2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
37 #include "extent_map.h"
39 #include "transaction.h"
40 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
65 BTRFS_RBIO_READ_REBUILD
,
66 BTRFS_RBIO_PARITY_SCRUB
,
67 BTRFS_RBIO_REBUILD_MISSING
,
70 struct btrfs_raid_bio
{
71 struct btrfs_fs_info
*fs_info
;
72 struct btrfs_bio
*bbio
;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
79 struct list_head hash_list
;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache
;
87 * for scheduling work in the helper threads
89 struct btrfs_work work
;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list
;
97 spinlock_t bio_list_lock
;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list
;
108 * flags that tell us if it is safe to
109 * merge with this bio
113 /* size of each individual stripe on disk */
116 /* number of data stripes (no p/q) */
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
128 enum btrfs_rbio_ops operation
;
130 /* first bad stripe */
133 /* second bad stripe (for raid6 use) */
138 * number of pages needed to represent the full
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
154 atomic_t stripes_pending
;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page
**stripe_pages
;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page
**bio_pages
;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap
;
180 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
);
181 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
);
182 static void rmw_work(struct btrfs_work
*work
);
183 static void read_rebuild_work(struct btrfs_work
*work
);
184 static void async_rmw_stripe(struct btrfs_raid_bio
*rbio
);
185 static void async_read_rebuild(struct btrfs_raid_bio
*rbio
);
186 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
, struct bio
*bio
);
187 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
);
188 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
);
189 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
);
190 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
);
192 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
194 static void async_scrub_parity(struct btrfs_raid_bio
*rbio
);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info
*info
)
202 struct btrfs_stripe_hash_table
*table
;
203 struct btrfs_stripe_hash_table
*x
;
204 struct btrfs_stripe_hash
*cur
;
205 struct btrfs_stripe_hash
*h
;
206 int num_entries
= 1 << BTRFS_STRIPE_HASH_TABLE_BITS
;
210 if (info
->stripe_hash_table
)
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size
= sizeof(*table
) + sizeof(*h
) * num_entries
;
221 table
= kzalloc(table_size
, GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
223 table
= vzalloc(table_size
);
228 spin_lock_init(&table
->cache_lock
);
229 INIT_LIST_HEAD(&table
->stripe_cache
);
233 for (i
= 0; i
< num_entries
; i
++) {
235 INIT_LIST_HEAD(&cur
->hash_list
);
236 spin_lock_init(&cur
->lock
);
237 init_waitqueue_head(&cur
->wait
);
240 x
= cmpxchg(&info
->stripe_hash_table
, NULL
, table
);
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
252 * once the caching is done, we set the cache ready
255 static void cache_rbio_pages(struct btrfs_raid_bio
*rbio
)
262 ret
= alloc_rbio_pages(rbio
);
266 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
267 if (!rbio
->bio_pages
[i
])
270 s
= kmap(rbio
->bio_pages
[i
]);
271 d
= kmap(rbio
->stripe_pages
[i
]);
273 memcpy(d
, s
, PAGE_CACHE_SIZE
);
275 kunmap(rbio
->bio_pages
[i
]);
276 kunmap(rbio
->stripe_pages
[i
]);
277 SetPageUptodate(rbio
->stripe_pages
[i
]);
279 set_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
283 * we hash on the first logical address of the stripe
285 static int rbio_bucket(struct btrfs_raid_bio
*rbio
)
287 u64 num
= rbio
->bbio
->raid_map
[0];
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
295 * shifting off the lower bits fixes things.
297 return hash_64(num
>> 16, BTRFS_STRIPE_HASH_TABLE_BITS
);
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
304 static void steal_rbio(struct btrfs_raid_bio
*src
, struct btrfs_raid_bio
*dest
)
310 if (!test_bit(RBIO_CACHE_READY_BIT
, &src
->flags
))
313 for (i
= 0; i
< dest
->nr_pages
; i
++) {
314 s
= src
->stripe_pages
[i
];
315 if (!s
|| !PageUptodate(s
)) {
319 d
= dest
->stripe_pages
[i
];
323 dest
->stripe_pages
[i
] = s
;
324 src
->stripe_pages
[i
] = NULL
;
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
333 * must be called with dest->rbio_list_lock held
335 static void merge_rbio(struct btrfs_raid_bio
*dest
,
336 struct btrfs_raid_bio
*victim
)
338 bio_list_merge(&dest
->bio_list
, &victim
->bio_list
);
339 dest
->bio_list_bytes
+= victim
->bio_list_bytes
;
340 dest
->generic_bio_cnt
+= victim
->generic_bio_cnt
;
341 bio_list_init(&victim
->bio_list
);
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
350 int bucket
= rbio_bucket(rbio
);
351 struct btrfs_stripe_hash_table
*table
;
352 struct btrfs_stripe_hash
*h
;
356 * check the bit again under the hash table lock.
358 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
361 table
= rbio
->fs_info
->stripe_hash_table
;
362 h
= table
->table
+ bucket
;
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
373 spin_lock(&rbio
->bio_list_lock
);
375 if (test_and_clear_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
376 list_del_init(&rbio
->stripe_cache
);
377 table
->cache_size
-= 1;
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
389 if (bio_list_empty(&rbio
->bio_list
)) {
390 if (!list_empty(&rbio
->hash_list
)) {
391 list_del_init(&rbio
->hash_list
);
392 atomic_dec(&rbio
->refs
);
393 BUG_ON(!list_empty(&rbio
->plug_list
));
398 spin_unlock(&rbio
->bio_list_lock
);
399 spin_unlock(&h
->lock
);
402 __free_raid_bio(rbio
);
406 * prune a given rbio from the cache
408 static void remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
410 struct btrfs_stripe_hash_table
*table
;
413 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
416 table
= rbio
->fs_info
->stripe_hash_table
;
418 spin_lock_irqsave(&table
->cache_lock
, flags
);
419 __remove_rbio_from_cache(rbio
);
420 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
424 * remove everything in the cache
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info
*info
)
428 struct btrfs_stripe_hash_table
*table
;
430 struct btrfs_raid_bio
*rbio
;
432 table
= info
->stripe_hash_table
;
434 spin_lock_irqsave(&table
->cache_lock
, flags
);
435 while (!list_empty(&table
->stripe_cache
)) {
436 rbio
= list_entry(table
->stripe_cache
.next
,
437 struct btrfs_raid_bio
,
439 __remove_rbio_from_cache(rbio
);
441 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
445 * remove all cached entries and free the hash table
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info
*info
)
450 if (!info
->stripe_hash_table
)
452 btrfs_clear_rbio_cache(info
);
453 kvfree(info
->stripe_hash_table
);
454 info
->stripe_hash_table
= NULL
;
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
465 * If the size of the rbio cache is too big, we
468 static void cache_rbio(struct btrfs_raid_bio
*rbio
)
470 struct btrfs_stripe_hash_table
*table
;
473 if (!test_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
))
476 table
= rbio
->fs_info
->stripe_hash_table
;
478 spin_lock_irqsave(&table
->cache_lock
, flags
);
479 spin_lock(&rbio
->bio_list_lock
);
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
483 atomic_inc(&rbio
->refs
);
485 if (!list_empty(&rbio
->stripe_cache
)){
486 list_move(&rbio
->stripe_cache
, &table
->stripe_cache
);
488 list_add(&rbio
->stripe_cache
, &table
->stripe_cache
);
489 table
->cache_size
+= 1;
492 spin_unlock(&rbio
->bio_list_lock
);
494 if (table
->cache_size
> RBIO_CACHE_SIZE
) {
495 struct btrfs_raid_bio
*found
;
497 found
= list_entry(table
->stripe_cache
.prev
,
498 struct btrfs_raid_bio
,
502 __remove_rbio_from_cache(found
);
505 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
510 * helper function to run the xor_blocks api. It is only
511 * able to do MAX_XOR_BLOCKS at a time, so we need to
514 static void run_xor(void **pages
, int src_cnt
, ssize_t len
)
518 void *dest
= pages
[src_cnt
];
521 xor_src_cnt
= min(src_cnt
, MAX_XOR_BLOCKS
);
522 xor_blocks(xor_src_cnt
, len
, dest
, pages
+ src_off
);
524 src_cnt
-= xor_src_cnt
;
525 src_off
+= xor_src_cnt
;
530 * returns true if the bio list inside this rbio
531 * covers an entire stripe (no rmw required).
