nfsd: Add fh_{want,drop}_write()
[linux/fpc-iii.git] / mm / huge_memory.c
blobed0ed8a41fba6bcf5fe21bae234eb3b542372854
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
68 /**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
74 struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
80 /**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
86 * There is only the one khugepaged_scan instance of this cursor structure.
88 struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
93 static struct khugepaged_scan khugepaged_scan = {
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
98 static int set_recommended_min_free_kbytes(void)
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
111 for_each_populated_zone(zone)
112 nr_zones++;
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
136 late_initcall(set_recommended_min_free_kbytes);
138 static int start_khugepaged(void)
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
162 set_recommended_min_free_kbytes();
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166 out:
167 return err;
170 #ifdef CONFIG_SYSFS
172 static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
185 static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
206 return count;
209 static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216 static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
220 ssize_t ret;
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
239 return ret;
241 static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
244 static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
252 static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
257 unsigned long value;
258 int ret;
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
266 if (value)
267 set_bit(flag, &transparent_hugepage_flags);
268 else
269 clear_bit(flag, &transparent_hugepage_flags);
271 return count;
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
279 static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
286 static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
294 static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320 #endif
321 NULL,
324 static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
339 unsigned long msecs;
340 int err;
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
349 return count;
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
366 unsigned long msecs;
367 int err;
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
376 return count;
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
392 int err;
393 unsigned long pages;
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
399 khugepaged_pages_to_scan = pages;
401 return count;
403 static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
413 static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
416 static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
422 static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
438 static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
460 int err;
461 unsigned long max_ptes_none;
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
467 khugepaged_max_ptes_none = max_ptes_none;
469 return count;
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
475 static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
486 static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
490 #endif /* CONFIG_SYSFS */
492 static int __init hugepage_init(void)
494 int err;
495 #ifdef CONFIG_SYSFS
496 static struct kobject *hugepage_kobj;
497 #endif
499 err = -EINVAL;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags = 0;
502 goto out;
505 #ifdef CONFIG_SYSFS
506 err = -ENOMEM;
507 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
508 if (unlikely(!hugepage_kobj)) {
509 printk(KERN_ERR "hugepage: failed kobject create\n");
510 goto out;
513 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
519 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
520 if (err) {
521 printk(KERN_ERR "hugepage: failed register hugeage group\n");
522 goto out;
524 #endif
526 err = khugepaged_slab_init();
527 if (err)
528 goto out;
530 err = mm_slots_hash_init();
531 if (err) {
532 khugepaged_slab_free();
533 goto out;
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
541 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
542 transparent_hugepage_flags = 0;
544 start_khugepaged();
546 set_recommended_min_free_kbytes();
548 out:
549 return err;
551 module_init(hugepage_init)
553 static int __init setup_transparent_hugepage(char *str)
555 int ret = 0;
556 if (!str)
557 goto out;
558 if (!strcmp(str, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 &transparent_hugepage_flags);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 &transparent_hugepage_flags);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 &transparent_hugepage_flags);
569 ret = 1;
570 } else if (!strcmp(str, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 &transparent_hugepage_flags);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 &transparent_hugepage_flags);
575 ret = 1;
577 out:
578 if (!ret)
579 printk(KERN_WARNING
580 "transparent_hugepage= cannot parse, ignored\n");
581 return ret;
583 __setup("transparent_hugepage=", setup_transparent_hugepage);
585 static void prepare_pmd_huge_pte(pgtable_t pgtable,
586 struct mm_struct *mm)
588 assert_spin_locked(&mm->page_table_lock);
590 /* FIFO */
591 if (!mm->pmd_huge_pte)
592 INIT_LIST_HEAD(&pgtable->lru);
593 else
594 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
595 mm->pmd_huge_pte = pgtable;
598 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
600 if (likely(vma->vm_flags & VM_WRITE))
601 pmd = pmd_mkwrite(pmd);
602 return pmd;
605 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
606 struct vm_area_struct *vma,
607 unsigned long haddr, pmd_t *pmd,
608 struct page *page)
610 int ret = 0;
611 pgtable_t pgtable;
613 VM_BUG_ON(!PageCompound(page));
614 pgtable = pte_alloc_one(mm, haddr);
615 if (unlikely(!pgtable)) {
616 mem_cgroup_uncharge_page(page);
617 put_page(page);
618 return VM_FAULT_OOM;
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
627 mem_cgroup_uncharge_page(page);
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
643 prepare_pmd_huge_pte(pgtable, mm);
644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 mm->nr_ptes++;
646 spin_unlock(&mm->page_table_lock);
649 return ret;
652 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
654 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
657 static inline struct page *alloc_hugepage_vma(int defrag,
658 struct vm_area_struct *vma,
659 unsigned long haddr, int nd,
660 gfp_t extra_gfp)
662 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
663 HPAGE_PMD_ORDER, vma, haddr, nd);
666 #ifndef CONFIG_NUMA
667 static inline struct page *alloc_hugepage(int defrag)
669 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
670 HPAGE_PMD_ORDER);
672 #endif
674 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
675 unsigned long address, pmd_t *pmd,
676 unsigned int flags)
678 struct page *page;
679 unsigned long haddr = address & HPAGE_PMD_MASK;
680 pte_t *pte;
682 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
683 if (unlikely(anon_vma_prepare(vma)))
684 return VM_FAULT_OOM;
685 if (unlikely(khugepaged_enter(vma)))
686 return VM_FAULT_OOM;
687 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
688 vma, haddr, numa_node_id(), 0);
689 if (unlikely(!page)) {
690 count_vm_event(THP_FAULT_FALLBACK);
691 goto out;
693 count_vm_event(THP_FAULT_ALLOC);
694 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
695 put_page(page);
696 goto out;
699 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
701 out:
703 * Use __pte_alloc instead of pte_alloc_map, because we can't
704 * run pte_offset_map on the pmd, if an huge pmd could
705 * materialize from under us from a different thread.
707 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
708 return VM_FAULT_OOM;
709 /* if an huge pmd materialized from under us just retry later */
710 if (unlikely(pmd_trans_huge(*pmd)))
711 return 0;
713 * A regular pmd is established and it can't morph into a huge pmd
714 * from under us anymore at this point because we hold the mmap_sem
715 * read mode and khugepaged takes it in write mode. So now it's
716 * safe to run pte_offset_map().
