extents(handle_t *handle,
3290 struct inode *inode,
3291 struct ext4_map_blocks *map,
3292 struct ext4_ext_path *path,
3293 int flags)
3295 ext4_lblk_t eof_block;
3296 ext4_lblk_t ee_block;
3297 struct ext4_extent *ex;
3298 unsigned int ee_len;
3299 int split_flag = 0, depth;
3301 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3302 "block %llu, max_blocks %u\n", inode->i_ino,
3303 (unsigned long long)map->m_lblk, map->m_len);
3305 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3306 inode->i_sb->s_blocksize_bits;
3307 if (eof_block < map->m_lblk + map->m_len)
3308 eof_block = map->m_lblk + map->m_len;
3310 * It is safe to convert extent to initialized via explicit
3311 * zeroout only if extent is fully insde i_size or new_size.
3313 depth = ext_depth(inode);
3314 ex = path[depth].p_ext;
3315 ee_block = le32_to_cpu(ex->ee_block);
3316 ee_len = ext4_ext_get_actual_len(ex);
3318 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3319 split_flag |= EXT4_EXT_MARK_UNINIT2;
3320 if (flags & EXT4_GET_BLOCKS_CONVERT)
3321 split_flag |= EXT4_EXT_DATA_VALID2;
3322 flags |= EXT4_GET_BLOCKS_PRE_IO;
3323 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3326 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3327 struct inode *inode,
3328 struct ext4_map_blocks *map,
3329 struct ext4_ext_path *path)
3331 struct ext4_extent *ex;
3332 ext4_lblk_t ee_block;
3333 unsigned int ee_len;
3334 int depth;
3335 int err = 0;
3337 depth = ext_depth(inode);
3338 ex = path[depth].p_ext;
3339 ee_block = le32_to_cpu(ex->ee_block);
3340 ee_len = ext4_ext_get_actual_len(ex);
3342 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3343 "block %llu, max_blocks %u\n", inode->i_ino,
3344 (unsigned long long)ee_block, ee_len);
3346 /* If extent is larger than requested then split is required */
3347 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3348 err = ext4_split_unwritten_extents(handle, inode, map, path,
3349 EXT4_GET_BLOCKS_CONVERT);
3350 if (err < 0)
3351 goto out;
3352 ext4_ext_drop_refs(path);
3353 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3354 if (IS_ERR(path)) {
3355 err = PTR_ERR(path);
3356 goto out;
3358 depth = ext_depth(inode);
3359 ex = path[depth].p_ext;
3362 err = ext4_ext_get_access(handle, inode, path + depth);
3363 if (err)
3364 goto out;
3365 /* first mark the extent as initialized */
3366 ext4_ext_mark_initialized(ex);
3368 /* note: ext4_ext_correct_indexes() isn't needed here because
3369 * borders are not changed
3371 ext4_ext_try_to_merge(inode, path, ex);
3373 /* Mark modified extent as dirty */
3374 err = ext4_ext_dirty(handle, inode, path + depth);
3375 out:
3376 ext4_ext_show_leaf(inode, path);
3377 return err;
3380 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3381 sector_t block, int count)
3383 int i;
3384 for (i = 0; i < count; i++)
3385 unmap_underlying_metadata(bdev, block + i);
3389 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3391 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3392 ext4_lblk_t lblk,
3393 struct ext4_ext_path *path,
3394 unsigned int len)
3396 int i, depth;
3397 struct ext4_extent_header *eh;
3398 struct ext4_extent *last_ex;
3400 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3401 return 0;
3403 depth = ext_depth(inode);
3404 eh = path[depth].p_hdr;
3407 * We're going to remove EOFBLOCKS_FL entirely in future so we
3408 * do not care for this case anymore. Simply remove the flag
3409 * if there are no extents.
3411 if (unlikely(!eh->eh_entries))
3412 goto out;
3413 last_ex = EXT_LAST_EXTENT(eh);
3415 * We should clear the EOFBLOCKS_FL flag if we are writing the
3416 * last block in the last extent in the file. We test this by
3417 * first checking to see if the caller to
3418 * ext4_ext_get_blocks() was interested in the last block (or
3419 * a block beyond the last block) in the current extent. If
3420 * this turns out to be false, we can bail out from this
3421 * function immediately.
3423 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3424 ext4_ext_get_actual_len(last_ex))
3425 return 0;
3427 * If the caller does appear to be planning to write at or
3428 * beyond the end of the current extent, we then test to see
3429 * if the current extent is the last extent in the file, by
3430 * checking to make sure it was reached via the rightmost node
3431 * at each level of the tree.
3433 for (i = depth-1; i >= 0; i--)
3434 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3435 return 0;
3436 out:
3437 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3438 return ext4_mark_inode_dirty(handle, inode);
3442 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3444 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3445 * whether there are any buffers marked for delayed allocation. It returns '1'
3446 * on the first delalloc'ed buffer head found. If no buffer head in the given
3447 * range is marked for delalloc, it returns 0.
3448 * lblk_start should always be <= lblk_end.
3449 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3450 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3451 * block sooner). This is useful when blocks are truncated sequentially from
3452 * lblk_start towards lblk_end.
3454 static int ext4_find_delalloc_range(struct inode *inode,
3455 ext4_lblk_t lblk_start,
3456 ext4_lblk_t lblk_end,
3457 int search_hint_reverse)
3459 struct address_space *mapping = inode->i_mapping;
3460 struct buffer_head *head, *bh = NULL;
3461 struct page *page;
3462 ext4_lblk_t i, pg_lblk;
3463 pgoff_t index;
3465 if (!test_opt(inode->i_sb, DELALLOC))
3466 return 0;
3468 /* reverse search wont work if fs block size is less than page size */
3469 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3470 search_hint_reverse = 0;
3472 if (search_hint_reverse)
3473 i = lblk_end;
3474 else
3475 i = lblk_start;
3477 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3479 while ((i >= lblk_start) && (i <= lblk_end)) {
3480 page = find_get_page(mapping, index);
3481 if (!page)
3482 goto nextpage;
3484 if (!page_has_buffers(page))
3485 goto nextpage;
3487 head = page_buffers(page);
3488 if (!head)
3489 goto nextpage;
3491 bh = head;
3492 pg_lblk = index << (PAGE_CACHE_SHIFT -
3493 inode->i_blkbits);
3494 do {
3495 if (unlikely(pg_lblk < lblk_start)) {
3497 * This is possible when fs block size is less
3498 * than page size and our cluster starts/ends in
3499 * middle of the page. So we need to skip the
3500 * initial few blocks till we reach the 'lblk'
3502 pg_lblk++;
3503 continue;
3506 /* Check if the buffer is delayed allocated and that it
3507 * is not yet mapped. (when da-buffers are mapped during
3508 * their writeout, their da_mapped bit is set.)
