de2104x: fix ethtool
[linux/fpc-iii.git] / mm / swapfile.c
blob1f3f9c59a73ab5be4ff4bb37f428364df7544706
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
50 static bool swap_for_hibernation;
52 static const char Bad_file[] = "Bad swap file entry ";
53 static const char Unused_file[] = "Unused swap file entry ";
54 static const char Bad_offset[] = "Bad swap offset entry ";
55 static const char Unused_offset[] = "Unused swap offset entry ";
57 static struct swap_list_t swap_list = {-1, -1};
59 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
61 static DEFINE_MUTEX(swapon_mutex);
63 static inline unsigned char swap_count(unsigned char ent)
65 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
68 /* returns 1 if swap entry is freed */
69 static int
70 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
72 swp_entry_t entry = swp_entry(si->type, offset);
73 struct page *page;
74 int ret = 0;
76 page = find_get_page(&swapper_space, entry.val);
77 if (!page)
78 return 0;
80 * This function is called from scan_swap_map() and it's called
81 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
82 * We have to use trylock for avoiding deadlock. This is a special
83 * case and you should use try_to_free_swap() with explicit lock_page()
84 * in usual operations.
86 if (trylock_page(page)) {
87 ret = try_to_free_swap(page);
88 unlock_page(page);
90 page_cache_release(page);
91 return ret;
95 * We need this because the bdev->unplug_fn can sleep and we cannot
96 * hold swap_lock while calling the unplug_fn. And swap_lock
97 * cannot be turned into a mutex.
99 static DECLARE_RWSEM(swap_unplug_sem);
101 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
103 swp_entry_t entry;
105 down_read(&swap_unplug_sem);
106 entry.val = page_private(page);
107 if (PageSwapCache(page)) {
108 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
109 struct backing_dev_info *bdi;
112 * If the page is removed from swapcache from under us (with a
113 * racy try_to_unuse/swapoff) we need an additional reference
114 * count to avoid reading garbage from page_private(page) above.
115 * If the WARN_ON triggers during a swapoff it maybe the race
116 * condition and it's harmless. However if it triggers without
117 * swapoff it signals a problem.
119 WARN_ON(page_count(page) <= 1);
121 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
122 blk_run_backing_dev(bdi, page);
124 up_read(&swap_unplug_sem);
128 * swapon tell device that all the old swap contents can be discarded,
129 * to allow the swap device to optimize its wear-levelling.
131 static int discard_swap(struct swap_info_struct *si)
133 struct swap_extent *se;
134 sector_t start_block;
135 sector_t nr_blocks;
136 int err = 0;
138 /* Do not discard the swap header page! */
139 se = &si->first_swap_extent;
140 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 if (nr_blocks) {
143 err = blkdev_issue_discard(si->bdev, start_block,
144 nr_blocks, GFP_KERNEL,
145 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
146 if (err)
147 return err;
148 cond_resched();
151 list_for_each_entry(se, &si->first_swap_extent.list, list) {
152 start_block = se->start_block << (PAGE_SHIFT - 9);
153 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155 err = blkdev_issue_discard(si->bdev, start_block,
156 nr_blocks, GFP_KERNEL,
157 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
158 if (err)
159 break;
161 cond_resched();
163 return err; /* That will often be -EOPNOTSUPP */
167 * swap allocation tell device that a cluster of swap can now be discarded,
168 * to allow the swap device to optimize its wear-levelling.
170 static void discard_swap_cluster(struct swap_info_struct *si,
171 pgoff_t start_page, pgoff_t nr_pages)
173 struct swap_extent *se = si->curr_swap_extent;
174 int found_extent = 0;
176 while (nr_pages) {
177 struct list_head *lh;
179 if (se->start_page <= start_page &&
180 start_page < se->start_page + se->nr_pages) {
181 pgoff_t offset = start_page - se->start_page;
182 sector_t start_block = se->start_block + offset;
183 sector_t nr_blocks = se->nr_pages - offset;
185 if (nr_blocks > nr_pages)
186 nr_blocks = nr_pages;
187 start_page += nr_blocks;
188 nr_pages -= nr_blocks;
190 if (!found_extent++)
191 si->curr_swap_extent = se;
193 start_block <<= PAGE_SHIFT - 9;
194 nr_blocks <<= PAGE_SHIFT - 9;
195 if (blkdev_issue_discard(si->bdev, start_block,
196 nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
197 BLKDEV_IFL_BARRIER))
198 break;
201 lh = se->list.next;
202 se = list_entry(lh, struct swap_extent, list);
206 static int wait_for_discard(void *word)
208 schedule();
209 return 0;
212 #define SWAPFILE_CLUSTER 256
213 #define LATENCY_LIMIT 256
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 unsigned char usage)
218 unsigned long offset;
219 unsigned long scan_base;
220 unsigned long last_in_cluster = 0;
221 int latency_ration = LATENCY_LIMIT;
222 int found_free_cluster = 0;
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
232 * And we let swap pages go all over an SSD partition. Hugh
235 si->flags += SWP_SCANNING;
236 scan_base = offset = si->cluster_next;
238 if (unlikely(!si->cluster_nr--)) {
239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 goto checks;
243 if (si->flags & SWP_DISCARDABLE) {
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
251 if (si->lowest_alloc)
252 goto checks;
253 si->lowest_alloc = si->max;
254 si->highest_alloc = 0;
256 spin_unlock(&swap_lock);
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
266 if (!(si->flags & SWP_SOLIDSTATE))
267 scan_base = offset = si->lowest_bit;
268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster <= si->highest_bit; offset++) {
272 if (si->swap_map[offset])
273 last_in_cluster = offset + SWAPFILE_CLUSTER;
274 else if (offset == last_in_cluster) {
275 spin_lock(&swap_lock);
276 offset -= SWAPFILE_CLUSTER - 1;
277 si->cluster_next = offset;
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 found_free_cluster = 1;
280 goto checks;
282 if (unlikely(--latency_ration < 0)) {
283 cond_resched();
284 latency_ration = LATENCY_LIMIT;
288 offset = si->lowest_bit;
289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster < scan_base; offset++) {
293 if (si->swap_map[offset])
294 last_in_cluster = offset + SWAPFILE_CLUSTER;
295 else if (offset == last_in_cluster) {
296 spin_lock(&swap_lock);
297 offset -= SWAPFILE_CLUSTER - 1;
298 si->cluster_next = offset;
299 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 found_free_cluster = 1;
301 goto checks;
303 if (unlikely(--latency_ration < 0)) {
304 cond_resched();
305 latency_ration = LATENCY_LIMIT;
309 offset = scan_base;
310 spin_lock(&swap_lock);
311 si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 si->lowest_alloc = 0;
315 checks:
316 if (!(si->flags & SWP_WRITEOK))
317 goto no_page;
318 if (!si->highest_bit)
319 goto no_page;
320 if (offset > si->highest_bit)
321 scan_base = offset = si->lowest_bit;
323 /* reuse swap entry of cache-only swap if not hibernation. */
324 if (vm_swap_full()
325 && usage == SWAP_HAS_CACHE
326 && si->swap_map[offset] == SWAP_HAS_CACHE) {
327 int swap_was_freed;
328 spin_unlock(&swap_lock);
329 swap_was_freed = __try_to_reclaim_swap(si, offset);
330 spin_lock(&swap_lock);
331 /* entry was freed successfully, try to use this again */
332 if (swap_was_freed)
333 goto checks;
334 goto scan; /* check next one */
337 if (si->swap_map[offset])
338 goto scan;
340 if (offset == si->lowest_bit)
341 si->lowest_bit++;
342 if (offset == si->highest_bit)
343 si->highest_bit--;
344 si->inuse_pages++;
345 if (si->inuse_pages == si->pages) {
346 si->lowest_bit = si->max;
347 si->highest_bit = 0;
349 si->swap_map[offset] = usage;
350 si->cluster_next = offset + 1;
351 si->flags -= SWP_SCANNING;
353 if (si->lowest_alloc) {
355 * Only set when SWP_DISCARDABLE, and there's a scan
356 * for a free cluster in progress or just completed.
358 if (found_free_cluster) {
360 * To optimize wear-levelling, discard the
361 * old data of the cluster, taking care not to
362 * discard any of its pages that have already
363 * been allocated by racing tasks (offset has
364 * already stepped over any at the beginning).