718 pte = pte_offset_map(pmd, address);
719 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
722 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
724 struct vm_area_struct *vma)
726 struct page *src_page;
727 pmd_t pmd;
728 pgtable_t pgtable;
729 int ret;
731 ret = -ENOMEM;
732 pgtable = pte_alloc_one(dst_mm, addr);
733 if (unlikely(!pgtable))
734 goto out;
736 spin_lock(&dst_mm->page_table_lock);
737 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
739 ret = -EAGAIN;
740 pmd = *src_pmd;
741 if (unlikely(!pmd_trans_huge(pmd))) {
742 pte_free(dst_mm, pgtable);
743 goto out_unlock;
745 if (unlikely(pmd_trans_splitting(pmd))) {
746 /* split huge page running from under us */
747 spin_unlock(&src_mm->page_table_lock);
748 spin_unlock(&dst_mm->page_table_lock);
749 pte_free(dst_mm, pgtable);
751 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
752 goto out;
754 src_page = pmd_page(pmd);
755 VM_BUG_ON(!PageHead(src_page));
756 get_page(src_page);
757 page_dup_rmap(src_page);
758 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
760 pmdp_set_wrprotect(src_mm, addr, src_pmd);
761 pmd = pmd_mkold(pmd_wrprotect(pmd));
762 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
763 prepare_pmd_huge_pte(pgtable, dst_mm);
764 dst_mm->nr_ptes++;
766 ret = 0;
767 out_unlock:
768 spin_unlock(&src_mm->page_table_lock);
769 spin_unlock(&dst_mm->page_table_lock);
770 out:
771 return ret;
774 /* no "address" argument so destroys page coloring of some arch */
775 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
777 pgtable_t pgtable;
779 assert_spin_locked(&mm->page_table_lock);
781 /* FIFO */
782 pgtable = mm->pmd_huge_pte;
783 if (list_empty(&pgtable->lru))
784 mm->pmd_huge_pte = NULL;
785 else {
786 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
787 struct page, lru);
788 list_del(&pgtable->lru);
790 return pgtable;
793 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
794 struct vm_area_struct *vma,
795 unsigned long address,
796 pmd_t *pmd, pmd_t orig_pmd,
797 struct page *page,
798 unsigned long haddr)
800 pgtable_t pgtable;
801 pmd_t _pmd;
802 int ret = 0, i;
803 struct page **pages;
805 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
806 GFP_KERNEL);
807 if (unlikely(!pages)) {
808 ret |= VM_FAULT_OOM;
809 goto out;
812 for (i = 0; i < HPAGE_PMD_NR; i++) {
813 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
814 __GFP_OTHER_NODE,
815 vma, address, page_to_nid(page));
816 if (unlikely(!pages[i] ||
817 mem_cgroup_newpage_charge(pages[i], mm,
818 GFP_KERNEL))) {
819 if (pages[i])
820 put_page(pages[i]);
821 mem_cgroup_uncharge_start();
822 while (--i >= 0) {
823 mem_cgroup_uncharge_page(pages[i]);
824 put_page(pages[i]);
826 mem_cgroup_uncharge_end();
827 kfree(pages);
828 ret |= VM_FAULT_OOM;
829 goto out;
833 for (i = 0; i < HPAGE_PMD_NR; i++) {
834 copy_user_highpage(pages[i], page + i,
835 haddr + PAGE_SIZE * i, vma);
836 __SetPageUptodate(pages[i]);
837 cond_resched();
840 spin_lock(&mm->page_table_lock);
841 if (unlikely(!pmd_same(*pmd, orig_pmd)))
842 goto out_free_pages;
843 VM_BUG_ON(!PageHead(page));
845 pmdp_clear_flush_notify(vma, haddr, pmd);
846 /* leave pmd empty until pte is filled */
848 pgtable = get_pmd_huge_pte(mm);
849 pmd_populate(mm, &_pmd, pgtable);
851 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
852 pte_t *pte, entry;
853 entry = mk_pte(pages[i], vma->vm_page_prot);
854 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
855 page_add_new_anon_rmap(pages[i], vma, haddr);
856 pte = pte_offset_map(&_pmd, haddr);
857 VM_BUG_ON(!pte_none(*pte));
858 set_pte_at(mm, haddr, pte, entry);
859 pte_unmap(pte);
861 kfree(pages);
863 smp_wmb(); /* make pte visible before pmd */
864 pmd_populate(mm, pmd, pgtable);
865 page_remove_rmap(page);
866 spin_unlock(&mm->page_table_lock);
868 ret |= VM_FAULT_WRITE;
869 put_page(page);
871 out:
872 return ret;
874 out_free_pages:
875 spin_unlock(&mm->page_table_lock);
876 mem_cgroup_uncharge_start();
877 for (i = 0; i < HPAGE_PMD_NR; i++) {
878 mem_cgroup_uncharge_page(pages[i]);
879 put_page(pages[i]);
881 mem_cgroup_uncharge_end();
882 kfree(pages);
883 goto out;
886 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
887 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
889 int ret = 0;
890 struct page *page, *new_page;
891 unsigned long haddr;
893 VM_BUG_ON(!vma->anon_vma);
894 spin_lock(&mm->page_table_lock);
895 if (unlikely(!pmd_same(*pmd, orig_pmd)))
896 goto out_unlock;
898 page = pmd_page(orig_pmd);
899 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
900 haddr = address & HPAGE_PMD_MASK;
901 if (page_mapcount(page) == 1) {
902 pmd_t entry;
903 entry = pmd_mkyoung(orig_pmd);
904 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
905 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
906 update_mmu_cache(vma, address, entry);
907 ret |= VM_FAULT_WRITE;
908 goto out_unlock;
910 get_page(page);
911 spin_unlock(&mm->page_table_lock);
913 if (transparent_hugepage_enabled(vma) &&
914 !transparent_hugepage_debug_cow())
915 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
916 vma, haddr, numa_node_id(), 0);
917 else
918 new_page = NULL;
920 if (unlikely(!new_page)) {
921 count_vm_event(THP_FAULT_FALLBACK);
922 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
923 pmd, orig_pmd, page, haddr);
924 if (ret & VM_FAULT_OOM)
925 split_huge_page(page);
926 put_page(page);
927 goto out;
929 count_vm_event(THP_FAULT_ALLOC);
931 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
932 put_page(new_page);
933 split_huge_page(page);
934 put_page(page);
935 ret |= VM_FAULT_OOM;
936 goto out;
939 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
940 __SetPageUptodate(new_page);
942 spin_lock(&mm->page_table_lock);
943 put_page(page);
944 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
945 mem_cgroup_uncharge_page(new_page);
946 put_page(new_page);
947 } else {
948 pmd_t entry;
949 VM_BUG_ON(!PageHead(page));
950 entry = mk_pmd(new_page, vma->vm_page_prot);
951 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
952 entry = pmd_mkhuge(entry);
953 pmdp_clear_flush_notify(vma, haddr, pmd);
954 page_add_new_anon_rmap(new_page, vma, haddr);
955 set_pmd_at(mm, haddr, pmd, entry);
956 update_mmu_cache(vma, address, entry);
957 page_remove_rmap(page);
958 put_page(page);
959 ret |= VM_FAULT_WRITE;
961 out_unlock:
962 spin_unlock(&mm->page_table_lock);
963 out:
964 return ret;
967 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
968 unsigned long addr,
969 pmd_t *pmd,
970 unsigned int flags)
972 struct page *page = NULL;
974 assert_spin_locked(&mm->page_table_lock);
976 if (flags & FOLL_WRITE && !pmd_write(*pmd))
977 goto out;
979 page = pmd_page(*pmd);
980 VM_BUG_ON(!PageHead(page));
981 if (flags & FOLL_TOUCH) {
982 pmd_t _pmd;
984 * We should set the dirty bit only for FOLL_WRITE but
985 * for now the dirty bit in the pmd is meaningless.
986 * And if the dirty bit will become meaningful and
987 * we'll only set it with FOLL_WRITE, an atomic
988 * set_bit will be required on the pmd to set the
989 * young bit, instead of the current set_pmd_at.
