4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/hugetlb.h>
38 /* How many pages do we try to swap or page in/out together? */
41 static DEFINE_PER_CPU(struct pagevec
[NR_LRU_LISTS
], lru_add_pvecs
);
42 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
43 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
46 * This path almost never happens for VM activity - pages are normally
47 * freed via pagevecs. But it gets used by networking.
49 static void __page_cache_release(struct page
*page
)
53 struct zone
*zone
= page_zone(page
);
55 spin_lock_irqsave(&zone
->lru_lock
, flags
);
56 VM_BUG_ON(!PageLRU(page
));
58 del_page_from_lru(zone
, page
);
59 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
63 static void __put_single_page(struct page
*page
)
65 __page_cache_release(page
);
66 free_hot_cold_page(page
, 0);
69 static void __put_compound_page(struct page
*page
)
71 compound_page_dtor
*dtor
;
74 __page_cache_release(page
);
75 dtor
= get_compound_page_dtor(page
);
79 static void put_compound_page(struct page
*page
)
81 if (unlikely(PageTail(page
))) {
82 /* __split_huge_page_refcount can run under us */
83 struct page
*page_head
= compound_trans_head(page
);
85 if (likely(page
!= page_head
&&
86 get_page_unless_zero(page_head
))) {
89 if (PageHeadHuge(page_head
)) {
90 if (likely(PageTail(page
))) {
92 * __split_huge_page_refcount
95 VM_BUG_ON(!PageHead(page_head
));
96 atomic_dec(&page
->_mapcount
);
97 if (put_page_testzero(page_head
))
99 if (put_page_testzero(page_head
))
100 __put_compound_page(page_head
);
104 * __split_huge_page_refcount
105 * run before us, "page" was a
106 * THP tail. The split
107 * page_head has been freed
108 * and reallocated as slab or
109 * hugetlbfs page of smaller
110 * order (only possible if
111 * reallocated as slab on
118 * page_head wasn't a dangling pointer but it
119 * may not be a head page anymore by the time
120 * we obtain the lock. That is ok as long as it
121 * can't be freed from under us.
123 flags
= compound_lock_irqsave(page_head
);
124 if (unlikely(!PageTail(page
))) {
125 /* __split_huge_page_refcount run before us */
126 compound_unlock_irqrestore(page_head
, flags
);
127 VM_BUG_ON(PageHead(page_head
));
129 if (put_page_testzero(page_head
)) {
131 * The head page may have been
132 * freed and reallocated as a
133 * compound page of smaller
134 * order and then freed again.
135 * All we know is that it
136 * cannot have become: a THP
137 * page, a compound page of
138 * higher order, a tail page.
139 * That is because we still
140 * hold the refcount of the
142 * page_head was the THP head
145 if (PageHead(page_head
))
146 __put_compound_page(page_head
);
148 __put_single_page(page_head
);
151 if (put_page_testzero(page
))
152 __put_single_page(page
);
155 VM_BUG_ON(page_head
!= page
->first_page
);
157 * We can release the refcount taken by
158 * get_page_unless_zero() now that
159 * __split_huge_page_refcount() is blocked on
162 if (put_page_testzero(page_head
))
164 /* __split_huge_page_refcount will wait now */
165 VM_BUG_ON(page_mapcount(page
) <= 0);
166 atomic_dec(&page
->_mapcount
);
167 VM_BUG_ON(atomic_read(&page_head
->_count
) <= 0);
168 VM_BUG_ON(atomic_read(&page
->_count
) != 0);
169 compound_unlock_irqrestore(page_head
, flags
);
170 if (put_page_testzero(page_head
)) {
171 if (PageHead(page_head
))
172 __put_compound_page(page_head
);
174 __put_single_page(page_head
);
177 /* page_head is a dangling pointer */
178 VM_BUG_ON(PageTail(page
));
181 } else if (put_page_testzero(page
)) {
183 __put_compound_page(page
);
185 __put_single_page(page
);
189 void put_page(struct page
*page
)
191 if (unlikely(PageCompound(page
)))
192 put_compound_page(page
);
193 else if (put_page_testzero(page
))
194 __put_single_page(page
);
196 EXPORT_SYMBOL(put_page
);
199 * This function is exported but must not be called by anything other
200 * than get_page(). It implements the slow path of get_page().