366 if (offset < si->highest_alloc &&
367 si->lowest_alloc <= last_in_cluster)
368 last_in_cluster = si->lowest_alloc - 1;
369 si->flags |= SWP_DISCARDING;
370 spin_unlock(&swap_lock);
372 if (offset < last_in_cluster)
373 discard_swap_cluster(si, offset,
374 last_in_cluster - offset + 1);
376 spin_lock(&swap_lock);
377 si->lowest_alloc = 0;
378 si->flags &= ~SWP_DISCARDING;
380 smp_mb(); /* wake_up_bit advises this */
381 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
383 } else if (si->flags & SWP_DISCARDING) {
385 * Delay using pages allocated by racing tasks
386 * until the whole discard has been issued. We
387 * could defer that delay until swap_writepage,
388 * but it's easier to keep this self-contained.
390 spin_unlock(&swap_lock);
391 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
392 wait_for_discard, TASK_UNINTERRUPTIBLE);
393 spin_lock(&swap_lock);
394 } else {
396 * Note pages allocated by racing tasks while
397 * scan for a free cluster is in progress, so
398 * that its final discard can exclude them.
400 if (offset < si->lowest_alloc)
401 si->lowest_alloc = offset;
402 if (offset > si->highest_alloc)
403 si->highest_alloc = offset;
406 return offset;
408 scan:
409 spin_unlock(&swap_lock);
410 while (++offset <= si->highest_bit) {
411 if (!si->swap_map[offset]) {
412 spin_lock(&swap_lock);
413 goto checks;
415 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
416 spin_lock(&swap_lock);
417 goto checks;
419 if (unlikely(--latency_ration < 0)) {
420 cond_resched();
421 latency_ration = LATENCY_LIMIT;
424 offset = si->lowest_bit;
425 while (++offset < scan_base) {
426 if (!si->swap_map[offset]) {
427 spin_lock(&swap_lock);
428 goto checks;
430 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
431 spin_lock(&swap_lock);
432 goto checks;
434 if (unlikely(--latency_ration < 0)) {
435 cond_resched();
436 latency_ration = LATENCY_LIMIT;
439 spin_lock(&swap_lock);
441 no_page:
442 si->flags -= SWP_SCANNING;
443 return 0;
446 swp_entry_t get_swap_page(void)
448 struct swap_info_struct *si;
449 pgoff_t offset;
450 int type, next;
451 int wrapped = 0;
453 spin_lock(&swap_lock);
454 if (nr_swap_pages <= 0)
455 goto noswap;
456 if (swap_for_hibernation)
457 goto noswap;
458 nr_swap_pages--;
460 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
461 si = swap_info[type];
462 next = si->next;
463 if (next < 0 ||
464 (!wrapped && si->prio != swap_info[next]->prio)) {
465 next = swap_list.head;
466 wrapped++;
469 if (!si->highest_bit)
470 continue;
471 if (!(si->flags & SWP_WRITEOK))
472 continue;
474 swap_list.next = next;
475 /* This is called for allocating swap entry for cache */
476 offset = scan_swap_map(si, SWAP_HAS_CACHE);
477 if (offset) {
478 spin_unlock(&swap_lock);
479 return swp_entry(type, offset);
481 next = swap_list.next;
484 nr_swap_pages++;
485 noswap:
486 spin_unlock(&swap_lock);
487 return (swp_entry_t) {0};
490 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
492 struct swap_info_struct *p;
493 unsigned long offset, type;
495 if (!entry.val)
496 goto out;
497 type = swp_type(entry);
498 if (type >= nr_swapfiles)
499 goto bad_nofile;
500 p = swap_info[type];
501 if (!(p->flags & SWP_USED))
502 goto bad_device;
503 offset = swp_offset(entry);
504 if (offset >= p->max)
505 goto bad_offset;
506 if (!p->swap_map[offset])
507 goto bad_free;
508 spin_lock(&swap_lock);
509 return p;
511 bad_free:
512 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
513 goto out;
514 bad_offset:
515 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
516 goto out;
517 bad_device:
518 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
519 goto out;
520 bad_nofile:
521 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
522 out:
523 return NULL;
526 static unsigned char swap_entry_free(struct swap_info_struct *p,
527 swp_entry_t entry, unsigned char usage)
529 unsigned long offset = swp_offset(entry);
530 unsigned char count;
531 unsigned char has_cache;
533 count = p->swap_map[offset];
534 has_cache = count & SWAP_HAS_CACHE;
535 count &= ~SWAP_HAS_CACHE;
537 if (usage == SWAP_HAS_CACHE) {
538 VM_BUG_ON(!has_cache);
539 has_cache = 0;
540 } else if (count == SWAP_MAP_SHMEM) {
542 * Or we could insist on shmem.c using a special
543 * swap_shmem_free() and free_shmem_swap_and_cache()...
545 count = 0;
546 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
547 if (count == COUNT_CONTINUED) {
548 if (swap_count_continued(p, offset, count))
549 count = SWAP_MAP_MAX | COUNT_CONTINUED;
550 else
551 count = SWAP_MAP_MAX;
552 } else
553 count--;
556 if (!count)
557 mem_cgroup_uncharge_swap(entry);
559 usage = count | has_cache;
560 p->swap_map[offset] = usage;
562 /* free if no reference */
563 if (!usage) {
564 struct gendisk *disk = p->bdev->bd_disk;
565 if (offset < p->lowest_bit)
566 p->lowest_bit = offset;
567 if (offset > p->highest_bit)
568 p->highest_bit = offset;
569 if (swap_list.next >= 0 &&
570 p->prio > swap_info[swap_list.next]->prio)
571 swap_list.next = p->type;
572 nr_swap_pages++;
573 p->inuse_pages--;
574 if ((p->flags & SWP_BLKDEV) &&
575 disk->fops->swap_slot_free_notify)
576 disk->fops->swap_slot_free_notify(p->bdev, offset);
579 return usage;
583 * Caller has made sure that the swapdevice corresponding to entry
584 * is still around or has not been recycled.
586 void swap_free(swp_entry_t entry)
588 struct swap_info_struct *p;
590 p = swap_info_get(entry);
591 if (p) {
592 swap_entry_free(p, entry, 1);
593 spin_unlock(&swap_lock);
598 * Called after dropping swapcache to decrease refcnt to swap entries.
600 void swapcache_free(swp_entry_t entry, struct page *page)
602 struct swap_info_struct *p;
603 unsigned char count;
605 p = swap_info_get(entry);
606 if (p) {
607 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
608 if (page)
609 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
610 spin_unlock(&swap_lock);
615 * How many references to page are currently swapped out?
616 * This does not give an exact answer when swap count is continued,
617 * but does include the high COUNT_CONTINUED flag to allow for that.
619 static inline int page_swapcount(struct page *page)
621 int count = 0;
622 struct swap_info_struct *p;
623 swp_entry_t entry;
625 entry.val = page_private(page);
626 p = swap_info_get(entry);
627 if (p) {
628 count = swap_count(p->swap_map[swp_offset(entry)]);
629 spin_unlock(&swap_lock);
631 return count;
635 * We can write to an anon page without COW if there are no other references
636 * to it. And as a side-effect, free up its swap: because the old content
637 * on disk will never be read, and seeking back there to write new content
638 * later would only waste time away from clustering.
640 int reuse_swap_page(struct page *page)
642 int count;
644 VM_BUG_ON(!PageLocked(page));
645 if (unlikely(PageKsm(page)))
646 return 0;
647 count = page_mapcount(page);
648 if (count <= 1 && PageSwapCache(page)) {
649 count += page_swapcount(page);
650 if (count == 1 && !PageWriteback(page)) {
651 delete_from_swap_cache(page);
652 SetPageDirty(page);
655 return count <= 1;
659 * If swap is getting full, or if there are no more mappings of this page,
660 * then try_to_free_swap is called to free its swap space.
662 int try_to_free_swap(struct page *page)
664 VM_BUG_ON(!PageLocked(page));
666 if (!PageSwapCache(page))
667 return 0;
668 if (PageWriteback(page))
669 return 0;
670 if (page_swapcount(page))
671 return 0;
673 delete_from_swap_cache(page);
674 SetPageDirty(page);
675 return 1;
679 * Free the swap entry like above, but also try to
680 * free the page cache entry if it is the last user.
682 int free_swap_and_cache(swp_entry_t entry)
684 struct swap_info_struct *p;
685 struct page *page = NULL;
687 if (non_swap_entry(entry))
688 return 1;
690 p = swap_info_get(entry);
691 if (p) {
692 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
693 page = find_get_page(&swapper_space, entry.val);
694 if (page && !trylock_page(page)) {
695 page_cache_release(page);
696 page = NULL;
699 spin_unlock(&swap_lock);
701 if (page) {
703 * Not mapped elsewhere, or swap space full? Free it!
704 * Also recheck PageSwapCache now page is locked (above).