3510 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3511 page_cache_release(page);
3512 trace_ext4_find_delalloc_range(inode,
3513 lblk_start, lblk_end,
3514 search_hint_reverse,
3515 1, i);
3516 return 1;
3518 if (search_hint_reverse)
3519 i--;
3520 else
3521 i++;
3522 } while ((i >= lblk_start) && (i <= lblk_end) &&
3523 ((bh = bh->b_this_page) != head));
3524 nextpage:
3525 if (page)
3526 page_cache_release(page);
3528 * Move to next page. 'i' will be the first lblk in the next
3529 * page.
3531 if (search_hint_reverse)
3532 index--;
3533 else
3534 index++;
3535 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3538 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3539 search_hint_reverse, 0, 0);
3540 return 0;
3543 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3544 int search_hint_reverse)
3546 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3547 ext4_lblk_t lblk_start, lblk_end;
3548 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3549 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3551 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3552 search_hint_reverse);
3556 * Determines how many complete clusters (out of those specified by the 'map')
3557 * are under delalloc and were reserved quota for.
3558 * This function is called when we are writing out the blocks that were
3559 * originally written with their allocation delayed, but then the space was
3560 * allocated using fallocate() before the delayed allocation could be resolved.
3561 * The cases to look for are:
3562 * ('=' indicated delayed allocated blocks
3563 * '-' indicates non-delayed allocated blocks)
3564 * (a) partial clusters towards beginning and/or end outside of allocated range
3565 * are not delalloc'ed.
3566 * Ex:
3567 * |----c---=|====c====|====c====|===-c----|
3568 * |++++++ allocated ++++++|
3569 * ==> 4 complete clusters in above example
3571 * (b) partial cluster (outside of allocated range) towards either end is
3572 * marked for delayed allocation. In this case, we will exclude that
3573 * cluster.
3574 * Ex:
3575 * |----====c========|========c========|
3576 * |++++++ allocated ++++++|
3577 * ==> 1 complete clusters in above example
3579 * Ex:
3580 * |================c================|
3581 * |++++++ allocated ++++++|
3582 * ==> 0 complete clusters in above example
3584 * The ext4_da_update_reserve_space will be called only if we
3585 * determine here that there were some "entire" clusters that span
3586 * this 'allocated' range.
3587 * In the non-bigalloc case, this function will just end up returning num_blks
3588 * without ever calling ext4_find_delalloc_range.
3590 static unsigned int
3591 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3592 unsigned int num_blks)
3594 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3595 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3596 ext4_lblk_t lblk_from, lblk_to, c_offset;
3597 unsigned int allocated_clusters = 0;
3599 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3600 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3602 /* max possible clusters for this allocation */
3603 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3605 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3607 /* Check towards left side */
3608 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3609 if (c_offset) {
3610 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3611 lblk_to = lblk_from + c_offset - 1;
3613 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3614 allocated_clusters--;
3617 /* Now check towards right. */
3618 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3619 if (allocated_clusters && c_offset) {
3620 lblk_from = lblk_start + num_blks;
3621 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3623 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3624 allocated_clusters--;
3627 return allocated_clusters;
3630 static int
3631 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3632 struct ext4_map_blocks *map,
3633 struct ext4_ext_path *path, int flags,
3634 unsigned int allocated, ext4_fsblk_t newblock)
3636 int ret = 0;
3637 int err = 0;
3638 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3640 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3641 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3642 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3643 flags, allocated);
3644 ext4_ext_show_leaf(inode, path);
3646 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3647 newblock);
3649 /* get_block() before submit the IO, split the extent */
3650 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3651 ret = ext4_split_unwritten_extents(handle, inode, map,
3652 path, flags);
3654 * Flag the inode(non aio case) or end_io struct (aio case)
3655 * that this IO needs to conversion to written when IO is
3656 * completed
3658 if (io)
3659 ext4_set_io_unwritten_flag(inode, io);
3660 else
3661 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662 if (ext4_should_dioread_nolock(inode))
3663 map->m_flags |= EXT4_MAP_UNINIT;
3664 goto out;
3666 /* IO end_io complete, convert the filled extent to written */
3667 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3668 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3669 path);
3670 if (ret >= 0) {
3671 ext4_update_inode_fsync_trans(handle, inode, 1);
3672 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3673 path, map->m_len);
3674 } else
3675 err = ret;
3676 goto out2;
3678 /* buffered IO case */
3680 * repeat fallocate creation request
3681 * we already have an unwritten extent
3683 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3684 goto map_out;
3686 /* buffered READ or buffered write_begin() lookup */
3687 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3689 * We have blocks reserved already. We
3690 * return allocated blocks so that delalloc
3691 * won't do block reservation for us. But
3692 * the buffer head will be unmapped so that
3693 * a read from the block returns 0s.
3695 map->m_flags |= EXT4_MAP_UNWRITTEN;
3696 goto out1;
3699 /* buffered write, writepage time, convert*/
3700 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3701 if (ret >= 0)
3702 ext4_update_inode_fsync_trans(handle, inode, 1);
3703 out:
3704 if (ret <= 0) {
3705 err = ret;
3706 goto out2;
3707 } else
3708 allocated = ret;
3709 map->m_flags |= EXT4_MAP_NEW;
3711 * if we allocated more blocks than requested
3712 * we need to make sure we unmap the extra block
3713 * allocated. The actual needed block will get
3714 * unmapped later when we find the buffer_head marked
3715 * new.
3717 if (allocated > map->m_len) {
3718 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3719 newblock + map->m_len,
3720 allocated - map->m_len);
3721 allocated = map->m_len;
3725 * If we have done fallocate with the offset that is already
3726 * delayed allocated, we would have block reservation
3727 * and quota reservation done in the delayed write path.