532 * Must be called with the bio list lock held, or
533 * at a time when you know it is impossible to add
534 * new bios into the list
536 static int __rbio_is_full(struct btrfs_raid_bio
*rbio
)
538 unsigned long size
= rbio
->bio_list_bytes
;
541 if (size
!= rbio
->nr_data
* rbio
->stripe_len
)
544 BUG_ON(size
> rbio
->nr_data
* rbio
->stripe_len
);
548 static int rbio_is_full(struct btrfs_raid_bio
*rbio
)
553 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
554 ret
= __rbio_is_full(rbio
);
555 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
560 * returns 1 if it is safe to merge two rbios together.
561 * The merging is safe if the two rbios correspond to
562 * the same stripe and if they are both going in the same
563 * direction (read vs write), and if neither one is
564 * locked for final IO
566 * The caller is responsible for locking such that
567 * rmw_locked is safe to test
569 static int rbio_can_merge(struct btrfs_raid_bio
*last
,
570 struct btrfs_raid_bio
*cur
)
572 if (test_bit(RBIO_RMW_LOCKED_BIT
, &last
->flags
) ||
573 test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
))
577 * we can't merge with cached rbios, since the
578 * idea is that when we merge the destination
579 * rbio is going to run our IO for us. We can
580 * steal from cached rbio's though, other functions
583 if (test_bit(RBIO_CACHE_BIT
, &last
->flags
) ||
584 test_bit(RBIO_CACHE_BIT
, &cur
->flags
))
587 if (last
->bbio
->raid_map
[0] !=
588 cur
->bbio
->raid_map
[0])
591 /* we can't merge with different operations */
592 if (last
->operation
!= cur
->operation
)
595 * We've need read the full stripe from the drive.
596 * check and repair the parity and write the new results.
598 * We're not allowed to add any new bios to the
599 * bio list here, anyone else that wants to
600 * change this stripe needs to do their own rmw.
602 if (last
->operation
== BTRFS_RBIO_PARITY_SCRUB
||
603 cur
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
606 if (last
->operation
== BTRFS_RBIO_REBUILD_MISSING
||
607 cur
->operation
== BTRFS_RBIO_REBUILD_MISSING
)
614 * helper to index into the pstripe
616 static struct page
*rbio_pstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
618 index
+= (rbio
->nr_data
* rbio
->stripe_len
) >> PAGE_CACHE_SHIFT
;
619 return rbio
->stripe_pages
[index
];
623 * helper to index into the qstripe, returns null
624 * if there is no qstripe
626 static struct page
*rbio_qstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
628 if (rbio
->nr_data
+ 1 == rbio
->real_stripes
)
631 index
+= ((rbio
->nr_data
+ 1) * rbio
->stripe_len
) >>
633 return rbio
->stripe_pages
[index
];
637 * The first stripe in the table for a logical address
638 * has the lock. rbios are added in one of three ways:
640 * 1) Nobody has the stripe locked yet. The rbio is given
641 * the lock and 0 is returned. The caller must start the IO
644 * 2) Someone has the stripe locked, but we're able to merge
645 * with the lock owner. The rbio is freed and the IO will
646 * start automatically along with the existing rbio. 1 is returned.
648 * 3) Someone has the stripe locked, but we're not able to merge.
649 * The rbio is added to the lock owner's plug list, or merged into
650 * an rbio already on the plug list. When the lock owner unlocks,
651 * the next rbio on the list is run and the IO is started automatically.
654 * If we return 0, the caller still owns the rbio and must continue with
655 * IO submission. If we return 1, the caller must assume the rbio has
656 * already been freed.
658 static noinline
int lock_stripe_add(struct btrfs_raid_bio
*rbio
)
660 int bucket
= rbio_bucket(rbio
);
661 struct btrfs_stripe_hash
*h
= rbio
->fs_info
->stripe_hash_table
->table
+ bucket
;
662 struct btrfs_raid_bio
*cur
;
663 struct btrfs_raid_bio
*pending
;
666 struct btrfs_raid_bio
*freeit
= NULL
;
667 struct btrfs_raid_bio
*cache_drop
= NULL
;
671 spin_lock_irqsave(&h
->lock
, flags
);
672 list_for_each_entry(cur
, &h
->hash_list
, hash_list
) {
674 if (cur
->bbio
->raid_map
[0] == rbio
->bbio
->raid_map
[0]) {
675 spin_lock(&cur
->bio_list_lock
);
677 /* can we steal this cached rbio's pages? */
678 if (bio_list_empty(&cur
->bio_list
) &&
679 list_empty(&cur
->plug_list
) &&
680 test_bit(RBIO_CACHE_BIT
, &cur
->flags
) &&
681 !test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
)) {
682 list_del_init(&cur
->hash_list
);
683 atomic_dec(&cur
->refs
);
685 steal_rbio(cur
, rbio
);
687 spin_unlock(&cur
->bio_list_lock
);
692 /* can we merge into the lock owner? */
693 if (rbio_can_merge(cur
, rbio
)) {
694 merge_rbio(cur
, rbio
);
695 spin_unlock(&cur
->bio_list_lock
);
703 * we couldn't merge with the running
704 * rbio, see if we can merge with the
705 * pending ones. We don't have to
706 * check for rmw_locked because there
707 * is no way they are inside finish_rmw
710 list_for_each_entry(pending
, &cur
->plug_list
,
712 if (rbio_can_merge(pending
, rbio
)) {
713 merge_rbio(pending
, rbio
);
714 spin_unlock(&cur
->bio_list_lock
);
721 /* no merging, put us on the tail of the plug list,
722 * our rbio will be started with the currently
723 * running rbio unlocks
725 list_add_tail(&rbio
->plug_list
, &cur
->plug_list
);
726 spin_unlock(&cur
->bio_list_lock
);
732 atomic_inc(&rbio
->refs
);
733 list_add(&rbio
->hash_list
, &h
->hash_list
);
735 spin_unlock_irqrestore(&h
->lock
, flags
);
737 remove_rbio_from_cache(cache_drop
);
739 __free_raid_bio(freeit
);
744 * called as rmw or parity rebuild is completed. If the plug list has more
745 * rbios waiting for this stripe, the next one on the list will be started
747 static noinline
void unlock_stripe(struct btrfs_raid_bio
*rbio
)
750 struct btrfs_stripe_hash
*h
;
754 bucket
= rbio_bucket(rbio
);
755 h
= rbio
->fs_info
->stripe_hash_table
->table
+ bucket
;
757 if (list_empty(&rbio
->plug_list
))
760 spin_lock_irqsave(&h
->lock
, flags
);
761 spin_lock(&rbio
->bio_list_lock
);
763 if (!list_empty(&rbio
->hash_list
)) {
765 * if we're still cached and there is no other IO
766 * to perform, just leave this rbio here for others
767 * to steal from later
769 if (list_empty(&rbio
->plug_list
) &&
770 test_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
772 clear_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
773 BUG_ON(!bio_list_empty(&rbio
->bio_list
));
777 list_del_init(&rbio
->hash_list
);
778 atomic_dec(&rbio
->refs
);
781 * we use the plug list to hold all the rbios
782 * waiting for the chance to lock this stripe.
783 * hand the lock over to one of them.