706 if (PageSwapCache(page) && !PageWriteback(page) &&
707 (!page_mapped(page) || vm_swap_full())) {
708 delete_from_swap_cache(page);
709 SetPageDirty(page);
711 unlock_page(page);
712 page_cache_release(page);
714 return p != NULL;
717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
719 * mem_cgroup_count_swap_user - count the user of a swap entry
720 * @ent: the swap entry to be checked
721 * @pagep: the pointer for the swap cache page of the entry to be stored
723 * Returns the number of the user of the swap entry. The number is valid only
724 * for swaps of anonymous pages.
725 * If the entry is found on swap cache, the page is stored to pagep with
726 * refcount of it being incremented.
728 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
730 struct page *page;
731 struct swap_info_struct *p;
732 int count = 0;
734 page = find_get_page(&swapper_space, ent.val);
735 if (page)
736 count += page_mapcount(page);
737 p = swap_info_get(ent);
738 if (p) {
739 count += swap_count(p->swap_map[swp_offset(ent)]);
740 spin_unlock(&swap_lock);
743 *pagep = page;
744 return count;
746 #endif
748 #ifdef CONFIG_HIBERNATION
750 static pgoff_t hibernation_offset[MAX_SWAPFILES];
752 * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
753 * saved swap_map[] image to the disk will be an incomplete because it's
754 * changing without synchronization with hibernation snap shot.
755 * At resume, we just make swap_for_hibernation=false. We can forget
756 * used maps easily.
758 void hibernation_freeze_swap(void)
760 int i;
762 spin_lock(&swap_lock);
764 printk(KERN_INFO "PM: Freeze Swap\n");
765 swap_for_hibernation = true;
766 for (i = 0; i < MAX_SWAPFILES; i++)
767 hibernation_offset[i] = 1;
768 spin_unlock(&swap_lock);
771 void hibernation_thaw_swap(void)
773 spin_lock(&swap_lock);
774 if (swap_for_hibernation) {
775 printk(KERN_INFO "PM: Thaw Swap\n");
776 swap_for_hibernation = false;
778 spin_unlock(&swap_lock);
782 * Because updateing swap_map[] can make not-saved-status-change,
783 * we use our own easy allocator.
784 * Please see kernel/power/swap.c, Used swaps are recorded into
785 * RB-tree.
787 swp_entry_t get_swap_for_hibernation(int type)
789 pgoff_t off;
790 swp_entry_t val = {0};
791 struct swap_info_struct *si;
793 spin_lock(&swap_lock);
795 si = swap_info[type];
796 if (!si || !(si->flags & SWP_WRITEOK))
797 goto done;
799 for (off = hibernation_offset[type]; off < si->max; ++off) {
800 if (!si->swap_map[off])
801 break;
803 if (off < si->max) {
804 val = swp_entry(type, off);
805 hibernation_offset[type] = off + 1;
807 done:
808 spin_unlock(&swap_lock);
809 return val;
812 void swap_free_for_hibernation(swp_entry_t ent)
814 /* Nothing to do */
818 * Find the swap type that corresponds to given device (if any).
820 * @offset - number of the PAGE_SIZE-sized block of the device, starting
821 * from 0, in which the swap header is expected to be located.
823 * This is needed for the suspend to disk (aka swsusp).
825 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
827 struct block_device *bdev = NULL;
828 int type;
830 if (device)
831 bdev = bdget(device);
833 spin_lock(&swap_lock);
834 for (type = 0; type < nr_swapfiles; type++) {
835 struct swap_info_struct *sis = swap_info[type];
837 if (!(sis->flags & SWP_WRITEOK))
838 continue;
840 if (!bdev) {
841 if (bdev_p)
842 *bdev_p = bdgrab(sis->bdev);
844 spin_unlock(&swap_lock);
845 return type;
847 if (bdev == sis->bdev) {
848 struct swap_extent *se = &sis->first_swap_extent;
850 if (se->start_block == offset) {
851 if (bdev_p)
852 *bdev_p = bdgrab(sis->bdev);
854 spin_unlock(&swap_lock);
855 bdput(bdev);
856 return type;
860 spin_unlock(&swap_lock);
861 if (bdev)
862 bdput(bdev);
864 return -ENODEV;
868 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
869 * corresponding to given index in swap_info (swap type).
871 sector_t swapdev_block(int type, pgoff_t offset)
873 struct block_device *bdev;
875 if ((unsigned int)type >= nr_swapfiles)
876 return 0;
877 if (!(swap_info[type]->flags & SWP_WRITEOK))
878 return 0;
879 return map_swap_entry(swp_entry(type, offset), &bdev);
883 * Return either the total number of swap pages of given type, or the number
884 * of free pages of that type (depending on @free)
886 * This is needed for software suspend
888 unsigned int count_swap_pages(int type, int free)
890 unsigned int n = 0;
892 spin_lock(&swap_lock);
893 if ((unsigned int)type < nr_swapfiles) {
894 struct swap_info_struct *sis = swap_info[type];
896 if (sis->flags & SWP_WRITEOK) {
897 n = sis->pages;
898 if (free)
899 n -= sis->inuse_pages;
902 spin_unlock(&swap_lock);
903 return n;
905 #endif /* CONFIG_HIBERNATION */
908 * No need to decide whether this PTE shares the swap entry with others,
909 * just let do_wp_page work it out if a write is requested later - to
910 * force COW, vm_page_prot omits write permission from any private vma.
912 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
913 unsigned long addr, swp_entry_t entry, struct page *page)
915 struct mem_cgroup *ptr = NULL;
916 spinlock_t *ptl;
917 pte_t *pte;
918 int ret = 1;
920 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
921 ret = -ENOMEM;
922 goto out_nolock;
925 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
926 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
927 if (ret > 0)
928 mem_cgroup_cancel_charge_swapin(ptr);
929 ret = 0;
930 goto out;
933 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
934 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
935 get_page(page);
936 set_pte_at(vma->vm_mm, addr, pte,
937 pte_mkold(mk_pte(page, vma->vm_page_prot)));
938 page_add_anon_rmap(page, vma, addr);
939 mem_cgroup_commit_charge_swapin(page, ptr);
940 swap_free(entry);
942 * Move the page to the active list so it is not
943 * immediately swapped out again after swapon.
945 activate_page(page);
946 out:
947 pte_unmap_unlock(pte, ptl);
948 out_nolock:
949 return ret;
952 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
953 unsigned long addr, unsigned long end,
954 swp_entry_t entry, struct page *page)
956 pte_t swp_pte = swp_entry_to_pte(entry);
957 pte_t *pte;
958 int ret = 0;
961 * We don't actually need pte lock while scanning for swp_pte: since
962 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
963 * page table while we're scanning; though it could get zapped, and on
964 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
965 * of unmatched parts which look like swp_pte, so unuse_pte must
966 * recheck under pte lock. Scanning without pte lock lets it be
967 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
969 pte = pte_offset_map(pmd, addr);
970 do {
972 * swapoff spends a _lot_ of time in this loop!
973 * Test inline before going to call unuse_pte.
975 if (unlikely(pte_same(*pte, swp_pte))) {
976 pte_unmap(pte);
977 ret = unuse_pte(vma, pmd, addr, entry, page);
978 if (ret)
979 goto out;
980 pte = pte_offset_map(pmd, addr);
982 } while (pte++, addr += PAGE_SIZE, addr != end);
983 pte_unmap(pte - 1);
984 out:
985 return ret;
988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
989 unsigned long addr, unsigned long end,
990 swp_entry_t entry, struct page *page)
992 pmd_t *pmd;
993 unsigned long next;
994 int ret;
996 pmd = pmd_offset(pud, addr);
997 do {
998 next = pmd_addr_end(addr, end);
999 if (pmd_none_or_clear_bad(pmd))
1000 continue;
1001 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1002 if (ret)
1003 return ret;
1004 } while (pmd++, addr = next, addr != end);
1005 return 0;
1008 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1009 unsigned long addr, unsigned long end,
1010 swp_entry_t entry, struct page *page)
1012 pud_t *pud;
1013 unsigned long next;
1014 int ret;
1016 pud = pud_offset(pgd, addr);
1017 do {
1018 next = pud_addr_end(addr, end);
1019 if (pud_none_or_clear_bad(pud))
1020 continue;
1021 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1022 if (ret)
1023 return ret;
1024 } while (pud++, addr = next, addr != end);
1025 return 0;
1028 static int unuse_vma(struct vm_area_struct *vma,
1029 swp_entry_t entry, struct page *page)
1031 pgd_t *pgd;
1032 unsigned long addr, end, next;
1033 int ret;
1035 if (page_anon_vma(page)) {
1036 addr = page_address_in_vma(page, vma);
1037 if (addr == -EFAULT)
1038 return 0;
1039 else
1040 end = addr + PAGE_SIZE;
1041 } else {
1042 addr = vma->vm_start;
1043 end = vma->vm_end;
1046 pgd = pgd_offset(vma->vm_mm, addr);
1047 do {
1048 next = pgd_addr_end(addr, end);
1049 if (pgd_none_or_clear_bad(pgd))
1050 continue;
1051 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1052 if (ret)
1053 return ret;
1054 } while (pgd++, addr = next, addr != end);
1055 return 0;
1058 static int unuse_mm(struct mm_struct *mm,
1059 swp_entry_t entry, struct page *page)
1061 struct vm_area_struct *vma;
1062 int ret = 0;
1064 if (!down_read_trylock(&mm->mmap_sem)) {
1066 * Activate page so shrink_inactive_list is unlikely to unmap
1067 * its ptes while lock is dropped, so swapoff can make progress.
