1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
21 * Permanent SPARSEMEM data:
23 * 1) mem_section - memory sections, mem_map's for valid memory
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section
**mem_section
;
28 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
29 ____cacheline_internodealigned_in_smp
;
31 EXPORT_SYMBOL(mem_section
);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
45 int page_to_nid(const struct page
*page
)
47 return section_to_node_table
[page_to_section(page
)];
49 EXPORT_SYMBOL(page_to_nid
);
51 static void set_section_nid(unsigned long section_nr
, int nid
)
53 section_to_node_table
[section_nr
] = nid
;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr
, int nid
)
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
64 struct mem_section
*section
= NULL
;
65 unsigned long array_size
= SECTIONS_PER_ROOT
*
66 sizeof(struct mem_section
);
68 if (slab_is_available())
69 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
71 section
= memblock_virt_alloc_node(array_size
, nid
);
76 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
78 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
79 struct mem_section
*section
;
81 if (mem_section
[root
])
84 section
= sparse_index_alloc(nid
);
88 mem_section
[root
] = section
;
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section
* ms
)
102 unsigned long root_nr
;
103 struct mem_section
*root
= NULL
;
105 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
106 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
110 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
116 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
119 int __section_nr(struct mem_section
* ms
)
121 return (int)(ms
- mem_section
[0]);
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
131 static inline unsigned long sparse_encode_early_nid(int nid
)
133 return (nid
<< SECTION_NID_SHIFT
);
136 static inline int sparse_early_nid(struct mem_section
*section
)
138 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
141 /* Validate the physical addressing limitations of the model */
142 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
143 unsigned long *end_pfn
)
145 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
151 if (*start_pfn
> max_sparsemem_pfn
) {
152 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
156 *start_pfn
= max_sparsemem_pfn
;
157 *end_pfn
= max_sparsemem_pfn
;
158 } else if (*end_pfn
> max_sparsemem_pfn
) {
159 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
163 *end_pfn
= max_sparsemem_pfn
;
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
173 * Keeping track of this gives us an easy way to break out of
176 int __highest_present_section_nr
;
177 static void section_mark_present(struct mem_section
*ms
)
179 int section_nr
= __section_nr(ms
);
181 if (section_nr
> __highest_present_section_nr
)
182 __highest_present_section_nr
= section_nr
;
184 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
187 static inline int next_present_section_nr(int section_nr
)
191 if (present_section_nr(section_nr
))
193 } while ((section_nr
<= __highest_present_section_nr
));
197 #define for_each_present_section_nr(start, section_nr) \
198 for (section_nr = next_present_section_nr(start-1); \
199 ((section_nr >= 0) && \
200 (section_nr <= __highest_present_section_nr)); \
201 section_nr = next_present_section_nr(section_nr))
203 static inline unsigned long first_present_section_nr(void)
205 return next_present_section_nr(-1);
208 /* Record a memory area against a node. */
209 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
213 #ifdef CONFIG_SPARSEMEM_EXTREME
214 if (unlikely(!mem_section
)) {
215 unsigned long size
, align
;
217 size
= sizeof(struct mem_section
*) * NR_SECTION_ROOTS
;
218 align
= 1 << (INTERNODE_CACHE_SHIFT
);
219 mem_section
= memblock_virt_alloc(size
, align
);
223 start
&= PAGE_SECTION_MASK
;
224 mminit_validate_memmodel_limits(&start
, &end
);
225 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
226 unsigned long section
= pfn_to_section_nr(pfn
);
227 struct mem_section
*ms
;
229 sparse_index_init(section
, nid
);
230 set_section_nid(section
, nid
);
232 ms
= __nr_to_section(section
);
233 if (!ms
->section_mem_map
) {
234 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
236 section_mark_present(ms
);
242 * Subtle, we encode the real pfn into the mem_map such that
243 * the identity pfn - section_mem_map will return the actual
244 * physical page frame number.