991 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
992 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
994 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
995 VM_BUG_ON(!PageCompound(page));
996 if (flags & FOLL_GET)
997 get_page_foll(page);
999 out:
1000 return page;
1003 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1004 pmd_t *pmd)
1006 int ret = 0;
1008 spin_lock(&tlb->mm->page_table_lock);
1009 if (likely(pmd_trans_huge(*pmd))) {
1010 if (unlikely(pmd_trans_splitting(*pmd))) {
1011 spin_unlock(&tlb->mm->page_table_lock);
1012 wait_split_huge_page(vma->anon_vma,
1013 pmd);
1014 } else {
1015 struct page *page;
1016 pgtable_t pgtable;
1017 pgtable = get_pmd_huge_pte(tlb->mm);
1018 page = pmd_page(*pmd);
1019 pmd_clear(pmd);
1020 page_remove_rmap(page);
1021 VM_BUG_ON(page_mapcount(page) < 0);
1022 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1023 VM_BUG_ON(!PageHead(page));
1024 tlb->mm->nr_ptes--;
1025 spin_unlock(&tlb->mm->page_table_lock);
1026 tlb_remove_page(tlb, page);
1027 pte_free(tlb->mm, pgtable);
1028 ret = 1;
1030 } else
1031 spin_unlock(&tlb->mm->page_table_lock);
1033 return ret;
1036 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1037 unsigned long addr, unsigned long end,
1038 unsigned char *vec)
1040 int ret = 0;
1042 spin_lock(&vma->vm_mm->page_table_lock);
1043 if (likely(pmd_trans_huge(*pmd))) {
1044 ret = !pmd_trans_splitting(*pmd);
1045 spin_unlock(&vma->vm_mm->page_table_lock);
1046 if (unlikely(!ret))
1047 wait_split_huge_page(vma->anon_vma, pmd);
1048 else {
1050 * All logical pages in the range are present
1051 * if backed by a huge page.
1053 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1055 } else
1056 spin_unlock(&vma->vm_mm->page_table_lock);
1058 return ret;
1061 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1062 unsigned long old_addr,
1063 unsigned long new_addr, unsigned long old_end,
1064 pmd_t *old_pmd, pmd_t *new_pmd)
1066 int ret = 0;
1067 pmd_t pmd;
1069 struct mm_struct *mm = vma->vm_mm;
1071 if ((old_addr & ~HPAGE_PMD_MASK) ||
1072 (new_addr & ~HPAGE_PMD_MASK) ||
1073 old_end - old_addr < HPAGE_PMD_SIZE ||
1074 (new_vma->vm_flags & VM_NOHUGEPAGE))
1075 goto out;
1078 * The destination pmd shouldn't be established, free_pgtables()
1079 * should have release it.
1081 if (WARN_ON(!pmd_none(*new_pmd))) {
1082 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1083 goto out;
1086 spin_lock(&mm->page_table_lock);
1087 if (likely(pmd_trans_huge(*old_pmd))) {
1088 if (pmd_trans_splitting(*old_pmd)) {
1089 spin_unlock(&mm->page_table_lock);
1090 wait_split_huge_page(vma->anon_vma, old_pmd);
1091 ret = -1;
1092 } else {
1093 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1094 VM_BUG_ON(!pmd_none(*new_pmd));
1095 set_pmd_at(mm, new_addr, new_pmd, pmd);
1096 spin_unlock(&mm->page_table_lock);
1097 ret = 1;
1099 } else {
1100 spin_unlock(&mm->page_table_lock);
1102 out:
1103 return ret;
1106 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1107 unsigned long addr, pgprot_t newprot)
1109 struct mm_struct *mm = vma->vm_mm;
1110 int ret = 0;
1112 spin_lock(&mm->page_table_lock);
1113 if (likely(pmd_trans_huge(*pmd))) {
1114 if (unlikely(pmd_trans_splitting(*pmd))) {
1115 spin_unlock(&mm->page_table_lock);
1116 wait_split_huge_page(vma->anon_vma, pmd);
1117 } else {
1118 pmd_t entry;
1120 entry = pmdp_get_and_clear(mm, addr, pmd);
1121 entry = pmd_modify(entry, newprot);
1122 set_pmd_at(mm, addr, pmd, entry);
1123 spin_unlock(&vma->vm_mm->page_table_lock);
1124 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1125 ret = 1;
1127 } else
1128 spin_unlock(&vma->vm_mm->page_table_lock);
1130 return ret;
1133 pmd_t *page_check_address_pmd(struct page *page,
1134 struct mm_struct *mm,
1135 unsigned long address,
1136 enum page_check_address_pmd_flag flag)
1138 pgd_t *pgd;
1139 pud_t *pud;
1140 pmd_t *pmd, *ret = NULL;
1142 if (address & ~HPAGE_PMD_MASK)
1143 goto out;
1145 pgd = pgd_offset(mm, address);
1146 if (!pgd_present(*pgd))
1147 goto out;
1149 pud = pud_offset(pgd, address);
1150 if (!pud_present(*pud))
1151 goto out;
1153 pmd = pmd_offset(pud, address);
1154 if (pmd_none(*pmd))
1155 goto out;
1156 if (pmd_page(*pmd) != page)
1157 goto out;
1159 * split_vma() may create temporary aliased mappings. There is
1160 * no risk as long as all huge pmd are found and have their
1161 * splitting bit set before __split_huge_page_refcount
1162 * runs. Finding the same huge pmd more than once during the
1163 * same rmap walk is not a problem.
1165 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1166 pmd_trans_splitting(*pmd))
1167 goto out;
1168 if (pmd_trans_huge(*pmd)) {
1169 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1170 !pmd_trans_splitting(*pmd));
1171 ret = pmd;
1173 out:
1174 return ret;
1177 static int __split_huge_page_splitting(struct page *page,
1178 struct vm_area_struct *vma,
1179 unsigned long address)
1181 struct mm_struct *mm = vma->vm_mm;
1182 pmd_t *pmd;
1183 int ret = 0;
1185 spin_lock(&mm->page_table_lock);
1186 pmd = page_check_address_pmd(page, mm, address,
1187 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1188 if (pmd) {
1190 * We can't temporarily set the pmd to null in order
1191 * to split it, the pmd must remain marked huge at all
1192 * times or the VM won't take the pmd_trans_huge paths
1193 * and it won't wait on the anon_vma->root->mutex to
1194 * serialize against split_huge_page*.
1196 pmdp_splitting_flush_notify(vma, address, pmd);
1197 ret = 1;
1199 spin_unlock(&mm->page_table_lock);
1201 return ret;
1204 static void __split_huge_page_refcount(struct page *page)
1206 int i;
1207 unsigned long head_index = page->index;
1208 struct zone *zone = page_zone(page);
1209 int zonestat;
1210 int tail_count = 0;
1212 /* prevent PageLRU to go away from under us, and freeze lru stats */
1213 spin_lock_irq(&zone->lru_lock);
1214 compound_lock(page);
1216 for (i = 1; i < HPAGE_PMD_NR; i++) {
1217 struct page *page_tail = page + i;
1219 /* tail_page->_mapcount cannot change */
1220 BUG_ON(page_mapcount(page_tail) < 0);
1221 tail_count += page_mapcount(page_tail);
1222 /* check for overflow */
1223 BUG_ON(tail_count < 0);
1224 BUG_ON(atomic_read(&page_tail->_count) != 0);
1226 * tail_page->_count is zero and not changing from
1227 * under us. But get_page_unless_zero() may be running
1228 * from under us on the tail_page. If we used
1229 * atomic_set() below instead of atomic_add(), we
1230 * would then run atomic_set() concurrently with
1231 * get_page_unless_zero(), and atomic_set() is
1232 * implemented in C not using locked ops. spin_unlock
1233 * on x86 sometime uses locked ops because of PPro
1234 * errata 66, 92, so unless somebody can guarantee
1235 * atomic_set() here would be safe on all archs (and
1236 * not only on x86), it's safer to use atomic_add().
