2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps
);
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit
= 1000;
93 int sysctl_tcp_stdurg __read_mostly
;
94 int sysctl_tcp_rfc1337 __read_mostly
;
95 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
96 int sysctl_tcp_frto __read_mostly
= 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_early_retrans __read_mostly
= 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
129 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
132 static bool __once __read_mostly
;
135 struct net_device
*dev
;
140 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
141 if (!dev
|| len
>= dev
->mtu
)
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev
? dev
->name
: "Unknown driver");
148 /* Adapt the MSS value used to make delayed ack decision to the
151 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
153 struct inet_connection_sock
*icsk
= inet_csk(sk
);
154 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
157 icsk
->icsk_ack
.last_seg_size
= 0;
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
162 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
163 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
164 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
166 /* Account for possibly-removed options */
167 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
168 MAX_TCP_OPTION_SPACE
))
169 tcp_gro_dev_warn(sk
, skb
, len
);
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
174 * "len" is invariant segment length, including TCP header.
176 len
+= skb
->data
- skb_transport_header(skb
);
177 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
183 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
184 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
189 len
-= tcp_sk(sk
)->tcp_header_len
;
190 icsk
->icsk_ack
.last_seg_size
= len
;
192 icsk
->icsk_ack
.rcv_mss
= len
;
196 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
197 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
198 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
202 static void tcp_incr_quickack(struct sock
*sk
)
204 struct inet_connection_sock
*icsk
= inet_csk(sk
);
205 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
209 if (quickacks
> icsk
->icsk_ack
.quick
)
210 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
213 static void tcp_enter_quickack_mode(struct sock
*sk
)
215 struct inet_connection_sock
*icsk
= inet_csk(sk
);
216 tcp_incr_quickack(sk
);
217 icsk
->icsk_ack
.pingpong
= 0;
218 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
221 /* Send ACKs quickly, if "quick" count is not exhausted
222 * and the session is not interactive.
225 static bool tcp_in_quickack_mode(struct sock
*sk
)
227 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
228 const struct dst_entry
*dst
= __sk_dst_get(sk
);
230 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
231 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
234 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
236 if (tp
->ecn_flags
& TCP_ECN_OK
)
237 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
240 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
242 if (tcp_hdr(skb
)->cwr
)
243 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
246 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
248 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
251 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
253 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
254 case INET_ECN_NOT_ECT
:
255 /* Funny extension: if ECT is not set on a segment,
256 * and we already seen ECT on a previous segment,
257 * it is probably a retransmit.
259 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
260 tcp_enter_quickack_mode((struct sock
*)tp
);
263 if (tcp_ca_needs_ecn((struct sock
*)tp
))
264 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
266 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
267 /* Better not delay acks, sender can have a very low cwnd */
268 tcp_enter_quickack_mode((struct sock
*)tp
);
269 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
271 tp
->ecn_flags
|= TCP_ECN_SEEN
;
274 if (tcp_ca_needs_ecn((struct sock
*)tp
))
275 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
276 tp
->ecn_flags
|= TCP_ECN_SEEN
;
281 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
283 if (tp
->ecn_flags
& TCP_ECN_OK
)
284 __tcp_ecn_check_ce(tp
, skb
);
287 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
289 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
290 tp
->ecn_flags
&= ~TCP_ECN_OK
;
293 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
295 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
296 tp
->ecn_flags
&= ~TCP_ECN_OK
;
299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
301 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
306 /* Buffer size and advertised window tuning.
308 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
311 static void tcp_sndbuf_expand(struct sock
*sk
)
313 const struct tcp_sock
*tp
= tcp_sk(sk
);
314 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
318 /* Worst case is non GSO/TSO : each frame consumes one skb
319 * and skb->head is kmalloced using power of two area of memory
321 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
325 per_mss
= roundup_pow_of_two(per_mss
) +
326 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
328 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
329 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
331 /* Fast Recovery (RFC 5681 3.2) :
332 * Cubic needs 1.7 factor, rounded to 2 to include
333 * extra cushion (application might react slowly to POLLOUT)
335 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
336 sndmem
*= nr_segs
* per_mss
;
338 if (sk
->sk_sndbuf
< sndmem
)
339 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
344 * All tcp_full_space() is split to two parts: "network" buffer, allocated
345 * forward and advertised in receiver window (tp->rcv_wnd) and
346 * "application buffer", required to isolate scheduling/application
347 * latencies from network.
348 * window_clamp is maximal advertised window. It can be less than
349 * tcp_full_space(), in this case tcp_full_space() - window_clamp
350 * is reserved for "application" buffer. The less window_clamp is
351 * the smoother our behaviour from viewpoint of network, but the lower
352 * throughput and the higher sensitivity of the connection to losses. 8)
354 * rcv_ssthresh is more strict window_clamp used at "slow start"
355 * phase to predict further behaviour of this connection.
356 * It is used for two goals:
357 * - to enforce header prediction at sender, even when application
358 * requires some significant "application buffer". It is check #1.
359 * - to prevent pruning of receive queue because of misprediction
360 * of receiver window. Check #2.
362 * The scheme does not work when sender sends good segments opening
363 * window and then starts to feed us spaghetti. But it should work
364 * in common situations. Otherwise, we have to rely on queue collapsing.
367 /* Slow part of check#2. */
368 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
370 struct tcp_sock
*tp
= tcp_sk(sk
);
372 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
373 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
375 while (tp
->rcv_ssthresh
<= window
) {
376 if (truesize
<= skb
->len
)
377 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
385 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
387 struct tcp_sock
*tp
= tcp_sk(sk
);
390 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
391 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
392 !tcp_under_memory_pressure(sk
)) {
395 /* Check #2. Increase window, if skb with such overhead
396 * will fit to rcvbuf in future.
398 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
399 incr
= 2 * tp
->advmss
;
401 incr
= __tcp_grow_window(sk
, skb
);
404 incr
= max_t(int, incr
, 2 * skb
->len
);
405 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
407 inet_csk(sk
)->icsk_ack
.quick
|= 1;
412 /* 3. Tuning rcvbuf, when connection enters established state. */
413 static void tcp_fixup_rcvbuf(struct sock
*sk
)
415 u32 mss
= tcp_sk(sk
)->advmss
;
418 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
419 tcp_default_init_rwnd(mss
);
421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 * Allow enough cushion so that sender is not limited by our window
424 if (sysctl_tcp_moderate_rcvbuf
)
427 if (sk
->sk_rcvbuf
< rcvmem
)
428 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
431 /* 4. Try to fixup all. It is made immediately after connection enters
434 void tcp_init_buffer_space(struct sock
*sk
)
436 struct tcp_sock
*tp
= tcp_sk(sk
);
439 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
440 tcp_fixup_rcvbuf(sk
);
441 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
442 tcp_sndbuf_expand(sk
);
444 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
445 tp
->rcvq_space
.time
= tcp_time_stamp
;
446 tp
->rcvq_space
.seq
= tp
->copied_seq
;
448 maxwin
= tcp_full_space(sk
);
450 if (tp
->window_clamp
>= maxwin
) {
451 tp
->window_clamp
= maxwin
;
453 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
454 tp
->window_clamp
= max(maxwin
-
455 (maxwin
>> sysctl_tcp_app_win
),
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win
&&
461 tp
->window_clamp
> 2 * tp
->advmss
&&
462 tp
->window_clamp
+ tp
->advmss
> maxwin
)
463 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
465 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
466 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock
*sk
)
472 struct tcp_sock
*tp
= tcp_sk(sk
);
473 struct inet_connection_sock
*icsk
= inet_csk(sk
);
475 icsk
->icsk_ack
.quick
= 0;
477 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
478 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
479 !tcp_under_memory_pressure(sk
) &&
480 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
481 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
484 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
485 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
495 void tcp_initialize_rcv_mss(struct sock
*sk
)
497 const struct tcp_sock
*tp
= tcp_sk(sk
);
498 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
500 hint
= min(hint
, tp
->rcv_wnd
/ 2);
501 hint
= min(hint
, TCP_MSS_DEFAULT
);
502 hint
= max(hint
, TCP_MIN_MSS
);
504 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
508 /* Receiver "autotuning" code.
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
519 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
521 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
527 if (new_sample
!= 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
539 m
-= (new_sample
>> 3);
547 /* No previous measure. */
551 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
552 tp
->rcv_rtt_est
.rtt
= new_sample
;
555 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
557 if (tp
->rcv_rtt_est
.time
== 0)
559 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
561 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
564 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
565 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
568 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
569 const struct sk_buff
*skb
)
571 struct tcp_sock
*tp
= tcp_sk(sk
);
572 if (tp
->rx_opt
.rcv_tsecr
&&
573 (TCP_SKB_CB(skb
)->end_seq
-
574 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
575 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
579 * This function should be called every time data is copied to user space.
580 * It calculates the appropriate TCP receive buffer space.
582 void tcp_rcv_space_adjust(struct sock
*sk
)
584 struct tcp_sock
*tp
= tcp_sk(sk
);
588 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
589 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
592 /* Number of bytes copied to user in last RTT */
593 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
594 if (copied
<= tp
->rcvq_space
.space
)
598 * copied = bytes received in previous RTT, our base window
599 * To cope with packet losses, we need a 2x factor
600 * To cope with slow start, and sender growing its cwin by 100 %
601 * every RTT, we need a 4x factor, because the ACK we are sending
602 * now is for the next RTT, not the current one :
603 * <prev RTT . ><current RTT .. ><next RTT .... >
606 if (sysctl_tcp_moderate_rcvbuf
&&
607 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
608 int rcvwin
, rcvmem
, rcvbuf
;
610 /* minimal window to cope with packet losses, assuming
611 * steady state. Add some cushion because of small variations.
613 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
615 /* If rate increased by 25%,
616 * assume slow start, rcvwin = 3 * copied
617 * If rate increased by 50%,
618 * assume sender can use 2x growth, rcvwin = 4 * copied
621 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
623 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
626 rcvwin
+= (rcvwin
>> 1);
629 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
630 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
633 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
634 if (rcvbuf
> sk
->sk_rcvbuf
) {
635 sk
->sk_rcvbuf
= rcvbuf
;
637 /* Make the window clamp follow along. */
638 tp
->window_clamp
= rcvwin
;
641 tp
->rcvq_space
.space
= copied
;
644 tp
->rcvq_space
.seq
= tp
->copied_seq
;
645 tp
->rcvq_space
.time
= tcp_time_stamp
;
648 /* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
658 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
660 struct tcp_sock
*tp
= tcp_sk(sk
);
661 struct inet_connection_sock
*icsk
= inet_csk(sk
);
664 inet_csk_schedule_ack(sk
);
666 tcp_measure_rcv_mss(sk
, skb
);
668 tcp_rcv_rtt_measure(tp
);
670 now
= tcp_time_stamp
;
672 if (!icsk
->icsk_ack
.ato
) {
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
676 tcp_incr_quickack(sk
);
677 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
679 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
681 if (m
<= TCP_ATO_MIN
/ 2) {
682 /* The fastest case is the first. */
683 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
684 } else if (m
< icsk
->icsk_ack
.ato
) {
685 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
686 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
687 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
688 } else if (m
> icsk
->icsk_rto
) {
689 /* Too long gap. Apparently sender failed to
690 * restart window, so that we send ACKs quickly.
692 tcp_incr_quickack(sk
);
696 icsk
->icsk_ack
.lrcvtime
= now
;
698 tcp_ecn_check_ce(tp
, skb
);
701 tcp_grow_window(sk
, skb
);
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
713 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
715 struct tcp_sock
*tp
= tcp_sk(sk
);
716 long m
= mrtt_us
; /* RTT */
717 u32 srtt
= tp
->srtt_us
;
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
722 * This is designed to be as fast as possible
723 * m stands for "measurement".
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
730 * too slowly, when it should be increased quickly, decrease too quickly
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
736 m
-= (srtt
>> 3); /* m is now error in rtt est */
737 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
739 m
= -m
; /* m is now abs(error) */
740 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
752 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
754 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp
->mdev_us
> tp
->mdev_max_us
) {
756 tp
->mdev_max_us
= tp
->mdev_us
;
757 if (tp
->mdev_max_us
> tp
->rttvar_us
)
758 tp
->rttvar_us
= tp
->mdev_max_us
;
760 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
761 if (tp
->mdev_max_us
< tp
->rttvar_us
)
762 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
763 tp
->rtt_seq
= tp
->snd_nxt
;
764 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
767 /* no previous measure. */
768 srtt
= m
<< 3; /* take the measured time to be rtt */
769 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
770 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
771 tp
->mdev_max_us
= tp
->rttvar_us
;
772 tp
->rtt_seq
= tp
->snd_nxt
;
774 tp
->srtt_us
= max(1U, srtt
);
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778 * Note: TCP stack does not yet implement pacing.
779 * FQ packet scheduler can be used to implement cheap but effective
780 * TCP pacing, to smooth the burst on large writes when packets
781 * in flight is significantly lower than cwnd (or rwin)
783 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
786 static void tcp_update_pacing_rate(struct sock
*sk
)
788 const struct tcp_sock
*tp
= tcp_sk(sk
);
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
802 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
803 rate
*= sysctl_tcp_pacing_ss_ratio
;
805 rate
*= sysctl_tcp_pacing_ca_ratio
;
807 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
809 if (likely(tp
->srtt_us
))
810 do_div(rate
, tp
->srtt_us
);
812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
816 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
817 sk
->sk_max_pacing_rate
);
820 /* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
823 static void tcp_set_rto(struct sock
*sk
)
825 const struct tcp_sock
*tp
= tcp_sk(sk
);
826 /* Old crap is replaced with new one. 8)
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
834 * ACKs in some circumstances.
836 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
841 * with correct one. It is exactly, which we pretend to do.
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
850 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
852 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
855 cwnd
= TCP_INIT_CWND
;
856 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 void tcp_disable_fack(struct tcp_sock
*tp
)
865 /* RFC3517 uses different metric in lost marker => reset on change */
867 tp
->lost_skb_hint
= NULL
;
868 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock
*tp
)
874 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
877 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
880 struct tcp_sock
*tp
= tcp_sk(sk
);
883 if (metric
> tp
->reordering
) {
884 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
886 #if FASTRETRANS_DEBUG > 1
887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
888 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
892 tp
->undo_marker
? tp
->undo_retrans
: 0);
894 tcp_disable_fack(tp
);
899 /* This exciting event is worth to be remembered. 8) */
901 mib_idx
= LINUX_MIB_TCPTSREORDER
;
902 else if (tcp_is_reno(tp
))
903 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
904 else if (tcp_is_fack(tp
))
905 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
907 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
909 NET_INC_STATS(sock_net(sk
), mib_idx
);
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
915 if (!tp
->retransmit_skb_hint
||
916 before(TCP_SKB_CB(skb
)->seq
,
917 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
918 tp
->retransmit_skb_hint
= skb
;
921 /* Sum the number of packets on the wire we have marked as lost.
922 * There are two cases we care about here:
923 * a) Packet hasn't been marked lost (nor retransmitted),
924 * and this is the first loss.
925 * b) Packet has been marked both lost and retransmitted,
926 * and this means we think it was lost again.
928 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
930 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
932 if (!(sacked
& TCPCB_LOST
) ||
933 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
934 tp
->lost
+= tcp_skb_pcount(skb
);
937 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
939 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
940 tcp_verify_retransmit_hint(tp
, skb
);
942 tp
->lost_out
+= tcp_skb_pcount(skb
);
943 tcp_sum_lost(tp
, skb
);
944 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
950 tcp_verify_retransmit_hint(tp
, skb
);
952 tcp_sum_lost(tp
, skb
);
953 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
954 tp
->lost_out
+= tcp_skb_pcount(skb
);
955 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
959 /* This procedure tags the retransmission queue when SACKs arrive.
961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962 * Packets in queue with these bits set are counted in variables
963 * sacked_out, retrans_out and lost_out, correspondingly.
965 * Valid combinations are:
966 * Tag InFlight Description
967 * 0 1 - orig segment is in flight.
968 * S 0 - nothing flies, orig reached receiver.
969 * L 0 - nothing flies, orig lost by net.
970 * R 2 - both orig and retransmit are in flight.
971 * L|R 1 - orig is lost, retransmit is in flight.
972 * S|R 1 - orig reached receiver, retrans is still in flight.
973 * (L|S|R is logically valid, it could occur when L|R is sacked,
974 * but it is equivalent to plain S and code short-curcuits it to S.
975 * L|S is logically invalid, it would mean -1 packet in flight 8))
977 * These 6 states form finite state machine, controlled by the following events:
978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
980 * 3. Loss detection event of two flavors:
981 * A. Scoreboard estimator decided the packet is lost.
982 * A'. Reno "three dupacks" marks head of queue lost.
983 * A''. Its FACK modification, head until snd.fack is lost.
984 * B. SACK arrives sacking SND.NXT at the moment, when the
985 * segment was retransmitted.
986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
988 * It is pleasant to note, that state diagram turns out to be commutative,
989 * so that we are allowed not to be bothered by order of our actions,
990 * when multiple events arrive simultaneously. (see the function below).
992 * Reordering detection.