3728 * But fallocate would have already updated quota and block
3729 * count for this offset. So cancel these reservation
3731 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3732 unsigned int reserved_clusters;
3733 reserved_clusters = get_reserved_cluster_alloc(inode,
3734 map->m_lblk, map->m_len);
3735 if (reserved_clusters)
3736 ext4_da_update_reserve_space(inode,
3737 reserved_clusters,
3741 map_out:
3742 map->m_flags |= EXT4_MAP_MAPPED;
3743 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3744 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3745 map->m_len);
3746 if (err < 0)
3747 goto out2;
3749 out1:
3750 if (allocated > map->m_len)
3751 allocated = map->m_len;
3752 ext4_ext_show_leaf(inode, path);
3753 map->m_pblk = newblock;
3754 map->m_len = allocated;
3755 out2:
3756 if (path) {
3757 ext4_ext_drop_refs(path);
3758 kfree(path);
3760 return err ? err : allocated;
3764 * get_implied_cluster_alloc - check to see if the requested
3765 * allocation (in the map structure) overlaps with a cluster already
3766 * allocated in an extent.
3767 * @sb The filesystem superblock structure
3768 * @map The requested lblk->pblk mapping
3769 * @ex The extent structure which might contain an implied
3770 * cluster allocation
3772 * This function is called by ext4_ext_map_blocks() after we failed to
3773 * find blocks that were already in the inode's extent tree. Hence,
3774 * we know that the beginning of the requested region cannot overlap
3775 * the extent from the inode's extent tree. There are three cases we
3776 * want to catch. The first is this case:
3778 * |--- cluster # N--|
3779 * |--- extent ---| |---- requested region ---|
3780 * |==========|
3782 * The second case that we need to test for is this one:
3784 * |--------- cluster # N ----------------|
3785 * |--- requested region --| |------- extent ----|
3786 * |=======================|
3788 * The third case is when the requested region lies between two extents
3789 * within the same cluster:
3790 * |------------- cluster # N-------------|
3791 * |----- ex -----| |---- ex_right ----|
3792 * |------ requested region ------|
3793 * |================|
3795 * In each of the above cases, we need to set the map->m_pblk and
3796 * map->m_len so it corresponds to the return the extent labelled as
3797 * "|====|" from cluster #N, since it is already in use for data in
3798 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3799 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3800 * as a new "allocated" block region. Otherwise, we will return 0 and
3801 * ext4_ext_map_blocks() will then allocate one or more new clusters
3802 * by calling ext4_mb_new_blocks().
3804 static int get_implied_cluster_alloc(struct super_block *sb,
3805 struct ext4_map_blocks *map,
3806 struct ext4_extent *ex,
3807 struct ext4_ext_path *path)
3809 struct ext4_sb_info *sbi = EXT4_SB(sb);
3810 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3811 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3812 ext4_lblk_t rr_cluster_start;
3813 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3814 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3815 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3817 /* The extent passed in that we are trying to match */
3818 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3819 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3821 /* The requested region passed into ext4_map_blocks() */
3822 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3824 if ((rr_cluster_start == ex_cluster_end) ||
3825 (rr_cluster_start == ex_cluster_start)) {
3826 if (rr_cluster_start == ex_cluster_end)
3827 ee_start += ee_len - 1;
3828 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3829 c_offset;
3830 map->m_len = min(map->m_len,
3831 (unsigned) sbi->s_cluster_ratio - c_offset);
3833 * Check for and handle this case:
3835 * |--------- cluster # N-------------|
3836 * |------- extent ----|
3837 * |--- requested region ---|
3838 * |===========|
3841 if (map->m_lblk < ee_block)
3842 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3845 * Check for the case where there is already another allocated
3846 * block to the right of 'ex' but before the end of the cluster.
3848 * |------------- cluster # N-------------|
3849 * |----- ex -----| |---- ex_right ----|
3850 * |------ requested region ------|
3851 * |================|
3853 if (map->m_lblk > ee_block) {
3854 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3855 map->m_len = min(map->m_len, next - map->m_lblk);
3858 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3859 return 1;
3862 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3863 return 0;
3868 * Block allocation/map/preallocation routine for extents based files
3871 * Need to be called with
3872 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3873 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3875 * return > 0, number of of blocks already mapped/allocated
3876 * if create == 0 and these are pre-allocated blocks
3877 * buffer head is unmapped
3878 * otherwise blocks are mapped
3880 * return = 0, if plain look up failed (blocks have not been allocated)
3881 * buffer head is unmapped
3883 * return < 0, error case.
3885 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3886 struct ext4_map_blocks *map, int flags)
3888 struct ext4_ext_path *path = NULL;
3889 struct ext4_extent newex, *ex, *ex2;
3890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3891 ext4_fsblk_t newblock = 0;
3892 int free_on_err = 0, err = 0, depth, ret;
3893 unsigned int allocated = 0, offset = 0;
3894 unsigned int allocated_clusters = 0;
3895 struct ext4_allocation_request ar;
3896 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3897 ext4_lblk_t cluster_offset;
3899 ext_debug("blocks %u/%u requested for inode %lu\n",
3900 map->m_lblk, map->m_len, inode->i_ino);
3901 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3903 /* check in cache */
3904 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3905 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3906 if ((sbi->s_cluster_ratio > 1) &&
3907 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3908 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3910 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3912 * block isn't allocated yet and
3913 * user doesn't want to allocate it
3915 goto out2;
3917 /* we should allocate requested block */
3918 } else {
3919 /* block is already allocated */
3920 if (sbi->s_cluster_ratio > 1)
3921 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3922 newblock = map->m_lblk
3923 - le32_to_cpu(newex.ee_block)
3924 + ext4_ext_pblock(&newex);
3925 /* number of remaining blocks in the extent */
3926 allocated = ext4_ext_get_actual_len(&newex) -
3927 (map->m_lblk - le32_to_cpu(newex.ee_block));
3928 goto out;
3932 /* find extent for this block */
3933 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3934 if (IS_ERR(path)) {
3935 err = PTR_ERR(path);
3936 path = NULL;
3937 goto out2;
3940 depth = ext_depth(inode);
3943 * consistent leaf must not be empty;
3944 * this situation is possible, though, _during_ tree modification;
3945 * this is why assert can't be put in ext4_ext_find_extent()
3947 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3948 EXT4_ERROR_INODE(inode, "bad extent address "
3949 "lblock: %lu, depth: %d pblock %lld",
3950 (unsigned long) map->m_lblk, depth,
3951 path[depth].p_block);
3952 err = -EIO;
3953 goto out2;
3956 ex = path[depth].p_ext;
3957 if (ex) {
3958 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3959 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3960 unsigned short ee_len;
3963 * Uninitialized extents are treated as holes, except that
3964 * we split out initialized portions during a write.