785 if (!list_empty(&rbio
->plug_list
)) {
786 struct btrfs_raid_bio
*next
;
787 struct list_head
*head
= rbio
->plug_list
.next
;
789 next
= list_entry(head
, struct btrfs_raid_bio
,
792 list_del_init(&rbio
->plug_list
);
794 list_add(&next
->hash_list
, &h
->hash_list
);
795 atomic_inc(&next
->refs
);
796 spin_unlock(&rbio
->bio_list_lock
);
797 spin_unlock_irqrestore(&h
->lock
, flags
);
799 if (next
->operation
== BTRFS_RBIO_READ_REBUILD
)
800 async_read_rebuild(next
);
801 else if (next
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
802 steal_rbio(rbio
, next
);
803 async_read_rebuild(next
);
804 } else if (next
->operation
== BTRFS_RBIO_WRITE
) {
805 steal_rbio(rbio
, next
);
806 async_rmw_stripe(next
);
807 } else if (next
->operation
== BTRFS_RBIO_PARITY_SCRUB
) {
808 steal_rbio(rbio
, next
);
809 async_scrub_parity(next
);
814 * The barrier for this waitqueue_active is not needed,
815 * we're protected by h->lock and can't miss a wakeup.
817 } else if (waitqueue_active(&h
->wait
)) {
818 spin_unlock(&rbio
->bio_list_lock
);
819 spin_unlock_irqrestore(&h
->lock
, flags
);
825 spin_unlock(&rbio
->bio_list_lock
);
826 spin_unlock_irqrestore(&h
->lock
, flags
);
830 remove_rbio_from_cache(rbio
);
833 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
)
837 WARN_ON(atomic_read(&rbio
->refs
) < 0);
838 if (!atomic_dec_and_test(&rbio
->refs
))
841 WARN_ON(!list_empty(&rbio
->stripe_cache
));
842 WARN_ON(!list_empty(&rbio
->hash_list
));
843 WARN_ON(!bio_list_empty(&rbio
->bio_list
));
845 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
846 if (rbio
->stripe_pages
[i
]) {
847 __free_page(rbio
->stripe_pages
[i
]);
848 rbio
->stripe_pages
[i
] = NULL
;
852 btrfs_put_bbio(rbio
->bbio
);
856 static void free_raid_bio(struct btrfs_raid_bio
*rbio
)
859 __free_raid_bio(rbio
);
863 * this frees the rbio and runs through all the bios in the
864 * bio_list and calls end_io on them
866 static void rbio_orig_end_io(struct btrfs_raid_bio
*rbio
, int err
)
868 struct bio
*cur
= bio_list_get(&rbio
->bio_list
);
871 if (rbio
->generic_bio_cnt
)
872 btrfs_bio_counter_sub(rbio
->fs_info
, rbio
->generic_bio_cnt
);
886 * end io function used by finish_rmw. When we finally
887 * get here, we've written a full stripe
889 static void raid_write_end_io(struct bio
*bio
)
891 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
892 int err
= bio
->bi_error
;
895 fail_bio_stripe(rbio
, bio
);
899 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
904 /* OK, we have read all the stripes we need to. */
905 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
908 rbio_orig_end_io(rbio
, err
);
913 * the read/modify/write code wants to use the original bio for
914 * any pages it included, and then use the rbio for everything
915 * else. This function decides if a given index (stripe number)
916 * and page number in that stripe fall inside the original bio
919 * if you set bio_list_only, you'll get a NULL back for any ranges
920 * that are outside the bio_list
922 * This doesn't take any refs on anything, you get a bare page pointer
923 * and the caller must bump refs as required.
925 * You must call index_rbio_pages once before you can trust
926 * the answers from this function.
928 static struct page
*page_in_rbio(struct btrfs_raid_bio
*rbio
,
929 int index
, int pagenr
, int bio_list_only
)
932 struct page
*p
= NULL
;
934 chunk_page
= index
* (rbio
->stripe_len
>> PAGE_SHIFT
) + pagenr
;
936 spin_lock_irq(&rbio
->bio_list_lock
);
937 p
= rbio
->bio_pages
[chunk_page
];
938 spin_unlock_irq(&rbio
->bio_list_lock
);
940 if (p
|| bio_list_only
)
943 return rbio
->stripe_pages
[chunk_page
];
947 * number of pages we need for the entire stripe across all the
950 static unsigned long rbio_nr_pages(unsigned long stripe_len
, int nr_stripes
)
952 unsigned long nr
= stripe_len
* nr_stripes
;
953 return DIV_ROUND_UP(nr
, PAGE_CACHE_SIZE
);
957 * allocation and initial setup for the btrfs_raid_bio. Not
958 * this does not allocate any pages for rbio->pages.
960 static struct btrfs_raid_bio
*alloc_rbio(struct btrfs_root
*root
,
961 struct btrfs_bio
*bbio
, u64 stripe_len
)
963 struct btrfs_raid_bio
*rbio
;
965 int real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
966 int num_pages
= rbio_nr_pages(stripe_len
, real_stripes
);
967 int stripe_npages
= DIV_ROUND_UP(stripe_len
, PAGE_SIZE
);
970 rbio
= kzalloc(sizeof(*rbio
) + num_pages
* sizeof(struct page
*) * 2 +
971 DIV_ROUND_UP(stripe_npages
, BITS_PER_LONG
/ 8),
974 return ERR_PTR(-ENOMEM
);
976 bio_list_init(&rbio
->bio_list
);
977 INIT_LIST_HEAD(&rbio
->plug_list
);
978 spin_lock_init(&rbio
->bio_list_lock
);
979 INIT_LIST_HEAD(&rbio
->stripe_cache
);
980 INIT_LIST_HEAD(&rbio
->hash_list
);
982 rbio
->fs_info
= root
->fs_info
;
983 rbio
->stripe_len
= stripe_len
;
984 rbio
->nr_pages
= num_pages
;
985 rbio
->real_stripes
= real_stripes
;
986 rbio
->stripe_npages
= stripe_npages
;
989 atomic_set(&rbio
->refs
, 1);
990 atomic_set(&rbio
->error
, 0);
991 atomic_set(&rbio
->stripes_pending
, 0);
994 * the stripe_pages and bio_pages array point to the extra
995 * memory we allocated past the end of the rbio
998 rbio
->stripe_pages
= p
;
999 rbio
->bio_pages
= p
+ sizeof(struct page
*) * num_pages
;
1000 rbio
->dbitmap
= p
+ sizeof(struct page
*) * num_pages
* 2;
1002 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1003 nr_data
= real_stripes
- 1;
1004 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1005 nr_data
= real_stripes
- 2;
1009 rbio
->nr_data
= nr_data
;
1013 /* allocate pages for all the stripes in the bio, including parity */
1014 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
)
1019 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
1020 if (rbio
->stripe_pages
[i
])
1022 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1025 rbio
->stripe_pages
[i
] = page
;
1026 ClearPageUptodate(page
);
1031 /* allocate pages for just the p/q stripes */
1032 static int alloc_rbio_parity_pages(struct btrfs_raid_bio
*rbio
)
1037 i
= (rbio
->nr_data
* rbio
->stripe_len
) >> PAGE_CACHE_SHIFT
;
1039 for (; i
< rbio
->nr_pages
; i
++) {
1040 if (rbio
->stripe_pages
[i
])
1042 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1045 rbio
->stripe_pages
[i
] = page
;
1051 * add a single page from a specific stripe into our list of bios for IO
1052 * this will try to merge into existing bios if possible, and returns
1053 * zero if all went well.