1238 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1239 &page_tail->_count);
1241 /* after clearing PageTail the gup refcount can be released */
1242 smp_mb();
1245 * retain hwpoison flag of the poisoned tail page:
1246 * fix for the unsuitable process killed on Guest Machine(KVM)
1247 * by the memory-failure.
1249 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1250 page_tail->flags |= (page->flags &
1251 ((1L << PG_referenced) |
1252 (1L << PG_swapbacked) |
1253 (1L << PG_mlocked) |
1254 (1L << PG_uptodate)));
1255 page_tail->flags |= (1L << PG_dirty);
1257 /* clear PageTail before overwriting first_page */
1258 smp_wmb();
1261 * __split_huge_page_splitting() already set the
1262 * splitting bit in all pmd that could map this
1263 * hugepage, that will ensure no CPU can alter the
1264 * mapcount on the head page. The mapcount is only
1265 * accounted in the head page and it has to be
1266 * transferred to all tail pages in the below code. So
1267 * for this code to be safe, the split the mapcount
1268 * can't change. But that doesn't mean userland can't
1269 * keep changing and reading the page contents while
1270 * we transfer the mapcount, so the pmd splitting
1271 * status is achieved setting a reserved bit in the
1272 * pmd, not by clearing the present bit.
1274 page_tail->_mapcount = page->_mapcount;
1276 BUG_ON(page_tail->mapping);
1277 page_tail->mapping = page->mapping;
1279 page_tail->index = ++head_index;
1281 BUG_ON(!PageAnon(page_tail));
1282 BUG_ON(!PageUptodate(page_tail));
1283 BUG_ON(!PageDirty(page_tail));
1284 BUG_ON(!PageSwapBacked(page_tail));
1286 mem_cgroup_split_huge_fixup(page, page_tail);
1288 lru_add_page_tail(zone, page, page_tail);
1290 atomic_sub(tail_count, &page->_count);
1291 BUG_ON(atomic_read(&page->_count) <= 0);
1293 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1294 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1297 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1298 * so adjust those appropriately if this page is on the LRU.
1300 if (PageLRU(page)) {
1301 zonestat = NR_LRU_BASE + page_lru(page);
1302 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1305 ClearPageCompound(page);
1306 compound_unlock(page);
1307 spin_unlock_irq(&zone->lru_lock);
1309 for (i = 1; i < HPAGE_PMD_NR; i++) {
1310 struct page *page_tail = page + i;
1311 BUG_ON(page_count(page_tail) <= 0);
1313 * Tail pages may be freed if there wasn't any mapping
1314 * like if add_to_swap() is running on a lru page that
1315 * had its mapping zapped. And freeing these pages
1316 * requires taking the lru_lock so we do the put_page
1317 * of the tail pages after the split is complete.
1319 put_page(page_tail);
1323 * Only the head page (now become a regular page) is required
1324 * to be pinned by the caller.
1326 BUG_ON(page_count(page) <= 0);
1329 static int __split_huge_page_map(struct page *page,
1330 struct vm_area_struct *vma,
1331 unsigned long address)
1333 struct mm_struct *mm = vma->vm_mm;
1334 pmd_t *pmd, _pmd;
1335 int ret = 0, i;
1336 pgtable_t pgtable;
1337 unsigned long haddr;
1339 spin_lock(&mm->page_table_lock);
1340 pmd = page_check_address_pmd(page, mm, address,
1341 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1342 if (pmd) {
1343 pgtable = get_pmd_huge_pte(mm);
1344 pmd_populate(mm, &_pmd, pgtable);
1346 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1347 i++, haddr += PAGE_SIZE) {
1348 pte_t *pte, entry;
1349 BUG_ON(PageCompound(page+i));
1350 entry = mk_pte(page + i, vma->vm_page_prot);
1351 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1352 if (!pmd_write(*pmd))
1353 entry = pte_wrprotect(entry);
1354 else
1355 BUG_ON(page_mapcount(page) != 1);
1356 if (!pmd_young(*pmd))
1357 entry = pte_mkold(entry);
1358 pte = pte_offset_map(&_pmd, haddr);
1359 BUG_ON(!pte_none(*pte));
1360 set_pte_at(mm, haddr, pte, entry);
1361 pte_unmap(pte);
1364 smp_wmb(); /* make pte visible before pmd */
1366 * Up to this point the pmd is present and huge and
1367 * userland has the whole access to the hugepage
1368 * during the split (which happens in place). If we
1369 * overwrite the pmd with the not-huge version
1370 * pointing to the pte here (which of course we could
1371 * if all CPUs were bug free), userland could trigger
1372 * a small page size TLB miss on the small sized TLB
1373 * while the hugepage TLB entry is still established
1374 * in the huge TLB. Some CPU doesn't like that. See
1375 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1376 * Erratum 383 on page 93. Intel should be safe but is
1377 * also warns that it's only safe if the permission
1378 * and cache attributes of the two entries loaded in
1379 * the two TLB is identical (which should be the case
1380 * here). But it is generally safer to never allow
1381 * small and huge TLB entries for the same virtual
1382 * address to be loaded simultaneously. So instead of
1383 * doing "pmd_populate(); flush_tlb_range();" we first
1384 * mark the current pmd notpresent (atomically because
1385 * here the pmd_trans_huge and pmd_trans_splitting
1386 * must remain set at all times on the pmd until the
1387 * split is complete for this pmd), then we flush the
1388 * SMP TLB and finally we write the non-huge version
1389 * of the pmd entry with pmd_populate.
1391 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1392 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1393 pmd_populate(mm, pmd, pgtable);
1394 ret = 1;
1396 spin_unlock(&mm->page_table_lock);
1398 return ret;
1401 /* must be called with anon_vma->root->mutex hold */
1402 static void __split_huge_page(struct page *page,
1403 struct anon_vma *anon_vma)
1405 int mapcount, mapcount2;
1406 struct anon_vma_chain *avc;
1408 BUG_ON(!PageHead(page));
1409 BUG_ON(PageTail(page));
1411 mapcount = 0;
1412 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1413 struct vm_area_struct *vma = avc->vma;
1414 unsigned long addr = vma_address(page, vma);
1415 BUG_ON(is_vma_temporary_stack(vma));
1416 if (addr == -EFAULT)
1417 continue;
1418 mapcount += __split_huge_page_splitting(page, vma, addr);
1421 * It is critical that new vmas are added to the tail of the
1422 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1423 * and establishes a child pmd before
1424 * __split_huge_page_splitting() freezes the parent pmd (so if
1425 * we fail to prevent copy_huge_pmd() from running until the
1426 * whole __split_huge_page() is complete), we will still see
1427 * the newly established pmd of the child later during the
1428 * walk, to be able to set it as pmd_trans_splitting too.