202 bool __get_page_tail(struct page
*page
)
205 * This takes care of get_page() if run on a tail page
206 * returned by one of the get_user_pages/follow_page variants.
207 * get_user_pages/follow_page itself doesn't need the compound
208 * lock because it runs __get_page_tail_foll() under the
209 * proper PT lock that already serializes against
214 struct page
*page_head
= compound_trans_head(page
);
216 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
217 /* Ref to put_compound_page() comment. */
218 if (PageHeadHuge(page_head
)) {
219 if (likely(PageTail(page
))) {
221 * This is a hugetlbfs
222 * page. __split_huge_page_refcount
225 VM_BUG_ON(!PageHead(page_head
));
226 __get_page_tail_foll(page
, false);
230 * __split_huge_page_refcount run
231 * before us, "page" was a THP
232 * tail. The split page_head has been
233 * freed and reallocated as slab or
234 * hugetlbfs page of smaller order
235 * (only possible if reallocated as
243 * page_head wasn't a dangling pointer but it
244 * may not be a head page anymore by the time
245 * we obtain the lock. That is ok as long as it
246 * can't be freed from under us.
248 flags
= compound_lock_irqsave(page_head
);
249 /* here __split_huge_page_refcount won't run anymore */
250 if (likely(PageTail(page
))) {
251 __get_page_tail_foll(page
, false);
254 compound_unlock_irqrestore(page_head
, flags
);
260 EXPORT_SYMBOL(__get_page_tail
);
263 * put_pages_list() - release a list of pages
264 * @pages: list of pages threaded on page->lru
266 * Release a list of pages which are strung together on page.lru. Currently
267 * used by read_cache_pages() and related error recovery code.
269 void put_pages_list(struct list_head
*pages
)
271 while (!list_empty(pages
)) {
274 victim
= list_entry(pages
->prev
, struct page
, lru
);
275 list_del(&victim
->lru
);
276 page_cache_release(victim
);
279 EXPORT_SYMBOL(put_pages_list
);
281 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
282 void (*move_fn
)(struct page
*page
, void *arg
),
286 struct zone
*zone
= NULL
;
287 unsigned long flags
= 0;
289 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
290 struct page
*page
= pvec
->pages
[i
];
291 struct zone
*pagezone
= page_zone(page
);
293 if (pagezone
!= zone
) {
295 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
297 spin_lock_irqsave(&zone
->lru_lock
, flags
);
300 (*move_fn
)(page
, arg
);
303 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
304 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
305 pagevec_reinit(pvec
);
308 static void pagevec_move_tail_fn(struct page
*page
, void *arg
)
311 struct zone
*zone
= page_zone(page
);
313 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
314 enum lru_list lru
= page_lru_base_type(page
);
315 list_move_tail(&page
->lru
, &zone
->lru
[lru
].list
);
316 mem_cgroup_rotate_reclaimable_page(page
);
322 * pagevec_move_tail() must be called with IRQ disabled.
323 * Otherwise this may cause nasty races.
325 static void pagevec_move_tail(struct pagevec
*pvec
)
329 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
330 __count_vm_events(PGROTATED
, pgmoved
);
334 * Writeback is about to end against a page which has been marked for immediate
335 * reclaim. If it still appears to be reclaimable, move it to the tail of the
338 void rotate_reclaimable_page(struct page
*page
)
340 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
341 !PageUnevictable(page
) && PageLRU(page
)) {
342 struct pagevec
*pvec
;
345 page_cache_get(page
);
346 local_irq_save(flags
);
347 pvec
= &__get_cpu_var(lru_rotate_pvecs
);
348 if (!pagevec_add(pvec
, page
))
349 pagevec_move_tail(pvec
);
350 local_irq_restore(flags
);
354 static void update_page_reclaim_stat(struct zone
*zone
, struct page
*page
,
355 int file
, int rotated
)
357 struct zone_reclaim_stat
*reclaim_stat
= &zone
->reclaim_stat
;
358 struct zone_reclaim_stat
*memcg_reclaim_stat
;
360 memcg_reclaim_stat
= mem_cgroup_get_reclaim_stat_from_page(page
);
362 reclaim_stat
->recent_scanned
[file
]++;
364 reclaim_stat
->recent_rotated
[file
]++;
366 if (!memcg_reclaim_stat
)
369 memcg_reclaim_stat
->recent_scanned
[file
]++;
371 memcg_reclaim_stat
->recent_rotated
[file
]++;
374 static void __activate_page(struct page
*page
, void *arg
)
376 struct zone
*zone
= page_zone(page
);
378 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
379 int file
= page_is_file_cache(page
);
380 int lru
= page_lru_base_type(page
);
381 del_page_from_lru_list(zone
, page
, lru
);
385 add_page_to_lru_list(zone
, page
, lru
);
386 __count_vm_event(PGACTIVATE
);
388 update_page_reclaim_stat(zone
, page
, file
, 1);
393 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
395 static void activate_page_drain(int cpu
)
397 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
399 if (pagevec_count(pvec
))
400 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
403 void activate_page(struct page
*page
)
405 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
406 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
408 page_cache_get(page
);
409 if (!pagevec_add(pvec
, page
))
410 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
411 put_cpu_var(activate_page_pvecs
);
416 static inline void activate_page_drain(int cpu
)
420 void activate_page(struct page
*page
)
422 struct zone
*zone
= page_zone(page
);
424 spin_lock_irq(&zone
->lru_lock
);
425 __activate_page(page
, NULL
);
426 spin_unlock_irq(&zone
->lru_lock
);
431 * Mark a page as having seen activity.