1069 activate_page(page);
1070 unlock_page(page);
1071 down_read(&mm->mmap_sem);
1072 lock_page(page);
1074 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1075 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1076 break;
1078 up_read(&mm->mmap_sem);
1079 return (ret < 0)? ret: 0;
1083 * Scan swap_map from current position to next entry still in use.
1084 * Recycle to start on reaching the end, returning 0 when empty.
1086 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1087 unsigned int prev)
1089 unsigned int max = si->max;
1090 unsigned int i = prev;
1091 unsigned char count;
1094 * No need for swap_lock here: we're just looking
1095 * for whether an entry is in use, not modifying it; false
1096 * hits are okay, and sys_swapoff() has already prevented new
1097 * allocations from this area (while holding swap_lock).
1099 for (;;) {
1100 if (++i >= max) {
1101 if (!prev) {
1102 i = 0;
1103 break;
1106 * No entries in use at top of swap_map,
1107 * loop back to start and recheck there.
1109 max = prev + 1;
1110 prev = 0;
1111 i = 1;
1113 count = si->swap_map[i];
1114 if (count && swap_count(count) != SWAP_MAP_BAD)
1115 break;
1117 return i;
1121 * We completely avoid races by reading each swap page in advance,
1122 * and then search for the process using it. All the necessary
1123 * page table adjustments can then be made atomically.
1125 static int try_to_unuse(unsigned int type)
1127 struct swap_info_struct *si = swap_info[type];
1128 struct mm_struct *start_mm;
1129 unsigned char *swap_map;
1130 unsigned char swcount;
1131 struct page *page;
1132 swp_entry_t entry;
1133 unsigned int i = 0;
1134 int retval = 0;
1137 * When searching mms for an entry, a good strategy is to
1138 * start at the first mm we freed the previous entry from
1139 * (though actually we don't notice whether we or coincidence
1140 * freed the entry). Initialize this start_mm with a hold.
1142 * A simpler strategy would be to start at the last mm we
1143 * freed the previous entry from; but that would take less
1144 * advantage of mmlist ordering, which clusters forked mms
1145 * together, child after parent. If we race with dup_mmap(), we
1146 * prefer to resolve parent before child, lest we miss entries
1147 * duplicated after we scanned child: using last mm would invert
1148 * that.
1150 start_mm = &init_mm;
1151 atomic_inc(&init_mm.mm_users);
1154 * Keep on scanning until all entries have gone. Usually,
1155 * one pass through swap_map is enough, but not necessarily:
1156 * there are races when an instance of an entry might be missed.
1158 while ((i = find_next_to_unuse(si, i)) != 0) {
1159 if (signal_pending(current)) {
1160 retval = -EINTR;
1161 break;
1165 * Get a page for the entry, using the existing swap
1166 * cache page if there is one. Otherwise, get a clean
1167 * page and read the swap into it.
1169 swap_map = &si->swap_map[i];
1170 entry = swp_entry(type, i);
1171 page = read_swap_cache_async(entry,
1172 GFP_HIGHUSER_MOVABLE, NULL, 0);
1173 if (!page) {
1175 * Either swap_duplicate() failed because entry
1176 * has been freed independently, and will not be
1177 * reused since sys_swapoff() already disabled
1178 * allocation from here, or alloc_page() failed.
1180 if (!*swap_map)
1181 continue;
1182 retval = -ENOMEM;
1183 break;
1187 * Don't hold on to start_mm if it looks like exiting.
1189 if (atomic_read(&start_mm->mm_users) == 1) {
1190 mmput(start_mm);
1191 start_mm = &init_mm;
1192 atomic_inc(&init_mm.mm_users);
1196 * Wait for and lock page. When do_swap_page races with
1197 * try_to_unuse, do_swap_page can handle the fault much
1198 * faster than try_to_unuse can locate the entry. This
1199 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1200 * defer to do_swap_page in such a case - in some tests,
1201 * do_swap_page and try_to_unuse repeatedly compete.
1203 wait_on_page_locked(page);
1204 wait_on_page_writeback(page);
1205 lock_page(page);
1206 wait_on_page_writeback(page);
1209 * Remove all references to entry.
1211 swcount = *swap_map;
1212 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1213 retval = shmem_unuse(entry, page);
1214 /* page has already been unlocked and released */
1215 if (retval < 0)
1216 break;
1217 continue;
1219 if (swap_count(swcount) && start_mm != &init_mm)
1220 retval = unuse_mm(start_mm, entry, page);
1222 if (swap_count(*swap_map)) {
1223 int set_start_mm = (*swap_map >= swcount);
1224 struct list_head *p = &start_mm->mmlist;
1225 struct mm_struct *new_start_mm = start_mm;
1226 struct mm_struct *prev_mm = start_mm;
1227 struct mm_struct *mm;
1229 atomic_inc(&new_start_mm->mm_users);
1230 atomic_inc(&prev_mm->mm_users);
1231 spin_lock(&mmlist_lock);
1232 while (swap_count(*swap_map) && !retval &&
1233 (p = p->next) != &start_mm->mmlist) {
1234 mm = list_entry(p, struct mm_struct, mmlist);
1235 if (!atomic_inc_not_zero(&mm->mm_users))
1236 continue;
1237 spin_unlock(&mmlist_lock);
1238 mmput(prev_mm);
1239 prev_mm = mm;
1241 cond_resched();
1243 swcount = *swap_map;
1244 if (!swap_count(swcount)) /* any usage ? */
1246 else if (mm == &init_mm)
1247 set_start_mm = 1;
1248 else
1249 retval = unuse_mm(mm, entry, page);
1251 if (set_start_mm && *swap_map < swcount) {
1252 mmput(new_start_mm);
1253 atomic_inc(&mm->mm_users);
1254 new_start_mm = mm;
1255 set_start_mm = 0;
1257 spin_lock(&mmlist_lock);
1259 spin_unlock(&mmlist_lock);
1260 mmput(prev_mm);
1261 mmput(start_mm);
1262 start_mm = new_start_mm;
1264 if (retval) {
1265 unlock_page(page);
1266 page_cache_release(page);
1267 break;
1271 * If a reference remains (rare), we would like to leave
1272 * the page in the swap cache; but try_to_unmap could
1273 * then re-duplicate the entry once we drop page lock,
1274 * so we might loop indefinitely; also, that page could
1275 * not be swapped out to other storage meanwhile. So:
1276 * delete from cache even if there's another reference,
1277 * after ensuring that the data has been saved to disk -
1278 * since if the reference remains (rarer), it will be
1279 * read from disk into another page. Splitting into two
1280 * pages would be incorrect if swap supported "shared
1281 * private" pages, but they are handled by tmpfs files.
1283 * Given how unuse_vma() targets one particular offset
1284 * in an anon_vma, once the anon_vma has been determined,
1285 * this splitting happens to be just what is needed to
1286 * handle where KSM pages have been swapped out: re-reading
1287 * is unnecessarily slow, but we can fix that later on.
1289 if (swap_count(*swap_map) &&
1290 PageDirty(page) && PageSwapCache(page)) {
1291 struct writeback_control wbc = {
1292 .sync_mode = WB_SYNC_NONE,
1295 swap_writepage(page, &wbc);
1296 lock_page(page);
1297 wait_on_page_writeback(page);
1301 * It is conceivable that a racing task removed this page from
1302 * swap cache just before we acquired the page lock at the top,
1303 * or while we dropped it in unuse_mm(). The page might even
1304 * be back in swap cache on another swap area: that we must not
1305 * delete, since it may not have been written out to swap yet.
1307 if (PageSwapCache(page) &&
1308 likely(page_private(page) == entry.val))
1309 delete_from_swap_cache(page);
1312 * So we could skip searching mms once swap count went
1313 * to 1, we did not mark any present ptes as dirty: must
1314 * mark page dirty so shrink_page_list will preserve it.
1316 SetPageDirty(page);
1317 unlock_page(page);
1318 page_cache_release(page);
1321 * Make sure that we aren't completely killing
1322 * interactive performance.