1055 static int rbio_add_io_page(struct btrfs_raid_bio
*rbio
,
1056 struct bio_list
*bio_list
,
1059 unsigned long page_index
,
1060 unsigned long bio_max_len
)
1062 struct bio
*last
= bio_list
->tail
;
1066 struct btrfs_bio_stripe
*stripe
;
1069 stripe
= &rbio
->bbio
->stripes
[stripe_nr
];
1070 disk_start
= stripe
->physical
+ (page_index
<< PAGE_CACHE_SHIFT
);
1072 /* if the device is missing, just fail this stripe */
1073 if (!stripe
->dev
->bdev
)
1074 return fail_rbio_index(rbio
, stripe_nr
);
1076 /* see if we can add this page onto our existing bio */
1078 last_end
= (u64
)last
->bi_iter
.bi_sector
<< 9;
1079 last_end
+= last
->bi_iter
.bi_size
;
1082 * we can't merge these if they are from different
1083 * devices or if they are not contiguous
1085 if (last_end
== disk_start
&& stripe
->dev
->bdev
&&
1087 last
->bi_bdev
== stripe
->dev
->bdev
) {
1088 ret
= bio_add_page(last
, page
, PAGE_CACHE_SIZE
, 0);
1089 if (ret
== PAGE_CACHE_SIZE
)
1094 /* put a new bio on the list */
1095 bio
= btrfs_io_bio_alloc(GFP_NOFS
, bio_max_len
>> PAGE_SHIFT
?:1);
1099 bio
->bi_iter
.bi_size
= 0;
1100 bio
->bi_bdev
= stripe
->dev
->bdev
;
1101 bio
->bi_iter
.bi_sector
= disk_start
>> 9;
1103 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
1104 bio_list_add(bio_list
, bio
);
1109 * while we're doing the read/modify/write cycle, we could
1110 * have errors in reading pages off the disk. This checks
1111 * for errors and if we're not able to read the page it'll
1112 * trigger parity reconstruction. The rmw will be finished
1113 * after we've reconstructed the failed stripes
1115 static void validate_rbio_for_rmw(struct btrfs_raid_bio
*rbio
)
1117 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
1118 BUG_ON(rbio
->faila
== rbio
->real_stripes
- 1);
1119 __raid56_parity_recover(rbio
);
1126 * these are just the pages from the rbio array, not from anything
1127 * the FS sent down to us
1129 static struct page
*rbio_stripe_page(struct btrfs_raid_bio
*rbio
, int stripe
, int page
)
1132 index
= stripe
* (rbio
->stripe_len
>> PAGE_CACHE_SHIFT
);
1134 return rbio
->stripe_pages
[index
];
1138 * helper function to walk our bio list and populate the bio_pages array with
1139 * the result. This seems expensive, but it is faster than constantly
1140 * searching through the bio list as we setup the IO in finish_rmw or stripe
1143 * This must be called before you trust the answers from page_in_rbio
1145 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
)
1149 unsigned long stripe_offset
;
1150 unsigned long page_index
;
1154 spin_lock_irq(&rbio
->bio_list_lock
);
1155 bio_list_for_each(bio
, &rbio
->bio_list
) {
1156 start
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1157 stripe_offset
= start
- rbio
->bbio
->raid_map
[0];
1158 page_index
= stripe_offset
>> PAGE_CACHE_SHIFT
;
1160 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1161 p
= bio
->bi_io_vec
[i
].bv_page
;
1162 rbio
->bio_pages
[page_index
+ i
] = p
;
1165 spin_unlock_irq(&rbio
->bio_list_lock
);
1169 * this is called from one of two situations. We either
1170 * have a full stripe from the higher layers, or we've read all
1171 * the missing bits off disk.
1173 * This will calculate the parity and then send down any
1176 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
)
1178 struct btrfs_bio
*bbio
= rbio
->bbio
;
1179 void *pointers
[rbio
->real_stripes
];
1180 int stripe_len
= rbio
->stripe_len
;
1181 int nr_data
= rbio
->nr_data
;
1186 struct bio_list bio_list
;
1188 int pages_per_stripe
= stripe_len
>> PAGE_CACHE_SHIFT
;
1191 bio_list_init(&bio_list
);
1193 if (rbio
->real_stripes
- rbio
->nr_data
== 1) {
1194 p_stripe
= rbio
->real_stripes
- 1;
1195 } else if (rbio
->real_stripes
- rbio
->nr_data
== 2) {
1196 p_stripe
= rbio
->real_stripes
- 2;
1197 q_stripe
= rbio
->real_stripes
- 1;
1202 /* at this point we either have a full stripe,
1203 * or we've read the full stripe from the drive.
1204 * recalculate the parity and write the new results.
1206 * We're not allowed to add any new bios to the
1207 * bio list here, anyone else that wants to
1208 * change this stripe needs to do their own rmw.
1210 spin_lock_irq(&rbio
->bio_list_lock
);
1211 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1212 spin_unlock_irq(&rbio
->bio_list_lock
);
1214 atomic_set(&rbio
->error
, 0);
1217 * now that we've set rmw_locked, run through the
1218 * bio list one last time and map the page pointers
1220 * We don't cache full rbios because we're assuming
1221 * the higher layers are unlikely to use this area of
1222 * the disk again soon. If they do use it again,
1223 * hopefully they will send another full bio.
1225 index_rbio_pages(rbio
);
1226 if (!rbio_is_full(rbio
))
1227 cache_rbio_pages(rbio
);
1229 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1231 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1233 /* first collect one page from each data stripe */
1234 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
1235 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1236 pointers
[stripe
] = kmap(p
);
1239 /* then add the parity stripe */
1240 p
= rbio_pstripe_page(rbio
, pagenr
);
1242 pointers
[stripe
++] = kmap(p
);
1244 if (q_stripe
!= -1) {
1247 * raid6, add the qstripe and call the
1248 * library function to fill in our p/q
1250 p
= rbio_qstripe_page(rbio
, pagenr
);
1252 pointers
[stripe
++] = kmap(p
);
1254 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
1258 memcpy(pointers
[nr_data
], pointers
[0], PAGE_SIZE
);
1259 run_xor(pointers
+ 1, nr_data
- 1, PAGE_CACHE_SIZE
);
1263 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++)
1264 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
1268 * time to start writing. Make bios for everything from the
1269 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1272 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1273 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1275 if (stripe
< rbio
->nr_data
) {
1276 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1280 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1283 ret
= rbio_add_io_page(rbio
, &bio_list
,
1284 page
, stripe
, pagenr
, rbio
->stripe_len
);
1290 if (likely(!bbio
->num_tgtdevs
))
1293 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1294 if (!bbio
->tgtdev_map
[stripe
])
1297 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1299 if (stripe
< rbio
->nr_data
) {
1300 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1304 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1307 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1308 rbio
->bbio
->tgtdev_map
[stripe
],
1309 pagenr
, rbio
->stripe_len
);
1316 atomic_set(&rbio
->stripes_pending
, bio_list_size(&bio_list
));
1317 BUG_ON(atomic_read(&rbio
->stripes_pending
) == 0);
1320 bio
= bio_list_pop(&bio_list
);
1324 bio
->bi_private
= rbio
;
1325 bio
->bi_end_io
= raid_write_end_io
;
1326 submit_bio(WRITE
, bio
);
1331 rbio_orig_end_io(rbio
, -EIO
);
1335 * helper to find the stripe number for a given bio. Used to figure out which
1336 * stripe has failed. This expects the bio to correspond to a physical disk,
1337 * so it looks up based on physical sector numbers.
1339 static int find_bio_stripe(struct btrfs_raid_bio
*rbio
,
1342 u64 physical
= bio
->bi_iter
.bi_sector
;
1345 struct btrfs_bio_stripe
*stripe
;
1349 for (i
= 0; i
< rbio
->bbio
->num_stripes
; i
++) {
1350 stripe
= &rbio
->bbio
->stripes
[i
];
1351 stripe_start
= stripe
->physical
;
1352 if (physical
>= stripe_start
&&
1353 physical
< stripe_start
+ rbio
->stripe_len
&&
1354 bio
->bi_bdev
== stripe
->dev
->bdev
) {
1362 * helper to find the stripe number for a given
1363 * bio (before mapping). Used to figure out which stripe has
1364 * failed. This looks up based on logical block numbers.