433 * inactive,unreferenced -> inactive,referenced
434 * inactive,referenced -> active,unreferenced
435 * active,unreferenced -> active,referenced
437 void mark_page_accessed(struct page
*page
)
439 if (!PageActive(page
) && !PageUnevictable(page
) &&
440 PageReferenced(page
) && PageLRU(page
)) {
442 ClearPageReferenced(page
);
443 } else if (!PageReferenced(page
)) {
444 SetPageReferenced(page
);
448 EXPORT_SYMBOL(mark_page_accessed
);
450 void __lru_cache_add(struct page
*page
, enum lru_list lru
)
452 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvecs
)[lru
];
454 page_cache_get(page
);
455 if (!pagevec_add(pvec
, page
))
456 ____pagevec_lru_add(pvec
, lru
);
457 put_cpu_var(lru_add_pvecs
);
459 EXPORT_SYMBOL(__lru_cache_add
);
462 * lru_cache_add_lru - add a page to a page list
463 * @page: the page to be added to the LRU.
464 * @lru: the LRU list to which the page is added.
466 void lru_cache_add_lru(struct page
*page
, enum lru_list lru
)
468 if (PageActive(page
)) {
469 VM_BUG_ON(PageUnevictable(page
));
470 ClearPageActive(page
);
471 } else if (PageUnevictable(page
)) {
472 VM_BUG_ON(PageActive(page
));
473 ClearPageUnevictable(page
);
476 VM_BUG_ON(PageLRU(page
) || PageActive(page
) || PageUnevictable(page
));
477 __lru_cache_add(page
, lru
);
481 * add_page_to_unevictable_list - add a page to the unevictable list
482 * @page: the page to be added to the unevictable list
484 * Add page directly to its zone's unevictable list. To avoid races with
485 * tasks that might be making the page evictable, through eg. munlock,
486 * munmap or exit, while it's not on the lru, we want to add the page
487 * while it's locked or otherwise "invisible" to other tasks. This is
488 * difficult to do when using the pagevec cache, so bypass that.
490 void add_page_to_unevictable_list(struct page
*page
)
492 struct zone
*zone
= page_zone(page
);
494 spin_lock_irq(&zone
->lru_lock
);
495 SetPageUnevictable(page
);
497 add_page_to_lru_list(zone
, page
, LRU_UNEVICTABLE
);
498 spin_unlock_irq(&zone
->lru_lock
);
502 * If the page can not be invalidated, it is moved to the
503 * inactive list to speed up its reclaim. It is moved to the
504 * head of the list, rather than the tail, to give the flusher
505 * threads some time to write it out, as this is much more
506 * effective than the single-page writeout from reclaim.
508 * If the page isn't page_mapped and dirty/writeback, the page
509 * could reclaim asap using PG_reclaim.
511 * 1. active, mapped page -> none
512 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
513 * 3. inactive, mapped page -> none
514 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
515 * 5. inactive, clean -> inactive, tail
518 * In 4, why it moves inactive's head, the VM expects the page would
519 * be write it out by flusher threads as this is much more effective
520 * than the single-page writeout from reclaim.