246 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
248 unsigned long coded_mem_map
=
249 (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
250 BUILD_BUG_ON(SECTION_MAP_LAST_BIT
> (1UL<<PFN_SECTION_SHIFT
));
251 BUG_ON(coded_mem_map
& ~SECTION_MAP_MASK
);
252 return coded_mem_map
;
256 * Decode mem_map from the coded memmap
258 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
260 /* mask off the extra low bits of information */
261 coded_mem_map
&= SECTION_MAP_MASK
;
262 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
265 static void __meminit
sparse_init_one_section(struct mem_section
*ms
,
266 unsigned long pnum
, struct page
*mem_map
,
267 unsigned long *pageblock_bitmap
)
269 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
270 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
272 ms
->pageblock_flags
= pageblock_bitmap
;
275 unsigned long usemap_size(void)
277 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
280 #ifdef CONFIG_MEMORY_HOTPLUG
281 static unsigned long *__kmalloc_section_usemap(void)
283 return kmalloc(usemap_size(), GFP_KERNEL
);
285 #endif /* CONFIG_MEMORY_HOTPLUG */
287 #ifdef CONFIG_MEMORY_HOTREMOVE
288 static unsigned long * __init
289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
292 unsigned long goal
, limit
;
296 * A page may contain usemaps for other sections preventing the
297 * page being freed and making a section unremovable while
298 * other sections referencing the usemap remain active. Similarly,
299 * a pgdat can prevent a section being removed. If section A
300 * contains a pgdat and section B contains the usemap, both
301 * sections become inter-dependent. This allocates usemaps
302 * from the same section as the pgdat where possible to avoid
305 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
306 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
307 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
309 p
= memblock_virt_alloc_try_nid_nopanic(size
,
310 SMP_CACHE_BYTES
, goal
, limit
,
319 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
321 unsigned long usemap_snr
, pgdat_snr
;
322 static unsigned long old_usemap_snr
;
323 static unsigned long old_pgdat_snr
;
324 struct pglist_data
*pgdat
= NODE_DATA(nid
);
328 if (!old_usemap_snr
) {
329 old_usemap_snr
= NR_MEM_SECTIONS
;
330 old_pgdat_snr
= NR_MEM_SECTIONS
;
333 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
334 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
335 if (usemap_snr
== pgdat_snr
)
338 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
339 /* skip redundant message */
342 old_usemap_snr
= usemap_snr
;
343 old_pgdat_snr
= pgdat_snr
;
345 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
346 if (usemap_nid
!= nid
) {
347 pr_info("node %d must be removed before remove section %ld\n",
352 * There is a circular dependency.
353 * Some platforms allow un-removable section because they will just
354 * gather other removable sections for dynamic partitioning.
355 * Just notify un-removable section's number here.
357 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
358 usemap_snr
, pgdat_snr
, nid
);
361 static unsigned long * __init
362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
365 return memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
368 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
371 #endif /* CONFIG_MEMORY_HOTREMOVE */
373 #ifdef CONFIG_SPARSEMEM_VMEMMAP
374 static unsigned long __init
section_map_size(void)
376 return ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
, PMD_SIZE
);
380 static unsigned long __init
section_map_size(void)
382 return PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
385 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
,
386 struct vmem_altmap
*altmap
)
388 unsigned long size
= section_map_size();
389 struct page
*map
= sparse_buffer_alloc(size
);
394 map
= memblock_virt_alloc_try_nid(size
,
395 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
396 BOOTMEM_ALLOC_ACCESSIBLE
, nid
);
399 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
401 static void *sparsemap_buf __meminitdata
;
402 static void *sparsemap_buf_end __meminitdata
;
404 static void __init
sparse_buffer_init(unsigned long size
, int nid
)
406 WARN_ON(sparsemap_buf
); /* forgot to call sparse_buffer_fini()? */
408 memblock_virt_alloc_try_nid_raw(size
, PAGE_SIZE
,
409 __pa(MAX_DMA_ADDRESS
),
410 BOOTMEM_ALLOC_ACCESSIBLE
, nid
);
411 sparsemap_buf_end
= sparsemap_buf
+ size
;
414 static void __init
sparse_buffer_fini(void)
416 unsigned long size
= sparsemap_buf_end
- sparsemap_buf
;
418 if (sparsemap_buf
&& size
> 0)
419 memblock_free_early(__pa(sparsemap_buf
), size
);
420 sparsemap_buf
= NULL
;
423 void * __meminit
sparse_buffer_alloc(unsigned long size
)
428 ptr
= PTR_ALIGN(sparsemap_buf
, size
);
429 if (ptr
+ size
> sparsemap_buf_end
)
432 sparsemap_buf
= ptr
+ size
;
437 void __weak __meminit
vmemmap_populate_print_last(void)
442 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
443 * And number of present sections in this node is map_count.