3966 ee_len = ext4_ext_get_actual_len(ex);
3968 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3970 /* if found extent covers block, simply return it */
3971 if (in_range(map->m_lblk, ee_block, ee_len)) {
3972 newblock = map->m_lblk - ee_block + ee_start;
3973 /* number of remaining blocks in the extent */
3974 allocated = ee_len - (map->m_lblk - ee_block);
3975 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3976 ee_block, ee_len, newblock);
3979 * Do not put uninitialized extent
3980 * in the cache
3982 if (!ext4_ext_is_uninitialized(ex)) {
3983 ext4_ext_put_in_cache(inode, ee_block,
3984 ee_len, ee_start);
3985 goto out;
3987 ret = ext4_ext_handle_uninitialized_extents(
3988 handle, inode, map, path, flags,
3989 allocated, newblock);
3990 return ret;
3994 if ((sbi->s_cluster_ratio > 1) &&
3995 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3996 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3999 * requested block isn't allocated yet;
4000 * we couldn't try to create block if create flag is zero
4002 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4004 * put just found gap into cache to speed up
4005 * subsequent requests
4007 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4008 goto out2;
4012 * Okay, we need to do block allocation.
4014 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4015 newex.ee_block = cpu_to_le32(map->m_lblk);
4016 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4019 * If we are doing bigalloc, check to see if the extent returned
4020 * by ext4_ext_find_extent() implies a cluster we can use.
4022 if (cluster_offset && ex &&
4023 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4024 ar.len = allocated = map->m_len;
4025 newblock = map->m_pblk;
4026 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4027 goto got_allocated_blocks;
4030 /* find neighbour allocated blocks */
4031 ar.lleft = map->m_lblk;
4032 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4033 if (err)
4034 goto out2;
4035 ar.lright = map->m_lblk;
4036 ex2 = NULL;
4037 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4038 if (err)
4039 goto out2;
4041 /* Check if the extent after searching to the right implies a
4042 * cluster we can use. */
4043 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4044 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4045 ar.len = allocated = map->m_len;
4046 newblock = map->m_pblk;
4047 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4048 goto got_allocated_blocks;
4052 * See if request is beyond maximum number of blocks we can have in
4053 * a single extent. For an initialized extent this limit is
4054 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4055 * EXT_UNINIT_MAX_LEN.
4057 if (map->m_len > EXT_INIT_MAX_LEN &&
4058 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4059 map->m_len = EXT_INIT_MAX_LEN;
4060 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4061 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4062 map->m_len = EXT_UNINIT_MAX_LEN;
4064 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4065 newex.ee_len = cpu_to_le16(map->m_len);
4066 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4067 if (err)
4068 allocated = ext4_ext_get_actual_len(&newex);
4069 else
4070 allocated = map->m_len;
4072 /* allocate new block */
4073 ar.inode = inode;
4074 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4075 ar.logical = map->m_lblk;
4077 * We calculate the offset from the beginning of the cluster
4078 * for the logical block number, since when we allocate a
4079 * physical cluster, the physical block should start at the
4080 * same offset from the beginning of the cluster. This is
4081 * needed so that future calls to get_implied_cluster_alloc()
4082 * work correctly.
4084 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4085 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4086 ar.goal -= offset;
4087 ar.logical -= offset;
4088 if (S_ISREG(inode->i_mode))
4089 ar.flags = EXT4_MB_HINT_DATA;
4090 else
4091 /* disable in-core preallocation for non-regular files */
4092 ar.flags = 0;
4093 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4094 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4095 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4096 if (!newblock)
4097 goto out2;
4098 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4099 ar.goal, newblock, allocated);
4100 free_on_err = 1;
4101 allocated_clusters = ar.len;
4102 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4103 if (ar.len > allocated)
4104 ar.len = allocated;
4106 got_allocated_blocks:
4107 /* try to insert new extent into found leaf and return */
4108 ext4_ext_store_pblock(&newex, newblock + offset);
4109 newex.ee_len = cpu_to_le16(ar.len);
4110 /* Mark uninitialized */
4111 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4112 ext4_ext_mark_uninitialized(&newex);
4114 * io_end structure was created for every IO write to an
4115 * uninitialized extent. To avoid unnecessary conversion,
4116 * here we flag the IO that really needs the conversion.
4117 * For non asycn direct IO case, flag the inode state
4118 * that we need to perform conversion when IO is done.
4120 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4121 if (io)
4122 ext4_set_io_unwritten_flag(inode, io);
4123 else
4124 ext4_set_inode_state(inode,
4125 EXT4_STATE_DIO_UNWRITTEN);
4127 if (ext4_should_dioread_nolock(inode))
4128 map->m_flags |= EXT4_MAP_UNINIT;
4131 err = 0;
4132 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4133 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4134 path, ar.len);
4135 if (!err)
4136 err = ext4_ext_insert_extent(handle, inode, path,
4137 &newex, flags);
4138 if (err && free_on_err) {
4139 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4140 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4141 /* free data blocks we just allocated */
4142 /* not a good idea to call discard here directly,
4143 * but otherwise we'd need to call it every free() */
4144 ext4_discard_preallocations(inode);
4145 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4146 ext4_ext_get_actual_len(&newex), fb_flags);
4147 goto out2;
4150 /* previous routine could use block we allocated */
4151 newblock = ext4_ext_pblock(&newex);
4152 allocated = ext4_ext_get_actual_len(&newex);
4153 if (allocated > map->m_len)
4154 allocated = map->m_len;
4155 map->m_flags |= EXT4_MAP_NEW;
4158 * Update reserved blocks/metadata blocks after successful
4159 * block allocation which had been deferred till now.