1430 if (mapcount != page_mapcount(page))
1431 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1432 mapcount, page_mapcount(page));
1433 BUG_ON(mapcount != page_mapcount(page));
1435 __split_huge_page_refcount(page);
1437 mapcount2 = 0;
1438 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1439 struct vm_area_struct *vma = avc->vma;
1440 unsigned long addr = vma_address(page, vma);
1441 BUG_ON(is_vma_temporary_stack(vma));
1442 if (addr == -EFAULT)
1443 continue;
1444 mapcount2 += __split_huge_page_map(page, vma, addr);
1446 if (mapcount != mapcount2)
1447 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1448 mapcount, mapcount2, page_mapcount(page));
1449 BUG_ON(mapcount != mapcount2);
1452 int split_huge_page(struct page *page)
1454 struct anon_vma *anon_vma;
1455 int ret = 1;
1457 BUG_ON(!PageAnon(page));
1458 anon_vma = page_lock_anon_vma(page);
1459 if (!anon_vma)
1460 goto out;
1461 ret = 0;
1462 if (!PageCompound(page))
1463 goto out_unlock;
1465 BUG_ON(!PageSwapBacked(page));
1466 __split_huge_page(page, anon_vma);
1467 count_vm_event(THP_SPLIT);
1469 BUG_ON(PageCompound(page));
1470 out_unlock:
1471 page_unlock_anon_vma(anon_vma);
1472 out:
1473 return ret;
1476 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1477 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1479 int hugepage_madvise(struct vm_area_struct *vma,
1480 unsigned long *vm_flags, int advice)
1482 switch (advice) {
1483 case MADV_HUGEPAGE:
1485 * Be somewhat over-protective like KSM for now!
1487 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1488 return -EINVAL;
1489 *vm_flags &= ~VM_NOHUGEPAGE;
1490 *vm_flags |= VM_HUGEPAGE;
1492 * If the vma become good for khugepaged to scan,
1493 * register it here without waiting a page fault that
1494 * may not happen any time soon.
1496 if (unlikely(khugepaged_enter_vma_merge(vma)))
1497 return -ENOMEM;
1498 break;
1499 case MADV_NOHUGEPAGE:
1501 * Be somewhat over-protective like KSM for now!
1503 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1504 return -EINVAL;
1505 *vm_flags &= ~VM_HUGEPAGE;
1506 *vm_flags |= VM_NOHUGEPAGE;
1508 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1509 * this vma even if we leave the mm registered in khugepaged if
1510 * it got registered before VM_NOHUGEPAGE was set.
1512 break;
1515 return 0;
1518 static int __init khugepaged_slab_init(void)
1520 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1521 sizeof(struct mm_slot),
1522 __alignof__(struct mm_slot), 0, NULL);
1523 if (!mm_slot_cache)
1524 return -ENOMEM;
1526 return 0;
1529 static void __init khugepaged_slab_free(void)
1531 kmem_cache_destroy(mm_slot_cache);
1532 mm_slot_cache = NULL;
1535 static inline struct mm_slot *alloc_mm_slot(void)
1537 if (!mm_slot_cache) /* initialization failed */
1538 return NULL;
1539 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1542 static inline void free_mm_slot(struct mm_slot *mm_slot)
1544 kmem_cache_free(mm_slot_cache, mm_slot);
1547 static int __init mm_slots_hash_init(void)
1549 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1550 GFP_KERNEL);
1551 if (!mm_slots_hash)
1552 return -ENOMEM;
1553 return 0;
1556 #if 0
1557 static void __init mm_slots_hash_free(void)
1559 kfree(mm_slots_hash);
1560 mm_slots_hash = NULL;
1562 #endif
1564 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1566 struct mm_slot *mm_slot;
1567 struct hlist_head *bucket;
1568 struct hlist_node *node;
1570 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1571 % MM_SLOTS_HASH_HEADS];
1572 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1573 if (mm == mm_slot->mm)
1574 return mm_slot;
1576 return NULL;
1579 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1580 struct mm_slot *mm_slot)
1582 struct hlist_head *bucket;
1584 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1585 % MM_SLOTS_HASH_HEADS];
1586 mm_slot->mm = mm;
1587 hlist_add_head(&mm_slot->hash, bucket);
1590 static inline int khugepaged_test_exit(struct mm_struct *mm)
1592 return atomic_read(&mm->mm_users) == 0;
1595 int __khugepaged_enter(struct mm_struct *mm)
1597 struct mm_slot *mm_slot;
1598 int wakeup;
1600 mm_slot = alloc_mm_slot();
1601 if (!mm_slot)
1602 return -ENOMEM;
1604 /* __khugepaged_exit() must not run from under us */
1605 VM_BUG_ON(khugepaged_test_exit(mm));
1606 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1607 free_mm_slot(mm_slot);
1608 return 0;
1611 spin_lock(&khugepaged_mm_lock);
1612 insert_to_mm_slots_hash(mm, mm_slot);
1614 * Insert just behind the scanning cursor, to let the area settle
1615 * down a little.
1617 wakeup = list_empty(&khugepaged_scan.mm_head);
1618 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1619 spin_unlock(&khugepaged_mm_lock);
1621 atomic_inc(&mm->mm_count);
1622 if (wakeup)
1623 wake_up_interruptible(&khugepaged_wait);
1625 return 0;
1628 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1630 unsigned long hstart, hend;
1631 if (!vma->anon_vma)
1633 * Not yet faulted in so we will register later in the
1634 * page fault if needed.
1636 return 0;
1637 if (vma->vm_ops)
1638 /* khugepaged not yet working on file or special mappings */
1639 return 0;
1641 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1642 * true too, verify it here.
1644 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1645 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1646 hend = vma->vm_end & HPAGE_PMD_MASK;
1647 if (hstart < hend)
1648 return khugepaged_enter(vma);
1649 return 0;
1652 void __khugepaged_exit(struct mm_struct *mm)
1654 struct mm_slot *mm_slot;
1655 int free = 0;
1657 spin_lock(&khugepaged_mm_lock);
1658 mm_slot = get_mm_slot(mm);
1659 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1660 hlist_del(&mm_slot->hash);
1661 list_del(&mm_slot->mm_node);
1662 free = 1;
1664 spin_unlock(&khugepaged_mm_lock);
1666 if (free) {
1667 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1668 free_mm_slot(mm_slot);
1669 mmdrop(mm);
1670 } else if (mm_slot) {
1672 * This is required to serialize against
1673 * khugepaged_test_exit() (which is guaranteed to run
1674 * under mmap sem read mode). Stop here (after we
1675 * return all pagetables will be destroyed) until
1676 * khugepaged has finished working on the pagetables
1677 * under the mmap_sem.