993 * --------------------
994 * Reordering metric is maximal distance, which a packet can be displaced
995 * in packet stream. With SACKs we can estimate it:
997 * 1. SACK fills old hole and the corresponding segment was not
998 * ever retransmitted -> reordering. Alas, we cannot use it
999 * when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 * for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
1005 * SACK block validation.
1006 * ----------------------
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment. Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027 * <- outs wnd -> <- wrapzone ->
1028 * u e n u_w e_w s n_w
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->| |<--------...
1032 * ...---- >2^31 ------>| |<--------...
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042 * again, D-SACK block must not to go across snd_una (for the same reason as
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1053 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1054 u32 start_seq
, u32 end_seq
)
1056 /* Too far in future, or reversed (interpretation is ambiguous) */
1057 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1060 /* Nasty start_seq wrap-around check (see comments above) */
1061 if (!before(start_seq
, tp
->snd_nxt
))
1064 /* In outstanding window? ...This is valid exit for D-SACKs too.
1065 * start_seq == snd_una is non-sensical (see comments above)
1067 if (after(start_seq
, tp
->snd_una
))
1070 if (!is_dsack
|| !tp
->undo_marker
)
1073 /* ...Then it's D-SACK, and must reside below snd_una completely */
1074 if (after(end_seq
, tp
->snd_una
))
1077 if (!before(start_seq
, tp
->undo_marker
))
1081 if (!after(end_seq
, tp
->undo_marker
))
1084 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 * start_seq < undo_marker and end_seq >= undo_marker.
1087 return !before(start_seq
, end_seq
- tp
->max_window
);
1090 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1091 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1094 struct tcp_sock
*tp
= tcp_sk(sk
);
1095 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1096 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1097 bool dup_sack
= false;
1099 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1102 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1103 } else if (num_sacks
> 1) {
1104 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1105 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1107 if (!after(end_seq_0
, end_seq_1
) &&
1108 !before(start_seq_0
, start_seq_1
)) {
1111 NET_INC_STATS(sock_net(sk
),
1112 LINUX_MIB_TCPDSACKOFORECV
);
1116 /* D-SACK for already forgotten data... Do dumb counting. */
1117 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1118 !after(end_seq_0
, prior_snd_una
) &&
1119 after(end_seq_0
, tp
->undo_marker
))
1125 struct tcp_sacktag_state
{
1128 /* Timestamps for earliest and latest never-retransmitted segment
1129 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1130 * but congestion control should still get an accurate delay signal.
1132 struct skb_mstamp first_sackt
;
1133 struct skb_mstamp last_sackt
;
1134 struct skb_mstamp ack_time
; /* Timestamp when the S/ACK was received */
1135 struct rate_sample
*rate
;
1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1140 * the incoming SACK may not exactly match but we can find smaller MSS
1141 * aligned portion of it that matches. Therefore we might need to fragment
1142 * which may fail and creates some hassle (caller must handle error case
1145 * FIXME: this could be merged to shift decision code
1147 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1148 u32 start_seq
, u32 end_seq
)
1152 unsigned int pkt_len
;
1155 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1156 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1158 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1159 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1160 mss
= tcp_skb_mss(skb
);
1161 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1164 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1168 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1173 /* Round if necessary so that SACKs cover only full MSSes
1174 * and/or the remaining small portion (if present)
1176 if (pkt_len
> mss
) {
1177 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1178 if (!in_sack
&& new_len
< pkt_len
) {
1180 if (new_len
>= skb
->len
)
1185 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8
tcp_sacktag_one(struct sock
*sk
,
1195 struct tcp_sacktag_state
*state
, u8 sacked
,
1196 u32 start_seq
, u32 end_seq
,
1197 int dup_sack
, int pcount
,
1198 const struct skb_mstamp
*xmit_time
)
1200 struct tcp_sock
*tp
= tcp_sk(sk
);
1201 int fack_count
= state
->fack_count
;
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1205 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1206 after(end_seq
, tp
->undo_marker
))
1208 if (sacked
& TCPCB_SACKED_ACKED
)
1209 state
->reord
= min(fack_count
, state
->reord
);
1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 if (!after(end_seq
, tp
->snd_una
))
1216 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1217 tcp_rack_advance(tp
, sacked
, end_seq
,
1218 xmit_time
, &state
->ack_time
);
1220 if (sacked
& TCPCB_SACKED_RETRANS
) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1225 if (sacked
& TCPCB_LOST
) {
1226 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1227 tp
->lost_out
-= pcount
;
1228 tp
->retrans_out
-= pcount
;
1231 if (!(sacked
& TCPCB_RETRANS
)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1235 if (before(start_seq
,
1236 tcp_highest_sack_seq(tp
)))
1237 state
->reord
= min(fack_count
,
1239 if (!after(end_seq
, tp
->high_seq
))
1240 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1241 if (state
->first_sackt
.v64
== 0)
1242 state
->first_sackt
= *xmit_time
;
1243 state
->last_sackt
= *xmit_time
;
1246 if (sacked
& TCPCB_LOST
) {
1247 sacked
&= ~TCPCB_LOST
;
1248 tp
->lost_out
-= pcount
;
1252 sacked
|= TCPCB_SACKED_ACKED
;
1253 state
->flag
|= FLAG_DATA_SACKED
;
1254 tp
->sacked_out
+= pcount
;
1255 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1257 fack_count
+= pcount
;
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1260 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1261 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1262 tp
->lost_cnt_hint
+= pcount
;
1264 if (fack_count
> tp
->fackets_out
)
1265 tp
->fackets_out
= fack_count
;
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1272 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1273 sacked
&= ~TCPCB_SACKED_RETRANS
;
1274 tp
->retrans_out
-= pcount
;
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1284 struct tcp_sacktag_state
*state
,
1285 unsigned int pcount
, int shifted
, int mss
,
1288 struct tcp_sock
*tp
= tcp_sk(sk
);
1289 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1290 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1291 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1301 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1302 start_seq
, end_seq
, dup_sack
, pcount
,
1304 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1306 if (skb
== tp
->lost_skb_hint
)
1307 tp
->lost_cnt_hint
+= pcount
;
1309 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1310 TCP_SKB_CB(skb
)->seq
+= shifted
;
1312 tcp_skb_pcount_add(prev
, pcount
);
1313 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1314 tcp_skb_pcount_add(skb
, -pcount
);
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1321 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1322 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb
) <= 1)
1326 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1332 BUG_ON(!tcp_skb_pcount(skb
));
1333 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1337 /* Whole SKB was eaten :-) */
1339 if (skb
== tp
->retransmit_skb_hint
)
1340 tp
->retransmit_skb_hint
= prev
;
1341 if (skb
== tp
->lost_skb_hint
) {
1342 tp
->lost_skb_hint
= prev
;
1343 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1346 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1347 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1348 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1349 TCP_SKB_CB(prev
)->end_seq
++;
1351 if (skb
== tcp_highest_sack(sk
))
1352 tcp_advance_highest_sack(sk
, skb
);
1354 tcp_skb_collapse_tstamp(prev
, skb
);
1355 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
))
1356 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
= 0;
1358 tcp_unlink_write_queue(skb
, sk
);
1359 sk_wmem_free_skb(sk
, skb
);
1361 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1366 /* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1369 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1371 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff
*skb
)
1377 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1383 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1384 struct tcp_sacktag_state
*state
,
1385 u32 start_seq
, u32 end_seq
,
1388 struct tcp_sock
*tp
= tcp_sk(sk
);
1389 struct sk_buff
*prev
;
1395 if (!sk_can_gso(sk
))
1398 /* Normally R but no L won't result in plain S */
1400 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1402 if (!skb_can_shift(skb
))
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1411 prev
= tcp_write_queue_prev(sk
, skb
);
1413 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1416 if (!tcp_skb_can_collapse_to(prev
))
1419 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1420 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1424 pcount
= tcp_skb_pcount(skb
);
1425 mss
= tcp_skb_seglen(skb
);
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1430 if (mss
!= tcp_skb_seglen(prev
))
1433 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1439 if (tcp_skb_pcount(skb
) <= 1)
1442 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1458 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1460 BUG_ON(len
> skb
->len
);
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1466 mss
= tcp_skb_mss(skb
);
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1471 if (mss
!= tcp_skb_seglen(prev
))
1476 } else if (len
< mss
) {
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1488 if (!skb_shift(prev
, skb
, len
))
1490 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1496 if (prev
== tcp_write_queue_tail(sk
))
1498 skb
= tcp_write_queue_next(sk
, prev
);
1500 if (!skb_can_shift(skb
) ||
1501 (skb
== tcp_send_head(sk
)) ||
1502 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1503 (mss
!= tcp_skb_seglen(skb
)))
1507 if (skb_shift(prev
, skb
, len
)) {
1508 pcount
+= tcp_skb_pcount(skb
);
1509 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1513 state
->fack_count
+= pcount
;
1520 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1524 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1525 struct tcp_sack_block
*next_dup
,
1526 struct tcp_sacktag_state
*state
,
1527 u32 start_seq
, u32 end_seq
,
1530 struct tcp_sock
*tp
= tcp_sk(sk
);
1531 struct sk_buff
*tmp
;
1533 tcp_for_write_queue_from(skb
, sk
) {
1535 bool dup_sack
= dup_sack_in
;
1537 if (skb
== tcp_send_head(sk
))
1540 /* queue is in-order => we can short-circuit the walk early */
1541 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1545 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1546 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1547 next_dup
->start_seq
,
1553 /* skb reference here is a bit tricky to get right, since
1554 * shifting can eat and free both this skb and the next,
1555 * so not even _safe variant of the loop is enough.
1558 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1559 start_seq
, end_seq
, dup_sack
);
1568 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1574 if (unlikely(in_sack
< 0))
1578 TCP_SKB_CB(skb
)->sacked
=
1581 TCP_SKB_CB(skb
)->sacked
,
1582 TCP_SKB_CB(skb
)->seq
,
1583 TCP_SKB_CB(skb
)->end_seq
,
1585 tcp_skb_pcount(skb
),
1587 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1589 if (!before(TCP_SKB_CB(skb
)->seq
,
1590 tcp_highest_sack_seq(tp
)))
1591 tcp_advance_highest_sack(sk
, skb
);
1594 state
->fack_count
+= tcp_skb_pcount(skb
);
1599 /* Avoid all extra work that is being done by sacktag while walking in
1602 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1603 struct tcp_sacktag_state
*state
,
1606 tcp_for_write_queue_from(skb
, sk
) {
1607 if (skb
== tcp_send_head(sk
))
1610 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1613 state
->fack_count
+= tcp_skb_pcount(skb
);
1618 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1620 struct tcp_sack_block
*next_dup
,
1621 struct tcp_sacktag_state
*state
,
1627 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1628 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1629 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1630 next_dup
->start_seq
, next_dup
->end_seq
,
1637 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1639 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1643 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1644 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1646 struct tcp_sock
*tp
= tcp_sk(sk
);
1647 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1648 TCP_SKB_CB(ack_skb
)->sacked
);
1649 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1650 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1651 struct tcp_sack_block
*cache
;
1652 struct sk_buff
*skb
;
1653 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1655 bool found_dup_sack
= false;
1657 int first_sack_index
;
1660 state
->reord
= tp
->packets_out
;
1662 if (!tp
->sacked_out
) {
1663 if (WARN_ON(tp
->fackets_out
))
1664 tp
->fackets_out
= 0;
1665 tcp_highest_sack_reset(sk
);
1668 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1669 num_sacks
, prior_snd_una
);
1670 if (found_dup_sack
) {
1671 state
->flag
|= FLAG_DSACKING_ACK
;
1672 tp
->delivered
++; /* A spurious retransmission is delivered */
1675 /* Eliminate too old ACKs, but take into
1676 * account more or less fresh ones, they can
1677 * contain valid SACK info.
1679 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1682 if (!tp
->packets_out
)
1686 first_sack_index
= 0;
1687 for (i
= 0; i
< num_sacks
; i
++) {
1688 bool dup_sack
= !i
&& found_dup_sack
;
1690 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1691 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1693 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1694 sp
[used_sacks
].start_seq
,
1695 sp
[used_sacks
].end_seq
)) {
1699 if (!tp
->undo_marker
)
1700 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1702 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1704 /* Don't count olds caused by ACK reordering */
1705 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1706 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1708 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1711 NET_INC_STATS(sock_net(sk
), mib_idx
);
1713 first_sack_index
= -1;
1717 /* Ignore very old stuff early */
1718 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1724 /* order SACK blocks to allow in order walk of the retrans queue */
1725 for (i
= used_sacks
- 1; i
> 0; i
--) {
1726 for (j
= 0; j
< i
; j
++) {
1727 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1728 swap(sp
[j
], sp
[j
+ 1]);
1730 /* Track where the first SACK block goes to */
1731 if (j
== first_sack_index
)
1732 first_sack_index
= j
+ 1;
1737 skb
= tcp_write_queue_head(sk
);
1738 state
->fack_count
= 0;
1741 if (!tp
->sacked_out
) {
1742 /* It's already past, so skip checking against it */
1743 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1745 cache
= tp
->recv_sack_cache
;
1746 /* Skip empty blocks in at head of the cache */
1747 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1752 while (i
< used_sacks
) {
1753 u32 start_seq
= sp
[i
].start_seq
;
1754 u32 end_seq
= sp
[i
].end_seq
;
1755 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1756 struct tcp_sack_block
*next_dup
= NULL
;
1758 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1759 next_dup
= &sp
[i
+ 1];
1761 /* Skip too early cached blocks */
1762 while (tcp_sack_cache_ok(tp
, cache
) &&
1763 !before(start_seq
, cache
->end_seq
))
1766 /* Can skip some work by looking recv_sack_cache? */
1767 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1768 after(end_seq
, cache
->start_seq
)) {
1771 if (before(start_seq
, cache
->start_seq
)) {
1772 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1774 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1781 /* Rest of the block already fully processed? */
1782 if (!after(end_seq
, cache
->end_seq
))
1785 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1789 /* ...tail remains todo... */
1790 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1791 /* ...but better entrypoint exists! */
1792 skb
= tcp_highest_sack(sk
);
1795 state
->fack_count
= tp
->fackets_out
;
1800 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1801 /* Check overlap against next cached too (past this one already) */
1806 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1807 skb
= tcp_highest_sack(sk
);
1810 state
->fack_count
= tp
->fackets_out
;
1812 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1815 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1816 start_seq
, end_seq
, dup_sack
);
1822 /* Clear the head of the cache sack blocks so we can skip it next time */
1823 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1824 tp
->recv_sack_cache
[i
].start_seq
= 0;
1825 tp
->recv_sack_cache
[i
].end_seq
= 0;
1827 for (j
= 0; j
< used_sacks
; j
++)
1828 tp
->recv_sack_cache
[i
++] = sp
[j
];
1830 if ((state
->reord
< tp
->fackets_out
) &&
1831 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1832 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1834 tcp_verify_left_out(tp
);
1837 #if FASTRETRANS_DEBUG > 0
1838 WARN_ON((int)tp
->sacked_out
< 0);
1839 WARN_ON((int)tp
->lost_out
< 0);
1840 WARN_ON((int)tp
->retrans_out
< 0);
1841 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1849 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1853 holes
= max(tp
->lost_out
, 1U);
1854 holes
= min(holes
, tp
->packets_out
);
1856 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1857 tp
->sacked_out
= tp
->packets_out
- holes
;
1863 /* If we receive more dupacks than we expected counting segments
1864 * in assumption of absent reordering, interpret this as reordering.
1865 * The only another reason could be bug in receiver TCP.
1867 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1869 struct tcp_sock
*tp
= tcp_sk(sk
);
1870 if (tcp_limit_reno_sacked(tp
))
1871 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1876 static void tcp_add_reno_sack(struct sock
*sk
)
1878 struct tcp_sock
*tp
= tcp_sk(sk
);
1879 u32 prior_sacked
= tp
->sacked_out
;
1882 tcp_check_reno_reordering(sk
, 0);
1883 if (tp
->sacked_out
> prior_sacked
)
1884 tp
->delivered
++; /* Some out-of-order packet is delivered */
1885 tcp_verify_left_out(tp
);
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1890 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1892 struct tcp_sock
*tp
= tcp_sk(sk
);
1895 /* One ACK acked hole. The rest eat duplicate ACKs. */
1896 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1897 if (acked
- 1 >= tp
->sacked_out
)
1900 tp
->sacked_out
-= acked
- 1;
1902 tcp_check_reno_reordering(sk
, acked
);
1903 tcp_verify_left_out(tp
);
1906 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1911 void tcp_clear_retrans(struct tcp_sock
*tp
)
1913 tp
->retrans_out
= 0;
1915 tp
->undo_marker
= 0;
1916 tp
->undo_retrans
= -1;
1917 tp
->fackets_out
= 0;
1921 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1923 tp
->undo_marker
= tp
->snd_una
;
1924 /* Retransmission still in flight may cause DSACKs later. */
1925 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1929 * and reset tags completely, otherwise preserve SACKs. If receiver
1930 * dropped its ofo queue, we will know this due to reneging detection.