1324 cond_resched();
1327 mmput(start_mm);
1328 return retval;
1332 * After a successful try_to_unuse, if no swap is now in use, we know
1333 * we can empty the mmlist. swap_lock must be held on entry and exit.
1334 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1335 * added to the mmlist just after page_duplicate - before would be racy.
1337 static void drain_mmlist(void)
1339 struct list_head *p, *next;
1340 unsigned int type;
1342 for (type = 0; type < nr_swapfiles; type++)
1343 if (swap_info[type]->inuse_pages)
1344 return;
1345 spin_lock(&mmlist_lock);
1346 list_for_each_safe(p, next, &init_mm.mmlist)
1347 list_del_init(p);
1348 spin_unlock(&mmlist_lock);
1352 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1353 * corresponds to page offset for the specified swap entry.
1354 * Note that the type of this function is sector_t, but it returns page offset
1355 * into the bdev, not sector offset.
1357 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1359 struct swap_info_struct *sis;
1360 struct swap_extent *start_se;
1361 struct swap_extent *se;
1362 pgoff_t offset;
1364 sis = swap_info[swp_type(entry)];
1365 *bdev = sis->bdev;
1367 offset = swp_offset(entry);
1368 start_se = sis->curr_swap_extent;
1369 se = start_se;
1371 for ( ; ; ) {
1372 struct list_head *lh;
1374 if (se->start_page <= offset &&
1375 offset < (se->start_page + se->nr_pages)) {
1376 return se->start_block + (offset - se->start_page);
1378 lh = se->list.next;
1379 se = list_entry(lh, struct swap_extent, list);
1380 sis->curr_swap_extent = se;
1381 BUG_ON(se == start_se); /* It *must* be present */
1386 * Returns the page offset into bdev for the specified page's swap entry.
1388 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1390 swp_entry_t entry;
1391 entry.val = page_private(page);
1392 return map_swap_entry(entry, bdev);
1396 * Free all of a swapdev's extent information
1398 static void destroy_swap_extents(struct swap_info_struct *sis)
1400 while (!list_empty(&sis->first_swap_extent.list)) {
1401 struct swap_extent *se;
1403 se = list_entry(sis->first_swap_extent.list.next,
1404 struct swap_extent, list);
1405 list_del(&se->list);
1406 kfree(se);
1411 * Add a block range (and the corresponding page range) into this swapdev's
1412 * extent list. The extent list is kept sorted in page order.
1414 * This function rather assumes that it is called in ascending page order.
1416 static int
1417 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1418 unsigned long nr_pages, sector_t start_block)
1420 struct swap_extent *se;
1421 struct swap_extent *new_se;
1422 struct list_head *lh;
1424 if (start_page == 0) {
1425 se = &sis->first_swap_extent;
1426 sis->curr_swap_extent = se;
1427 se->start_page = 0;
1428 se->nr_pages = nr_pages;
1429 se->start_block = start_block;
1430 return 1;
1431 } else {
1432 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1433 se = list_entry(lh, struct swap_extent, list);
1434 BUG_ON(se->start_page + se->nr_pages != start_page);
1435 if (se->start_block + se->nr_pages == start_block) {
1436 /* Merge it */
1437 se->nr_pages += nr_pages;
1438 return 0;
1443 * No merge. Insert a new extent, preserving ordering.
1445 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1446 if (new_se == NULL)
1447 return -ENOMEM;
1448 new_se->start_page = start_page;
1449 new_se->nr_pages = nr_pages;
1450 new_se->start_block = start_block;
1452 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1453 return 1;
1457 * A `swap extent' is a simple thing which maps a contiguous range of pages
1458 * onto a contiguous range of disk blocks. An ordered list of swap extents
1459 * is built at swapon time and is then used at swap_writepage/swap_readpage
1460 * time for locating where on disk a page belongs.
1462 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1463 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1464 * swap files identically.
1466 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1467 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1468 * swapfiles are handled *identically* after swapon time.
1470 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1471 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1472 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1473 * requirements, they are simply tossed out - we will never use those blocks
1474 * for swapping.
1476 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1477 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1478 * which will scribble on the fs.
1480 * The amount of disk space which a single swap extent represents varies.
1481 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1482 * extents in the list. To avoid much list walking, we cache the previous
1483 * search location in `curr_swap_extent', and start new searches from there.
1484 * This is extremely effective. The average number of iterations in
1485 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1487 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1489 struct inode *inode;
1490 unsigned blocks_per_page;
1491 unsigned long page_no;
1492 unsigned blkbits;
1493 sector_t probe_block;
1494 sector_t last_block;
1495 sector_t lowest_block = -1;
1496 sector_t highest_block = 0;
1497 int nr_extents = 0;
1498 int ret;
1500 inode = sis->swap_file->f_mapping->host;
1501 if (S_ISBLK(inode->i_mode)) {
1502 ret = add_swap_extent(sis, 0, sis->max, 0);
1503 *span = sis->pages;
1504 goto out;
1507 blkbits = inode->i_blkbits;
1508 blocks_per_page = PAGE_SIZE >> blkbits;
1511 * Map all the blocks into the extent list. This code doesn't try
1512 * to be very smart.
1514 probe_block = 0;
1515 page_no = 0;
1516 last_block = i_size_read(inode) >> blkbits;
1517 while ((probe_block + blocks_per_page) <= last_block &&
1518 page_no < sis->max) {
1519 unsigned block_in_page;
1520 sector_t first_block;
1522 first_block = bmap(inode, probe_block);
1523 if (first_block == 0)
1524 goto bad_bmap;
1527 * It must be PAGE_SIZE aligned on-disk
1529 if (first_block & (blocks_per_page - 1)) {
1530 probe_block++;
1531 goto reprobe;
1534 for (block_in_page = 1; block_in_page < blocks_per_page;
1535 block_in_page++) {
1536 sector_t block;
1538 block = bmap(inode, probe_block + block_in_page);
1539 if (block == 0)
1540 goto bad_bmap;
1541 if (block != first_block + block_in_page) {
1542 /* Discontiguity */
1543 probe_block++;
1544 goto reprobe;
1548 first_block >>= (PAGE_SHIFT - blkbits);
1549 if (page_no) { /* exclude the header page */
1550 if (first_block < lowest_block)
1551 lowest_block = first_block;
1552 if (first_block > highest_block)
1553 highest_block = first_block;
1557 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1559 ret = add_swap_extent(sis, page_no, 1, first_block);
1560 if (ret < 0)
1561 goto out;
1562 nr_extents += ret;
1563 page_no++;
1564 probe_block += blocks_per_page;
1565 reprobe:
1566 continue;
1568 ret = nr_extents;
1569 *span = 1 + highest_block - lowest_block;
1570 if (page_no == 0)
1571 page_no = 1; /* force Empty message */
1572 sis->max = page_no;
1573 sis->pages = page_no - 1;
1574 sis->highest_bit = page_no - 1;
1575 out:
1576 return ret;
1577 bad_bmap:
1578 printk(KERN_ERR "swapon: swapfile has holes\n");
1579 ret = -EINVAL;
1580 goto out;
1583 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1585 struct swap_info_struct *p = NULL;
1586 unsigned char *swap_map;
1587 struct file *swap_file, *victim;
1588 struct address_space *mapping;
1589 struct inode *inode;
1590 char *pathname;
1591 int i, type, prev;
1592 int err;
1594 if (!capable(CAP_SYS_ADMIN))
1595 return -EPERM;
1597 pathname = getname(specialfile);
1598 err = PTR_ERR(pathname);
1599 if (IS_ERR(pathname))
1600 goto out;
1602 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1603 putname(pathname);
1604 err = PTR_ERR(victim);
1605 if (IS_ERR(victim))
1606 goto out;
1608 mapping = victim->f_mapping;
1609 prev = -1;
1610 spin_lock(&swap_lock);
1611 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1612 p = swap_info[type];
1613 if (p->flags & SWP_WRITEOK) {
1614 if (p->swap_file->f_mapping == mapping)
1615 break;
1617 prev = type;