1366 static int find_logical_bio_stripe(struct btrfs_raid_bio
*rbio
,
1369 u64 logical
= bio
->bi_iter
.bi_sector
;
1375 for (i
= 0; i
< rbio
->nr_data
; i
++) {
1376 stripe_start
= rbio
->bbio
->raid_map
[i
];
1377 if (logical
>= stripe_start
&&
1378 logical
< stripe_start
+ rbio
->stripe_len
) {
1386 * returns -EIO if we had too many failures
1388 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
)
1390 unsigned long flags
;
1393 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
1395 /* we already know this stripe is bad, move on */
1396 if (rbio
->faila
== failed
|| rbio
->failb
== failed
)
1399 if (rbio
->faila
== -1) {
1400 /* first failure on this rbio */
1401 rbio
->faila
= failed
;
1402 atomic_inc(&rbio
->error
);
1403 } else if (rbio
->failb
== -1) {
1404 /* second failure on this rbio */
1405 rbio
->failb
= failed
;
1406 atomic_inc(&rbio
->error
);
1411 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
1417 * helper to fail a stripe based on a physical disk
1420 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
,
1423 int failed
= find_bio_stripe(rbio
, bio
);
1428 return fail_rbio_index(rbio
, failed
);
1432 * this sets each page in the bio uptodate. It should only be used on private
1433 * rbio pages, nothing that comes in from the higher layers
1435 static void set_bio_pages_uptodate(struct bio
*bio
)
1440 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1441 p
= bio
->bi_io_vec
[i
].bv_page
;
1447 * end io for the read phase of the rmw cycle. All the bios here are physical
1448 * stripe bios we've read from the disk so we can recalculate the parity of the
1451 * This will usually kick off finish_rmw once all the bios are read in, but it
1452 * may trigger parity reconstruction if we had any errors along the way
1454 static void raid_rmw_end_io(struct bio
*bio
)
1456 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
1459 fail_bio_stripe(rbio
, bio
);
1461 set_bio_pages_uptodate(bio
);
1465 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
1468 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
1472 * this will normally call finish_rmw to start our write
1473 * but if there are any failed stripes we'll reconstruct
1476 validate_rbio_for_rmw(rbio
);
1481 rbio_orig_end_io(rbio
, -EIO
);
1484 static void async_rmw_stripe(struct btrfs_raid_bio
*rbio
)
1486 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
1487 rmw_work
, NULL
, NULL
);
1489 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
1493 static void async_read_rebuild(struct btrfs_raid_bio
*rbio
)
1495 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
1496 read_rebuild_work
, NULL
, NULL
);
1498 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
1503 * the stripe must be locked by the caller. It will
1504 * unlock after all the writes are done
1506 static int raid56_rmw_stripe(struct btrfs_raid_bio
*rbio
)
1508 int bios_to_read
= 0;
1509 struct bio_list bio_list
;
1511 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
1516 bio_list_init(&bio_list
);
1518 ret
= alloc_rbio_pages(rbio
);
1522 index_rbio_pages(rbio
);
1524 atomic_set(&rbio
->error
, 0);
1526 * build a list of bios to read all the missing parts of this
1529 for (stripe
= 0; stripe
< rbio
->nr_data
; stripe
++) {
1530 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
1533 * we want to find all the pages missing from
1534 * the rbio and read them from the disk. If
1535 * page_in_rbio finds a page in the bio list
1536 * we don't need to read it off the stripe.
1538 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1542 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1544 * the bio cache may have handed us an uptodate
1545 * page. If so, be happy and use it
1547 if (PageUptodate(page
))
1550 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1551 stripe
, pagenr
, rbio
->stripe_len
);
1557 bios_to_read
= bio_list_size(&bio_list
);
1558 if (!bios_to_read
) {
1560 * this can happen if others have merged with
1561 * us, it means there is nothing left to read.
1562 * But if there are missing devices it may not be
1563 * safe to do the full stripe write yet.
1569 * the bbio may be freed once we submit the last bio. Make sure
1570 * not to touch it after that
1572 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
1574 bio
= bio_list_pop(&bio_list
);
1578 bio
->bi_private
= rbio
;
1579 bio
->bi_end_io
= raid_rmw_end_io
;
1581 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
1582 BTRFS_WQ_ENDIO_RAID56
);
1584 submit_bio(READ
, bio
);
1586 /* the actual write will happen once the reads are done */
1590 rbio_orig_end_io(rbio
, -EIO
);
1594 validate_rbio_for_rmw(rbio
);
1599 * if the upper layers pass in a full stripe, we thank them by only allocating
1600 * enough pages to hold the parity, and sending it all down quickly.
1602 static int full_stripe_write(struct btrfs_raid_bio
*rbio
)
1606 ret
= alloc_rbio_parity_pages(rbio
);
1608 __free_raid_bio(rbio
);
1612 ret
= lock_stripe_add(rbio
);
1619 * partial stripe writes get handed over to async helpers.
1620 * We're really hoping to merge a few more writes into this
1621 * rbio before calculating new parity
1623 static int partial_stripe_write(struct btrfs_raid_bio
*rbio
)
1627 ret
= lock_stripe_add(rbio
);
1629 async_rmw_stripe(rbio
);
1634 * sometimes while we were reading from the drive to
1635 * recalculate parity, enough new bios come into create
1636 * a full stripe. So we do a check here to see if we can
1637 * go directly to finish_rmw
1639 static int __raid56_parity_write(struct btrfs_raid_bio
*rbio
)
1641 /* head off into rmw land if we don't have a full stripe */
1642 if (!rbio_is_full(rbio
))
1643 return partial_stripe_write(rbio
);
1644 return full_stripe_write(rbio
);
1648 * We use plugging call backs to collect full stripes.
1649 * Any time we get a partial stripe write while plugged
1650 * we collect it into a list. When the unplug comes down,
1651 * we sort the list by logical block number and merge
1652 * everything we can into the same rbios
1654 struct btrfs_plug_cb
{
1655 struct blk_plug_cb cb
;
1656 struct btrfs_fs_info
*info
;
1657 struct list_head rbio_list
;
1658 struct btrfs_work work
;
1662 * rbios on the plug list are sorted for easier merging.
1664 static int plug_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1666 struct btrfs_raid_bio
*ra
= container_of(a
, struct btrfs_raid_bio
,
1668 struct btrfs_raid_bio
*rb
= container_of(b
, struct btrfs_raid_bio
,
1670 u64 a_sector
= ra
->bio_list
.head
->bi_iter
.bi_sector
;
1671 u64 b_sector
= rb
->bio_list
.head
->bi_iter
.bi_sector
;
1673 if (a_sector
< b_sector
)
1675 if (a_sector
> b_sector
)
1680 static void run_plug(struct btrfs_plug_cb
*plug
)
1682 struct btrfs_raid_bio
*cur
;
1683 struct btrfs_raid_bio
*last
= NULL
;
1686 * sort our plug list then try to merge
1687 * everything we can in hopes of creating full
1690 list_sort(NULL
, &plug
->rbio_list
, plug_cmp
);
1691 while (!list_empty(&plug
->rbio_list
)) {
1692 cur
= list_entry(plug
->rbio_list
.next
,
1693 struct btrfs_raid_bio
, plug_list
);
1694 list_del_init(&cur
->plug_list
);
1696 if (rbio_is_full(cur
)) {
1697 /* we have a full stripe, send it down */
1698 full_stripe_write(cur
);
1702 if (rbio_can_merge(last
, cur
)) {
1703 merge_rbio(last
, cur
);
1704 __free_raid_bio(cur
);
1708 __raid56_parity_write(last
);
1713 __raid56_parity_write(last
);
1719 * if the unplug comes from schedule, we have to push the
1720 * work off to a helper thread
1722 static void unplug_work(struct btrfs_work
*work
)
1724 struct btrfs_plug_cb
*plug
;
1725 plug
= container_of(work
, struct btrfs_plug_cb
, work
);
1729 static void btrfs_raid_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1731 struct btrfs_plug_cb
*plug
;
1732 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1734 if (from_schedule
) {
1735 btrfs_init_work(&plug
->work
, btrfs_rmw_helper
,
1736 unplug_work
, NULL
, NULL
);
1737 btrfs_queue_work(plug
->info
->rmw_workers
,
1745 * our main entry point for writes from the rest of the FS.