1932 void tcp_enter_loss(struct sock
*sk
)
1934 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1935 struct tcp_sock
*tp
= tcp_sk(sk
);
1936 struct net
*net
= sock_net(sk
);
1937 struct sk_buff
*skb
;
1938 bool is_reneg
; /* is receiver reneging on SACKs? */
1941 /* Reduce ssthresh if it has not yet been made inside this window. */
1942 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1943 !after(tp
->high_seq
, tp
->snd_una
) ||
1944 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1945 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1946 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1947 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1951 tp
->snd_cwnd_cnt
= 0;
1952 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1954 tp
->retrans_out
= 0;
1957 if (tcp_is_reno(tp
))
1958 tcp_reset_reno_sack(tp
);
1960 skb
= tcp_write_queue_head(sk
);
1961 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1963 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1965 tp
->fackets_out
= 0;
1967 tcp_clear_all_retrans_hints(tp
);
1969 tcp_for_write_queue(skb
, sk
) {
1970 if (skb
== tcp_send_head(sk
))
1973 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1976 tcp_sum_lost(tp
, skb
);
1977 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1979 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1980 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1981 tp
->lost_out
+= tcp_skb_pcount(skb
);
1984 tcp_verify_left_out(tp
);
1986 /* Timeout in disordered state after receiving substantial DUPACKs
1987 * suggests that the degree of reordering is over-estimated.
1989 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1990 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1991 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1992 net
->ipv4
.sysctl_tcp_reordering
);
1993 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1994 tp
->high_seq
= tp
->snd_nxt
;
1995 tcp_ecn_queue_cwr(tp
);
1997 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1998 * if a previous recovery is underway, otherwise it may incorrectly
1999 * call a timeout spurious if some previously retransmitted packets
2000 * are s/acked (sec 3.2). We do not apply that retriction since
2001 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
2002 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
2003 * on PTMU discovery to avoid sending new data.
2005 tp
->frto
= sysctl_tcp_frto
&& !inet_csk(sk
)->icsk_mtup
.probe_size
;
2008 /* If ACK arrived pointing to a remembered SACK, it means that our
2009 * remembered SACKs do not reflect real state of receiver i.e.
2010 * receiver _host_ is heavily congested (or buggy).
2012 * To avoid big spurious retransmission bursts due to transient SACK
2013 * scoreboard oddities that look like reneging, we give the receiver a
2014 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2015 * restore sanity to the SACK scoreboard. If the apparent reneging
2016 * persists until this RTO then we'll clear the SACK scoreboard.
2018 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2020 if (flag
& FLAG_SACK_RENEGING
) {
2021 struct tcp_sock
*tp
= tcp_sk(sk
);
2022 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2023 msecs_to_jiffies(10));
2025 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2026 delay
, TCP_RTO_MAX
);
2032 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2034 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2037 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2038 * counter when SACK is enabled (without SACK, sacked_out is used for
2041 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2042 * segments up to the highest received SACK block so far and holes in
2045 * With reordering, holes may still be in flight, so RFC3517 recovery
2046 * uses pure sacked_out (total number of SACKed segments) even though
2047 * it violates the RFC that uses duplicate ACKs, often these are equal
2048 * but when e.g. out-of-window ACKs or packet duplication occurs,
2049 * they differ. Since neither occurs due to loss, TCP should really
2052 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2054 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2057 /* Linux NewReno/SACK/FACK/ECN state machine.
2058 * --------------------------------------
2060 * "Open" Normal state, no dubious events, fast path.
2061 * "Disorder" In all the respects it is "Open",
2062 * but requires a bit more attention. It is entered when
2063 * we see some SACKs or dupacks. It is split of "Open"
2064 * mainly to move some processing from fast path to slow one.
2065 * "CWR" CWND was reduced due to some Congestion Notification event.
2066 * It can be ECN, ICMP source quench, local device congestion.
2067 * "Recovery" CWND was reduced, we are fast-retransmitting.
2068 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2070 * tcp_fastretrans_alert() is entered:
2071 * - each incoming ACK, if state is not "Open"
2072 * - when arrived ACK is unusual, namely:
2077 * Counting packets in flight is pretty simple.
2079 * in_flight = packets_out - left_out + retrans_out
2081 * packets_out is SND.NXT-SND.UNA counted in packets.
2083 * retrans_out is number of retransmitted segments.
2085 * left_out is number of segments left network, but not ACKed yet.
2087 * left_out = sacked_out + lost_out
2089 * sacked_out: Packets, which arrived to receiver out of order
2090 * and hence not ACKed. With SACKs this number is simply
2091 * amount of SACKed data. Even without SACKs
2092 * it is easy to give pretty reliable estimate of this number,
2093 * counting duplicate ACKs.
2095 * lost_out: Packets lost by network. TCP has no explicit
2096 * "loss notification" feedback from network (for now).
2097 * It means that this number can be only _guessed_.
2098 * Actually, it is the heuristics to predict lossage that
2099 * distinguishes different algorithms.
2101 * F.e. after RTO, when all the queue is considered as lost,
2102 * lost_out = packets_out and in_flight = retrans_out.
2104 * Essentially, we have now a few algorithms detecting
2107 * If the receiver supports SACK:
2109 * RFC6675/3517: It is the conventional algorithm. A packet is
2110 * considered lost if the number of higher sequence packets
2111 * SACKed is greater than or equal the DUPACK thoreshold
2112 * (reordering). This is implemented in tcp_mark_head_lost and
2113 * tcp_update_scoreboard.
2115 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2116 * (2017-) that checks timing instead of counting DUPACKs.
2117 * Essentially a packet is considered lost if it's not S/ACKed
2118 * after RTT + reordering_window, where both metrics are
2119 * dynamically measured and adjusted. This is implemented in
2120 * tcp_rack_mark_lost.
2122 * FACK (Disabled by default. Subsumbed by RACK):
2123 * It is the simplest heuristics. As soon as we decided
2124 * that something is lost, we decide that _all_ not SACKed
2125 * packets until the most forward SACK are lost. I.e.
2126 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2127 * It is absolutely correct estimate, if network does not reorder
2128 * packets. And it loses any connection to reality when reordering
2129 * takes place. We use FACK by default until reordering
2130 * is suspected on the path to this destination.
2132 * If the receiver does not support SACK:
2134 * NewReno (RFC6582): in Recovery we assume that one segment
2135 * is lost (classic Reno). While we are in Recovery and
2136 * a partial ACK arrives, we assume that one more packet
2137 * is lost (NewReno). This heuristics are the same in NewReno
2140 * Really tricky (and requiring careful tuning) part of algorithm
2141 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2142 * The first determines the moment _when_ we should reduce CWND and,
2143 * hence, slow down forward transmission. In fact, it determines the moment
2144 * when we decide that hole is caused by loss, rather than by a reorder.
2146 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2147 * holes, caused by lost packets.
2149 * And the most logically complicated part of algorithm is undo
2150 * heuristics. We detect false retransmits due to both too early
2151 * fast retransmit (reordering) and underestimated RTO, analyzing
2152 * timestamps and D-SACKs. When we detect that some segments were
2153 * retransmitted by mistake and CWND reduction was wrong, we undo
2154 * window reduction and abort recovery phase. This logic is hidden
2155 * inside several functions named tcp_try_undo_<something>.
2158 /* This function decides, when we should leave Disordered state
2159 * and enter Recovery phase, reducing congestion window.
2161 * Main question: may we further continue forward transmission
2162 * with the same cwnd?
2164 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2166 struct tcp_sock
*tp
= tcp_sk(sk
);
2168 /* Trick#1: The loss is proven. */
2172 /* Not-A-Trick#2 : Classic rule... */
2173 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2179 /* Detect loss in event "A" above by marking head of queue up as lost.
2180 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2181 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2182 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2183 * the maximum SACKed segments to pass before reaching this limit.
2185 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2187 struct tcp_sock
*tp
= tcp_sk(sk
);
2188 struct sk_buff
*skb
;
2189 int cnt
, oldcnt
, lost
;
2191 /* Use SACK to deduce losses of new sequences sent during recovery */
2192 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2194 WARN_ON(packets
> tp
->packets_out
);
2195 if (tp
->lost_skb_hint
) {
2196 skb
= tp
->lost_skb_hint
;
2197 cnt
= tp
->lost_cnt_hint
;
2198 /* Head already handled? */
2199 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2202 skb
= tcp_write_queue_head(sk
);
2206 tcp_for_write_queue_from(skb
, sk
) {
2207 if (skb
== tcp_send_head(sk
))
2209 /* TODO: do this better */
2210 /* this is not the most efficient way to do this... */
2211 tp
->lost_skb_hint
= skb
;
2212 tp
->lost_cnt_hint
= cnt
;
2214 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2218 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2219 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2220 cnt
+= tcp_skb_pcount(skb
);
2222 if (cnt
> packets
) {
2223 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2224 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2225 (oldcnt
>= packets
))
2228 mss
= tcp_skb_mss(skb
);
2229 /* If needed, chop off the prefix to mark as lost. */
2230 lost
= (packets
- oldcnt
) * mss
;
2231 if (lost
< skb
->len
&&
2232 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2237 tcp_skb_mark_lost(tp
, skb
);
2242 tcp_verify_left_out(tp
);
2245 /* Account newly detected lost packet(s) */
2247 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2249 struct tcp_sock
*tp
= tcp_sk(sk
);
2251 if (tcp_is_reno(tp
)) {
2252 tcp_mark_head_lost(sk
, 1, 1);
2253 } else if (tcp_is_fack(tp
)) {
2254 int lost
= tp
->fackets_out
- tp
->reordering
;
2257 tcp_mark_head_lost(sk
, lost
, 0);
2259 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2260 if (sacked_upto
>= 0)
2261 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2262 else if (fast_rexmit
)
2263 tcp_mark_head_lost(sk
, 1, 1);
2267 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2269 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2270 before(tp
->rx_opt
.rcv_tsecr
, when
);
2273 /* skb is spurious retransmitted if the returned timestamp echo
2274 * reply is prior to the skb transmission time
2276 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2277 const struct sk_buff
*skb
)
2279 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2280 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2283 /* Nothing was retransmitted or returned timestamp is less
2284 * than timestamp of the first retransmission.
2286 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2288 return !tp
->retrans_stamp
||
2289 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2292 /* Undo procedures. */
2294 /* We can clear retrans_stamp when there are no retransmissions in the
2295 * window. It would seem that it is trivially available for us in
2296 * tp->retrans_out, however, that kind of assumptions doesn't consider
2297 * what will happen if errors occur when sending retransmission for the
2298 * second time. ...It could the that such segment has only
2299 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2300 * the head skb is enough except for some reneging corner cases that
2301 * are not worth the effort.
2303 * Main reason for all this complexity is the fact that connection dying
2304 * time now depends on the validity of the retrans_stamp, in particular,
2305 * that successive retransmissions of a segment must not advance
2306 * retrans_stamp under any conditions.
2308 static bool tcp_any_retrans_done(const struct sock
*sk
)
2310 const struct tcp_sock
*tp
= tcp_sk(sk
);
2311 struct sk_buff
*skb
;
2313 if (tp
->retrans_out
)
2316 skb
= tcp_write_queue_head(sk
);
2317 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2323 #if FASTRETRANS_DEBUG > 1
2324 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2326 struct tcp_sock
*tp
= tcp_sk(sk
);
2327 struct inet_sock
*inet
= inet_sk(sk
);
2329 if (sk
->sk_family
== AF_INET
) {
2330 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2332 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2333 tp
->snd_cwnd
, tcp_left_out(tp
),
2334 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2337 #if IS_ENABLED(CONFIG_IPV6)
2338 else if (sk
->sk_family
== AF_INET6
) {
2339 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2341 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2342 tp
->snd_cwnd
, tcp_left_out(tp
),
2343 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2349 #define DBGUNDO(x...) do { } while (0)
2352 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2354 struct tcp_sock
*tp
= tcp_sk(sk
);
2357 struct sk_buff
*skb
;
2359 tcp_for_write_queue(skb
, sk
) {
2360 if (skb
== tcp_send_head(sk
))
2362 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2365 tcp_clear_all_retrans_hints(tp
);
2368 if (tp
->prior_ssthresh
) {
2369 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2371 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2373 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2374 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2375 tcp_ecn_withdraw_cwr(tp
);
2378 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2379 tp
->undo_marker
= 0;
2382 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2384 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2387 /* People celebrate: "We love our President!" */
2388 static bool tcp_try_undo_recovery(struct sock
*sk
)
2390 struct tcp_sock
*tp
= tcp_sk(sk
);
2392 if (tcp_may_undo(tp
)) {
2395 /* Happy end! We did not retransmit anything
2396 * or our original transmission succeeded.
2398 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2399 tcp_undo_cwnd_reduction(sk
, false);
2400 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2401 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2403 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2405 NET_INC_STATS(sock_net(sk
), mib_idx
);
2407 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2408 /* Hold old state until something *above* high_seq
2409 * is ACKed. For Reno it is MUST to prevent false
2410 * fast retransmits (RFC2582). SACK TCP is safe. */
2411 if (!tcp_any_retrans_done(sk
))
2412 tp
->retrans_stamp
= 0;
2415 tcp_set_ca_state(sk
, TCP_CA_Open
);
2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2420 static bool tcp_try_undo_dsack(struct sock
*sk
)
2422 struct tcp_sock
*tp
= tcp_sk(sk
);
2424 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2425 DBGUNDO(sk
, "D-SACK");
2426 tcp_undo_cwnd_reduction(sk
, false);
2427 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2436 struct tcp_sock
*tp
= tcp_sk(sk
);
2438 if (frto_undo
|| tcp_may_undo(tp
)) {
2439 tcp_undo_cwnd_reduction(sk
, true);
2441 DBGUNDO(sk
, "partial loss");
2442 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2444 NET_INC_STATS(sock_net(sk
),
2445 LINUX_MIB_TCPSPURIOUSRTOS
);
2446 inet_csk(sk
)->icsk_retransmits
= 0;
2447 if (frto_undo
|| tcp_is_sack(tp
))
2448 tcp_set_ca_state(sk
, TCP_CA_Open
);
2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2455 * It computes the number of packets to send (sndcnt) based on packets newly
2457 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2458 * cwnd reductions across a full RTT.
2459 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2460 * But when the retransmits are acked without further losses, PRR
2461 * slow starts cwnd up to ssthresh to speed up the recovery.
2463 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2465 struct tcp_sock
*tp
= tcp_sk(sk
);
2467 tp
->high_seq
= tp
->snd_nxt
;
2468 tp
->tlp_high_seq
= 0;
2469 tp
->snd_cwnd_cnt
= 0;
2470 tp
->prior_cwnd
= tp
->snd_cwnd
;
2471 tp
->prr_delivered
= 0;
2473 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2474 tcp_ecn_queue_cwr(tp
);
2477 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2479 struct tcp_sock
*tp
= tcp_sk(sk
);
2481 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2483 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2486 tp
->prr_delivered
+= newly_acked_sacked
;
2488 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2490 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2491 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2492 !(flag
& FLAG_LOST_RETRANS
)) {
2493 sndcnt
= min_t(int, delta
,
2494 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2495 newly_acked_sacked
) + 1);
2497 sndcnt
= min(delta
, newly_acked_sacked
);
2499 /* Force a fast retransmit upon entering fast recovery */
2500 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2501 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2504 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2506 struct tcp_sock
*tp
= tcp_sk(sk
);
2508 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2511 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2512 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2513 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2514 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2515 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2517 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2521 void tcp_enter_cwr(struct sock
*sk
)
2523 struct tcp_sock
*tp
= tcp_sk(sk
);
2525 tp
->prior_ssthresh
= 0;
2526 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2527 tp
->undo_marker
= 0;
2528 tcp_init_cwnd_reduction(sk
);
2529 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2532 EXPORT_SYMBOL(tcp_enter_cwr
);
2534 static void tcp_try_keep_open(struct sock
*sk
)
2536 struct tcp_sock
*tp
= tcp_sk(sk
);
2537 int state
= TCP_CA_Open
;
2539 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2540 state
= TCP_CA_Disorder
;
2542 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2543 tcp_set_ca_state(sk
, state
);
2544 tp
->high_seq
= tp
->snd_nxt
;
2548 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2550 struct tcp_sock
*tp
= tcp_sk(sk
);
2552 tcp_verify_left_out(tp
);
2554 if (!tcp_any_retrans_done(sk
))
2555 tp
->retrans_stamp
= 0;
2557 if (flag
& FLAG_ECE
)
2560 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2561 tcp_try_keep_open(sk
);
2565 static void tcp_mtup_probe_failed(struct sock
*sk
)
2567 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2569 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2570 icsk
->icsk_mtup
.probe_size
= 0;
2571 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2574 static void tcp_mtup_probe_success(struct sock
*sk
)
2576 struct tcp_sock
*tp
= tcp_sk(sk
);
2577 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2579 /* FIXME: breaks with very large cwnd */
2580 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2581 tp
->snd_cwnd
= tp
->snd_cwnd
*
2582 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2583 icsk
->icsk_mtup
.probe_size
;
2584 tp
->snd_cwnd_cnt
= 0;
2585 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2586 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2588 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2589 icsk
->icsk_mtup
.probe_size
= 0;
2590 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2591 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2594 /* Do a simple retransmit without using the backoff mechanisms in
2595 * tcp_timer. This is used for path mtu discovery.