1619 if (type < 0) {
1620 err = -EINVAL;
1621 spin_unlock(&swap_lock);
1622 goto out_dput;
1624 if (!security_vm_enough_memory(p->pages))
1625 vm_unacct_memory(p->pages);
1626 else {
1627 err = -ENOMEM;
1628 spin_unlock(&swap_lock);
1629 goto out_dput;
1631 if (prev < 0)
1632 swap_list.head = p->next;
1633 else
1634 swap_info[prev]->next = p->next;
1635 if (type == swap_list.next) {
1636 /* just pick something that's safe... */
1637 swap_list.next = swap_list.head;
1639 if (p->prio < 0) {
1640 for (i = p->next; i >= 0; i = swap_info[i]->next)
1641 swap_info[i]->prio = p->prio--;
1642 least_priority++;
1644 nr_swap_pages -= p->pages;
1645 total_swap_pages -= p->pages;
1646 p->flags &= ~SWP_WRITEOK;
1647 spin_unlock(&swap_lock);
1649 current->flags |= PF_OOM_ORIGIN;
1650 err = try_to_unuse(type);
1651 current->flags &= ~PF_OOM_ORIGIN;
1653 if (err) {
1654 /* re-insert swap space back into swap_list */
1655 spin_lock(&swap_lock);
1656 if (p->prio < 0)
1657 p->prio = --least_priority;
1658 prev = -1;
1659 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1660 if (p->prio >= swap_info[i]->prio)
1661 break;
1662 prev = i;
1664 p->next = i;
1665 if (prev < 0)
1666 swap_list.head = swap_list.next = type;
1667 else
1668 swap_info[prev]->next = type;
1669 nr_swap_pages += p->pages;
1670 total_swap_pages += p->pages;
1671 p->flags |= SWP_WRITEOK;
1672 spin_unlock(&swap_lock);
1673 goto out_dput;
1676 /* wait for any unplug function to finish */
1677 down_write(&swap_unplug_sem);
1678 up_write(&swap_unplug_sem);
1680 destroy_swap_extents(p);
1681 if (p->flags & SWP_CONTINUED)
1682 free_swap_count_continuations(p);
1684 mutex_lock(&swapon_mutex);
1685 spin_lock(&swap_lock);
1686 drain_mmlist();
1688 /* wait for anyone still in scan_swap_map */
1689 p->highest_bit = 0; /* cuts scans short */
1690 while (p->flags >= SWP_SCANNING) {
1691 spin_unlock(&swap_lock);
1692 schedule_timeout_uninterruptible(1);
1693 spin_lock(&swap_lock);
1696 swap_file = p->swap_file;
1697 p->swap_file = NULL;
1698 p->max = 0;
1699 swap_map = p->swap_map;
1700 p->swap_map = NULL;
1701 p->flags = 0;
1702 spin_unlock(&swap_lock);
1703 mutex_unlock(&swapon_mutex);
1704 vfree(swap_map);
1705 /* Destroy swap account informatin */
1706 swap_cgroup_swapoff(type);
1708 inode = mapping->host;
1709 if (S_ISBLK(inode->i_mode)) {
1710 struct block_device *bdev = I_BDEV(inode);
1711 set_blocksize(bdev, p->old_block_size);
1712 bd_release(bdev);
1713 } else {
1714 mutex_lock(&inode->i_mutex);
1715 inode->i_flags &= ~S_SWAPFILE;
1716 mutex_unlock(&inode->i_mutex);
1718 filp_close(swap_file, NULL);
1719 err = 0;
1721 out_dput:
1722 filp_close(victim, NULL);
1723 out:
1724 return err;
1727 #ifdef CONFIG_PROC_FS
1728 /* iterator */
1729 static void *swap_start(struct seq_file *swap, loff_t *pos)
1731 struct swap_info_struct *si;
1732 int type;
1733 loff_t l = *pos;
1735 mutex_lock(&swapon_mutex);
1737 if (!l)
1738 return SEQ_START_TOKEN;
1740 for (type = 0; type < nr_swapfiles; type++) {
1741 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1742 si = swap_info[type];
1743 if (!(si->flags & SWP_USED) || !si->swap_map)
1744 continue;
1745 if (!--l)
1746 return si;
1749 return NULL;
1752 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1754 struct swap_info_struct *si = v;
1755 int type;
1757 if (v == SEQ_START_TOKEN)
1758 type = 0;
1759 else
1760 type = si->type + 1;
1762 for (; type < nr_swapfiles; type++) {
1763 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1764 si = swap_info[type];
1765 if (!(si->flags & SWP_USED) || !si->swap_map)
1766 continue;
1767 ++*pos;
1768 return si;
1771 return NULL;
1774 static void swap_stop(struct seq_file *swap, void *v)
1776 mutex_unlock(&swapon_mutex);
1779 static int swap_show(struct seq_file *swap, void *v)
1781 struct swap_info_struct *si = v;
1782 struct file *file;
1783 int len;
1785 if (si == SEQ_START_TOKEN) {
1786 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1787 return 0;
1790 file = si->swap_file;
1791 len = seq_path(swap, &file->f_path, " \t\n\\");
1792 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1793 len < 40 ? 40 - len : 1, " ",
1794 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1795 "partition" : "file\t",
1796 si->pages << (PAGE_SHIFT - 10),
1797 si->inuse_pages << (PAGE_SHIFT - 10),
1798 si->prio);
1799 return 0;
1802 static const struct seq_operations swaps_op = {
1803 .start = swap_start,
1804 .next = swap_next,
1805 .stop = swap_stop,
1806 .show = swap_show
1809 static int swaps_open(struct inode *inode, struct file *file)
1811 return seq_open(file, &swaps_op);
1814 static const struct file_operations proc_swaps_operations = {
1815 .open = swaps_open,
1816 .read = seq_read,
1817 .llseek = seq_lseek,
1818 .release = seq_release,
1821 static int __init procswaps_init(void)
1823 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1824 return 0;
1826 __initcall(procswaps_init);
1827 #endif /* CONFIG_PROC_FS */
1829 #ifdef MAX_SWAPFILES_CHECK
1830 static int __init max_swapfiles_check(void)
1832 MAX_SWAPFILES_CHECK();
1833 return 0;
1835 late_initcall(max_swapfiles_check);
1836 #endif
1839 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1841 * The swapon system call
1843 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1845 struct swap_info_struct *p;
1846 char *name = NULL;
1847 struct block_device *bdev = NULL;
1848 struct file *swap_file = NULL;
1849 struct address_space *mapping;
1850 unsigned int type;
1851 int i, prev;
1852 int error;
1853 union swap_header *swap_header;
1854 unsigned int nr_good_pages;
1855 int nr_extents = 0;
1856 sector_t span;
1857 unsigned long maxpages;
1858 unsigned long swapfilepages;
1859 unsigned char *swap_map = NULL;
1860 struct page *page = NULL;
1861 struct inode *inode = NULL;
1862 int did_down = 0;
1864 if (!capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1867 p = kzalloc(sizeof(*p), GFP_KERNEL);
1868 if (!p)
1869 return -ENOMEM;
1871 spin_lock(&swap_lock);
1872 for (type = 0; type < nr_swapfiles; type++) {
1873 if (!(swap_info[type]->flags & SWP_USED))
1874 break;
1876 error = -EPERM;
1877 if (type >= MAX_SWAPFILES) {
1878 spin_unlock(&swap_lock);
1879 kfree(p);
1880 goto out;
1882 if (type >= nr_swapfiles) {
1883 p->type = type;
1884 swap_info[type] = p;
1886 * Write swap_info[type] before nr_swapfiles, in case a
1887 * racing procfs swap_start() or swap_next() is reading them.
1888 * (We never shrink nr_swapfiles, we never free this entry.)
1890 smp_wmb();
1891 nr_swapfiles++;
1892 } else {
1893 kfree(p);
1894 p = swap_info[type];
1896 * Do not memset this entry: a racing procfs swap_next()
1897 * would be relying on p->type to remain valid.
1900 INIT_LIST_HEAD(&p->first_swap_extent.list);
1901 p->flags = SWP_USED;
1902 p->next = -1;
1903 spin_unlock(&swap_lock);
1905 name = getname(specialfile);
1906 error = PTR_ERR(name);
1907 if (IS_ERR(name)) {
1908 name = NULL;
1909 goto bad_swap_2;
1911 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1912 error = PTR_ERR(swap_file);
1913 if (IS_ERR(swap_file)) {
1914 swap_file = NULL;
1915 goto bad_swap_2;
1918 p->swap_file = swap_file;
1919 mapping = swap_file->f_mapping;
1920 inode = mapping->host;
1922 error = -EBUSY;
1923 for (i = 0; i < nr_swapfiles; i++) {
1924 struct swap_info_struct *q = swap_info[i];
1926 if (i == type || !q->swap_file)
1927 continue;
1928 if (mapping == q->swap_file->f_mapping)
1929 goto bad_swap;
1932 error = -EINVAL;
1933 if (S_ISBLK(inode->i_mode)) {
1934 bdev = I_BDEV(inode);
1935 error = bd_claim(bdev, sys_swapon);
1936 if (error < 0) {
1937 bdev = NULL;
1938 error = -EINVAL;
1939 goto bad_swap;
1941 p->old_block_size = block_size(bdev);
1942 error = set_blocksize(bdev, PAGE_SIZE);
1943 if (error < 0)
1944 goto bad_swap;
1945 p->bdev = bdev;
1946 p->flags |= SWP_BLKDEV;
1947 } else if (S_ISREG(inode->i_mode)) {
1948 p->bdev = inode->i_sb->s_bdev;
1949 mutex_lock(&inode->i_mutex);
1950 did_down = 1;
1951 if (IS_SWAPFILE(inode)) {
1952 error = -EBUSY;
1953 goto bad_swap;
1955 } else {
1956 goto bad_swap;
1959 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1962 * Read the swap header.