1747 int raid56_parity_write(struct btrfs_root
*root
, struct bio
*bio
,
1748 struct btrfs_bio
*bbio
, u64 stripe_len
)
1750 struct btrfs_raid_bio
*rbio
;
1751 struct btrfs_plug_cb
*plug
= NULL
;
1752 struct blk_plug_cb
*cb
;
1755 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
1757 btrfs_put_bbio(bbio
);
1758 return PTR_ERR(rbio
);
1760 bio_list_add(&rbio
->bio_list
, bio
);
1761 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
1762 rbio
->operation
= BTRFS_RBIO_WRITE
;
1764 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
1765 rbio
->generic_bio_cnt
= 1;
1768 * don't plug on full rbios, just get them out the door
1769 * as quickly as we can
1771 if (rbio_is_full(rbio
)) {
1772 ret
= full_stripe_write(rbio
);
1774 btrfs_bio_counter_dec(root
->fs_info
);
1778 cb
= blk_check_plugged(btrfs_raid_unplug
, root
->fs_info
,
1781 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1783 plug
->info
= root
->fs_info
;
1784 INIT_LIST_HEAD(&plug
->rbio_list
);
1786 list_add_tail(&rbio
->plug_list
, &plug
->rbio_list
);
1789 ret
= __raid56_parity_write(rbio
);
1791 btrfs_bio_counter_dec(root
->fs_info
);
1797 * all parity reconstruction happens here. We've read in everything
1798 * we can find from the drives and this does the heavy lifting of
1799 * sorting the good from the bad.
1801 static void __raid_recover_end_io(struct btrfs_raid_bio
*rbio
)
1805 int faila
= -1, failb
= -1;
1806 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
1811 pointers
= kcalloc(rbio
->real_stripes
, sizeof(void *), GFP_NOFS
);
1817 faila
= rbio
->faila
;
1818 failb
= rbio
->failb
;
1820 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1821 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
1822 spin_lock_irq(&rbio
->bio_list_lock
);
1823 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1824 spin_unlock_irq(&rbio
->bio_list_lock
);
1827 index_rbio_pages(rbio
);
1829 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
1831 * Now we just use bitmap to mark the horizontal stripes in
1832 * which we have data when doing parity scrub.
1834 if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
&&
1835 !test_bit(pagenr
, rbio
->dbitmap
))
1838 /* setup our array of pointers with pages
1841 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1843 * if we're rebuilding a read, we have to use
1844 * pages from the bio list
1846 if ((rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1847 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) &&
1848 (stripe
== faila
|| stripe
== failb
)) {
1849 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1851 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1853 pointers
[stripe
] = kmap(page
);
1856 /* all raid6 handling here */
1857 if (rbio
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
) {
1859 * single failure, rebuild from parity raid5
1863 if (faila
== rbio
->nr_data
) {
1865 * Just the P stripe has failed, without
1866 * a bad data or Q stripe.
1867 * TODO, we should redo the xor here.
1873 * a single failure in raid6 is rebuilt
1874 * in the pstripe code below
1879 /* make sure our ps and qs are in order */
1880 if (faila
> failb
) {
1886 /* if the q stripe is failed, do a pstripe reconstruction
1888 * If both the q stripe and the P stripe are failed, we're
1889 * here due to a crc mismatch and we can't give them the
1892 if (rbio
->bbio
->raid_map
[failb
] == RAID6_Q_STRIPE
) {
1893 if (rbio
->bbio
->raid_map
[faila
] ==
1899 * otherwise we have one bad data stripe and
1900 * a good P stripe. raid5!
1905 if (rbio
->bbio
->raid_map
[failb
] == RAID5_P_STRIPE
) {
1906 raid6_datap_recov(rbio
->real_stripes
,
1907 PAGE_SIZE
, faila
, pointers
);
1909 raid6_2data_recov(rbio
->real_stripes
,
1910 PAGE_SIZE
, faila
, failb
,
1916 /* rebuild from P stripe here (raid5 or raid6) */
1917 BUG_ON(failb
!= -1);
1919 /* Copy parity block into failed block to start with */
1920 memcpy(pointers
[faila
],
1921 pointers
[rbio
->nr_data
],
1924 /* rearrange the pointer array */
1925 p
= pointers
[faila
];
1926 for (stripe
= faila
; stripe
< rbio
->nr_data
- 1; stripe
++)
1927 pointers
[stripe
] = pointers
[stripe
+ 1];
1928 pointers
[rbio
->nr_data
- 1] = p
;
1930 /* xor in the rest */
1931 run_xor(pointers
, rbio
->nr_data
- 1, PAGE_CACHE_SIZE
);
1933 /* if we're doing this rebuild as part of an rmw, go through
1934 * and set all of our private rbio pages in the
1935 * failed stripes as uptodate. This way finish_rmw will
1936 * know they can be trusted. If this was a read reconstruction,
1937 * other endio functions will fiddle the uptodate bits
1939 if (rbio
->operation
== BTRFS_RBIO_WRITE
) {
1940 for (i
= 0; i
< nr_pages
; i
++) {
1942 page
= rbio_stripe_page(rbio
, faila
, i
);
1943 SetPageUptodate(page
);
1946 page
= rbio_stripe_page(rbio
, failb
, i
);
1947 SetPageUptodate(page
);
1951 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1953 * if we're rebuilding a read, we have to use
1954 * pages from the bio list
1956 if ((rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1957 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) &&
1958 (stripe
== faila
|| stripe
== failb
)) {
1959 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1961 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1972 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
) {
1974 cache_rbio_pages(rbio
);
1976 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1978 rbio_orig_end_io(rbio
, err
);
1979 } else if (rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
1980 rbio_orig_end_io(rbio
, err
);
1981 } else if (err
== 0) {
1985 if (rbio
->operation
== BTRFS_RBIO_WRITE
)
1987 else if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
1988 finish_parity_scrub(rbio
, 0);
1992 rbio_orig_end_io(rbio
, err
);
1997 * This is called only for stripes we've read from disk to
1998 * reconstruct the parity.
2000 static void raid_recover_end_io(struct bio
*bio
)
2002 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2005 * we only read stripe pages off the disk, set them
2006 * up to date if there were no errors
2009 fail_bio_stripe(rbio
, bio
);
2011 set_bio_pages_uptodate(bio
);
2014 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2017 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2018 rbio_orig_end_io(rbio
, -EIO
);
2020 __raid_recover_end_io(rbio
);
2024 * reads everything we need off the disk to reconstruct
2025 * the parity. endio handlers trigger final reconstruction
2026 * when the IO is done.
2028 * This is used both for reads from the higher layers and for
2029 * parity construction required to finish a rmw cycle.
2031 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
)
2033 int bios_to_read
= 0;
2034 struct bio_list bio_list
;
2036 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
2041 bio_list_init(&bio_list
);
2043 ret
= alloc_rbio_pages(rbio
);
2047 atomic_set(&rbio
->error
, 0);
2050 * read everything that hasn't failed. Thanks to the
2051 * stripe cache, it is possible that some or all of these
2052 * pages are going to be uptodate.
2054 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2055 if (rbio
->faila
== stripe
|| rbio
->failb
== stripe
) {
2056 atomic_inc(&rbio
->error
);
2060 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
2064 * the rmw code may have already read this
2067 p
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2068 if (PageUptodate(p
))
2071 ret
= rbio_add_io_page(rbio
, &bio_list
,
2072 rbio_stripe_page(rbio
, stripe
, pagenr
),
2073 stripe
, pagenr
, rbio
->stripe_len
);
2079 bios_to_read
= bio_list_size(&bio_list
);
2080 if (!bios_to_read
) {
2082 * we might have no bios to read just because the pages
2083 * were up to date, or we might have no bios to read because
2084 * the devices were gone.