2596 * The socket is already locked here.
2598 void tcp_simple_retransmit(struct sock
*sk
)
2600 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2601 struct tcp_sock
*tp
= tcp_sk(sk
);
2602 struct sk_buff
*skb
;
2603 unsigned int mss
= tcp_current_mss(sk
);
2604 u32 prior_lost
= tp
->lost_out
;
2606 tcp_for_write_queue(skb
, sk
) {
2607 if (skb
== tcp_send_head(sk
))
2609 if (tcp_skb_seglen(skb
) > mss
&&
2610 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2611 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2612 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2613 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2615 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2619 tcp_clear_retrans_hints_partial(tp
);
2621 if (prior_lost
== tp
->lost_out
)
2624 if (tcp_is_reno(tp
))
2625 tcp_limit_reno_sacked(tp
);
2627 tcp_verify_left_out(tp
);
2629 /* Don't muck with the congestion window here.
2630 * Reason is that we do not increase amount of _data_
2631 * in network, but units changed and effective
2632 * cwnd/ssthresh really reduced now.
2634 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2635 tp
->high_seq
= tp
->snd_nxt
;
2636 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2637 tp
->prior_ssthresh
= 0;
2638 tp
->undo_marker
= 0;
2639 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2641 tcp_xmit_retransmit_queue(sk
);
2643 EXPORT_SYMBOL(tcp_simple_retransmit
);
2645 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2647 struct tcp_sock
*tp
= tcp_sk(sk
);
2650 if (tcp_is_reno(tp
))
2651 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2653 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2655 NET_INC_STATS(sock_net(sk
), mib_idx
);
2657 tp
->prior_ssthresh
= 0;
2660 if (!tcp_in_cwnd_reduction(sk
)) {
2662 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2663 tcp_init_cwnd_reduction(sk
);
2665 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2668 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2669 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2671 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2674 struct tcp_sock
*tp
= tcp_sk(sk
);
2675 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2677 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2678 tcp_try_undo_loss(sk
, false))
2681 /* The ACK (s)acks some never-retransmitted data meaning not all
2682 * the data packets before the timeout were lost. Therefore we
2683 * undo the congestion window and state. This is essentially
2684 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2685 * a retransmitted skb is permantly marked, we can apply such an
2686 * operation even if F-RTO was not used.
2688 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2689 tcp_try_undo_loss(sk
, tp
->undo_marker
))
2692 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2693 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2694 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2695 tp
->frto
= 0; /* Step 3.a. loss was real */
2696 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2697 tp
->high_seq
= tp
->snd_nxt
;
2698 /* Step 2.b. Try send new data (but deferred until cwnd
2699 * is updated in tcp_ack()). Otherwise fall back to
2700 * the conventional recovery.
2702 if (tcp_send_head(sk
) &&
2703 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2704 *rexmit
= REXMIT_NEW
;
2712 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2713 tcp_try_undo_recovery(sk
);
2716 if (tcp_is_reno(tp
)) {
2717 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2718 * delivered. Lower inflight to clock out (re)tranmissions.
2720 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2721 tcp_add_reno_sack(sk
);
2722 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2723 tcp_reset_reno_sack(tp
);
2725 *rexmit
= REXMIT_LOST
;
2728 /* Undo during fast recovery after partial ACK. */
2729 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2731 struct tcp_sock
*tp
= tcp_sk(sk
);
2733 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2734 /* Plain luck! Hole if filled with delayed
2735 * packet, rather than with a retransmit.
2737 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2739 /* We are getting evidence that the reordering degree is higher
2740 * than we realized. If there are no retransmits out then we
2741 * can undo. Otherwise we clock out new packets but do not
2742 * mark more packets lost or retransmit more.
2744 if (tp
->retrans_out
)
2747 if (!tcp_any_retrans_done(sk
))
2748 tp
->retrans_stamp
= 0;
2750 DBGUNDO(sk
, "partial recovery");
2751 tcp_undo_cwnd_reduction(sk
, true);
2752 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2753 tcp_try_keep_open(sk
);
2759 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
,
2760 const struct skb_mstamp
*ack_time
)
2762 struct tcp_sock
*tp
= tcp_sk(sk
);
2764 /* Use RACK to detect loss */
2765 if (sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2766 u32 prior_retrans
= tp
->retrans_out
;
2768 tcp_rack_mark_lost(sk
, ack_time
);
2769 if (prior_retrans
> tp
->retrans_out
)
2770 *ack_flag
|= FLAG_LOST_RETRANS
;
2774 /* Process an event, which can update packets-in-flight not trivially.
2775 * Main goal of this function is to calculate new estimate for left_out,
2776 * taking into account both packets sitting in receiver's buffer and
2777 * packets lost by network.
2779 * Besides that it updates the congestion state when packet loss or ECN
2780 * is detected. But it does not reduce the cwnd, it is done by the
2781 * congestion control later.
2783 * It does _not_ decide what to send, it is made in function
2784 * tcp_xmit_retransmit_queue().
2786 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2787 bool is_dupack
, int *ack_flag
, int *rexmit
,
2788 const struct skb_mstamp
*ack_time
)
2790 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2791 struct tcp_sock
*tp
= tcp_sk(sk
);
2792 int fast_rexmit
= 0, flag
= *ack_flag
;
2793 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2794 (tcp_fackets_out(tp
) > tp
->reordering
));
2796 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2798 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2799 tp
->fackets_out
= 0;
2801 /* Now state machine starts.
2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 if (flag
& FLAG_ECE
)
2804 tp
->prior_ssthresh
= 0;
2806 /* B. In all the states check for reneging SACKs. */
2807 if (tcp_check_sack_reneging(sk
, flag
))
2810 /* C. Check consistency of the current state. */
2811 tcp_verify_left_out(tp
);
2813 /* D. Check state exit conditions. State can be terminated
2814 * when high_seq is ACKed. */
2815 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2816 WARN_ON(tp
->retrans_out
!= 0);
2817 tp
->retrans_stamp
= 0;
2818 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2819 switch (icsk
->icsk_ca_state
) {
2821 /* CWR is to be held something *above* high_seq
2822 * is ACKed for CWR bit to reach receiver. */
2823 if (tp
->snd_una
!= tp
->high_seq
) {
2824 tcp_end_cwnd_reduction(sk
);
2825 tcp_set_ca_state(sk
, TCP_CA_Open
);
2829 case TCP_CA_Recovery
:
2830 if (tcp_is_reno(tp
))
2831 tcp_reset_reno_sack(tp
);
2832 if (tcp_try_undo_recovery(sk
))
2834 tcp_end_cwnd_reduction(sk
);
2839 /* E. Process state. */
2840 switch (icsk
->icsk_ca_state
) {
2841 case TCP_CA_Recovery
:
2842 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2843 if (tcp_is_reno(tp
) && is_dupack
)
2844 tcp_add_reno_sack(sk
);
2846 if (tcp_try_undo_partial(sk
, acked
))
2848 /* Partial ACK arrived. Force fast retransmit. */
2849 do_lost
= tcp_is_reno(tp
) ||
2850 tcp_fackets_out(tp
) > tp
->reordering
;
2852 if (tcp_try_undo_dsack(sk
)) {
2853 tcp_try_keep_open(sk
);
2856 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2859 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2860 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2861 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2862 (*ack_flag
& FLAG_LOST_RETRANS
)))
2864 /* Change state if cwnd is undone or retransmits are lost */
2866 if (tcp_is_reno(tp
)) {
2867 if (flag
& FLAG_SND_UNA_ADVANCED
)
2868 tcp_reset_reno_sack(tp
);
2870 tcp_add_reno_sack(sk
);
2873 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2874 tcp_try_undo_dsack(sk
);
2876 tcp_rack_identify_loss(sk
, ack_flag
, ack_time
);
2877 if (!tcp_time_to_recover(sk
, flag
)) {
2878 tcp_try_to_open(sk
, flag
);
2882 /* MTU probe failure: don't reduce cwnd */
2883 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2884 icsk
->icsk_mtup
.probe_size
&&
2885 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2886 tcp_mtup_probe_failed(sk
);
2887 /* Restores the reduction we did in tcp_mtup_probe() */
2889 tcp_simple_retransmit(sk
);
2893 /* Otherwise enter Recovery state */
2894 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2899 tcp_update_scoreboard(sk
, fast_rexmit
);
2900 *rexmit
= REXMIT_LOST
;
2903 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2905 struct tcp_sock
*tp
= tcp_sk(sk
);
2906 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2908 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_time_stamp
,
2909 rtt_us
? : jiffies_to_usecs(1));
2912 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2913 long seq_rtt_us
, long sack_rtt_us
,
2916 const struct tcp_sock
*tp
= tcp_sk(sk
);
2918 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2919 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2920 * Karn's algorithm forbids taking RTT if some retransmitted data
2921 * is acked (RFC6298).
2924 seq_rtt_us
= sack_rtt_us
;
2926 /* RTTM Rule: A TSecr value received in a segment is used to
2927 * update the averaged RTT measurement only if the segment
2928 * acknowledges some new data, i.e., only if it advances the
2929 * left edge of the send window.
2930 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2932 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2934 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2935 tp
->rx_opt
.rcv_tsecr
);
2939 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2940 * always taken together with ACK, SACK, or TS-opts. Any negative
2941 * values will be skipped with the seq_rtt_us < 0 check above.
2943 tcp_update_rtt_min(sk
, ca_rtt_us
);
2944 tcp_rtt_estimator(sk
, seq_rtt_us
);
2947 /* RFC6298: only reset backoff on valid RTT measurement. */
2948 inet_csk(sk
)->icsk_backoff
= 0;
2952 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2953 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2957 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2958 struct skb_mstamp now
;
2960 skb_mstamp_get(&now
);
2961 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2964 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
2968 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2970 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2972 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2973 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2976 /* Restart timer after forward progress on connection.
2977 * RFC2988 recommends to restart timer to now+rto.
2979 void tcp_rearm_rto(struct sock
*sk
)
2981 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2982 struct tcp_sock
*tp
= tcp_sk(sk
);
2984 /* If the retrans timer is currently being used by Fast Open
2985 * for SYN-ACK retrans purpose, stay put.
2987 if (tp
->fastopen_rsk
)
2990 if (!tp
->packets_out
) {
2991 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2993 u32 rto
= inet_csk(sk
)->icsk_rto
;
2994 /* Offset the time elapsed after installing regular RTO */
2995 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
2996 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2997 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
2998 const u32 rto_time_stamp
=
2999 tcp_skb_timestamp(skb
) + rto
;
3000 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3001 /* delta may not be positive if the socket is locked
3002 * when the retrans timer fires and is rescheduled.
3007 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3012 /* If we get here, the whole TSO packet has not been acked. */
3013 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3015 struct tcp_sock
*tp
= tcp_sk(sk
);
3018 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3020 packets_acked
= tcp_skb_pcount(skb
);
3021 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3023 packets_acked
-= tcp_skb_pcount(skb
);
3025 if (packets_acked
) {
3026 BUG_ON(tcp_skb_pcount(skb
) == 0);
3027 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3030 return packets_acked
;
3033 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3036 const struct skb_shared_info
*shinfo
;
3038 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3039 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3042 shinfo
= skb_shinfo(skb
);
3043 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3044 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3045 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3048 /* Remove acknowledged frames from the retransmission queue. If our packet
3049 * is before the ack sequence we can discard it as it's confirmed to have
3050 * arrived at the other end.
3052 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3053 u32 prior_snd_una
, int *acked
,
3054 struct tcp_sacktag_state
*sack
)
3056 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3057 struct skb_mstamp first_ackt
, last_ackt
;
3058 struct skb_mstamp
*now
= &sack
->ack_time
;
3059 struct tcp_sock
*tp
= tcp_sk(sk
);
3060 u32 prior_sacked
= tp
->sacked_out
;
3061 u32 reord
= tp
->packets_out
;
3062 bool fully_acked
= true;
3063 long sack_rtt_us
= -1L;
3064 long seq_rtt_us
= -1L;
3065 long ca_rtt_us
= -1L;
3066 struct sk_buff
*skb
;
3068 u32 last_in_flight
= 0;
3074 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3075 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3076 u8 sacked
= scb
->sacked
;
3079 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3081 /* Determine how many packets and what bytes were acked, tso and else */
3082 if (after(scb
->end_seq
, tp
->snd_una
)) {
3083 if (tcp_skb_pcount(skb
) == 1 ||
3084 !after(tp
->snd_una
, scb
->seq
))
3087 acked_pcount
= tcp_tso_acked(sk
, skb
);
3090 fully_acked
= false;
3092 /* Speedup tcp_unlink_write_queue() and next loop */
3093 prefetchw(skb
->next
);
3094 acked_pcount
= tcp_skb_pcount(skb
);
3097 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3098 if (sacked
& TCPCB_SACKED_RETRANS
)
3099 tp
->retrans_out
-= acked_pcount
;
3100 flag
|= FLAG_RETRANS_DATA_ACKED
;
3101 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3102 last_ackt
= skb
->skb_mstamp
;
3103 WARN_ON_ONCE(last_ackt
.v64
== 0);
3104 if (!first_ackt
.v64
)
3105 first_ackt
= last_ackt
;
3107 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3108 reord
= min(pkts_acked
, reord
);
3109 if (!after(scb
->end_seq
, tp
->high_seq
))
3110 flag
|= FLAG_ORIG_SACK_ACKED
;
3113 if (sacked
& TCPCB_SACKED_ACKED
) {
3114 tp
->sacked_out
-= acked_pcount
;
3115 } else if (tcp_is_sack(tp
)) {
3116 tp
->delivered
+= acked_pcount
;
3117 if (!tcp_skb_spurious_retrans(tp
, skb
))
3118 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3122 if (sacked
& TCPCB_LOST
)
3123 tp
->lost_out
-= acked_pcount
;
3125 tp
->packets_out
-= acked_pcount
;
3126 pkts_acked
+= acked_pcount
;
3127 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3129 /* Initial outgoing SYN's get put onto the write_queue
3130 * just like anything else we transmit. It is not
3131 * true data, and if we misinform our callers that
3132 * this ACK acks real data, we will erroneously exit
3133 * connection startup slow start one packet too
3134 * quickly. This is severely frowned upon behavior.
3136 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3137 flag
|= FLAG_DATA_ACKED
;
3139 flag
|= FLAG_SYN_ACKED
;
3140 tp
->retrans_stamp
= 0;
3146 tcp_unlink_write_queue(skb
, sk
);
3147 sk_wmem_free_skb(sk
, skb
);
3148 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3149 tp
->retransmit_skb_hint
= NULL
;
3150 if (unlikely(skb
== tp
->lost_skb_hint
))
3151 tp
->lost_skb_hint
= NULL
;
3155 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3157 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3158 tp
->snd_up
= tp
->snd_una
;
3160 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3161 flag
|= FLAG_SACK_RENEGING
;
3163 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3164 seq_rtt_us
= skb_mstamp_us_delta(now
, &first_ackt
);
3165 ca_rtt_us
= skb_mstamp_us_delta(now
, &last_ackt
);
3167 if (sack
->first_sackt
.v64
) {
3168 sack_rtt_us
= skb_mstamp_us_delta(now
, &sack
->first_sackt
);
3169 ca_rtt_us
= skb_mstamp_us_delta(now
, &sack
->last_sackt
);
3171 sack
->rate
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet, or -1 */
3172 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3175 if (flag
& FLAG_ACKED
) {
3177 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3178 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3179 tcp_mtup_probe_success(sk
);
3182 if (tcp_is_reno(tp
)) {
3183 tcp_remove_reno_sacks(sk
, pkts_acked
);
3187 /* Non-retransmitted hole got filled? That's reordering */
3188 if (reord
< prior_fackets
)
3189 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3191 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3192 prior_sacked
- tp
->sacked_out
;
3193 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3196 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3198 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3199 sack_rtt_us
> skb_mstamp_us_delta(now
, &skb
->skb_mstamp
)) {
3200 /* Do not re-arm RTO if the sack RTT is measured from data sent
3201 * after when the head was last (re)transmitted. Otherwise the
3202 * timeout may continue to extend in loss recovery.
3207 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3208 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3209 .rtt_us
= ca_rtt_us
,
3210 .in_flight
= last_in_flight
};
3212 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3215 #if FASTRETRANS_DEBUG > 0
3216 WARN_ON((int)tp
->sacked_out
< 0);
3217 WARN_ON((int)tp
->lost_out
< 0);
3218 WARN_ON((int)tp
->retrans_out
< 0);
3219 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3220 icsk
= inet_csk(sk
);
3222 pr_debug("Leak l=%u %d\n",
3223 tp
->lost_out
, icsk
->icsk_ca_state
);
3226 if (tp
->sacked_out
) {
3227 pr_debug("Leak s=%u %d\n",
3228 tp
->sacked_out
, icsk
->icsk_ca_state
);
3231 if (tp
->retrans_out
) {
3232 pr_debug("Leak r=%u %d\n",
3233 tp
->retrans_out
, icsk
->icsk_ca_state
);
3234 tp
->retrans_out
= 0;
3238 *acked
= pkts_acked
;
3242 static void tcp_ack_probe(struct sock
*sk
)
3244 const struct tcp_sock
*tp
= tcp_sk(sk
);
3245 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3247 /* Was it a usable window open? */
3249 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3250 icsk
->icsk_backoff
= 0;
3251 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3252 /* Socket must be waked up by subsequent tcp_data_snd_check().