1679 down_write(&mm->mmap_sem);
1680 up_write(&mm->mmap_sem);
1684 static void release_pte_page(struct page *page)
1686 /* 0 stands for page_is_file_cache(page) == false */
1687 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1688 unlock_page(page);
1689 putback_lru_page(page);
1692 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1694 while (--_pte >= pte) {
1695 pte_t pteval = *_pte;
1696 if (!pte_none(pteval))
1697 release_pte_page(pte_page(pteval));
1701 static void release_all_pte_pages(pte_t *pte)
1703 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1706 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1707 unsigned long address,
1708 pte_t *pte)
1710 struct page *page;
1711 pte_t *_pte;
1712 int referenced = 0, isolated = 0, none = 0;
1713 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1714 _pte++, address += PAGE_SIZE) {
1715 pte_t pteval = *_pte;
1716 if (pte_none(pteval)) {
1717 if (++none <= khugepaged_max_ptes_none)
1718 continue;
1719 else {
1720 release_pte_pages(pte, _pte);
1721 goto out;
1724 if (!pte_present(pteval) || !pte_write(pteval)) {
1725 release_pte_pages(pte, _pte);
1726 goto out;
1728 page = vm_normal_page(vma, address, pteval);
1729 if (unlikely(!page)) {
1730 release_pte_pages(pte, _pte);
1731 goto out;
1733 VM_BUG_ON(PageCompound(page));
1734 BUG_ON(!PageAnon(page));
1735 VM_BUG_ON(!PageSwapBacked(page));
1737 /* cannot use mapcount: can't collapse if there's a gup pin */
1738 if (page_count(page) != 1) {
1739 release_pte_pages(pte, _pte);
1740 goto out;
1743 * We can do it before isolate_lru_page because the
1744 * page can't be freed from under us. NOTE: PG_lock
1745 * is needed to serialize against split_huge_page
1746 * when invoked from the VM.
1748 if (!trylock_page(page)) {
1749 release_pte_pages(pte, _pte);
1750 goto out;
1753 * Isolate the page to avoid collapsing an hugepage
1754 * currently in use by the VM.
1756 if (isolate_lru_page(page)) {
1757 unlock_page(page);
1758 release_pte_pages(pte, _pte);
1759 goto out;
1761 /* 0 stands for page_is_file_cache(page) == false */
1762 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1763 VM_BUG_ON(!PageLocked(page));
1764 VM_BUG_ON(PageLRU(page));
1766 /* If there is no mapped pte young don't collapse the page */
1767 if (pte_young(pteval) || PageReferenced(page) ||
1768 mmu_notifier_test_young(vma->vm_mm, address))
1769 referenced = 1;
1771 if (unlikely(!referenced))
1772 release_all_pte_pages(pte);
1773 else
1774 isolated = 1;
1775 out:
1776 return isolated;
1779 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1780 struct vm_area_struct *vma,
1781 unsigned long address,
1782 spinlock_t *ptl)
1784 pte_t *_pte;
1785 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1786 pte_t pteval = *_pte;
1787 struct page *src_page;
1789 if (pte_none(pteval)) {
1790 clear_user_highpage(page, address);
1791 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1792 } else {
1793 src_page = pte_page(pteval);
1794 copy_user_highpage(page, src_page, address, vma);
1795 VM_BUG_ON(page_mapcount(src_page) != 1);
1796 VM_BUG_ON(page_count(src_page) != 2);
1797 release_pte_page(src_page);
1799 * ptl mostly unnecessary, but preempt has to
1800 * be disabled to update the per-cpu stats
1801 * inside page_remove_rmap().
1803 spin_lock(ptl);
1805 * paravirt calls inside pte_clear here are
1806 * superfluous.
1808 pte_clear(vma->vm_mm, address, _pte);
1809 page_remove_rmap(src_page);
1810 spin_unlock(ptl);
1811 free_page_and_swap_cache(src_page);
1814 address += PAGE_SIZE;
1815 page++;
1819 static void collapse_huge_page(struct mm_struct *mm,
1820 unsigned long address,
1821 struct page **hpage,
1822 struct vm_area_struct *vma,
1823 int node)
1825 pgd_t *pgd;
1826 pud_t *pud;
1827 pmd_t *pmd, _pmd;
1828 pte_t *pte;
1829 pgtable_t pgtable;
1830 struct page *new_page;
1831 spinlock_t *ptl;
1832 int isolated;
1833 unsigned long hstart, hend;
1835 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1836 #ifndef CONFIG_NUMA
1837 up_read(&mm->mmap_sem);
1838 VM_BUG_ON(!*hpage);
1839 new_page = *hpage;
1840 #else
1841 VM_BUG_ON(*hpage);
1843 * Allocate the page while the vma is still valid and under
1844 * the mmap_sem read mode so there is no memory allocation
1845 * later when we take the mmap_sem in write mode. This is more
1846 * friendly behavior (OTOH it may actually hide bugs) to
1847 * filesystems in userland with daemons allocating memory in
1848 * the userland I/O paths. Allocating memory with the
1849 * mmap_sem in read mode is good idea also to allow greater
1850 * scalability.
1852 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1853 node, __GFP_OTHER_NODE);
1856 * After allocating the hugepage, release the mmap_sem read lock in
1857 * preparation for taking it in write mode.
1859 up_read(&mm->mmap_sem);
1860 if (unlikely(!new_page)) {
1861 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1862 *hpage = ERR_PTR(-ENOMEM);
1863 return;
1865 #endif
1867 count_vm_event(THP_COLLAPSE_ALLOC);
1868 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1869 #ifdef CONFIG_NUMA
1870 put_page(new_page);
1871 #endif
1872 return;
1876 * Prevent all access to pagetables with the exception of
1877 * gup_fast later hanlded by the ptep_clear_flush and the VM
1878 * handled by the anon_vma lock + PG_lock.
1880 down_write(&mm->mmap_sem);
1881 if (unlikely(khugepaged_test_exit(mm)))
1882 goto out;
1884 vma = find_vma(mm, address);
1885 if (!vma)
1886 goto out;
1887 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1888 hend = vma->vm_end & HPAGE_PMD_MASK;
1889 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1890 goto out;
1892 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1893 (vma->vm_flags & VM_NOHUGEPAGE))
1894 goto out;
1896 if (!vma->anon_vma || vma->vm_ops)
1897 goto out;
1898 if (is_vma_temporary_stack(vma))
1899 goto out;
1901 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1902 * true too, verify it here.
1904 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1906 pgd = pgd_offset(mm, address);
1907 if (!pgd_present(*pgd))
1908 goto out;
1910 pud = pud_offset(pgd, address);
1911 if (!pud_present(*pud))
1912 goto out;
1914 pmd = pmd_offset(pud, address);
1915 /* pmd can't go away or become huge under us */
1916 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1917 goto out;
1919 anon_vma_lock(vma->anon_vma);
1921 pte = pte_offset_map(pmd, address);
1922 ptl = pte_lockptr(mm, pmd);
1924 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1926 * After this gup_fast can't run anymore. This also removes
1927 * any huge TLB entry from the CPU so we won't allow
1928 * huge and small TLB entries for the same virtual address
1929 * to avoid the risk of CPU bugs in that area.
1931 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1932 spin_unlock(&mm->page_table_lock);
1934 spin_lock(ptl);
1935 isolated = __collapse_huge_page_isolate(vma, address, pte);
1936 spin_unlock(ptl);
1938 if (unlikely(!isolated)) {
1939 pte_unmap(pte);
1940 spin_lock(&mm->page_table_lock);
1941 BUG_ON(!pmd_none(*pmd));
1943 * We can only use set_pmd_at when establishing
1944 * hugepmds and never for establishing regular pmds that
1945 * points to regular pagetables. Use pmd_populate for that
1947 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1948 spin_unlock(&mm->page_table_lock);
1949 anon_vma_unlock(vma->anon_vma);
1950 goto out;
1954 * All pages are isolated and locked so anon_vma rmap
1955 * can't run anymore.