2086 if (atomic_read(&rbio
->error
) <= rbio
->bbio
->max_errors
) {
2087 __raid_recover_end_io(rbio
);
2095 * the bbio may be freed once we submit the last bio. Make sure
2096 * not to touch it after that
2098 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2100 bio
= bio_list_pop(&bio_list
);
2104 bio
->bi_private
= rbio
;
2105 bio
->bi_end_io
= raid_recover_end_io
;
2107 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
2108 BTRFS_WQ_ENDIO_RAID56
);
2110 submit_bio(READ
, bio
);
2116 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
2117 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
)
2118 rbio_orig_end_io(rbio
, -EIO
);
2123 * the main entry point for reads from the higher layers. This
2124 * is really only called when the normal read path had a failure,
2125 * so we assume the bio they send down corresponds to a failed part
2128 int raid56_parity_recover(struct btrfs_root
*root
, struct bio
*bio
,
2129 struct btrfs_bio
*bbio
, u64 stripe_len
,
2130 int mirror_num
, int generic_io
)
2132 struct btrfs_raid_bio
*rbio
;
2135 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
2138 btrfs_put_bbio(bbio
);
2139 return PTR_ERR(rbio
);
2142 rbio
->operation
= BTRFS_RBIO_READ_REBUILD
;
2143 bio_list_add(&rbio
->bio_list
, bio
);
2144 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
2146 rbio
->faila
= find_logical_bio_stripe(rbio
, bio
);
2147 if (rbio
->faila
== -1) {
2150 btrfs_put_bbio(bbio
);
2156 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
2157 rbio
->generic_bio_cnt
= 1;
2159 btrfs_get_bbio(bbio
);
2164 * for 'mirror == 2', reconstruct from all other stripes.
2165 * for 'mirror_num > 2', select a stripe to fail on every retry.
2167 if (mirror_num
> 2) {
2169 * 'mirror == 3' is to fail the p stripe and
2170 * reconstruct from the q stripe. 'mirror > 3' is to
2171 * fail a data stripe and reconstruct from p+q stripe.
2173 rbio
->failb
= rbio
->real_stripes
- (mirror_num
- 1);
2174 ASSERT(rbio
->failb
> 0);
2175 if (rbio
->failb
<= rbio
->faila
)
2179 ret
= lock_stripe_add(rbio
);
2182 * __raid56_parity_recover will end the bio with
2183 * any errors it hits. We don't want to return
2184 * its error value up the stack because our caller
2185 * will end up calling bio_endio with any nonzero
2189 __raid56_parity_recover(rbio
);
2191 * our rbio has been added to the list of
2192 * rbios that will be handled after the
2193 * currently lock owner is done
2199 static void rmw_work(struct btrfs_work
*work
)
2201 struct btrfs_raid_bio
*rbio
;
2203 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2204 raid56_rmw_stripe(rbio
);
2207 static void read_rebuild_work(struct btrfs_work
*work
)
2209 struct btrfs_raid_bio
*rbio
;
2211 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2212 __raid56_parity_recover(rbio
);
2216 * The following code is used to scrub/replace the parity stripe
2218 * Note: We need make sure all the pages that add into the scrub/replace
2219 * raid bio are correct and not be changed during the scrub/replace. That
2220 * is those pages just hold metadata or file data with checksum.
2223 struct btrfs_raid_bio
*
2224 raid56_parity_alloc_scrub_rbio(struct btrfs_root
*root
, struct bio
*bio
,
2225 struct btrfs_bio
*bbio
, u64 stripe_len
,
2226 struct btrfs_device
*scrub_dev
,
2227 unsigned long *dbitmap
, int stripe_nsectors
)
2229 struct btrfs_raid_bio
*rbio
;
2232 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
2235 bio_list_add(&rbio
->bio_list
, bio
);
2237 * This is a special bio which is used to hold the completion handler
2238 * and make the scrub rbio is similar to the other types
2240 ASSERT(!bio
->bi_iter
.bi_size
);
2241 rbio
->operation
= BTRFS_RBIO_PARITY_SCRUB
;
2243 for (i
= 0; i
< rbio
->real_stripes
; i
++) {
2244 if (bbio
->stripes
[i
].dev
== scrub_dev
) {
2250 /* Now we just support the sectorsize equals to page size */
2251 ASSERT(root
->sectorsize
== PAGE_SIZE
);
2252 ASSERT(rbio
->stripe_npages
== stripe_nsectors
);
2253 bitmap_copy(rbio
->dbitmap
, dbitmap
, stripe_nsectors
);
2258 /* Used for both parity scrub and missing. */
2259 void raid56_add_scrub_pages(struct btrfs_raid_bio
*rbio
, struct page
*page
,
2265 ASSERT(logical
>= rbio
->bbio
->raid_map
[0]);
2266 ASSERT(logical
+ PAGE_SIZE
<= rbio
->bbio
->raid_map
[0] +
2267 rbio
->stripe_len
* rbio
->nr_data
);
2268 stripe_offset
= (int)(logical
- rbio
->bbio
->raid_map
[0]);
2269 index
= stripe_offset
>> PAGE_CACHE_SHIFT
;
2270 rbio
->bio_pages
[index
] = page
;
2274 * We just scrub the parity that we have correct data on the same horizontal,
2275 * so we needn't allocate all pages for all the stripes.
2277 static int alloc_rbio_essential_pages(struct btrfs_raid_bio
*rbio
)
2284 for_each_set_bit(bit
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2285 for (i
= 0; i
< rbio
->real_stripes
; i
++) {
2286 index
= i
* rbio
->stripe_npages
+ bit
;
2287 if (rbio
->stripe_pages
[index
])
2290 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2293 rbio
->stripe_pages
[index
] = page
;
2294 ClearPageUptodate(page
);
2301 * end io function used by finish_rmw. When we finally
2302 * get here, we've written a full stripe
2304 static void raid_write_parity_end_io(struct bio
*bio
)
2306 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2307 int err
= bio
->bi_error
;
2310 fail_bio_stripe(rbio
, bio
);
2314 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2319 if (atomic_read(&rbio
->error
))
2322 rbio_orig_end_io(rbio
, err
);
2325 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
2328 struct btrfs_bio
*bbio
= rbio
->bbio
;
2329 void *pointers
[rbio
->real_stripes
];
2330 DECLARE_BITMAP(pbitmap
, rbio
->stripe_npages
);
2331 int nr_data
= rbio
->nr_data
;
2336 struct page
*p_page
= NULL
;
2337 struct page
*q_page
= NULL
;
2338 struct bio_list bio_list
;
2343 bio_list_init(&bio_list
);
2345 if (rbio
->real_stripes
- rbio
->nr_data
== 1) {
2346 p_stripe
= rbio
->real_stripes
- 1;
2347 } else if (rbio
->real_stripes
- rbio
->nr_data
== 2) {
2348 p_stripe
= rbio
->real_stripes
- 2;
2349 q_stripe
= rbio
->real_stripes
- 1;
2354 if (bbio
->num_tgtdevs
&& bbio
->tgtdev_map
[rbio
->scrubp
]) {
2356 bitmap_copy(pbitmap
, rbio
->dbitmap
, rbio
->stripe_npages
);
2360 * Because the higher layers(scrubber) are unlikely to
2361 * use this area of the disk again soon, so don't cache
2364 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
2369 p_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2372 SetPageUptodate(p_page
);
2374 if (q_stripe
!= -1) {
2375 q_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2377 __free_page(p_page
);
2380 SetPageUptodate(q_page
);
2383 atomic_set(&rbio
->error
, 0);
2385 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2388 /* first collect one page from each data stripe */
2389 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
2390 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
2391 pointers
[stripe
] = kmap(p
);
2394 /* then add the parity stripe */
2395 pointers
[stripe
++] = kmap(p_page
);
2397 if (q_stripe
!= -1) {
2400 * raid6, add the qstripe and call the
2401 * library function to fill in our p/q
2403 pointers
[stripe
++] = kmap(q_page
);
2405 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
2409 memcpy(pointers
[nr_data
], pointers
[0], PAGE_SIZE
);
2410 run_xor(pointers
+ 1, nr_data
- 1, PAGE_CACHE_SIZE
);