3253 * This function is not for random using!
3256 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3258 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3263 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3265 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3266 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3272 /* If reordering is high then always grow cwnd whenever data is
3273 * delivered regardless of its ordering. Otherwise stay conservative
3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 * cwnd in tcp_fastretrans_alert() based on more states.
3278 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3279 return flag
& FLAG_FORWARD_PROGRESS
;
3281 return flag
& FLAG_DATA_ACKED
;
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286 * It's called toward the end of processing an ACK with precise rate
3287 * information. All transmission or retransmission are delayed afterwards.
3289 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3290 int flag
, const struct rate_sample
*rs
)
3292 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3294 if (icsk
->icsk_ca_ops
->cong_control
) {
3295 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3299 if (tcp_in_cwnd_reduction(sk
)) {
3300 /* Reduce cwnd if state mandates */
3301 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3302 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3303 /* Advance cwnd if state allows */
3304 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3306 tcp_update_pacing_rate(sk
);
3309 /* Check that window update is acceptable.
3310 * The function assumes that snd_una<=ack<=snd_next.
3312 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3313 const u32 ack
, const u32 ack_seq
,
3316 return after(ack
, tp
->snd_una
) ||
3317 after(ack_seq
, tp
->snd_wl1
) ||
3318 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3324 u32 delta
= ack
- tp
->snd_una
;
3326 sock_owned_by_me((struct sock
*)tp
);
3327 tp
->bytes_acked
+= delta
;
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3334 u32 delta
= seq
- tp
->rcv_nxt
;
3336 sock_owned_by_me((struct sock
*)tp
);
3337 tp
->bytes_received
+= delta
;
3341 /* Update our send window.
3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3346 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3349 struct tcp_sock
*tp
= tcp_sk(sk
);
3351 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3353 if (likely(!tcp_hdr(skb
)->syn
))
3354 nwin
<<= tp
->rx_opt
.snd_wscale
;
3356 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3357 flag
|= FLAG_WIN_UPDATE
;
3358 tcp_update_wl(tp
, ack_seq
);
3360 if (tp
->snd_wnd
!= nwin
) {
3363 /* Note, it is the only place, where
3364 * fast path is recovered for sending TCP.
3367 tcp_fast_path_check(sk
);
3369 if (tcp_send_head(sk
))
3370 tcp_slow_start_after_idle_check(sk
);
3372 if (nwin
> tp
->max_window
) {
3373 tp
->max_window
= nwin
;
3374 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3379 tcp_snd_una_update(tp
, ack
);
3384 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3385 u32
*last_oow_ack_time
)
3387 if (*last_oow_ack_time
) {
3388 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3390 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3391 NET_INC_STATS(net
, mib_idx
);
3392 return true; /* rate-limited: don't send yet! */
3396 *last_oow_ack_time
= tcp_time_stamp
;
3398 return false; /* not rate-limited: go ahead, send dupack now! */
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404 * attacks that send repeated SYNs or ACKs for the same connection. To
3405 * do this, we do not send a duplicate SYNACK or ACK if the remote
3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3408 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3409 int mib_idx
, u32
*last_oow_ack_time
)
3411 /* Data packets without SYNs are not likely part of an ACK loop. */
3412 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3416 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3422 /* unprotected vars, we dont care of overwrites */
3423 static u32 challenge_timestamp
;
3424 static unsigned int challenge_count
;
3425 struct tcp_sock
*tp
= tcp_sk(sk
);
3428 /* First check our per-socket dupack rate limit. */
3429 if (__tcp_oow_rate_limited(sock_net(sk
),
3430 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3431 &tp
->last_oow_ack_time
))
3434 /* Then check host-wide RFC 5961 rate limit. */
3436 if (now
!= challenge_timestamp
) {
3437 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3439 challenge_timestamp
= now
;
3440 WRITE_ONCE(challenge_count
, half
+
3441 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3443 count
= READ_ONCE(challenge_count
);
3445 WRITE_ONCE(challenge_count
, count
- 1);
3446 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3451 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3453 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3454 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3457 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3459 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3460 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3461 * extra check below makes sure this can only happen
3462 * for pure ACK frames. -DaveM
3464 * Not only, also it occurs for expired timestamps.
3467 if (tcp_paws_check(&tp
->rx_opt
, 0))
3468 tcp_store_ts_recent(tp
);
3472 /* This routine deals with acks during a TLP episode.
3473 * We mark the end of a TLP episode on receiving TLP dupack or when
3474 * ack is after tlp_high_seq.
3475 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3477 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3479 struct tcp_sock
*tp
= tcp_sk(sk
);
3481 if (before(ack
, tp
->tlp_high_seq
))
3484 if (flag
& FLAG_DSACKING_ACK
) {
3485 /* This DSACK means original and TLP probe arrived; no loss */
3486 tp
->tlp_high_seq
= 0;
3487 } else if (after(ack
, tp
->tlp_high_seq
)) {
3488 /* ACK advances: there was a loss, so reduce cwnd. Reset
3489 * tlp_high_seq in tcp_init_cwnd_reduction()
3491 tcp_init_cwnd_reduction(sk
);
3492 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3493 tcp_end_cwnd_reduction(sk
);
3494 tcp_try_keep_open(sk
);
3495 NET_INC_STATS(sock_net(sk
),
3496 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3497 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3498 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3499 /* Pure dupack: original and TLP probe arrived; no loss */
3500 tp
->tlp_high_seq
= 0;
3504 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3506 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3508 if (icsk
->icsk_ca_ops
->in_ack_event
)
3509 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3512 /* Congestion control has updated the cwnd already. So if we're in
3513 * loss recovery then now we do any new sends (for FRTO) or
3514 * retransmits (for CA_Loss or CA_recovery) that make sense.
3516 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3518 struct tcp_sock
*tp
= tcp_sk(sk
);
3520 if (rexmit
== REXMIT_NONE
)
3523 if (unlikely(rexmit
== 2)) {
3524 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3526 if (after(tp
->snd_nxt
, tp
->high_seq
))
3530 tcp_xmit_retransmit_queue(sk
);
3533 /* This routine deals with incoming acks, but not outgoing ones. */
3534 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3536 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3537 struct tcp_sock
*tp
= tcp_sk(sk
);
3538 struct tcp_sacktag_state sack_state
;
3539 struct rate_sample rs
= { .prior_delivered
= 0 };
3540 u32 prior_snd_una
= tp
->snd_una
;
3541 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3542 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3543 bool is_dupack
= false;
3545 int prior_packets
= tp
->packets_out
;
3546 u32 delivered
= tp
->delivered
;
3547 u32 lost
= tp
->lost
;
3548 int acked
= 0; /* Number of packets newly acked */
3549 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3551 sack_state
.first_sackt
.v64
= 0;
3552 sack_state
.rate
= &rs
;
3554 /* We very likely will need to access write queue head. */
3555 prefetchw(sk
->sk_write_queue
.next
);
3557 /* If the ack is older than previous acks
3558 * then we can probably ignore it.
3560 if (before(ack
, prior_snd_una
)) {
3561 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3562 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3563 tcp_send_challenge_ack(sk
, skb
);
3569 /* If the ack includes data we haven't sent yet, discard
3570 * this segment (RFC793 Section 3.9).
3572 if (after(ack
, tp
->snd_nxt
))
3575 skb_mstamp_get(&sack_state
.ack_time
);
3577 if (icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3580 if (after(ack
, prior_snd_una
)) {
3581 flag
|= FLAG_SND_UNA_ADVANCED
;
3582 icsk
->icsk_retransmits
= 0;
3585 prior_fackets
= tp
->fackets_out
;
3586 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3588 /* ts_recent update must be made after we are sure that the packet
3591 if (flag
& FLAG_UPDATE_TS_RECENT
)
3592 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3594 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3595 /* Window is constant, pure forward advance.
3596 * No more checks are required.
3597 * Note, we use the fact that SND.UNA>=SND.WL2.
3599 tcp_update_wl(tp
, ack_seq
);
3600 tcp_snd_una_update(tp
, ack
);
3601 flag
|= FLAG_WIN_UPDATE
;
3603 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3605 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3607 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3609 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3612 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3614 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3616 if (TCP_SKB_CB(skb
)->sacked
)
3617 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3620 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3622 ack_ev_flags
|= CA_ACK_ECE
;
3625 if (flag
& FLAG_WIN_UPDATE
)
3626 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3628 tcp_in_ack_event(sk
, ack_ev_flags
);
3631 /* We passed data and got it acked, remove any soft error
3632 * log. Something worked...
3634 sk
->sk_err_soft
= 0;
3635 icsk
->icsk_probes_out
= 0;
3636 tp
->rcv_tstamp
= tcp_time_stamp
;
3640 /* See if we can take anything off of the retransmit queue. */
3641 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3644 if (tcp_ack_is_dubious(sk
, flag
)) {
3645 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3646 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3647 &sack_state
.ack_time
);
3649 if (tp
->tlp_high_seq
)
3650 tcp_process_tlp_ack(sk
, ack
, flag
);
3652 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3655 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3656 tcp_schedule_loss_probe(sk
);
3657 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3658 lost
= tp
->lost
- lost
; /* freshly marked lost */
3659 tcp_rate_gen(sk
, delivered
, lost
, &sack_state
.ack_time
,
3661 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3662 tcp_xmit_recovery(sk
, rexmit
);
3666 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3667 if (flag
& FLAG_DSACKING_ACK
)
3668 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3669 &sack_state
.ack_time
);
3670 /* If this ack opens up a zero window, clear backoff. It was
3671 * being used to time the probes, and is probably far higher than
3672 * it needs to be for normal retransmission.
3674 if (tcp_send_head(sk
))
3677 if (tp
->tlp_high_seq
)
3678 tcp_process_tlp_ack(sk
, ack
, flag
);
3682 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3686 /* If data was SACKed, tag it and see if we should send more data.
3687 * If data was DSACKed, see if we can undo a cwnd reduction.
3689 if (TCP_SKB_CB(skb
)->sacked
) {
3690 skb_mstamp_get(&sack_state
.ack_time
);
3691 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3693 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
,
3694 &sack_state
.ack_time
);
3695 tcp_xmit_recovery(sk
, rexmit
);
3698 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3702 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3703 bool syn
, struct tcp_fastopen_cookie
*foc
,
3706 /* Valid only in SYN or SYN-ACK with an even length. */
3707 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3710 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3711 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3712 memcpy(foc
->val
, cookie
, len
);
3719 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3720 * But, this can also be called on packets in the established flow when
3721 * the fast version below fails.
3723 void tcp_parse_options(const struct sk_buff
*skb
,
3724 struct tcp_options_received
*opt_rx
, int estab
,
3725 struct tcp_fastopen_cookie
*foc
)
3727 const unsigned char *ptr
;
3728 const struct tcphdr
*th
= tcp_hdr(skb
);
3729 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3731 ptr
= (const unsigned char *)(th
+ 1);
3732 opt_rx
->saw_tstamp
= 0;
3734 while (length
> 0) {
3735 int opcode
= *ptr
++;
3741 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3746 if (opsize
< 2) /* "silly options" */
3748 if (opsize
> length
)
3749 return; /* don't parse partial options */
3752 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3753 u16 in_mss
= get_unaligned_be16(ptr
);
3755 if (opt_rx
->user_mss
&&
3756 opt_rx
->user_mss
< in_mss
)
3757 in_mss
= opt_rx
->user_mss
;
3758 opt_rx
->mss_clamp
= in_mss
;
3763 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3764 !estab
&& sysctl_tcp_window_scaling
) {
3765 __u8 snd_wscale
= *(__u8
*)ptr
;
3766 opt_rx
->wscale_ok
= 1;
3767 if (snd_wscale
> 14) {
3768 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3773 opt_rx
->snd_wscale
= snd_wscale
;
3776 case TCPOPT_TIMESTAMP
:
3777 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3778 ((estab
&& opt_rx
->tstamp_ok
) ||
3779 (!estab
&& sysctl_tcp_timestamps
))) {
3780 opt_rx
->saw_tstamp
= 1;
3781 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3782 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3785 case TCPOPT_SACK_PERM
:
3786 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3787 !estab
&& sysctl_tcp_sack
) {
3788 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3789 tcp_sack_reset(opt_rx
);
3794 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3795 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3797 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3800 #ifdef CONFIG_TCP_MD5SIG
3803 * The MD5 Hash has already been
3804 * checked (see tcp_v{4,6}_do_rcv()).
3808 case TCPOPT_FASTOPEN
:
3809 tcp_parse_fastopen_option(
3810 opsize
- TCPOLEN_FASTOPEN_BASE
,
3811 ptr
, th
->syn
, foc
, false);
3815 /* Fast Open option shares code 254 using a
3816 * 16 bits magic number.
3818 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3819 get_unaligned_be16(ptr
) ==
3820 TCPOPT_FASTOPEN_MAGIC
)
3821 tcp_parse_fastopen_option(opsize
-
3822 TCPOLEN_EXP_FASTOPEN_BASE
,
3823 ptr
+ 2, th
->syn
, foc
, true);
3832 EXPORT_SYMBOL(tcp_parse_options
);
3834 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3836 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3838 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3839 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3840 tp
->rx_opt
.saw_tstamp
= 1;
3842 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3845 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3847 tp
->rx_opt
.rcv_tsecr
= 0;
3853 /* Fast parse options. This hopes to only see timestamps.
3854 * If it is wrong it falls back on tcp_parse_options().
3856 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3857 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3859 /* In the spirit of fast parsing, compare doff directly to constant
3860 * values. Because equality is used, short doff can be ignored here.
3862 if (th
->doff
== (sizeof(*th
) / 4)) {
3863 tp
->rx_opt
.saw_tstamp
= 0;
3865 } else if (tp
->rx_opt
.tstamp_ok
&&
3866 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3867 if (tcp_parse_aligned_timestamp(tp
, th
))
3871 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3872 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3873 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3878 #ifdef CONFIG_TCP_MD5SIG
3880 * Parse MD5 Signature option
3882 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3884 int length
= (th
->doff
<< 2) - sizeof(*th
);
3885 const u8
*ptr
= (const u8
*)(th
+ 1);
3887 /* If the TCP option is too short, we can short cut */
3888 if (length
< TCPOLEN_MD5SIG
)
3891 while (length
> 0) {
3892 int opcode
= *ptr
++;
3903 if (opsize
< 2 || opsize
> length
)
3905 if (opcode
== TCPOPT_MD5SIG
)
3906 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3913 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3916 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3918 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3919 * it can pass through stack. So, the following predicate verifies that
3920 * this segment is not used for anything but congestion avoidance or
3921 * fast retransmit. Moreover, we even are able to eliminate most of such
3922 * second order effects, if we apply some small "replay" window (~RTO)
3923 * to timestamp space.
3925 * All these measures still do not guarantee that we reject wrapped ACKs
3926 * on networks with high bandwidth, when sequence space is recycled fastly,
3927 * but it guarantees that such events will be very rare and do not affect
3928 * connection seriously. This doesn't look nice, but alas, PAWS is really
3931 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3932 * states that events when retransmit arrives after original data are rare.
3933 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3934 * the biggest problem on large power networks even with minor reordering.
3935 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3936 * up to bandwidth of 18Gigabit/sec. 8) ]
3939 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3941 const struct tcp_sock
*tp
= tcp_sk(sk
);
3942 const struct tcphdr
*th
= tcp_hdr(skb
);
3943 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3944 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3946 return (/* 1. Pure ACK with correct sequence number. */
3947 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3949 /* 2. ... and duplicate ACK. */
3950 ack
== tp
->snd_una
&&
3952 /* 3. ... and does not update window. */
3953 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3955 /* 4. ... and sits in replay window. */
3956 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3959 static inline bool tcp_paws_discard(const struct sock
*sk
,
3960 const struct sk_buff
*skb
)
3962 const struct tcp_sock
*tp
= tcp_sk(sk
);
3964 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3965 !tcp_disordered_ack(sk
, skb
);
3968 /* Check segment sequence number for validity.
3970 * Segment controls are considered valid, if the segment
3971 * fits to the window after truncation to the window. Acceptability
3972 * of data (and SYN, FIN, of course) is checked separately.
3973 * See tcp_data_queue(), for example.
3975 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3976 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3977 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3978 * (borrowed from freebsd)
3981 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3983 return !before(end_seq
, tp
->rcv_wup
) &&
3984 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3987 /* When we get a reset we do this. */
3988 void tcp_reset(struct sock
*sk
)
3990 /* We want the right error as BSD sees it (and indeed as we do). */
3991 switch (sk
->sk_state
) {
3993 sk
->sk_err
= ECONNREFUSED
;
3995 case TCP_CLOSE_WAIT
:
4001 sk
->sk_err
= ECONNRESET
;
4003 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4006 if (!sock_flag(sk
, SOCK_DEAD
))
4007 sk
->sk_error_report(sk
);
4013 * Process the FIN bit. This now behaves as it is supposed to work
4014 * and the FIN takes effect when it is validly part of sequence
4015 * space. Not before when we get holes.