1964 if (!mapping->a_ops->readpage) {
1965 error = -EINVAL;
1966 goto bad_swap;
1968 page = read_mapping_page(mapping, 0, swap_file);
1969 if (IS_ERR(page)) {
1970 error = PTR_ERR(page);
1971 goto bad_swap;
1973 swap_header = kmap(page);
1975 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1976 printk(KERN_ERR "Unable to find swap-space signature\n");
1977 error = -EINVAL;
1978 goto bad_swap;
1981 /* swap partition endianess hack... */
1982 if (swab32(swap_header->info.version) == 1) {
1983 swab32s(&swap_header->info.version);
1984 swab32s(&swap_header->info.last_page);
1985 swab32s(&swap_header->info.nr_badpages);
1986 for (i = 0; i < swap_header->info.nr_badpages; i++)
1987 swab32s(&swap_header->info.badpages[i]);
1989 /* Check the swap header's sub-version */
1990 if (swap_header->info.version != 1) {
1991 printk(KERN_WARNING
1992 "Unable to handle swap header version %d\n",
1993 swap_header->info.version);
1994 error = -EINVAL;
1995 goto bad_swap;
1998 p->lowest_bit = 1;
1999 p->cluster_next = 1;
2000 p->cluster_nr = 0;
2003 * Find out how many pages are allowed for a single swap
2004 * device. There are two limiting factors: 1) the number of
2005 * bits for the swap offset in the swp_entry_t type and
2006 * 2) the number of bits in the a swap pte as defined by
2007 * the different architectures. In order to find the
2008 * largest possible bit mask a swap entry with swap type 0
2009 * and swap offset ~0UL is created, encoded to a swap pte,
2010 * decoded to a swp_entry_t again and finally the swap
2011 * offset is extracted. This will mask all the bits from
2012 * the initial ~0UL mask that can't be encoded in either
2013 * the swp_entry_t or the architecture definition of a
2014 * swap pte.
2016 maxpages = swp_offset(pte_to_swp_entry(
2017 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2018 if (maxpages > swap_header->info.last_page) {
2019 maxpages = swap_header->info.last_page + 1;
2020 /* p->max is an unsigned int: don't overflow it */
2021 if ((unsigned int)maxpages == 0)
2022 maxpages = UINT_MAX;
2024 p->highest_bit = maxpages - 1;
2026 error = -EINVAL;
2027 if (!maxpages)
2028 goto bad_swap;
2029 if (swapfilepages && maxpages > swapfilepages) {
2030 printk(KERN_WARNING
2031 "Swap area shorter than signature indicates\n");
2032 goto bad_swap;
2034 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2035 goto bad_swap;
2036 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2037 goto bad_swap;
2039 /* OK, set up the swap map and apply the bad block list */
2040 swap_map = vmalloc(maxpages);
2041 if (!swap_map) {
2042 error = -ENOMEM;
2043 goto bad_swap;
2046 memset(swap_map, 0, maxpages);
2047 nr_good_pages = maxpages - 1; /* omit header page */
2049 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2050 unsigned int page_nr = swap_header->info.badpages[i];
2051 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2052 error = -EINVAL;
2053 goto bad_swap;
2055 if (page_nr < maxpages) {
2056 swap_map[page_nr] = SWAP_MAP_BAD;
2057 nr_good_pages--;
2061 error = swap_cgroup_swapon(type, maxpages);
2062 if (error)
2063 goto bad_swap;
2065 if (nr_good_pages) {
2066 swap_map[0] = SWAP_MAP_BAD;
2067 p->max = maxpages;
2068 p->pages = nr_good_pages;
2069 nr_extents = setup_swap_extents(p, &span);
2070 if (nr_extents < 0) {
2071 error = nr_extents;
2072 goto bad_swap;
2074 nr_good_pages = p->pages;
2076 if (!nr_good_pages) {
2077 printk(KERN_WARNING "Empty swap-file\n");
2078 error = -EINVAL;
2079 goto bad_swap;
2082 if (p->bdev) {
2083 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2084 p->flags |= SWP_SOLIDSTATE;
2085 p->cluster_next = 1 + (random32() % p->highest_bit);
2087 if (discard_swap(p) == 0)
2088 p->flags |= SWP_DISCARDABLE;
2091 mutex_lock(&swapon_mutex);
2092 spin_lock(&swap_lock);
2093 if (swap_flags & SWAP_FLAG_PREFER)
2094 p->prio =
2095 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2096 else
2097 p->prio = --least_priority;
2098 p->swap_map = swap_map;
2099 p->flags |= SWP_WRITEOK;
2100 nr_swap_pages += nr_good_pages;
2101 total_swap_pages += nr_good_pages;
2103 printk(KERN_INFO "Adding %uk swap on %s. "
2104 "Priority:%d extents:%d across:%lluk %s%s\n",
2105 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2106 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2107 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2108 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2110 /* insert swap space into swap_list: */
2111 prev = -1;
2112 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2113 if (p->prio >= swap_info[i]->prio)
2114 break;
2115 prev = i;
2117 p->next = i;
2118 if (prev < 0)
2119 swap_list.head = swap_list.next = type;
2120 else
2121 swap_info[prev]->next = type;
2122 spin_unlock(&swap_lock);
2123 mutex_unlock(&swapon_mutex);
2124 error = 0;
2125 goto out;
2126 bad_swap:
2127 if (bdev) {
2128 set_blocksize(bdev, p->old_block_size);
2129 bd_release(bdev);
2131 destroy_swap_extents(p);
2132 swap_cgroup_swapoff(type);
2133 bad_swap_2:
2134 spin_lock(&swap_lock);
2135 p->swap_file = NULL;
2136 p->flags = 0;
2137 spin_unlock(&swap_lock);
2138 vfree(swap_map);
2139 if (swap_file)
2140 filp_close(swap_file, NULL);
2141 out:
2142 if (page && !IS_ERR(page)) {
2143 kunmap(page);
2144 page_cache_release(page);
2146 if (name)
2147 putname(name);
2148 if (did_down) {
2149 if (!error)
2150 inode->i_flags |= S_SWAPFILE;
2151 mutex_unlock(&inode->i_mutex);
2153 return error;
2156 void si_swapinfo(struct sysinfo *val)
2158 unsigned int type;
2159 unsigned long nr_to_be_unused = 0;
2161 spin_lock(&swap_lock);
2162 for (type = 0; type < nr_swapfiles; type++) {
2163 struct swap_info_struct *si = swap_info[type];
2165 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2166 nr_to_be_unused += si->inuse_pages;
2168 val->freeswap = nr_swap_pages + nr_to_be_unused;
2169 val->totalswap = total_swap_pages + nr_to_be_unused;
2170 spin_unlock(&swap_lock);
2174 * Verify that a swap entry is valid and increment its swap map count.
2176 * Returns error code in following case.
2177 * - success -> 0
2178 * - swp_entry is invalid -> EINVAL
2179 * - swp_entry is migration entry -> EINVAL
2180 * - swap-cache reference is requested but there is already one. -> EEXIST
2181 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2182 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2184 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2186 struct swap_info_struct *p;
2187 unsigned long offset, type;
2188 unsigned char count;
2189 unsigned char has_cache;
2190 int err = -EINVAL;
2192 if (non_swap_entry(entry))
2193 goto out;
2195 type = swp_type(entry);
2196 if (type >= nr_swapfiles)
2197 goto bad_file;
2198 p = swap_info[type];
2199 offset = swp_offset(entry);
2201 spin_lock(&swap_lock);
2202 if (unlikely(offset >= p->max))
2203 goto unlock_out;
2205 count = p->swap_map[offset];
2206 has_cache = count & SWAP_HAS_CACHE;
2207 count &= ~SWAP_HAS_CACHE;
2208 err = 0;
2210 if (usage == SWAP_HAS_CACHE) {
2212 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2213 if (!has_cache && count)
2214 has_cache = SWAP_HAS_CACHE;
2215 else if (has_cache) /* someone else added cache */
2216 err = -EEXIST;
2217 else /* no users remaining */
2218 err = -ENOENT;
2220 } else if (count || has_cache) {
2222 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2223 count += usage;
2224 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2225 err = -EINVAL;
2226 else if (swap_count_continued(p, offset, count))
2227 count = COUNT_CONTINUED;
2228 else
2229 err = -ENOMEM;
2230 } else
2231 err = -ENOENT; /* unused swap entry */
2233 p->swap_map[offset] = count | has_cache;
2235 unlock_out:
2236 spin_unlock(&swap_lock);
2237 out:
2238 return err;
2240 bad_file:
2241 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2242 goto out;
2246 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2247 * (in which case its reference count is never incremented).