522 static void lru_deactivate_fn(struct page
*page
, void *arg
)
526 struct zone
*zone
= page_zone(page
);
531 if (PageUnevictable(page
))
534 /* Some processes are using the page */
535 if (page_mapped(page
))
538 active
= PageActive(page
);
540 file
= page_is_file_cache(page
);
541 lru
= page_lru_base_type(page
);
542 del_page_from_lru_list(zone
, page
, lru
+ active
);
543 ClearPageActive(page
);
544 ClearPageReferenced(page
);
545 add_page_to_lru_list(zone
, page
, lru
);
547 if (PageWriteback(page
) || PageDirty(page
)) {
549 * PG_reclaim could be raced with end_page_writeback
550 * It can make readahead confusing. But race window
551 * is _really_ small and it's non-critical problem.
553 SetPageReclaim(page
);
556 * The page's writeback ends up during pagevec
557 * We moves tha page into tail of inactive.
559 list_move_tail(&page
->lru
, &zone
->lru
[lru
].list
);
560 mem_cgroup_rotate_reclaimable_page(page
);
561 __count_vm_event(PGROTATED
);
565 __count_vm_event(PGDEACTIVATE
);
566 update_page_reclaim_stat(zone
, page
, file
, 0);
570 * Drain pages out of the cpu's pagevecs.
571 * Either "cpu" is the current CPU, and preemption has already been
572 * disabled; or "cpu" is being hot-unplugged, and is already dead.
574 static void drain_cpu_pagevecs(int cpu
)
576 struct pagevec
*pvecs
= per_cpu(lru_add_pvecs
, cpu
);
577 struct pagevec
*pvec
;
581 pvec
= &pvecs
[lru
- LRU_BASE
];
582 if (pagevec_count(pvec
))
583 ____pagevec_lru_add(pvec
, lru
);
586 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
587 if (pagevec_count(pvec
)) {
590 /* No harm done if a racing interrupt already did this */
591 local_irq_save(flags
);
592 pagevec_move_tail(pvec
);
593 local_irq_restore(flags
);
596 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
597 if (pagevec_count(pvec
))
598 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
600 activate_page_drain(cpu
);
604 * deactivate_page - forcefully deactivate a page
605 * @page: page to deactivate
607 * This function hints the VM that @page is a good reclaim candidate,
608 * for example if its invalidation fails due to the page being dirty
609 * or under writeback.
611 void deactivate_page(struct page
*page
)
614 * In a workload with many unevictable page such as mprotect, unevictable
615 * page deactivation for accelerating reclaim is pointless.
617 if (PageUnevictable(page
))
620 if (likely(get_page_unless_zero(page
))) {
621 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
623 if (!pagevec_add(pvec
, page
))
624 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
625 put_cpu_var(lru_deactivate_pvecs
);
629 void lru_add_drain(void)
631 drain_cpu_pagevecs(get_cpu());
635 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
641 * Returns 0 for success
643 int lru_add_drain_all(void)
645 return schedule_on_each_cpu(lru_add_drain_per_cpu
);
649 * Batched page_cache_release(). Decrement the reference count on all the
650 * passed pages. If it fell to zero then remove the page from the LRU and
653 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
654 * for the remainder of the operation.
656 * The locking in this function is against shrink_inactive_list(): we recheck
657 * the page count inside the lock to see whether shrink_inactive_list()
658 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
661 void release_pages(struct page
**pages
, int nr
, int cold
)
664 struct pagevec pages_to_free
;
665 struct zone
*zone
= NULL
;
666 unsigned long uninitialized_var(flags
);
668 pagevec_init(&pages_to_free
, cold
);
669 for (i
= 0; i
< nr
; i
++) {
670 struct page
*page
= pages
[i
];
672 if (unlikely(PageCompound(page
))) {
674 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
677 put_compound_page(page
);
681 if (!put_page_testzero(page
))
685 struct zone
*pagezone
= page_zone(page
);
687 if (pagezone
!= zone
) {
689 spin_unlock_irqrestore(&zone
->lru_lock
,
692 spin_lock_irqsave(&zone
->lru_lock
, flags
);
694 VM_BUG_ON(!PageLRU(page
));
695 __ClearPageLRU(page
);
696 del_page_from_lru(zone
, page
);
699 if (!pagevec_add(&pages_to_free
, page
)) {
701 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
704 __pagevec_free(&pages_to_free
);
705 pagevec_reinit(&pages_to_free
);
709 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
711 pagevec_free(&pages_to_free
);
713 EXPORT_SYMBOL(release_pages
);
716 * The pages which we're about to release may be in the deferred lru-addition
717 * queues. That would prevent them from really being freed right now. That's
718 * OK from a correctness point of view but is inefficient - those pages may be
719 * cache-warm and we want to give them back to the page allocator ASAP.