4017 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4018 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4021 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4022 * close and we go into CLOSING (and later onto TIME-WAIT)
4024 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4026 void tcp_fin(struct sock
*sk
)
4028 struct tcp_sock
*tp
= tcp_sk(sk
);
4030 inet_csk_schedule_ack(sk
);
4032 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4033 sock_set_flag(sk
, SOCK_DONE
);
4035 switch (sk
->sk_state
) {
4037 case TCP_ESTABLISHED
:
4038 /* Move to CLOSE_WAIT */
4039 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4040 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4043 case TCP_CLOSE_WAIT
:
4045 /* Received a retransmission of the FIN, do
4050 /* RFC793: Remain in the LAST-ACK state. */
4054 /* This case occurs when a simultaneous close
4055 * happens, we must ack the received FIN and
4056 * enter the CLOSING state.
4059 tcp_set_state(sk
, TCP_CLOSING
);
4062 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4064 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4067 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4068 * cases we should never reach this piece of code.
4070 pr_err("%s: Impossible, sk->sk_state=%d\n",
4071 __func__
, sk
->sk_state
);
4075 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4076 * Probably, we should reset in this case. For now drop them.
4078 skb_rbtree_purge(&tp
->out_of_order_queue
);
4079 if (tcp_is_sack(tp
))
4080 tcp_sack_reset(&tp
->rx_opt
);
4083 if (!sock_flag(sk
, SOCK_DEAD
)) {
4084 sk
->sk_state_change(sk
);
4086 /* Do not send POLL_HUP for half duplex close. */
4087 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4088 sk
->sk_state
== TCP_CLOSE
)
4089 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4091 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4095 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4098 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4099 if (before(seq
, sp
->start_seq
))
4100 sp
->start_seq
= seq
;
4101 if (after(end_seq
, sp
->end_seq
))
4102 sp
->end_seq
= end_seq
;
4108 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4110 struct tcp_sock
*tp
= tcp_sk(sk
);
4112 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4115 if (before(seq
, tp
->rcv_nxt
))
4116 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4118 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4120 NET_INC_STATS(sock_net(sk
), mib_idx
);
4122 tp
->rx_opt
.dsack
= 1;
4123 tp
->duplicate_sack
[0].start_seq
= seq
;
4124 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4128 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4130 struct tcp_sock
*tp
= tcp_sk(sk
);
4132 if (!tp
->rx_opt
.dsack
)
4133 tcp_dsack_set(sk
, seq
, end_seq
);
4135 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4138 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4140 struct tcp_sock
*tp
= tcp_sk(sk
);
4142 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4143 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4144 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4145 tcp_enter_quickack_mode(sk
);
4147 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4148 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4150 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4151 end_seq
= tp
->rcv_nxt
;
4152 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4159 /* These routines update the SACK block as out-of-order packets arrive or
4160 * in-order packets close up the sequence space.
4162 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4165 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4166 struct tcp_sack_block
*swalk
= sp
+ 1;
4168 /* See if the recent change to the first SACK eats into
4169 * or hits the sequence space of other SACK blocks, if so coalesce.
4171 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4172 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4175 /* Zap SWALK, by moving every further SACK up by one slot.
4176 * Decrease num_sacks.
4178 tp
->rx_opt
.num_sacks
--;
4179 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4183 this_sack
++, swalk
++;
4187 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4189 struct tcp_sock
*tp
= tcp_sk(sk
);
4190 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4191 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4197 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4198 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4199 /* Rotate this_sack to the first one. */
4200 for (; this_sack
> 0; this_sack
--, sp
--)
4201 swap(*sp
, *(sp
- 1));
4203 tcp_sack_maybe_coalesce(tp
);
4208 /* Could not find an adjacent existing SACK, build a new one,
4209 * put it at the front, and shift everyone else down. We
4210 * always know there is at least one SACK present already here.
4212 * If the sack array is full, forget about the last one.
4214 if (this_sack
>= TCP_NUM_SACKS
) {
4216 tp
->rx_opt
.num_sacks
--;
4219 for (; this_sack
> 0; this_sack
--, sp
--)
4223 /* Build the new head SACK, and we're done. */
4224 sp
->start_seq
= seq
;
4225 sp
->end_seq
= end_seq
;
4226 tp
->rx_opt
.num_sacks
++;
4229 /* RCV.NXT advances, some SACKs should be eaten. */
4231 static void tcp_sack_remove(struct tcp_sock
*tp
)
4233 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4234 int num_sacks
= tp
->rx_opt
.num_sacks
;
4237 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4238 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4239 tp
->rx_opt
.num_sacks
= 0;
4243 for (this_sack
= 0; this_sack
< num_sacks
;) {
4244 /* Check if the start of the sack is covered by RCV.NXT. */
4245 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4248 /* RCV.NXT must cover all the block! */
4249 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4251 /* Zap this SACK, by moving forward any other SACKS. */
4252 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4253 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4260 tp
->rx_opt
.num_sacks
= num_sacks
;
4264 * tcp_try_coalesce - try to merge skb to prior one
4267 * @from: buffer to add in queue
4268 * @fragstolen: pointer to boolean
4270 * Before queueing skb @from after @to, try to merge them
4271 * to reduce overall memory use and queue lengths, if cost is small.
4272 * Packets in ofo or receive queues can stay a long time.
4273 * Better try to coalesce them right now to avoid future collapses.
4274 * Returns true if caller should free @from instead of queueing it
4276 static bool tcp_try_coalesce(struct sock
*sk
,
4278 struct sk_buff
*from
,
4283 *fragstolen
= false;
4285 /* Its possible this segment overlaps with prior segment in queue */
4286 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4289 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4292 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4293 sk_mem_charge(sk
, delta
);
4294 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4295 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4296 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4297 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4301 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4303 sk_drops_add(sk
, skb
);
4307 /* This one checks to see if we can put data from the
4308 * out_of_order queue into the receive_queue.
4310 static void tcp_ofo_queue(struct sock
*sk
)
4312 struct tcp_sock
*tp
= tcp_sk(sk
);
4313 __u32 dsack_high
= tp
->rcv_nxt
;
4314 bool fin
, fragstolen
, eaten
;
4315 struct sk_buff
*skb
, *tail
;
4318 p
= rb_first(&tp
->out_of_order_queue
);
4320 skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4321 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4324 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4325 __u32 dsack
= dsack_high
;
4326 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4327 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4328 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4331 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4333 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4334 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4338 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4339 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4340 TCP_SKB_CB(skb
)->end_seq
);
4342 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4343 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4344 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4345 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4347 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4349 kfree_skb_partial(skb
, fragstolen
);
4351 if (unlikely(fin
)) {
4353 /* tcp_fin() purges tp->out_of_order_queue,
4354 * so we must end this loop right now.
4361 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4362 static int tcp_prune_queue(struct sock
*sk
);
4364 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4367 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4368 !sk_rmem_schedule(sk
, skb
, size
)) {
4370 if (tcp_prune_queue(sk
) < 0)
4373 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4374 if (!tcp_prune_ofo_queue(sk
))
4381 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4383 struct tcp_sock
*tp
= tcp_sk(sk
);
4384 struct rb_node
**p
, *q
, *parent
;
4385 struct sk_buff
*skb1
;
4389 tcp_ecn_check_ce(tp
, skb
);
4391 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4392 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4397 /* Disable header prediction. */
4399 inet_csk_schedule_ack(sk
);
4401 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4402 seq
= TCP_SKB_CB(skb
)->seq
;
4403 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4404 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4405 tp
->rcv_nxt
, seq
, end_seq
);
4407 p
= &tp
->out_of_order_queue
.rb_node
;
4408 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4409 /* Initial out of order segment, build 1 SACK. */
4410 if (tcp_is_sack(tp
)) {
4411 tp
->rx_opt
.num_sacks
= 1;
4412 tp
->selective_acks
[0].start_seq
= seq
;
4413 tp
->selective_acks
[0].end_seq
= end_seq
;
4415 rb_link_node(&skb
->rbnode
, NULL
, p
);
4416 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4417 tp
->ooo_last_skb
= skb
;
4421 /* In the typical case, we are adding an skb to the end of the list.
4422 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4424 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
, skb
, &fragstolen
)) {
4426 tcp_grow_window(sk
, skb
);
4427 kfree_skb_partial(skb
, fragstolen
);
4431 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4432 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4433 parent
= &tp
->ooo_last_skb
->rbnode
;
4434 p
= &parent
->rb_right
;
4438 /* Find place to insert this segment. Handle overlaps on the way. */
4442 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4443 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4444 p
= &parent
->rb_left
;
4447 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4448 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4449 /* All the bits are present. Drop. */
4450 NET_INC_STATS(sock_net(sk
),
4451 LINUX_MIB_TCPOFOMERGE
);
4454 tcp_dsack_set(sk
, seq
, end_seq
);
4457 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4458 /* Partial overlap. */
4459 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4461 /* skb's seq == skb1's seq and skb covers skb1.
4462 * Replace skb1 with skb.
4464 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4465 &tp
->out_of_order_queue
);
4466 tcp_dsack_extend(sk
,
4467 TCP_SKB_CB(skb1
)->seq
,
4468 TCP_SKB_CB(skb1
)->end_seq
);
4469 NET_INC_STATS(sock_net(sk
),
4470 LINUX_MIB_TCPOFOMERGE
);
4474 } else if (tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4477 p
= &parent
->rb_right
;
4480 /* Insert segment into RB tree. */
4481 rb_link_node(&skb
->rbnode
, parent
, p
);
4482 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4485 /* Remove other segments covered by skb. */
4486 while ((q
= rb_next(&skb
->rbnode
)) != NULL
) {
4487 skb1
= rb_entry(q
, struct sk_buff
, rbnode
);
4489 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4491 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4492 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4496 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4497 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4498 TCP_SKB_CB(skb1
)->end_seq
);
4499 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4502 /* If there is no skb after us, we are the last_skb ! */
4504 tp
->ooo_last_skb
= skb
;
4507 if (tcp_is_sack(tp
))
4508 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4511 tcp_grow_window(sk
, skb
);
4513 skb_set_owner_r(skb
, sk
);
4517 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4521 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4523 __skb_pull(skb
, hdrlen
);
4525 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4526 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4528 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4529 skb_set_owner_r(skb
, sk
);
4534 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4536 struct sk_buff
*skb
;
4544 if (size
> PAGE_SIZE
) {
4545 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4547 data_len
= npages
<< PAGE_SHIFT
;
4548 size
= data_len
+ (size
& ~PAGE_MASK
);
4550 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4551 PAGE_ALLOC_COSTLY_ORDER
,
4552 &err
, sk
->sk_allocation
);
4556 skb_put(skb
, size
- data_len
);
4557 skb
->data_len
= data_len
;
4560 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4563 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4567 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4568 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4569 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4571 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4572 WARN_ON_ONCE(fragstolen
); /* should not happen */
4584 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4586 struct tcp_sock
*tp
= tcp_sk(sk
);
4587 bool fragstolen
= false;
4590 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4595 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4597 tcp_ecn_accept_cwr(tp
, skb
);
4599 tp
->rx_opt
.dsack
= 0;
4601 /* Queue data for delivery to the user.
4602 * Packets in sequence go to the receive queue.
4603 * Out of sequence packets to the out_of_order_queue.
4605 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4606 if (tcp_receive_window(tp
) == 0)
4609 /* Ok. In sequence. In window. */
4610 if (tp
->ucopy
.task
== current
&&
4611 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4612 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4613 int chunk
= min_t(unsigned int, skb
->len
,
4616 __set_current_state(TASK_RUNNING
);
4618 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4619 tp
->ucopy
.len
-= chunk
;
4620 tp
->copied_seq
+= chunk
;
4621 eaten
= (chunk
== skb
->len
);
4622 tcp_rcv_space_adjust(sk
);
4629 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4630 sk_forced_mem_schedule(sk
, skb
->truesize
);
4631 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4634 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4636 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4638 tcp_event_data_recv(sk
, skb
);
4639 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4642 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4645 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4646 * gap in queue is filled.
4648 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4649 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4652 if (tp
->rx_opt
.num_sacks
)
4653 tcp_sack_remove(tp
);
4655 tcp_fast_path_check(sk
);
4658 kfree_skb_partial(skb
, fragstolen
);
4659 if (!sock_flag(sk
, SOCK_DEAD
))
4660 sk
->sk_data_ready(sk
);
4664 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4665 /* A retransmit, 2nd most common case. Force an immediate ack. */
4666 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4667 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4670 tcp_enter_quickack_mode(sk
);
4671 inet_csk_schedule_ack(sk
);
4677 /* Out of window. F.e. zero window probe. */
4678 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4681 tcp_enter_quickack_mode(sk
);
4683 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4684 /* Partial packet, seq < rcv_next < end_seq */
4685 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4686 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4687 TCP_SKB_CB(skb
)->end_seq
);
4689 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4691 /* If window is closed, drop tail of packet. But after
4692 * remembering D-SACK for its head made in previous line.
4694 if (!tcp_receive_window(tp
))
4699 tcp_data_queue_ofo(sk
, skb
);
4702 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4705 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4707 return rb_entry_safe(rb_next(&skb
->rbnode
), struct sk_buff
, rbnode
);
4710 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4711 struct sk_buff_head
*list
,
4712 struct rb_root
*root
)
4714 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4717 __skb_unlink(skb
, list
);
4719 rb_erase(&skb
->rbnode
, root
);
4722 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4727 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4728 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4730 struct rb_node
**p
= &root
->rb_node
;
4731 struct rb_node
*parent
= NULL
;
4732 struct sk_buff
*skb1
;
4736 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4737 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4738 p
= &parent
->rb_left
;
4740 p
= &parent
->rb_right
;
4742 rb_link_node(&skb
->rbnode
, parent
, p
);
4743 rb_insert_color(&skb
->rbnode
, root
);
4746 /* Collapse contiguous sequence of skbs head..tail with
4747 * sequence numbers start..end.
4749 * If tail is NULL, this means until the end of the queue.
4751 * Segments with FIN/SYN are not collapsed (only because this
4755 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4756 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4758 struct sk_buff
*skb
= head
, *n
;
4759 struct sk_buff_head tmp
;
4762 /* First, check that queue is collapsible and find
4763 * the point where collapsing can be useful.
4766 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4767 n
= tcp_skb_next(skb
, list
);
4769 /* No new bits? It is possible on ofo queue. */
4770 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4771 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4777 /* The first skb to collapse is:
4779 * - bloated or contains data before "start" or
4780 * overlaps to the next one.
4782 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4783 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4784 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4785 end_of_skbs
= false;
4789 if (n
&& n
!= tail
&&
4790 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4791 end_of_skbs
= false;
4795 /* Decided to skip this, advance start seq. */
4796 start
= TCP_SKB_CB(skb
)->end_seq
;
4799 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4802 __skb_queue_head_init(&tmp
);
4804 while (before(start
, end
)) {
4805 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4806 struct sk_buff
*nskb
;
4808 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4812 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4813 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4815 __skb_queue_before(list
, skb
, nskb
);
4817 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4818 skb_set_owner_r(nskb
, sk
);
4820 /* Copy data, releasing collapsed skbs. */
4822 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4823 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4827 size
= min(copy
, size
);
4828 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4830 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4834 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4835 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4838 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4844 skb_queue_walk_safe(&tmp
, skb
, n
)
4845 tcp_rbtree_insert(root
, skb
);
4848 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4849 * and tcp_collapse() them until all the queue is collapsed.
4851 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4853 struct tcp_sock
*tp
= tcp_sk(sk
);
4854 struct sk_buff
*skb
, *head
;
4858 p
= rb_first(&tp
->out_of_order_queue
);
4859 skb
= rb_entry_safe(p
, struct sk_buff
, rbnode
);
4862 p
= rb_last(&tp
->out_of_order_queue
);
4863 /* Note: This is possible p is NULL here. We do not
4864 * use rb_entry_safe(), as ooo_last_skb is valid only
4865 * if rbtree is not empty.
4867 tp
->ooo_last_skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4870 start
= TCP_SKB_CB(skb
)->seq
;
4871 end
= TCP_SKB_CB(skb
)->end_seq
;
4873 for (head
= skb
;;) {
4874 skb
= tcp_skb_next(skb
, NULL
);
4876 /* Range is terminated when we see a gap or when
4877 * we are at the queue end.
4880 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4881 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4882 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4883 head
, skb
, start
, end
);
4887 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4888 start
= TCP_SKB_CB(skb
)->seq
;
4889 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4890 end
= TCP_SKB_CB(skb
)->end_seq
;
4895 * Clean the out-of-order queue to make room.
4896 * We drop high sequences packets to :
4897 * 1) Let a chance for holes to be filled.
4898 * 2) not add too big latencies if thousands of packets sit there.
4899 * (But if application shrinks SO_RCVBUF, we could still end up
4900 * freeing whole queue here)
4902 * Return true if queue has shrunk.