2249 void swap_shmem_alloc(swp_entry_t entry)
2251 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2255 * Increase reference count of swap entry by 1.
2256 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2257 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2258 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2259 * might occur if a page table entry has got corrupted.
2261 int swap_duplicate(swp_entry_t entry)
2263 int err = 0;
2265 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2266 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2267 return err;
2271 * @entry: swap entry for which we allocate swap cache.
2273 * Called when allocating swap cache for existing swap entry,
2274 * This can return error codes. Returns 0 at success.
2275 * -EBUSY means there is a swap cache.
2276 * Note: return code is different from swap_duplicate().
2278 int swapcache_prepare(swp_entry_t entry)
2280 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2284 * swap_lock prevents swap_map being freed. Don't grab an extra
2285 * reference on the swaphandle, it doesn't matter if it becomes unused.
2287 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2289 struct swap_info_struct *si;
2290 int our_page_cluster = page_cluster;
2291 pgoff_t target, toff;
2292 pgoff_t base, end;
2293 int nr_pages = 0;
2295 if (!our_page_cluster) /* no readahead */
2296 return 0;
2298 si = swap_info[swp_type(entry)];
2299 target = swp_offset(entry);
2300 base = (target >> our_page_cluster) << our_page_cluster;
2301 end = base + (1 << our_page_cluster);
2302 if (!base) /* first page is swap header */
2303 base++;
2305 spin_lock(&swap_lock);
2306 if (end > si->max) /* don't go beyond end of map */
2307 end = si->max;
2309 /* Count contiguous allocated slots above our target */
2310 for (toff = target; ++toff < end; nr_pages++) {
2311 /* Don't read in free or bad pages */
2312 if (!si->swap_map[toff])
2313 break;
2314 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2315 break;
2317 /* Count contiguous allocated slots below our target */
2318 for (toff = target; --toff >= base; nr_pages++) {
2319 /* Don't read in free or bad pages */
2320 if (!si->swap_map[toff])
2321 break;
2322 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2323 break;
2325 spin_unlock(&swap_lock);
2328 * Indicate starting offset, and return number of pages to get:
2329 * if only 1, say 0, since there's then no readahead to be done.
2331 *offset = ++toff;
2332 return nr_pages? ++nr_pages: 0;
2336 * add_swap_count_continuation - called when a swap count is duplicated
2337 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2338 * page of the original vmalloc'ed swap_map, to hold the continuation count
2339 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2340 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2342 * These continuation pages are seldom referenced: the common paths all work
2343 * on the original swap_map, only referring to a continuation page when the
2344 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2346 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2347 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2348 * can be called after dropping locks.
2350 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2352 struct swap_info_struct *si;
2353 struct page *head;
2354 struct page *page;
2355 struct page *list_page;
2356 pgoff_t offset;
2357 unsigned char count;
2360 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2361 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2363 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2365 si = swap_info_get(entry);
2366 if (!si) {
2368 * An acceptable race has occurred since the failing
2369 * __swap_duplicate(): the swap entry has been freed,
2370 * perhaps even the whole swap_map cleared for swapoff.
2372 goto outer;
2375 offset = swp_offset(entry);
2376 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2378 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2380 * The higher the swap count, the more likely it is that tasks
2381 * will race to add swap count continuation: we need to avoid
2382 * over-provisioning.
2384 goto out;
2387 if (!page) {
2388 spin_unlock(&swap_lock);
2389 return -ENOMEM;
2393 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2394 * no architecture is using highmem pages for kernel pagetables: so it
2395 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2397 head = vmalloc_to_page(si->swap_map + offset);
2398 offset &= ~PAGE_MASK;
2401 * Page allocation does not initialize the page's lru field,
2402 * but it does always reset its private field.
2404 if (!page_private(head)) {
2405 BUG_ON(count & COUNT_CONTINUED);
2406 INIT_LIST_HEAD(&head->lru);
2407 set_page_private(head, SWP_CONTINUED);
2408 si->flags |= SWP_CONTINUED;
2411 list_for_each_entry(list_page, &head->lru, lru) {
2412 unsigned char *map;
2415 * If the previous map said no continuation, but we've found
2416 * a continuation page, free our allocation and use this one.
2418 if (!(count & COUNT_CONTINUED))
2419 goto out;
2421 map = kmap_atomic(list_page, KM_USER0) + offset;
2422 count = *map;
2423 kunmap_atomic(map, KM_USER0);
2426 * If this continuation count now has some space in it,
2427 * free our allocation and use this one.
2429 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2430 goto out;
2433 list_add_tail(&page->lru, &head->lru);
2434 page = NULL; /* now it's attached, don't free it */
2435 out:
2436 spin_unlock(&swap_lock);
2437 outer:
2438 if (page)
2439 __free_page(page);
2440 return 0;
2444 * swap_count_continued - when the original swap_map count is incremented
2445 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2446 * into, carry if so, or else fail until a new continuation page is allocated;
2447 * when the original swap_map count is decremented from 0 with continuation,
2448 * borrow from the continuation and report whether it still holds more.
2449 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2451 static bool swap_count_continued(struct swap_info_struct *si,
2452 pgoff_t offset, unsigned char count)
2454 struct page *head;
2455 struct page *page;
2456 unsigned char *map;
2458 head = vmalloc_to_page(si->swap_map + offset);
2459 if (page_private(head) != SWP_CONTINUED) {
2460 BUG_ON(count & COUNT_CONTINUED);
2461 return false; /* need to add count continuation */
2464 offset &= ~PAGE_MASK;
2465 page = list_entry(head->lru.next, struct page, lru);
2466 map = kmap_atomic(page, KM_USER0) + offset;
2468 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2469 goto init_map; /* jump over SWAP_CONT_MAX checks */
2471 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2473 * Think of how you add 1 to 999
2475 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2476 kunmap_atomic(map, KM_USER0);
2477 page = list_entry(page->lru.next, struct page, lru);
2478 BUG_ON(page == head);
2479 map = kmap_atomic(page, KM_USER0) + offset;
2481 if (*map == SWAP_CONT_MAX) {
2482 kunmap_atomic(map, KM_USER0);
2483 page = list_entry(page->lru.next, struct page, lru);
2484 if (page == head)
2485 return false; /* add count continuation */
2486 map = kmap_atomic(page, KM_USER0) + offset;
2487 init_map: *map = 0; /* we didn't zero the page */
2489 *map += 1;
2490 kunmap_atomic(map, KM_USER0);
2491 page = list_entry(page->lru.prev, struct page, lru);
2492 while (page != head) {
2493 map = kmap_atomic(page, KM_USER0) + offset;
2494 *map = COUNT_CONTINUED;
2495 kunmap_atomic(map, KM_USER0);
2496 page = list_entry(page->lru.prev, struct page, lru);
2498 return true; /* incremented */
2500 } else { /* decrementing */
2502 * Think of how you subtract 1 from 1000
2504 BUG_ON(count != COUNT_CONTINUED);
2505 while (*map == COUNT_CONTINUED) {
2506 kunmap_atomic(map, KM_USER0);
2507 page = list_entry(page->lru.next, struct page, lru);
2508 BUG_ON(page == head);
2509 map = kmap_atomic(page, KM_USER0) + offset;
2511 BUG_ON(*map == 0);
2512 *map -= 1;
2513 if (*map == 0)
2514 count = 0;
2515 kunmap_atomic(map, KM_USER0);
2516 page = list_entry(page->lru.prev, struct page, lru);
2517 while (page != head) {
2518 map = kmap_atomic(page, KM_USER0) + offset;
2519 *map = SWAP_CONT_MAX | count;
2520 count = COUNT_CONTINUED;
2521 kunmap_atomic(map, KM_USER0);
2522 page = list_entry(page->lru.prev, struct page, lru);
2524 return count == COUNT_CONTINUED;
2529 * free_swap_count_continuations - swapoff free all the continuation pages
2530 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2532 static void free_swap_count_continuations(struct swap_info_struct *si)
2534 pgoff_t offset;
2536 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2537 struct page *head;
2538 head = vmalloc_to_page(si->swap_map + offset);
2539 if (page_private(head)) {
2540 struct list_head *this, *next;
2541 list_for_each_safe(this, next, &head->lru) {
2542 struct page *page;
2543 page = list_entry(this, struct page, lru);
2544 list_del(this);
2545 __free_page(page);