445 static void __init
sparse_init_nid(int nid
, unsigned long pnum_begin
,
446 unsigned long pnum_end
,
447 unsigned long map_count
)
449 unsigned long pnum
, usemap_longs
, *usemap
;
452 usemap_longs
= BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
);
453 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid
),
457 pr_err("%s: node[%d] usemap allocation failed", __func__
, nid
);
460 sparse_buffer_init(map_count
* section_map_size(), nid
);
461 for_each_present_section_nr(pnum_begin
, pnum
) {
462 if (pnum
>= pnum_end
)
465 map
= sparse_mem_map_populate(pnum
, nid
, NULL
);
467 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
472 check_usemap_section_nr(nid
, usemap
);
473 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
, usemap
);
474 usemap
+= usemap_longs
;
476 sparse_buffer_fini();
479 /* We failed to allocate, mark all the following pnums as not present */
480 for_each_present_section_nr(pnum_begin
, pnum
) {
481 struct mem_section
*ms
;
483 if (pnum
>= pnum_end
)
485 ms
= __nr_to_section(pnum
);
486 ms
->section_mem_map
= 0;
491 * Allocate the accumulated non-linear sections, allocate a mem_map
492 * for each and record the physical to section mapping.
494 void __init
sparse_init(void)
496 unsigned long pnum_begin
= first_present_section_nr();
497 int nid_begin
= sparse_early_nid(__nr_to_section(pnum_begin
));
498 unsigned long pnum_end
, map_count
= 1;
500 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
501 set_pageblock_order();
503 for_each_present_section_nr(pnum_begin
+ 1, pnum_end
) {
504 int nid
= sparse_early_nid(__nr_to_section(pnum_end
));
506 if (nid
== nid_begin
) {
510 /* Init node with sections in range [pnum_begin, pnum_end) */
511 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
513 pnum_begin
= pnum_end
;
516 /* cover the last node */
517 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
518 vmemmap_populate_print_last();
521 #ifdef CONFIG_MEMORY_HOTPLUG
523 /* Mark all memory sections within the pfn range as online */
524 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
528 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
529 unsigned long section_nr
= pfn_to_section_nr(pfn
);
530 struct mem_section
*ms
;
532 /* onlining code should never touch invalid ranges */
533 if (WARN_ON(!valid_section_nr(section_nr
)))
536 ms
= __nr_to_section(section_nr
);
537 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
541 #ifdef CONFIG_MEMORY_HOTREMOVE
542 /* Mark all memory sections within the pfn range as online */
543 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
547 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
548 unsigned long section_nr
= pfn_to_section_nr(pfn
);
549 struct mem_section
*ms
;
552 * TODO this needs some double checking. Offlining code makes
553 * sure to check pfn_valid but those checks might be just bogus
555 if (WARN_ON(!valid_section_nr(section_nr
)))
558 ms
= __nr_to_section(section_nr
);
559 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
564 #ifdef CONFIG_SPARSEMEM_VMEMMAP
565 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
566 struct vmem_altmap
*altmap
)
568 /* This will make the necessary allocations eventually. */
569 return sparse_mem_map_populate(pnum
, nid
, altmap
);
571 static void __kfree_section_memmap(struct page
*memmap
,
572 struct vmem_altmap
*altmap
)
574 unsigned long start
= (unsigned long)memmap
;
575 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
577 vmemmap_free(start
, end
, altmap
);
579 #ifdef CONFIG_MEMORY_HOTREMOVE
580 static void free_map_bootmem(struct page
*memmap
)
582 unsigned long start
= (unsigned long)memmap
;
583 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
585 vmemmap_free(start
, end
, NULL
);
587 #endif /* CONFIG_MEMORY_HOTREMOVE */
589 static struct page
*__kmalloc_section_memmap(void)
591 struct page
*page
, *ret
;
592 unsigned long memmap_size
= sizeof(struct page
) * PAGES_PER_SECTION
;
594 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
598 ret
= vmalloc(memmap_size
);
604 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
610 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
611 struct vmem_altmap
*altmap
)
613 return __kmalloc_section_memmap();
616 static void __kfree_section_memmap(struct page
*memmap
,
617 struct vmem_altmap
*altmap
)
619 if (is_vmalloc_addr(memmap
))
622 free_pages((unsigned long)memmap
,
623 get_order(sizeof(struct page
) * PAGES_PER_SECTION
));
626 #ifdef CONFIG_MEMORY_HOTREMOVE
627 static void free_map_bootmem(struct page
*memmap
)
629 unsigned long maps_section_nr
, removing_section_nr
, i
;
630 unsigned long magic
, nr_pages
;
631 struct page
*page
= virt_to_page(memmap
);
633 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
636 for (i
= 0; i
< nr_pages
; i
++, page
++) {
637 magic
= (unsigned long) page
->freelist
;
639 BUG_ON(magic
== NODE_INFO
);
641 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
642 removing_section_nr
= page_private(page
);
645 * When this function is called, the removing section is
646 * logical offlined state. This means all pages are isolated
647 * from page allocator. If removing section's memmap is placed
648 * on the same section, it must not be freed.