4904 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4906 struct tcp_sock
*tp
= tcp_sk(sk
);
4907 struct rb_node
*node
, *prev
;
4909 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4912 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4913 node
= &tp
->ooo_last_skb
->rbnode
;
4915 prev
= rb_prev(node
);
4916 rb_erase(node
, &tp
->out_of_order_queue
);
4917 tcp_drop(sk
, rb_entry(node
, struct sk_buff
, rbnode
));
4919 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4920 !tcp_under_memory_pressure(sk
))
4924 tp
->ooo_last_skb
= rb_entry(prev
, struct sk_buff
, rbnode
);
4926 /* Reset SACK state. A conforming SACK implementation will
4927 * do the same at a timeout based retransmit. When a connection
4928 * is in a sad state like this, we care only about integrity
4929 * of the connection not performance.
4931 if (tp
->rx_opt
.sack_ok
)
4932 tcp_sack_reset(&tp
->rx_opt
);
4936 /* Reduce allocated memory if we can, trying to get
4937 * the socket within its memory limits again.
4939 * Return less than zero if we should start dropping frames
4940 * until the socket owning process reads some of the data
4941 * to stabilize the situation.
4943 static int tcp_prune_queue(struct sock
*sk
)
4945 struct tcp_sock
*tp
= tcp_sk(sk
);
4947 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4949 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4951 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4952 tcp_clamp_window(sk
);
4953 else if (tcp_under_memory_pressure(sk
))
4954 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4956 tcp_collapse_ofo_queue(sk
);
4957 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4958 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
4959 skb_peek(&sk
->sk_receive_queue
),
4961 tp
->copied_seq
, tp
->rcv_nxt
);
4964 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4967 /* Collapsing did not help, destructive actions follow.
4968 * This must not ever occur. */
4970 tcp_prune_ofo_queue(sk
);
4972 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4975 /* If we are really being abused, tell the caller to silently
4976 * drop receive data on the floor. It will get retransmitted
4977 * and hopefully then we'll have sufficient space.
4979 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4981 /* Massive buffer overcommit. */
4986 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4988 const struct tcp_sock
*tp
= tcp_sk(sk
);
4990 /* If the user specified a specific send buffer setting, do
4993 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4996 /* If we are under global TCP memory pressure, do not expand. */
4997 if (tcp_under_memory_pressure(sk
))
5000 /* If we are under soft global TCP memory pressure, do not expand. */
5001 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5004 /* If we filled the congestion window, do not expand. */
5005 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5011 /* When incoming ACK allowed to free some skb from write_queue,
5012 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5013 * on the exit from tcp input handler.
5015 * PROBLEM: sndbuf expansion does not work well with largesend.
5017 static void tcp_new_space(struct sock
*sk
)
5019 struct tcp_sock
*tp
= tcp_sk(sk
);
5021 if (tcp_should_expand_sndbuf(sk
)) {
5022 tcp_sndbuf_expand(sk
);
5023 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5026 sk
->sk_write_space(sk
);
5029 static void tcp_check_space(struct sock
*sk
)
5031 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5032 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5033 /* pairs with tcp_poll() */
5035 if (sk
->sk_socket
&&
5036 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5038 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5039 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5044 static inline void tcp_data_snd_check(struct sock
*sk
)
5046 tcp_push_pending_frames(sk
);
5047 tcp_check_space(sk
);
5051 * Check if sending an ack is needed.
5053 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5055 struct tcp_sock
*tp
= tcp_sk(sk
);
5057 /* More than one full frame received... */
5058 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5059 /* ... and right edge of window advances far enough.
5060 * (tcp_recvmsg() will send ACK otherwise). Or...
5062 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5063 /* We ACK each frame or... */
5064 tcp_in_quickack_mode(sk
) ||
5065 /* We have out of order data. */
5066 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5067 /* Then ack it now */
5070 /* Else, send delayed ack. */
5071 tcp_send_delayed_ack(sk
);
5075 static inline void tcp_ack_snd_check(struct sock
*sk
)
5077 if (!inet_csk_ack_scheduled(sk
)) {
5078 /* We sent a data segment already. */
5081 __tcp_ack_snd_check(sk
, 1);
5085 * This routine is only called when we have urgent data
5086 * signaled. Its the 'slow' part of tcp_urg. It could be
5087 * moved inline now as tcp_urg is only called from one
5088 * place. We handle URGent data wrong. We have to - as
5089 * BSD still doesn't use the correction from RFC961.
5090 * For 1003.1g we should support a new option TCP_STDURG to permit
5091 * either form (or just set the sysctl tcp_stdurg).
5094 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5096 struct tcp_sock
*tp
= tcp_sk(sk
);
5097 u32 ptr
= ntohs(th
->urg_ptr
);
5099 if (ptr
&& !sysctl_tcp_stdurg
)
5101 ptr
+= ntohl(th
->seq
);
5103 /* Ignore urgent data that we've already seen and read. */
5104 if (after(tp
->copied_seq
, ptr
))
5107 /* Do not replay urg ptr.
5109 * NOTE: interesting situation not covered by specs.
5110 * Misbehaving sender may send urg ptr, pointing to segment,
5111 * which we already have in ofo queue. We are not able to fetch
5112 * such data and will stay in TCP_URG_NOTYET until will be eaten
5113 * by recvmsg(). Seems, we are not obliged to handle such wicked
5114 * situations. But it is worth to think about possibility of some
5115 * DoSes using some hypothetical application level deadlock.
5117 if (before(ptr
, tp
->rcv_nxt
))
5120 /* Do we already have a newer (or duplicate) urgent pointer? */
5121 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5124 /* Tell the world about our new urgent pointer. */
5127 /* We may be adding urgent data when the last byte read was
5128 * urgent. To do this requires some care. We cannot just ignore
5129 * tp->copied_seq since we would read the last urgent byte again
5130 * as data, nor can we alter copied_seq until this data arrives
5131 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5133 * NOTE. Double Dutch. Rendering to plain English: author of comment
5134 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5135 * and expect that both A and B disappear from stream. This is _wrong_.
5136 * Though this happens in BSD with high probability, this is occasional.
5137 * Any application relying on this is buggy. Note also, that fix "works"
5138 * only in this artificial test. Insert some normal data between A and B and we will
5139 * decline of BSD again. Verdict: it is better to remove to trap
5142 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5143 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5144 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5146 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5147 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5152 tp
->urg_data
= TCP_URG_NOTYET
;
5155 /* Disable header prediction. */
5159 /* This is the 'fast' part of urgent handling. */
5160 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5162 struct tcp_sock
*tp
= tcp_sk(sk
);
5164 /* Check if we get a new urgent pointer - normally not. */
5166 tcp_check_urg(sk
, th
);
5168 /* Do we wait for any urgent data? - normally not... */
5169 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5170 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5173 /* Is the urgent pointer pointing into this packet? */
5174 if (ptr
< skb
->len
) {
5176 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5178 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5179 if (!sock_flag(sk
, SOCK_DEAD
))
5180 sk
->sk_data_ready(sk
);
5185 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5187 struct tcp_sock
*tp
= tcp_sk(sk
);
5188 int chunk
= skb
->len
- hlen
;
5191 if (skb_csum_unnecessary(skb
))
5192 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5194 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5197 tp
->ucopy
.len
-= chunk
;
5198 tp
->copied_seq
+= chunk
;
5199 tcp_rcv_space_adjust(sk
);
5205 /* Accept RST for rcv_nxt - 1 after a FIN.
5206 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5207 * FIN is sent followed by a RST packet. The RST is sent with the same
5208 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5209 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5210 * ACKs on the closed socket. In addition middleboxes can drop either the
5211 * challenge ACK or a subsequent RST.
5213 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5215 struct tcp_sock
*tp
= tcp_sk(sk
);
5217 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5218 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5222 /* Does PAWS and seqno based validation of an incoming segment, flags will
5223 * play significant role here.
5225 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5226 const struct tcphdr
*th
, int syn_inerr
)
5228 struct tcp_sock
*tp
= tcp_sk(sk
);
5229 bool rst_seq_match
= false;
5231 /* RFC1323: H1. Apply PAWS check first. */
5232 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5233 tcp_paws_discard(sk
, skb
)) {
5235 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5236 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5237 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5238 &tp
->last_oow_ack_time
))
5239 tcp_send_dupack(sk
, skb
);
5242 /* Reset is accepted even if it did not pass PAWS. */
5245 /* Step 1: check sequence number */
5246 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5247 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5248 * (RST) segments are validated by checking their SEQ-fields."
5249 * And page 69: "If an incoming segment is not acceptable,
5250 * an acknowledgment should be sent in reply (unless the RST
5251 * bit is set, if so drop the segment and return)".
5256 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5257 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5258 &tp
->last_oow_ack_time
))
5259 tcp_send_dupack(sk
, skb
);
5260 } else if (tcp_reset_check(sk
, skb
)) {
5266 /* Step 2: check RST bit */
5268 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5269 * FIN and SACK too if available):
5270 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5271 * the right-most SACK block,
5273 * RESET the connection
5275 * Send a challenge ACK
5277 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5278 tcp_reset_check(sk
, skb
)) {
5279 rst_seq_match
= true;
5280 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5281 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5282 int max_sack
= sp
[0].end_seq
;
5285 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5287 max_sack
= after(sp
[this_sack
].end_seq
,
5289 sp
[this_sack
].end_seq
: max_sack
;
5292 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5293 rst_seq_match
= true;
5299 tcp_send_challenge_ack(sk
, skb
);
5303 /* step 3: check security and precedence [ignored] */
5305 /* step 4: Check for a SYN
5306 * RFC 5961 4.2 : Send a challenge ack
5311 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5312 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5313 tcp_send_challenge_ack(sk
, skb
);
5325 * TCP receive function for the ESTABLISHED state.
5327 * It is split into a fast path and a slow path. The fast path is
5329 * - A zero window was announced from us - zero window probing
5330 * is only handled properly in the slow path.
5331 * - Out of order segments arrived.
5332 * - Urgent data is expected.
5333 * - There is no buffer space left
5334 * - Unexpected TCP flags/window values/header lengths are received
5335 * (detected by checking the TCP header against pred_flags)
5336 * - Data is sent in both directions. Fast path only supports pure senders
5337 * or pure receivers (this means either the sequence number or the ack
5338 * value must stay constant)
5339 * - Unexpected TCP option.
5341 * When these conditions are not satisfied it drops into a standard
5342 * receive procedure patterned after RFC793 to handle all cases.
5343 * The first three cases are guaranteed by proper pred_flags setting,
5344 * the rest is checked inline. Fast processing is turned on in
5345 * tcp_data_queue when everything is OK.
5347 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5348 const struct tcphdr
*th
, unsigned int len
)
5350 struct tcp_sock
*tp
= tcp_sk(sk
);
5352 if (unlikely(!sk
->sk_rx_dst
))
5353 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5355 * Header prediction.
5356 * The code loosely follows the one in the famous
5357 * "30 instruction TCP receive" Van Jacobson mail.
5359 * Van's trick is to deposit buffers into socket queue
5360 * on a device interrupt, to call tcp_recv function
5361 * on the receive process context and checksum and copy
5362 * the buffer to user space. smart...
5364 * Our current scheme is not silly either but we take the
5365 * extra cost of the net_bh soft interrupt processing...
5366 * We do checksum and copy also but from device to kernel.
5369 tp
->rx_opt
.saw_tstamp
= 0;
5371 /* pred_flags is 0xS?10 << 16 + snd_wnd
5372 * if header_prediction is to be made
5373 * 'S' will always be tp->tcp_header_len >> 2
5374 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5375 * turn it off (when there are holes in the receive
5376 * space for instance)
5377 * PSH flag is ignored.
5380 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5381 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5382 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5383 int tcp_header_len
= tp
->tcp_header_len
;
5385 /* Timestamp header prediction: tcp_header_len
5386 * is automatically equal to th->doff*4 due to pred_flags
5390 /* Check timestamp */
5391 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5392 /* No? Slow path! */
5393 if (!tcp_parse_aligned_timestamp(tp
, th
))
5396 /* If PAWS failed, check it more carefully in slow path */
5397 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5400 /* DO NOT update ts_recent here, if checksum fails
5401 * and timestamp was corrupted part, it will result
5402 * in a hung connection since we will drop all
5403 * future packets due to the PAWS test.
5407 if (len
<= tcp_header_len
) {
5408 /* Bulk data transfer: sender */
5409 if (len
== tcp_header_len
) {
5410 /* Predicted packet is in window by definition.
5411 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5412 * Hence, check seq<=rcv_wup reduces to:
5414 if (tcp_header_len
==
5415 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5416 tp
->rcv_nxt
== tp
->rcv_wup
)
5417 tcp_store_ts_recent(tp
);
5419 /* We know that such packets are checksummed
5422 tcp_ack(sk
, skb
, 0);
5424 tcp_data_snd_check(sk
);
5426 } else { /* Header too small */
5427 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5432 bool fragstolen
= false;
5434 if (tp
->ucopy
.task
== current
&&
5435 tp
->copied_seq
== tp
->rcv_nxt
&&
5436 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5437 sock_owned_by_user(sk
)) {
5438 __set_current_state(TASK_RUNNING
);
5440 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5441 /* Predicted packet is in window by definition.
5442 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5443 * Hence, check seq<=rcv_wup reduces to:
5445 if (tcp_header_len
==
5446 (sizeof(struct tcphdr
) +
5447 TCPOLEN_TSTAMP_ALIGNED
) &&
5448 tp
->rcv_nxt
== tp
->rcv_wup
)
5449 tcp_store_ts_recent(tp
);
5451 tcp_rcv_rtt_measure_ts(sk
, skb
);
5453 __skb_pull(skb
, tcp_header_len
);
5454 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5455 NET_INC_STATS(sock_net(sk
),
5456 LINUX_MIB_TCPHPHITSTOUSER
);
5461 if (tcp_checksum_complete(skb
))
5464 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5467 /* Predicted packet is in window by definition.
5468 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5469 * Hence, check seq<=rcv_wup reduces to:
5471 if (tcp_header_len
==
5472 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5473 tp
->rcv_nxt
== tp
->rcv_wup
)
5474 tcp_store_ts_recent(tp
);
5476 tcp_rcv_rtt_measure_ts(sk
, skb
);
5478 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5480 /* Bulk data transfer: receiver */
5481 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5485 tcp_event_data_recv(sk
, skb
);
5487 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5488 /* Well, only one small jumplet in fast path... */
5489 tcp_ack(sk
, skb
, FLAG_DATA
);
5490 tcp_data_snd_check(sk
);
5491 if (!inet_csk_ack_scheduled(sk
))
5495 __tcp_ack_snd_check(sk
, 0);
5498 kfree_skb_partial(skb
, fragstolen
);
5499 sk
->sk_data_ready(sk
);
5505 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5508 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5512 * Standard slow path.
5515 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5519 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5522 tcp_rcv_rtt_measure_ts(sk
, skb
);
5524 /* Process urgent data. */
5525 tcp_urg(sk
, skb
, th
);
5527 /* step 7: process the segment text */
5528 tcp_data_queue(sk
, skb
);
5530 tcp_data_snd_check(sk
);
5531 tcp_ack_snd_check(sk
);
5535 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5536 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5541 EXPORT_SYMBOL(tcp_rcv_established
);
5543 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5545 struct tcp_sock
*tp
= tcp_sk(sk
);
5546 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5548 tcp_set_state(sk
, TCP_ESTABLISHED
);
5549 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5552 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5553 security_inet_conn_established(sk
, skb
);
5556 /* Make sure socket is routed, for correct metrics. */
5557 icsk
->icsk_af_ops
->rebuild_header(sk
);
5559 tcp_init_metrics(sk
);
5561 tcp_init_congestion_control(sk
);
5563 /* Prevent spurious tcp_cwnd_restart() on first data
5566 tp
->lsndtime
= tcp_time_stamp
;
5568 tcp_init_buffer_space(sk
);
5570 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5571 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5573 if (!tp
->rx_opt
.snd_wscale
)
5574 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5578 if (!sock_flag(sk
, SOCK_DEAD
)) {
5579 sk
->sk_state_change(sk
);
5580 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5584 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5585 struct tcp_fastopen_cookie
*cookie
)
5587 struct tcp_sock
*tp
= tcp_sk(sk
);
5588 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5589 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5590 bool syn_drop
= false;
5592 if (mss
== tp
->rx_opt
.user_mss
) {
5593 struct tcp_options_received opt
;
5595 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5596 tcp_clear_options(&opt
);
5597 opt
.user_mss
= opt
.mss_clamp
= 0;
5598 tcp_parse_options(synack
, &opt
, 0, NULL
);
5599 mss
= opt
.mss_clamp
;
5602 if (!tp
->syn_fastopen
) {
5603 /* Ignore an unsolicited cookie */
5605 } else if (tp
->total_retrans
) {
5606 /* SYN timed out and the SYN-ACK neither has a cookie nor
5607 * acknowledges data. Presumably the remote received only
5608 * the retransmitted (regular) SYNs: either the original
5609 * SYN-data or the corresponding SYN-ACK was dropped.
5611 syn_drop
= (cookie
->len
< 0 && data
);
5612 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5613 /* We requested a cookie but didn't get it. If we did not use
5614 * the (old) exp opt format then try so next time (try_exp=1).