1957 anon_vma_unlock(vma->anon_vma);
1959 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1960 pte_unmap(pte);
1961 __SetPageUptodate(new_page);
1962 pgtable = pmd_pgtable(_pmd);
1963 VM_BUG_ON(page_count(pgtable) != 1);
1964 VM_BUG_ON(page_mapcount(pgtable) != 0);
1966 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1967 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1968 _pmd = pmd_mkhuge(_pmd);
1971 * spin_lock() below is not the equivalent of smp_wmb(), so
1972 * this is needed to avoid the copy_huge_page writes to become
1973 * visible after the set_pmd_at() write.
1975 smp_wmb();
1977 spin_lock(&mm->page_table_lock);
1978 BUG_ON(!pmd_none(*pmd));
1979 page_add_new_anon_rmap(new_page, vma, address);
1980 set_pmd_at(mm, address, pmd, _pmd);
1981 update_mmu_cache(vma, address, _pmd);
1982 prepare_pmd_huge_pte(pgtable, mm);
1983 spin_unlock(&mm->page_table_lock);
1985 #ifndef CONFIG_NUMA
1986 *hpage = NULL;
1987 #endif
1988 khugepaged_pages_collapsed++;
1989 out_up_write:
1990 up_write(&mm->mmap_sem);
1991 return;
1993 out:
1994 mem_cgroup_uncharge_page(new_page);
1995 #ifdef CONFIG_NUMA
1996 put_page(new_page);
1997 #endif
1998 goto out_up_write;
2001 static int khugepaged_scan_pmd(struct mm_struct *mm,
2002 struct vm_area_struct *vma,
2003 unsigned long address,
2004 struct page **hpage)
2006 pgd_t *pgd;
2007 pud_t *pud;
2008 pmd_t *pmd;
2009 pte_t *pte, *_pte;
2010 int ret = 0, referenced = 0, none = 0;
2011 struct page *page;
2012 unsigned long _address;
2013 spinlock_t *ptl;
2014 int node = -1;
2016 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2018 pgd = pgd_offset(mm, address);
2019 if (!pgd_present(*pgd))
2020 goto out;
2022 pud = pud_offset(pgd, address);
2023 if (!pud_present(*pud))
2024 goto out;
2026 pmd = pmd_offset(pud, address);
2027 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2028 goto out;
2030 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2031 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2032 _pte++, _address += PAGE_SIZE) {
2033 pte_t pteval = *_pte;
2034 if (pte_none(pteval)) {
2035 if (++none <= khugepaged_max_ptes_none)
2036 continue;
2037 else
2038 goto out_unmap;
2040 if (!pte_present(pteval) || !pte_write(pteval))
2041 goto out_unmap;
2042 page = vm_normal_page(vma, _address, pteval);
2043 if (unlikely(!page))
2044 goto out_unmap;
2046 * Chose the node of the first page. This could
2047 * be more sophisticated and look at more pages,
2048 * but isn't for now.
2050 if (node == -1)
2051 node = page_to_nid(page);
2052 VM_BUG_ON(PageCompound(page));
2053 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2054 goto out_unmap;
2055 /* cannot use mapcount: can't collapse if there's a gup pin */
2056 if (page_count(page) != 1)
2057 goto out_unmap;
2058 if (pte_young(pteval) || PageReferenced(page) ||
2059 mmu_notifier_test_young(vma->vm_mm, address))
2060 referenced = 1;
2062 if (referenced)
2063 ret = 1;
2064 out_unmap:
2065 pte_unmap_unlock(pte, ptl);
2066 if (ret)
2067 /* collapse_huge_page will return with the mmap_sem released */
2068 collapse_huge_page(mm, address, hpage, vma, node);
2069 out:
2070 return ret;
2073 static void collect_mm_slot(struct mm_slot *mm_slot)
2075 struct mm_struct *mm = mm_slot->mm;
2077 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2079 if (khugepaged_test_exit(mm)) {
2080 /* free mm_slot */
2081 hlist_del(&mm_slot->hash);
2082 list_del(&mm_slot->mm_node);
2085 * Not strictly needed because the mm exited already.
2087 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2090 /* khugepaged_mm_lock actually not necessary for the below */
2091 free_mm_slot(mm_slot);
2092 mmdrop(mm);
2096 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2097 struct page **hpage)
2098 __releases(&khugepaged_mm_lock)
2099 __acquires(&khugepaged_mm_lock)
2101 struct mm_slot *mm_slot;
2102 struct mm_struct *mm;
2103 struct vm_area_struct *vma;
2104 int progress = 0;
2106 VM_BUG_ON(!pages);
2107 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2109 if (khugepaged_scan.mm_slot)
2110 mm_slot = khugepaged_scan.mm_slot;
2111 else {
2112 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2113 struct mm_slot, mm_node);
2114 khugepaged_scan.address = 0;
2115 khugepaged_scan.mm_slot = mm_slot;
2117 spin_unlock(&khugepaged_mm_lock);
2119 mm = mm_slot->mm;
2120 down_read(&mm->mmap_sem);
2121 if (unlikely(khugepaged_test_exit(mm)))
2122 vma = NULL;
2123 else
2124 vma = find_vma(mm, khugepaged_scan.address);
2126 progress++;
2127 for (; vma; vma = vma->vm_next) {
2128 unsigned long hstart, hend;
2130 cond_resched();
2131 if (unlikely(khugepaged_test_exit(mm))) {
2132 progress++;
2133 break;
2136 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2137 !khugepaged_always()) ||
2138 (vma->vm_flags & VM_NOHUGEPAGE)) {
2139 skip:
2140 progress++;
2141 continue;
2143 if (!vma->anon_vma || vma->vm_ops)
2144 goto skip;
2145 if (is_vma_temporary_stack(vma))
2146 goto skip;
2148 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2149 * must be true too, verify it here.
2151 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2152 vma->vm_flags & VM_NO_THP);
2154 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2155 hend = vma->vm_end & HPAGE_PMD_MASK;
2156 if (hstart >= hend)
2157 goto skip;
2158 if (khugepaged_scan.address > hend)
2159 goto skip;
2160 if (khugepaged_scan.address < hstart)
2161 khugepaged_scan.address = hstart;
2162 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2164 while (khugepaged_scan.address < hend) {
2165 int ret;
2166 cond_resched();
2167 if (unlikely(khugepaged_test_exit(mm)))
2168 goto breakouterloop;
2170 VM_BUG_ON(khugepaged_scan.address < hstart ||
2171 khugepaged_scan.address + HPAGE_PMD_SIZE >
2172 hend);
2173 ret = khugepaged_scan_pmd(mm, vma,
2174 khugepaged_scan.address,
2175 hpage);
2176 /* move to next address */
2177 khugepaged_scan.address += HPAGE_PMD_SIZE;
2178 progress += HPAGE_PMD_NR;
2179 if (ret)
2180 /* we released mmap_sem so break loop */
2181 goto breakouterloop_mmap_sem;
2182 if (progress >= pages)
2183 goto breakouterloop;
2186 breakouterloop:
2187 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2188 breakouterloop_mmap_sem:
2190 spin_lock(&khugepaged_mm_lock);
2191 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2193 * Release the current mm_slot if this mm is about to die, or
2194 * if we scanned all vmas of this mm.