4161 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4162 unsigned int reserved_clusters;
4164 * Check how many clusters we had reserved this allocated range
4166 reserved_clusters = get_reserved_cluster_alloc(inode,
4167 map->m_lblk, allocated);
4168 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4169 if (reserved_clusters) {
4171 * We have clusters reserved for this range.
4172 * But since we are not doing actual allocation
4173 * and are simply using blocks from previously
4174 * allocated cluster, we should release the
4175 * reservation and not claim quota.
4177 ext4_da_update_reserve_space(inode,
4178 reserved_clusters, 0);
4180 } else {
4181 BUG_ON(allocated_clusters < reserved_clusters);
4182 /* We will claim quota for all newly allocated blocks.*/
4183 ext4_da_update_reserve_space(inode, allocated_clusters,
4185 if (reserved_clusters < allocated_clusters) {
4186 struct ext4_inode_info *ei = EXT4_I(inode);
4187 int reservation = allocated_clusters -
4188 reserved_clusters;
4190 * It seems we claimed few clusters outside of
4191 * the range of this allocation. We should give
4192 * it back to the reservation pool. This can
4193 * happen in the following case:
4195 * * Suppose s_cluster_ratio is 4 (i.e., each
4196 * cluster has 4 blocks. Thus, the clusters
4197 * are [0-3],[4-7],[8-11]...
4198 * * First comes delayed allocation write for
4199 * logical blocks 10 & 11. Since there were no
4200 * previous delayed allocated blocks in the
4201 * range [8-11], we would reserve 1 cluster
4202 * for this write.
4203 * * Next comes write for logical blocks 3 to 8.
4204 * In this case, we will reserve 2 clusters
4205 * (for [0-3] and [4-7]; and not for [8-11] as
4206 * that range has a delayed allocated blocks.
4207 * Thus total reserved clusters now becomes 3.
4208 * * Now, during the delayed allocation writeout
4209 * time, we will first write blocks [3-8] and
4210 * allocate 3 clusters for writing these
4211 * blocks. Also, we would claim all these
4212 * three clusters above.
4213 * * Now when we come here to writeout the
4214 * blocks [10-11], we would expect to claim
4215 * the reservation of 1 cluster we had made
4216 * (and we would claim it since there are no
4217 * more delayed allocated blocks in the range
4218 * [8-11]. But our reserved cluster count had
4219 * already gone to 0.
4221 * Thus, at the step 4 above when we determine
4222 * that there are still some unwritten delayed
4223 * allocated blocks outside of our current
4224 * block range, we should increment the
4225 * reserved clusters count so that when the
4226 * remaining blocks finally gets written, we
4227 * could claim them.
4229 dquot_reserve_block(inode,
4230 EXT4_C2B(sbi, reservation));
4231 spin_lock(&ei->i_block_reservation_lock);
4232 ei->i_reserved_data_blocks += reservation;
4233 spin_unlock(&ei->i_block_reservation_lock);
4239 * Cache the extent and update transaction to commit on fdatasync only
4240 * when it is _not_ an uninitialized extent.
4242 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4243 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4244 ext4_update_inode_fsync_trans(handle, inode, 1);
4245 } else
4246 ext4_update_inode_fsync_trans(handle, inode, 0);
4247 out:
4248 if (allocated > map->m_len)
4249 allocated = map->m_len;
4250 ext4_ext_show_leaf(inode, path);
4251 map->m_flags |= EXT4_MAP_MAPPED;
4252 map->m_pblk = newblock;
4253 map->m_len = allocated;
4254 out2:
4255 if (path) {
4256 ext4_ext_drop_refs(path);
4257 kfree(path);
4260 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4261 newblock, map->m_len, err ? err : allocated);
4263 return err ? err : allocated;
4266 void ext4_ext_truncate(struct inode *inode)
4268 struct address_space *mapping = inode->i_mapping;
4269 struct super_block *sb = inode->i_sb;
4270 ext4_lblk_t last_block;
4271 handle_t *handle;
4272 loff_t page_len;
4273 int err = 0;
4276 * finish any pending end_io work so we won't run the risk of
4277 * converting any truncated blocks to initialized later
4279 ext4_flush_completed_IO(inode);
4282 * probably first extent we're gonna free will be last in block
4284 err = ext4_writepage_trans_blocks(inode);
4285 handle = ext4_journal_start(inode, err);
4286 if (IS_ERR(handle))
4287 return;
4289 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4290 page_len = PAGE_CACHE_SIZE -
4291 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4293 err = ext4_discard_partial_page_buffers(handle,
4294 mapping, inode->i_size, page_len, 0);
4296 if (err)
4297 goto out_stop;
4300 if (ext4_orphan_add(handle, inode))
4301 goto out_stop;
4303 down_write(&EXT4_I(inode)->i_data_sem);
4304 ext4_ext_invalidate_cache(inode);
4306 ext4_discard_preallocations(inode);
4309 * TODO: optimization is possible here.
4310 * Probably we need not scan at all,
4311 * because page truncation is enough.
4314 /* we have to know where to truncate from in crash case */
4315 EXT4_I(inode)->i_disksize = inode->i_size;
4316 ext4_mark_inode_dirty(handle, inode);
4318 last_block = (inode->i_size + sb->s_blocksize - 1)
4319 >> EXT4_BLOCK_SIZE_BITS(sb);
4320 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4322 /* In a multi-transaction truncate, we only make the final
4323 * transaction synchronous.
4325 if (IS_SYNC(inode))
4326 ext4_handle_sync(handle);
4328 up_write(&EXT4_I(inode)->i_data_sem);
4330 out_stop:
4332 * If this was a simple ftruncate() and the file will remain alive,
4333 * then we need to clear up the orphan record which we created above.
4334 * However, if this was a real unlink then we were called by
4335 * ext4_delete_inode(), and we allow that function to clean up the
4336 * orphan info for us.