649 * If it is freed, page allocator may allocate it which will
650 * be removed physically soon.
652 if (maps_section_nr
!= removing_section_nr
)
653 put_page_bootmem(page
);
656 #endif /* CONFIG_MEMORY_HOTREMOVE */
657 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
660 * returns the number of sections whose mem_maps were properly
661 * set. If this is <=0, then that means that the passed-in
662 * map was not consumed and must be freed.
664 int __meminit
sparse_add_one_section(struct pglist_data
*pgdat
,
665 unsigned long start_pfn
, struct vmem_altmap
*altmap
)
667 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
668 struct mem_section
*ms
;
670 unsigned long *usemap
;
675 * no locking for this, because it does its own
676 * plus, it does a kmalloc
678 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
679 if (ret
< 0 && ret
!= -EEXIST
)
682 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, altmap
);
685 usemap
= __kmalloc_section_usemap();
687 __kfree_section_memmap(memmap
, altmap
);
691 pgdat_resize_lock(pgdat
, &flags
);
693 ms
= __pfn_to_section(start_pfn
);
694 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
700 * Poison uninitialized struct pages in order to catch invalid flags
703 page_init_poison(memmap
, sizeof(struct page
) * PAGES_PER_SECTION
);
705 section_mark_present(ms
);
706 sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
709 pgdat_resize_unlock(pgdat
, &flags
);
712 __kfree_section_memmap(memmap
, altmap
);
717 #ifdef CONFIG_MEMORY_HOTREMOVE
718 #ifdef CONFIG_MEMORY_FAILURE
719 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
726 for (i
= 0; i
< nr_pages
; i
++) {
727 if (PageHWPoison(&memmap
[i
])) {
728 atomic_long_sub(1, &num_poisoned_pages
);
729 ClearPageHWPoison(&memmap
[i
]);
734 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
739 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
,
740 struct vmem_altmap
*altmap
)
742 struct page
*usemap_page
;
747 usemap_page
= virt_to_page(usemap
);
749 * Check to see if allocation came from hot-plug-add
751 if (PageSlab(usemap_page
) || PageCompound(usemap_page
)) {
754 __kfree_section_memmap(memmap
, altmap
);
759 * The usemap came from bootmem. This is packed with other usemaps
760 * on the section which has pgdat at boot time. Just keep it as is now.
764 free_map_bootmem(memmap
);
767 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
,
768 unsigned long map_offset
, struct vmem_altmap
*altmap
)
770 struct page
*memmap
= NULL
;
771 unsigned long *usemap
= NULL
, flags
;
772 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
774 pgdat_resize_lock(pgdat
, &flags
);
775 if (ms
->section_mem_map
) {
776 usemap
= ms
->pageblock_flags
;
777 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
779 ms
->section_mem_map
= 0;
780 ms
->pageblock_flags
= NULL
;
782 pgdat_resize_unlock(pgdat
, &flags
);
784 clear_hwpoisoned_pages(memmap
+ map_offset
,
785 PAGES_PER_SECTION
- map_offset
);
786 free_section_usemap(memmap
, usemap
, altmap
);
788 #endif /* CONFIG_MEMORY_HOTREMOVE */
789 #endif /* CONFIG_MEMORY_HOTPLUG */