5615 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5617 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5620 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5622 if (data
) { /* Retransmit unacked data in SYN */
5623 tcp_for_write_queue_from(data
, sk
) {
5624 if (data
== tcp_send_head(sk
) ||
5625 __tcp_retransmit_skb(sk
, data
, 1))
5629 NET_INC_STATS(sock_net(sk
),
5630 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5633 tp
->syn_data_acked
= tp
->syn_data
;
5634 if (tp
->syn_data_acked
)
5635 NET_INC_STATS(sock_net(sk
),
5636 LINUX_MIB_TCPFASTOPENACTIVE
);
5638 tcp_fastopen_add_skb(sk
, synack
);
5643 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5644 const struct tcphdr
*th
)
5646 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5647 struct tcp_sock
*tp
= tcp_sk(sk
);
5648 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5649 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5651 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5652 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5653 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5657 * "If the state is SYN-SENT then
5658 * first check the ACK bit
5659 * If the ACK bit is set
5660 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5661 * a reset (unless the RST bit is set, if so drop
5662 * the segment and return)"
5664 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5665 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5666 goto reset_and_undo
;
5668 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5669 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5671 NET_INC_STATS(sock_net(sk
),
5672 LINUX_MIB_PAWSACTIVEREJECTED
);
5673 goto reset_and_undo
;
5676 /* Now ACK is acceptable.
5678 * "If the RST bit is set
5679 * If the ACK was acceptable then signal the user "error:
5680 * connection reset", drop the segment, enter CLOSED state,
5681 * delete TCB, and return."
5690 * "fifth, if neither of the SYN or RST bits is set then
5691 * drop the segment and return."
5697 goto discard_and_undo
;
5700 * "If the SYN bit is on ...
5701 * are acceptable then ...
5702 * (our SYN has been ACKed), change the connection
5703 * state to ESTABLISHED..."
5706 tcp_ecn_rcv_synack(tp
, th
);
5708 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5709 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5711 /* Ok.. it's good. Set up sequence numbers and
5712 * move to established.
5714 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5715 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5717 /* RFC1323: The window in SYN & SYN/ACK segments is
5720 tp
->snd_wnd
= ntohs(th
->window
);
5722 if (!tp
->rx_opt
.wscale_ok
) {
5723 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5724 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5727 if (tp
->rx_opt
.saw_tstamp
) {
5728 tp
->rx_opt
.tstamp_ok
= 1;
5729 tp
->tcp_header_len
=
5730 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5731 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5732 tcp_store_ts_recent(tp
);
5734 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5737 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5738 tcp_enable_fack(tp
);
5741 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5742 tcp_initialize_rcv_mss(sk
);
5744 /* Remember, tcp_poll() does not lock socket!
5745 * Change state from SYN-SENT only after copied_seq
5746 * is initialized. */
5747 tp
->copied_seq
= tp
->rcv_nxt
;
5751 tcp_finish_connect(sk
, skb
);
5753 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5754 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5757 if (sk
->sk_write_pending
||
5758 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5759 icsk
->icsk_ack
.pingpong
) {
5760 /* Save one ACK. Data will be ready after
5761 * several ticks, if write_pending is set.
5763 * It may be deleted, but with this feature tcpdumps
5764 * look so _wonderfully_ clever, that I was not able
5765 * to stand against the temptation 8) --ANK
5767 inet_csk_schedule_ack(sk
);
5768 tcp_enter_quickack_mode(sk
);
5769 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5770 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5781 /* No ACK in the segment */
5785 * "If the RST bit is set
5787 * Otherwise (no ACK) drop the segment and return."
5790 goto discard_and_undo
;
5794 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5795 tcp_paws_reject(&tp
->rx_opt
, 0))
5796 goto discard_and_undo
;
5799 /* We see SYN without ACK. It is attempt of
5800 * simultaneous connect with crossed SYNs.
5801 * Particularly, it can be connect to self.
5803 tcp_set_state(sk
, TCP_SYN_RECV
);
5805 if (tp
->rx_opt
.saw_tstamp
) {
5806 tp
->rx_opt
.tstamp_ok
= 1;
5807 tcp_store_ts_recent(tp
);
5808 tp
->tcp_header_len
=
5809 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5811 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5814 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5815 tp
->copied_seq
= tp
->rcv_nxt
;
5816 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5818 /* RFC1323: The window in SYN & SYN/ACK segments is
5821 tp
->snd_wnd
= ntohs(th
->window
);
5822 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5823 tp
->max_window
= tp
->snd_wnd
;
5825 tcp_ecn_rcv_syn(tp
, th
);
5828 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5829 tcp_initialize_rcv_mss(sk
);
5831 tcp_send_synack(sk
);
5833 /* Note, we could accept data and URG from this segment.
5834 * There are no obstacles to make this (except that we must
5835 * either change tcp_recvmsg() to prevent it from returning data
5836 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5838 * However, if we ignore data in ACKless segments sometimes,
5839 * we have no reasons to accept it sometimes.
5840 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5841 * is not flawless. So, discard packet for sanity.
5842 * Uncomment this return to process the data.
5849 /* "fifth, if neither of the SYN or RST bits is set then
5850 * drop the segment and return."
5854 tcp_clear_options(&tp
->rx_opt
);
5855 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5859 tcp_clear_options(&tp
->rx_opt
);
5860 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5865 * This function implements the receiving procedure of RFC 793 for
5866 * all states except ESTABLISHED and TIME_WAIT.
5867 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5868 * address independent.
5871 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5873 struct tcp_sock
*tp
= tcp_sk(sk
);
5874 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5875 const struct tcphdr
*th
= tcp_hdr(skb
);
5876 struct request_sock
*req
;
5880 switch (sk
->sk_state
) {
5894 /* It is possible that we process SYN packets from backlog,
5895 * so we need to make sure to disable BH right there.
5898 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5909 tp
->rx_opt
.saw_tstamp
= 0;
5910 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5914 /* Do step6 onward by hand. */
5915 tcp_urg(sk
, skb
, th
);
5917 tcp_data_snd_check(sk
);
5921 tp
->rx_opt
.saw_tstamp
= 0;
5922 req
= tp
->fastopen_rsk
;
5924 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5925 sk
->sk_state
!= TCP_FIN_WAIT1
);
5927 if (!tcp_check_req(sk
, skb
, req
, true))
5931 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5934 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5937 /* step 5: check the ACK field */
5938 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5939 FLAG_UPDATE_TS_RECENT
) > 0;
5941 switch (sk
->sk_state
) {
5947 tcp_synack_rtt_meas(sk
, req
);
5949 /* Once we leave TCP_SYN_RECV, we no longer need req
5953 inet_csk(sk
)->icsk_retransmits
= 0;
5954 reqsk_fastopen_remove(sk
, req
, false);
5956 /* Make sure socket is routed, for correct metrics. */
5957 icsk
->icsk_af_ops
->rebuild_header(sk
);
5958 tcp_init_congestion_control(sk
);
5961 tp
->copied_seq
= tp
->rcv_nxt
;
5962 tcp_init_buffer_space(sk
);
5965 tcp_set_state(sk
, TCP_ESTABLISHED
);
5966 sk
->sk_state_change(sk
);
5968 /* Note, that this wakeup is only for marginal crossed SYN case.
5969 * Passively open sockets are not waked up, because
5970 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5973 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5975 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5976 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5977 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5979 if (tp
->rx_opt
.tstamp_ok
)
5980 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5983 /* Re-arm the timer because data may have been sent out.
5984 * This is similar to the regular data transmission case
5985 * when new data has just been ack'ed.
5987 * (TFO) - we could try to be more aggressive and
5988 * retransmitting any data sooner based on when they
5993 tcp_init_metrics(sk
);
5995 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
5996 tcp_update_pacing_rate(sk
);
5998 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5999 tp
->lsndtime
= tcp_time_stamp
;
6001 tcp_initialize_rcv_mss(sk
);
6002 tcp_fast_path_on(tp
);
6005 case TCP_FIN_WAIT1
: {
6008 /* If we enter the TCP_FIN_WAIT1 state and we are a
6009 * Fast Open socket and this is the first acceptable
6010 * ACK we have received, this would have acknowledged
6011 * our SYNACK so stop the SYNACK timer.
6014 /* Return RST if ack_seq is invalid.
6015 * Note that RFC793 only says to generate a
6016 * DUPACK for it but for TCP Fast Open it seems
6017 * better to treat this case like TCP_SYN_RECV
6022 /* We no longer need the request sock. */
6023 reqsk_fastopen_remove(sk
, req
, false);
6026 if (tp
->snd_una
!= tp
->write_seq
)
6029 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6030 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6034 if (!sock_flag(sk
, SOCK_DEAD
)) {
6035 /* Wake up lingering close() */
6036 sk
->sk_state_change(sk
);
6040 if (tp
->linger2
< 0 ||
6041 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6042 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6044 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6048 tmo
= tcp_fin_time(sk
);
6049 if (tmo
> TCP_TIMEWAIT_LEN
) {
6050 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6051 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6052 /* Bad case. We could lose such FIN otherwise.
6053 * It is not a big problem, but it looks confusing
6054 * and not so rare event. We still can lose it now,
6055 * if it spins in bh_lock_sock(), but it is really
6058 inet_csk_reset_keepalive_timer(sk
, tmo
);
6060 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6067 if (tp
->snd_una
== tp
->write_seq
) {
6068 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6074 if (tp
->snd_una
== tp
->write_seq
) {
6075 tcp_update_metrics(sk
);
6082 /* step 6: check the URG bit */
6083 tcp_urg(sk
, skb
, th
);
6085 /* step 7: process the segment text */
6086 switch (sk
->sk_state
) {
6087 case TCP_CLOSE_WAIT
:
6090 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6094 /* RFC 793 says to queue data in these states,
6095 * RFC 1122 says we MUST send a reset.
6096 * BSD 4.4 also does reset.
6098 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6099 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6100 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6101 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6107 case TCP_ESTABLISHED
:
6108 tcp_data_queue(sk
, skb
);
6113 /* tcp_data could move socket to TIME-WAIT */
6114 if (sk
->sk_state
!= TCP_CLOSE
) {
6115 tcp_data_snd_check(sk
);
6116 tcp_ack_snd_check(sk
);
6125 EXPORT_SYMBOL(tcp_rcv_state_process
);
6127 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6129 struct inet_request_sock
*ireq
= inet_rsk(req
);
6131 if (family
== AF_INET
)
6132 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6133 &ireq
->ir_rmt_addr
, port
);
6134 #if IS_ENABLED(CONFIG_IPV6)
6135 else if (family
== AF_INET6
)
6136 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6137 &ireq
->ir_v6_rmt_addr
, port
);
6141 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6143 * If we receive a SYN packet with these bits set, it means a
6144 * network is playing bad games with TOS bits. In order to
6145 * avoid possible false congestion notifications, we disable
6146 * TCP ECN negotiation.
6148 * Exception: tcp_ca wants ECN. This is required for DCTCP
6149 * congestion control: Linux DCTCP asserts ECT on all packets,
6150 * including SYN, which is most optimal solution; however,
6151 * others, such as FreeBSD do not.
6153 static void tcp_ecn_create_request(struct request_sock
*req
,
6154 const struct sk_buff
*skb
,
6155 const struct sock
*listen_sk
,
6156 const struct dst_entry
*dst
)
6158 const struct tcphdr
*th
= tcp_hdr(skb
);
6159 const struct net
*net
= sock_net(listen_sk
);
6160 bool th_ecn
= th
->ece
&& th
->cwr
;
6167 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6168 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6169 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6171 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6172 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6173 inet_rsk(req
)->ecn_ok
= 1;
6176 static void tcp_openreq_init(struct request_sock
*req
,
6177 const struct tcp_options_received
*rx_opt
,
6178 struct sk_buff
*skb
, const struct sock
*sk
)
6180 struct inet_request_sock
*ireq
= inet_rsk(req
);
6182 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6184 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6185 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6186 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6187 tcp_rsk(req
)->last_oow_ack_time
= 0;
6188 req
->mss
= rx_opt
->mss_clamp
;
6189 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6190 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6191 ireq
->sack_ok
= rx_opt
->sack_ok
;
6192 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6193 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6196 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6197 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6198 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6201 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6202 struct sock
*sk_listener
,
6203 bool attach_listener
)
6205 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6209 struct inet_request_sock
*ireq
= inet_rsk(req
);
6211 kmemcheck_annotate_bitfield(ireq
, flags
);
6213 #if IS_ENABLED(CONFIG_IPV6)
6214 ireq
->pktopts
= NULL
;
6216 atomic64_set(&ireq
->ir_cookie
, 0);
6217 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6218 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6219 ireq
->ireq_family
= sk_listener
->sk_family
;
6224 EXPORT_SYMBOL(inet_reqsk_alloc
);
6227 * Return true if a syncookie should be sent
6229 static bool tcp_syn_flood_action(const struct sock
*sk
,
6230 const struct sk_buff
*skb
,
6233 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6234 const char *msg
= "Dropping request";
6235 bool want_cookie
= false;
6236 struct net
*net
= sock_net(sk
);
6238 #ifdef CONFIG_SYN_COOKIES
6239 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6240 msg
= "Sending cookies";
6242 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6245 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6247 if (!queue
->synflood_warned
&&
6248 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6249 xchg(&queue
->synflood_warned
, 1) == 0)
6250 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6251 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6256 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6257 struct request_sock
*req
,
6258 const struct sk_buff
*skb
)
6260 if (tcp_sk(sk
)->save_syn
) {
6261 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6264 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6267 memcpy(©
[1], skb_network_header(skb
), len
);
6268 req
->saved_syn
= copy
;
6273 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6274 const struct tcp_request_sock_ops
*af_ops
,
6275 struct sock
*sk
, struct sk_buff
*skb
)
6277 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6278 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6279 struct tcp_options_received tmp_opt
;
6280 struct tcp_sock
*tp
= tcp_sk(sk
);
6281 struct net
*net
= sock_net(sk
);
6282 struct sock
*fastopen_sk
= NULL
;
6283 struct dst_entry
*dst
= NULL
;
6284 struct request_sock
*req
;
6285 bool want_cookie
= false;
6288 /* TW buckets are converted to open requests without
6289 * limitations, they conserve resources and peer is
6290 * evidently real one.
6292 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6293 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6294 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6299 if (sk_acceptq_is_full(sk
)) {
6300 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6304 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6308 tcp_rsk(req
)->af_specific
= af_ops
;
6309 tcp_rsk(req
)->ts_off
= 0;
6311 tcp_clear_options(&tmp_opt
);
6312 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6313 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6314 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6316 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6317 tcp_clear_options(&tmp_opt
);
6319 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6320 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6321 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6323 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6324 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6326 af_ops
->init_req(req
, sk
, skb
);
6328 if (security_inet_conn_request(sk
, skb
, req
))
6331 if (isn
&& tmp_opt
.tstamp_ok
)
6332 af_ops
->init_seq(skb
, &tcp_rsk(req
)->ts_off
);
6334 if (!want_cookie
&& !isn
) {
6335 /* VJ's idea. We save last timestamp seen
6336 * from the destination in peer table, when entering
6337 * state TIME-WAIT, and check against it before
6338 * accepting new connection request.
6340 * If "isn" is not zero, this request hit alive
6341 * timewait bucket, so that all the necessary checks
6342 * are made in the function processing timewait state.
6344 if (net
->ipv4
.tcp_death_row
.sysctl_tw_recycle
) {
6347 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6349 if (dst
&& strict
&&
6350 !tcp_peer_is_proven(req
, dst
, true,
6351 tmp_opt
.saw_tstamp
)) {
6352 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6353 goto drop_and_release
;
6356 /* Kill the following clause, if you dislike this way. */
6357 else if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6358 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6359 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6360 !tcp_peer_is_proven(req
, dst
, false,
6361 tmp_opt
.saw_tstamp
)) {
6362 /* Without syncookies last quarter of
6363 * backlog is filled with destinations,
6364 * proven to be alive.
6365 * It means that we continue to communicate
6366 * to destinations, already remembered
6367 * to the moment of synflood.
6369 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6371 goto drop_and_release
;
6374 isn
= af_ops
->init_seq(skb
, &tcp_rsk(req
)->ts_off
);
6377 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6382 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6385 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6386 tcp_rsk(req
)->ts_off
= 0;
6387 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6388 if (!tmp_opt
.tstamp_ok
)
6389 inet_rsk(req
)->ecn_ok
= 0;
6392 tcp_rsk(req
)->snt_isn
= isn
;
6393 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6394 tcp_openreq_init_rwin(req
, sk
, dst
);
6396 tcp_reqsk_record_syn(sk
, req
, skb
);
6397 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6400 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6401 &foc
, TCP_SYNACK_FASTOPEN
);
6402 /* Add the child socket directly into the accept queue */
6403 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6404 sk
->sk_data_ready(sk
);
6405 bh_unlock_sock(fastopen_sk
);
6406 sock_put(fastopen_sk
);
6408 tcp_rsk(req
)->tfo_listener
= false;
6410 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6411 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6412 !want_cookie
? TCP_SYNACK_NORMAL
:
6430 EXPORT_SYMBOL(tcp_conn_request
);