4338 if (inode->i_nlink)
4339 ext4_orphan_del(handle, inode);
4341 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4342 ext4_mark_inode_dirty(handle, inode);
4343 ext4_journal_stop(handle);
4346 static void ext4_falloc_update_inode(struct inode *inode,
4347 int mode, loff_t new_size, int update_ctime)
4349 struct timespec now;
4351 if (update_ctime) {
4352 now = current_fs_time(inode->i_sb);
4353 if (!timespec_equal(&inode->i_ctime, &now))
4354 inode->i_ctime = now;
4357 * Update only when preallocation was requested beyond
4358 * the file size.
4360 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4361 if (new_size > i_size_read(inode))
4362 i_size_write(inode, new_size);
4363 if (new_size > EXT4_I(inode)->i_disksize)
4364 ext4_update_i_disksize(inode, new_size);
4365 } else {
4367 * Mark that we allocate beyond EOF so the subsequent truncate
4368 * can proceed even if the new size is the same as i_size.
4370 if (new_size > i_size_read(inode))
4371 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4377 * preallocate space for a file. This implements ext4's fallocate file
4378 * operation, which gets called from sys_fallocate system call.
4379 * For block-mapped files, posix_fallocate should fall back to the method
4380 * of writing zeroes to the required new blocks (the same behavior which is
4381 * expected for file systems which do not support fallocate() system call).
4383 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4385 struct inode *inode = file->f_path.dentry->d_inode;
4386 handle_t *handle;
4387 loff_t new_size;
4388 unsigned int max_blocks;
4389 int ret = 0;
4390 int ret2 = 0;
4391 int retries = 0;
4392 int flags;
4393 struct ext4_map_blocks map;
4394 unsigned int credits, blkbits = inode->i_blkbits;
4397 * currently supporting (pre)allocate mode for extent-based
4398 * files _only_
4400 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4401 return -EOPNOTSUPP;
4403 /* Return error if mode is not supported */
4404 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4405 return -EOPNOTSUPP;
4407 if (mode & FALLOC_FL_PUNCH_HOLE)
4408 return ext4_punch_hole(file, offset, len);
4410 trace_ext4_fallocate_enter(inode, offset, len, mode);
4411 map.m_lblk = offset >> blkbits;
4413 * We can't just convert len to max_blocks because
4414 * If blocksize = 4096 offset = 3072 and len = 2048
4416 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4417 - map.m_lblk;
4419 * credits to insert 1 extent into extent tree
4421 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4422 mutex_lock(&inode->i_mutex);
4423 ret = inode_newsize_ok(inode, (len + offset));
4424 if (ret) {
4425 mutex_unlock(&inode->i_mutex);
4426 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4427 return ret;
4429 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4430 if (mode & FALLOC_FL_KEEP_SIZE)
4431 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4433 * Don't normalize the request if it can fit in one extent so
4434 * that it doesn't get unnecessarily split into multiple
4435 * extents.
4437 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4438 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4439 retry:
4440 while (ret >= 0 && ret < max_blocks) {
4441 map.m_lblk = map.m_lblk + ret;
4442 map.m_len = max_blocks = max_blocks - ret;
4443 handle = ext4_journal_start(inode, credits);
4444 if (IS_ERR(handle)) {
4445 ret = PTR_ERR(handle);
4446 break;
4448 ret = ext4_map_blocks(handle, inode, &map, flags);
4449 if (ret <= 0) {
4450 #ifdef EXT4FS_DEBUG
4451 WARN_ON(ret <= 0);
4452 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4453 "returned error inode#%lu, block=%u, "
4454 "max_blocks=%u", __func__,
4455 inode->i_ino, map.m_lblk, max_blocks);
4456 #endif
4457 ext4_mark_inode_dirty(handle, inode);
4458 ret2 = ext4_journal_stop(handle);
4459 break;
4461 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4462 blkbits) >> blkbits))
4463 new_size = offset + len;
4464 else
4465 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4467 ext4_falloc_update_inode(inode, mode, new_size,
4468 (map.m_flags & EXT4_MAP_NEW));
4469 ext4_mark_inode_dirty(handle, inode);
4470 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4471 ext4_handle_sync(handle);
4472 ret2 = ext4_journal_stop(handle);
4473 if (ret2)
4474 break;
4476 if (ret == -ENOSPC &&
4477 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4478 ret = 0;
4479 goto retry;
4481 mutex_unlock(&inode->i_mutex);
4482 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4483 ret > 0 ? ret2 : ret);
4484 return ret > 0 ? ret2 : ret;
4488 * This function convert a range of blocks to written extents
4489 * The caller of this function will pass the start offset and the size.
4490 * all unwritten extents within this range will be converted to
4491 * written extents.
4493 * This function is called from the direct IO end io call back
4494 * function, to convert the fallocated extents after IO is completed.
4495 * Returns 0 on success.
4497 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4498 ssize_t len)
4500 handle_t *handle;
4501 unsigned int max_blocks;
4502 int ret = 0;
4503 int ret2 = 0;
4504 struct ext4_map_blocks map;
4505 unsigned int credits, blkbits = inode->i_blkbits;
4507 map.m_lblk = offset >> blkbits;
4509 * We can't just convert len to max_blocks because
4510 * If blocksize = 4096 offset = 3072 and len = 2048
4512 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4513 map.m_lblk);
4515 * credits to insert 1 extent into extent tree
4517 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4518 while (ret >= 0 && ret < max_blocks) {
4519 map.m_lblk += ret;
4520 map.m_len = (max_blocks -= ret);
4521 handle = ext4_journal_start(inode, credits);
4522 if (IS_ERR(handle)) {
4523 ret = PTR_ERR(handle);
4524 break;
4526 ret = ext4_map_blocks(handle, inode, &map,
4527 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4528 if (ret <= 0) {
4529 WARN_ON(ret <= 0);
4530 ext4_msg(inode->i_sb, KERN_ERR,
4531 "%s:%d: inode #%lu: block %u: len %u: "
4532 "ext4_ext_map_blocks returned %d",
4533 __func__, __LINE__, inode->i_ino, map.m_lblk,
4534 map.m_len, ret);
4536 ext4_mark_inode_dirty(handle, inode);
4537 ret2 = ext4_journal_stop(handle);
4538 if (ret <= 0 || ret2 )
4539 break;
4541 return ret > 0 ? ret2 : ret;
4545 * Callback function called for each extent to gather FIEMAP information.