2196 if (khugepaged_test_exit(mm) || !vma) {
2198 * Make sure that if mm_users is reaching zero while
2199 * khugepaged runs here, khugepaged_exit will find
2200 * mm_slot not pointing to the exiting mm.
2202 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2203 khugepaged_scan.mm_slot = list_entry(
2204 mm_slot->mm_node.next,
2205 struct mm_slot, mm_node);
2206 khugepaged_scan.address = 0;
2207 } else {
2208 khugepaged_scan.mm_slot = NULL;
2209 khugepaged_full_scans++;
2212 collect_mm_slot(mm_slot);
2215 return progress;
2218 static int khugepaged_has_work(void)
2220 return !list_empty(&khugepaged_scan.mm_head) &&
2221 khugepaged_enabled();
2224 static int khugepaged_wait_event(void)
2226 return !list_empty(&khugepaged_scan.mm_head) ||
2227 !khugepaged_enabled();
2230 static void khugepaged_do_scan(struct page **hpage)
2232 unsigned int progress = 0, pass_through_head = 0;
2233 unsigned int pages = khugepaged_pages_to_scan;
2235 barrier(); /* write khugepaged_pages_to_scan to local stack */
2237 while (progress < pages) {
2238 cond_resched();
2240 #ifndef CONFIG_NUMA
2241 if (!*hpage) {
2242 *hpage = alloc_hugepage(khugepaged_defrag());
2243 if (unlikely(!*hpage)) {
2244 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2245 break;
2247 count_vm_event(THP_COLLAPSE_ALLOC);
2249 #else
2250 if (IS_ERR(*hpage))
2251 break;
2252 #endif
2254 if (unlikely(kthread_should_stop() || freezing(current)))
2255 break;
2257 spin_lock(&khugepaged_mm_lock);
2258 if (!khugepaged_scan.mm_slot)
2259 pass_through_head++;
2260 if (khugepaged_has_work() &&
2261 pass_through_head < 2)
2262 progress += khugepaged_scan_mm_slot(pages - progress,
2263 hpage);
2264 else
2265 progress = pages;
2266 spin_unlock(&khugepaged_mm_lock);
2270 static void khugepaged_alloc_sleep(void)
2272 wait_event_freezable_timeout(khugepaged_wait, false,
2273 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2276 #ifndef CONFIG_NUMA
2277 static struct page *khugepaged_alloc_hugepage(void)
2279 struct page *hpage;
2281 do {
2282 hpage = alloc_hugepage(khugepaged_defrag());
2283 if (!hpage) {
2284 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2285 khugepaged_alloc_sleep();
2286 } else
2287 count_vm_event(THP_COLLAPSE_ALLOC);
2288 } while (unlikely(!hpage) &&
2289 likely(khugepaged_enabled()));
2290 return hpage;
2292 #endif
2294 static void khugepaged_loop(void)
2296 struct page *hpage;
2298 #ifdef CONFIG_NUMA
2299 hpage = NULL;
2300 #endif
2301 while (likely(khugepaged_enabled())) {
2302 #ifndef CONFIG_NUMA
2303 hpage = khugepaged_alloc_hugepage();
2304 if (unlikely(!hpage))
2305 break;
2306 #else
2307 if (IS_ERR(hpage)) {
2308 khugepaged_alloc_sleep();
2309 hpage = NULL;
2311 #endif
2313 khugepaged_do_scan(&hpage);
2314 #ifndef CONFIG_NUMA
2315 if (hpage)
2316 put_page(hpage);
2317 #endif
2318 try_to_freeze();
2319 if (unlikely(kthread_should_stop()))
2320 break;
2321 if (khugepaged_has_work()) {
2322 if (!khugepaged_scan_sleep_millisecs)
2323 continue;
2324 wait_event_freezable_timeout(khugepaged_wait, false,
2325 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2326 } else if (khugepaged_enabled())
2327 wait_event_freezable(khugepaged_wait,
2328 khugepaged_wait_event());
2332 static int khugepaged(void *none)
2334 struct mm_slot *mm_slot;
2336 set_freezable();
2337 set_user_nice(current, 19);
2339 /* serialize with start_khugepaged() */
2340 mutex_lock(&khugepaged_mutex);
2342 for (;;) {
2343 mutex_unlock(&khugepaged_mutex);
2344 VM_BUG_ON(khugepaged_thread != current);
2345 khugepaged_loop();
2346 VM_BUG_ON(khugepaged_thread != current);
2348 mutex_lock(&khugepaged_mutex);
2349 if (!khugepaged_enabled())
2350 break;
2351 if (unlikely(kthread_should_stop()))
2352 break;
2355 spin_lock(&khugepaged_mm_lock);
2356 mm_slot = khugepaged_scan.mm_slot;
2357 khugepaged_scan.mm_slot = NULL;
2358 if (mm_slot)
2359 collect_mm_slot(mm_slot);
2360 spin_unlock(&khugepaged_mm_lock);
2362 khugepaged_thread = NULL;
2363 mutex_unlock(&khugepaged_mutex);
2365 return 0;
2368 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2370 struct page *page;
2372 spin_lock(&mm->page_table_lock);
2373 if (unlikely(!pmd_trans_huge(*pmd))) {
2374 spin_unlock(&mm->page_table_lock);
2375 return;
2377 page = pmd_page(*pmd);
2378 VM_BUG_ON(!page_count(page));
2379 get_page(page);
2380 spin_unlock(&mm->page_table_lock);
2382 split_huge_page(page);
2384 put_page(page);
2385 BUG_ON(pmd_trans_huge(*pmd));
2388 static void split_huge_page_address(struct mm_struct *mm,
2389 unsigned long address)
2391 pgd_t *pgd;
2392 pud_t *pud;
2393 pmd_t *pmd;
2395 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2397 pgd = pgd_offset(mm, address);
2398 if (!pgd_present(*pgd))
2399 return;
2401 pud = pud_offset(pgd, address);
2402 if (!pud_present(*pud))
2403 return;
2405 pmd = pmd_offset(pud, address);
2406 if (!pmd_present(*pmd))
2407 return;
2409 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2410 * materialize from under us.
2412 split_huge_page_pmd(mm, pmd);
2415 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2416 unsigned long start,
2417 unsigned long end,
2418 long adjust_next)
2421 * If the new start address isn't hpage aligned and it could
2422 * previously contain an hugepage: check if we need to split
2423 * an huge pmd.
2425 if (start & ~HPAGE_PMD_MASK &&
2426 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2427 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2428 split_huge_page_address(vma->vm_mm, start);
2431 * If the new end address isn't hpage aligned and it could
2432 * previously contain an hugepage: check if we need to split
2433 * an huge pmd.
2435 if (end & ~HPAGE_PMD_MASK &&
2436 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2437 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2438 split_huge_page_address(vma->vm_mm, end);
2441 * If we're also updating the vma->vm_next->vm_start, if the new
2442 * vm_next->vm_start isn't page aligned and it could previously
2443 * contain an hugepage: check if we need to split an huge pmd.
2445 if (adjust_next > 0) {
2446 struct vm_area_struct *next = vma->vm_next;
2447 unsigned long nstart = next->vm_start;
2448 nstart += adjust_next << PAGE_SHIFT;
2449 if (nstart & ~HPAGE_PMD_MASK &&
2450 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2451 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2452 split_huge_page_address(next->vm_mm, nstart);