721 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
722 * and __pagevec_lru_add_active() call release_pages() directly to avoid
725 void __pagevec_release(struct pagevec
*pvec
)
728 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
729 pagevec_reinit(pvec
);
732 EXPORT_SYMBOL(__pagevec_release
);
734 /* used by __split_huge_page_refcount() */
735 void lru_add_page_tail(struct zone
* zone
,
736 struct page
*page
, struct page
*page_tail
)
741 struct list_head
*head
;
743 VM_BUG_ON(!PageHead(page
));
744 VM_BUG_ON(PageCompound(page_tail
));
745 VM_BUG_ON(PageLRU(page_tail
));
746 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&zone
->lru_lock
));
748 SetPageLRU(page_tail
);
750 if (page_evictable(page_tail
, NULL
)) {
751 if (PageActive(page
)) {
752 SetPageActive(page_tail
);
754 lru
= LRU_ACTIVE_ANON
;
757 lru
= LRU_INACTIVE_ANON
;
759 update_page_reclaim_stat(zone
, page_tail
, file
, active
);
760 if (likely(PageLRU(page
)))
761 head
= page
->lru
.prev
;
763 head
= &zone
->lru
[lru
].list
;
764 __add_page_to_lru_list(zone
, page_tail
, lru
, head
);
766 SetPageUnevictable(page_tail
);
767 add_page_to_lru_list(zone
, page_tail
, LRU_UNEVICTABLE
);
771 static void ____pagevec_lru_add_fn(struct page
*page
, void *arg
)
773 enum lru_list lru
= (enum lru_list
)arg
;
774 struct zone
*zone
= page_zone(page
);
775 int file
= is_file_lru(lru
);
776 int active
= is_active_lru(lru
);
778 VM_BUG_ON(PageActive(page
));
779 VM_BUG_ON(PageUnevictable(page
));
780 VM_BUG_ON(PageLRU(page
));
785 update_page_reclaim_stat(zone
, page
, file
, active
);
786 add_page_to_lru_list(zone
, page
, lru
);
790 * Add the passed pages to the LRU, then drop the caller's refcount
791 * on them. Reinitialises the caller's pagevec.
793 void ____pagevec_lru_add(struct pagevec
*pvec
, enum lru_list lru
)
795 VM_BUG_ON(is_unevictable_lru(lru
));
797 pagevec_lru_move_fn(pvec
, ____pagevec_lru_add_fn
, (void *)lru
);
800 EXPORT_SYMBOL(____pagevec_lru_add
);
803 * Try to drop buffers from the pages in a pagevec
805 void pagevec_strip(struct pagevec
*pvec
)
809 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
810 struct page
*page
= pvec
->pages
[i
];
812 if (page_has_private(page
) && trylock_page(page
)) {
813 if (page_has_private(page
))
814 try_to_release_page(page
, 0);
821 * pagevec_lookup - gang pagecache lookup
822 * @pvec: Where the resulting pages are placed
823 * @mapping: The address_space to search
824 * @start: The starting page index
825 * @nr_pages: The maximum number of pages
827 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
828 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
829 * reference against the pages in @pvec.
831 * The search returns a group of mapping-contiguous pages with ascending
832 * indexes. There may be holes in the indices due to not-present pages.
834 * pagevec_lookup() returns the number of pages which were found.
836 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
837 pgoff_t start
, unsigned nr_pages
)
839 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
840 return pagevec_count(pvec
);
843 EXPORT_SYMBOL(pagevec_lookup
);
845 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
846 pgoff_t
*index
, int tag
, unsigned nr_pages
)
848 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
849 nr_pages
, pvec
->pages
);
850 return pagevec_count(pvec
);
853 EXPORT_SYMBOL(pagevec_lookup_tag
);
856 * Perform any setup for the swap system
858 void __init
swap_setup(void)
860 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
863 bdi_init(swapper_space
.backing_dev_info
);
866 /* Use a smaller cluster for small-memory machines */
872 * Right now other parts of the system means that we
873 * _really_ don't want to cluster much more