4547 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4548 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4549 void *data)
4551 __u64 logical;
4552 __u64 physical;
4553 __u64 length;
4554 __u32 flags = 0;
4555 int ret = 0;
4556 struct fiemap_extent_info *fieinfo = data;
4557 unsigned char blksize_bits;
4559 blksize_bits = inode->i_sb->s_blocksize_bits;
4560 logical = (__u64)newex->ec_block << blksize_bits;
4562 if (newex->ec_start == 0) {
4564 * No extent in extent-tree contains block @newex->ec_start,
4565 * then the block may stay in 1)a hole or 2)delayed-extent.
4567 * Holes or delayed-extents are processed as follows.
4568 * 1. lookup dirty pages with specified range in pagecache.
4569 * If no page is got, then there is no delayed-extent and
4570 * return with EXT_CONTINUE.
4571 * 2. find the 1st mapped buffer,
4572 * 3. check if the mapped buffer is both in the request range
4573 * and a delayed buffer. If not, there is no delayed-extent,
4574 * then return.
4575 * 4. a delayed-extent is found, the extent will be collected.
4577 ext4_lblk_t end = 0;
4578 pgoff_t last_offset;
4579 pgoff_t offset;
4580 pgoff_t index;
4581 pgoff_t start_index = 0;
4582 struct page **pages = NULL;
4583 struct buffer_head *bh = NULL;
4584 struct buffer_head *head = NULL;
4585 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4587 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4588 if (pages == NULL)
4589 return -ENOMEM;
4591 offset = logical >> PAGE_SHIFT;
4592 repeat:
4593 last_offset = offset;
4594 head = NULL;
4595 ret = find_get_pages_tag(inode->i_mapping, &offset,
4596 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4598 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4599 /* First time, try to find a mapped buffer. */
4600 if (ret == 0) {
4601 out:
4602 for (index = 0; index < ret; index++)
4603 page_cache_release(pages[index]);
4604 /* just a hole. */
4605 kfree(pages);
4606 return EXT_CONTINUE;
4608 index = 0;
4610 next_page:
4611 /* Try to find the 1st mapped buffer. */
4612 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4613 blksize_bits;
4614 if (!page_has_buffers(pages[index]))
4615 goto out;
4616 head = page_buffers(pages[index]);
4617 if (!head)
4618 goto out;
4620 index++;
4621 bh = head;
4622 do {
4623 if (end >= newex->ec_block +
4624 newex->ec_len)
4625 /* The buffer is out of
4626 * the request range.
4628 goto out;
4630 if (buffer_mapped(bh) &&
4631 end >= newex->ec_block) {
4632 start_index = index - 1;
4633 /* get the 1st mapped buffer. */
4634 goto found_mapped_buffer;
4637 bh = bh->b_this_page;
4638 end++;
4639 } while (bh != head);
4641 /* No mapped buffer in the range found in this page,
4642 * We need to look up next page.
4644 if (index >= ret) {
4645 /* There is no page left, but we need to limit
4646 * newex->ec_len.
4648 newex->ec_len = end - newex->ec_block;
4649 goto out;
4651 goto next_page;
4652 } else {
4653 /*Find contiguous delayed buffers. */
4654 if (ret > 0 && pages[0]->index == last_offset)
4655 head = page_buffers(pages[0]);
4656 bh = head;
4657 index = 1;
4658 start_index = 0;
4661 found_mapped_buffer:
4662 if (bh != NULL && buffer_delay(bh)) {
4663 /* 1st or contiguous delayed buffer found. */
4664 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4666 * 1st delayed buffer found, record
4667 * the start of extent.
4669 flags |= FIEMAP_EXTENT_DELALLOC;
4670 newex->ec_block = end;
4671 logical = (__u64)end << blksize_bits;
4673 /* Find contiguous delayed buffers. */
4674 do {
4675 if (!buffer_delay(bh))
4676 goto found_delayed_extent;
4677 bh = bh->b_this_page;
4678 end++;
4679 } while (bh != head);
4681 for (; index < ret; index++) {
4682 if (!page_has_buffers(pages[index])) {
4683 bh = NULL;
4684 break;
4686 head = page_buffers(pages[index]);
4687 if (!head) {
4688 bh = NULL;
4689 break;
4692 if (pages[index]->index !=
4693 pages[start_index]->index + index
4694 - start_index) {
4695 /* Blocks are not contiguous. */
4696 bh = NULL;
4697 break;
4699 bh = head;
4700 do {
4701 if (!buffer_delay(bh))
4702 /* Delayed-extent ends. */
4703 goto found_delayed_extent;
4704 bh = bh->b_this_page;
4705 end++;
4706 } while (bh != head);
4708 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4709 /* a hole found. */
4710 goto out;
4712 found_delayed_extent:
4713 newex->ec_len = min(end - newex->ec_block,
4714 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4715 if (ret == nr_pages && bh != NULL &&
4716 newex->ec_len < EXT_INIT_MAX_LEN &&
4717 buffer_delay(bh)) {
4718 /* Have not collected an extent and continue. */
4719 for (index = 0; index < ret; index++)
4720 page_cache_release(pages[index]);
4721 goto repeat;
4724 for (index = 0; index < ret; index++)
4725 page_cache_release(pages[index]);
4726 kfree(pages);
4729 physical = (__u64)newex->ec_start << blksize_bits;
4730 length = (__u64)newex->ec_len << blksize_bits;
4732 if (ex && ext4_ext_is_uninitialized(ex))
4733 flags |= FIEMAP_EXTENT_UNWRITTEN;
4735 if (next == EXT_MAX_BLOCKS)
4736 flags |= FIEMAP_EXTENT_LAST;
4738 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4739 length, flags);
4740 if (ret < 0)
4741 return ret;
4742 if (ret == 1)
4743 return EXT_BREAK;
4744 return EXT_CONTINUE;
4746 /* fiemap flags we can handle specified here */
4747 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4749 static int ext4_xattr_fiemap(struct inode *inode,
4750 struct fiemap_extent_info *fieinfo)
4752 __u64 physical = 0;
4753 __u64 length;
4754 __u32 flags = FIEMAP_EXTENT_LAST;
4755 int blockbits = inode->i_sb->s_blocksize_bits;
4756 int error = 0;
4758 /* in-inode? */
4759 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4760 struct ext4_iloc iloc;
4761 int offset; /* offset of xattr in inode */
4763 error = ext4_get_inode_loc(inode, &iloc);
4764 if (error)
4765 return error;
4766 physical = iloc.bh->b_blocknr << blockbits;
4767 offset = EXT4_GOOD_OLD_INODE_SIZE +
4768 EXT4_I(inode)->i_extra_isize;
4769 physical += offset;
4770 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4771 flags |= FIEMAP_EXTENT_DATA_INLINE;
4772 brelse(iloc.bh);
4773 } else { /* external block */
4774 physical = EXT4_I(inode)->i_file_acl << blockbits;
4775 length = inode->i_sb->s_blocksize;
4778 if (physical)
4779 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4780 length, flags);
4781 return (error < 0 ? error : 0);
4785 * ext4_ext_punch_hole
4787 * Punches a hole of "length" bytes in a file starting
4788 * at byte "offset"
4790 * @inode: The inode of the file to punch a hole in
4791 * @offset: The starting byte offset of the hole
4792 * @length: The length of the hole
4794 * Returns the number of blocks removed or negative on err
4796 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4798 struct inode *inode = file->f_path.dentry->d_inode;
4799 struct super_block *sb = inode->i_sb;
4800 ext4_lblk_t first_block, stop_block;
4801 struct address_space *mapping = inode->i_mapping;
4802 handle_t *handle;
4803 loff_t first_page, last_page, page_len;
4804 loff_t first_page_offset, last_page_offset;
4805 int credits, err = 0;
4807 /* No need to punch hole beyond i_size */
4808 if (offset >= inode->i_size)
4809 return 0;
4812 * If the hole extends beyond i_size, set the hole
4813 * to end after the page that contains i_size
4815 if (offset + length > inode->i_size) {
4816 length = inode->i_size +
4817 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4818 offset;
4821 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4822 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4824 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4825 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4828 * Write out all dirty pages to avoid race conditions
4829 * Then release them.
4831 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4832 err = filemap_write_and_wait_range(mapping,
4833 offset, offset + length - 1);
4835 if (err)
4836 return err;
4839 /* Now release the pages */
4840 if (last_page_offset > first_page_offset) {
4841 truncate_pagecache_range(inode, first_page_offset,
4842 last_page_offset - 1);
4845 /* finish any pending end_io work */
4846 ext4_flush_completed_IO(inode);
4848 credits = ext4_writepage_trans_blocks(inode);
4849 handle = ext4_journal_start(inode, credits);
4850 if (IS_ERR(handle))
4851 return PTR_ERR(handle);
4853 err = ext4_orphan_add(handle, inode);
4854 if (err)
4855 goto out;
4858 * Now we need to zero out the non-page-aligned data in the
4859 * pages at the start and tail of the hole, and unmap the buffer
4860 * heads for the block aligned regions of the page that were
4861 * completely zeroed.
4863 if (first_page > last_page) {
4865 * If the file space being truncated is contained within a page
4866 * just zero out and unmap the middle of that page
4868 err = ext4_discard_partial_page_buffers(handle,
4869 mapping, offset, length, 0);
4871 if (err)
4872 goto out;
4873 } else {
4875 * zero out and unmap the partial page that contains
4876 * the start of the hole
4878 page_len = first_page_offset - offset;
4879 if (page_len > 0) {
4880 err = ext4_discard_partial_page_buffers(handle, mapping,
4881 offset, page_len, 0);
4882 if (err)
4883 goto out;
4887 * zero out and unmap the partial page that contains
4888 * the end of the hole
4890 page_len = offset + length - last_page_offset;
4891 if (page_len > 0) {
4892 err = ext4_discard_partial_page_buffers(handle, mapping,
4893 last_page_offset, page_len, 0);
4894 if (err)
4895 goto out;
4900 * If i_size is contained in the last page, we need to
4901 * unmap and zero the partial page after i_size
4903 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4904 inode->i_size % PAGE_CACHE_SIZE != 0) {
4906 page_len = PAGE_CACHE_SIZE -
4907 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4909 if (page_len > 0) {
4910 err = ext4_discard_partial_page_buffers(handle,
4911 mapping, inode->i_size, page_len, 0);
4913 if (err)
4914 goto out;
4918 first_block = (offset + sb->s_blocksize - 1) >>
4919 EXT4_BLOCK_SIZE_BITS(sb);
4920 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4922 /* If there are no blocks to remove, return now */
4923 if (first_block >= stop_block)
4924 goto out;
4926 down_write(&EXT4_I(inode)->i_data_sem);
4927 ext4_ext_invalidate_cache(inode);
4928 ext4_discard_preallocations(inode);
4930 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4932 ext4_ext_invalidate_cache(inode);
4933 ext4_discard_preallocations(inode);
4935 if (IS_SYNC(inode))
4936 ext4_handle_sync(handle);
4938 up_write(&EXT4_I(inode)->i_data_sem);
4940 out:
4941 ext4_orphan_del(handle, inode);
4942 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4943 ext4_mark_inode_dirty(handle, inode);
4944 ext4_journal_stop(handle);
4945 return err;
4947 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4948 __u64 start, __u64 len)
4950 ext4_lblk_t start_blk;
4951 int error = 0;
4953 /* fallback to generic here if not in extents fmt */
4954 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4955 return generic_block_fiemap(inode, fieinfo, start, len,
4956 ext4_get_block);
4958 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4959 return -EBADR;
4961 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4962 error = ext4_xattr_fiemap(inode, fieinfo);
4963 } else {
4964 ext4_lblk_t len_blks;
4965 __u64 last_blk;
4967 start_blk = start >> inode->i_sb->s_blocksize_bits;
4968 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4969 if (last_blk >= EXT_MAX_BLOCKS)
4970 last_blk = EXT_MAX_BLOCKS-1;
4971 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4974 * Walk the extent tree gathering extent information.
4975 * ext4_ext_fiemap_cb will push extents back to user.
4977 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4978 ext4_ext_fiemap_cb, fieinfo);
4981 return error;