2413 /* Check scrubbing pairty and repair it */
2414 p
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2416 if (memcmp(parity
, pointers
[rbio
->scrubp
], PAGE_CACHE_SIZE
))
2417 memcpy(parity
, pointers
[rbio
->scrubp
], PAGE_CACHE_SIZE
);
2419 /* Parity is right, needn't writeback */
2420 bitmap_clear(rbio
->dbitmap
, pagenr
, 1);
2423 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++)
2424 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
2427 __free_page(p_page
);
2429 __free_page(q_page
);
2433 * time to start writing. Make bios for everything from the
2434 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2437 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2440 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2441 ret
= rbio_add_io_page(rbio
, &bio_list
,
2442 page
, rbio
->scrubp
, pagenr
, rbio
->stripe_len
);
2450 for_each_set_bit(pagenr
, pbitmap
, rbio
->stripe_npages
) {
2453 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2454 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2455 bbio
->tgtdev_map
[rbio
->scrubp
],
2456 pagenr
, rbio
->stripe_len
);
2462 nr_data
= bio_list_size(&bio_list
);
2464 /* Every parity is right */
2465 rbio_orig_end_io(rbio
, 0);
2469 atomic_set(&rbio
->stripes_pending
, nr_data
);
2472 bio
= bio_list_pop(&bio_list
);
2476 bio
->bi_private
= rbio
;
2477 bio
->bi_end_io
= raid_write_parity_end_io
;
2478 submit_bio(WRITE
, bio
);
2483 rbio_orig_end_io(rbio
, -EIO
);
2486 static inline int is_data_stripe(struct btrfs_raid_bio
*rbio
, int stripe
)
2488 if (stripe
>= 0 && stripe
< rbio
->nr_data
)
2494 * While we're doing the parity check and repair, we could have errors
2495 * in reading pages off the disk. This checks for errors and if we're
2496 * not able to read the page it'll trigger parity reconstruction. The
2497 * parity scrub will be finished after we've reconstructed the failed
2500 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio
*rbio
)
2502 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2505 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
2506 int dfail
= 0, failp
= -1;
2508 if (is_data_stripe(rbio
, rbio
->faila
))
2510 else if (is_parity_stripe(rbio
->faila
))
2511 failp
= rbio
->faila
;
2513 if (is_data_stripe(rbio
, rbio
->failb
))
2515 else if (is_parity_stripe(rbio
->failb
))
2516 failp
= rbio
->failb
;
2519 * Because we can not use a scrubbing parity to repair
2520 * the data, so the capability of the repair is declined.
2521 * (In the case of RAID5, we can not repair anything)
2523 if (dfail
> rbio
->bbio
->max_errors
- 1)
2527 * If all data is good, only parity is correctly, just
2528 * repair the parity.
2531 finish_parity_scrub(rbio
, 0);
2536 * Here means we got one corrupted data stripe and one
2537 * corrupted parity on RAID6, if the corrupted parity
2538 * is scrubbing parity, luckly, use the other one to repair
2539 * the data, or we can not repair the data stripe.
2541 if (failp
!= rbio
->scrubp
)
2544 __raid_recover_end_io(rbio
);
2546 finish_parity_scrub(rbio
, 1);
2551 rbio_orig_end_io(rbio
, -EIO
);
2555 * end io for the read phase of the rmw cycle. All the bios here are physical
2556 * stripe bios we've read from the disk so we can recalculate the parity of the
2559 * This will usually kick off finish_rmw once all the bios are read in, but it
2560 * may trigger parity reconstruction if we had any errors along the way
2562 static void raid56_parity_scrub_end_io(struct bio
*bio
)
2564 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2567 fail_bio_stripe(rbio
, bio
);
2569 set_bio_pages_uptodate(bio
);
2573 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2577 * this will normally call finish_rmw to start our write
2578 * but if there are any failed stripes we'll reconstruct
2581 validate_rbio_for_parity_scrub(rbio
);
2584 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio
*rbio
)
2586 int bios_to_read
= 0;
2587 struct bio_list bio_list
;
2593 ret
= alloc_rbio_essential_pages(rbio
);
2597 bio_list_init(&bio_list
);
2599 atomic_set(&rbio
->error
, 0);
2601 * build a list of bios to read all the missing parts of this
2604 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2605 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2608 * we want to find all the pages missing from
2609 * the rbio and read them from the disk. If
2610 * page_in_rbio finds a page in the bio list
2611 * we don't need to read it off the stripe.
2613 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
2617 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2619 * the bio cache may have handed us an uptodate
2620 * page. If so, be happy and use it
2622 if (PageUptodate(page
))
2625 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2626 stripe
, pagenr
, rbio
->stripe_len
);
2632 bios_to_read
= bio_list_size(&bio_list
);
2633 if (!bios_to_read
) {
2635 * this can happen if others have merged with
2636 * us, it means there is nothing left to read.
2637 * But if there are missing devices it may not be
2638 * safe to do the full stripe write yet.
2644 * the bbio may be freed once we submit the last bio. Make sure
2645 * not to touch it after that
2647 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2649 bio
= bio_list_pop(&bio_list
);
2653 bio
->bi_private
= rbio
;
2654 bio
->bi_end_io
= raid56_parity_scrub_end_io
;
2656 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
2657 BTRFS_WQ_ENDIO_RAID56
);
2659 submit_bio(READ
, bio
);
2661 /* the actual write will happen once the reads are done */
2665 rbio_orig_end_io(rbio
, -EIO
);
2669 validate_rbio_for_parity_scrub(rbio
);
2672 static void scrub_parity_work(struct btrfs_work
*work
)
2674 struct btrfs_raid_bio
*rbio
;
2676 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2677 raid56_parity_scrub_stripe(rbio
);
2680 static void async_scrub_parity(struct btrfs_raid_bio
*rbio
)
2682 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
2683 scrub_parity_work
, NULL
, NULL
);
2685 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
2689 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio
*rbio
)
2691 if (!lock_stripe_add(rbio
))
2692 async_scrub_parity(rbio
);
2695 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2697 struct btrfs_raid_bio
*
2698 raid56_alloc_missing_rbio(struct btrfs_root
*root
, struct bio
*bio
,
2699 struct btrfs_bio
*bbio
, u64 length
)
2701 struct btrfs_raid_bio
*rbio
;
2703 rbio
= alloc_rbio(root
, bbio
, length
);
2707 rbio
->operation
= BTRFS_RBIO_REBUILD_MISSING
;
2708 bio_list_add(&rbio
->bio_list
, bio
);
2710 * This is a special bio which is used to hold the completion handler
2711 * and make the scrub rbio is similar to the other types
2713 ASSERT(!bio
->bi_iter
.bi_size
);
2715 rbio
->faila
= find_logical_bio_stripe(rbio
, bio
);
2716 if (rbio
->faila
== -1) {
2725 static void missing_raid56_work(struct btrfs_work
*work
)
2727 struct btrfs_raid_bio
*rbio
;
2729 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2730 __raid56_parity_recover(rbio
);
2733 static void async_missing_raid56(struct btrfs_raid_bio
*rbio
)
2735 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
2736 missing_raid56_work
, NULL
, NULL
);
2738 btrfs_queue_work(rbio
->fs_info
->rmw_workers
, &rbio
->work
);
2741 void raid56_submit_missing_rbio(struct btrfs_raid_bio
*rbio
)
2743 if (!lock_stripe_add(rbio
))
2744 async_missing_raid56(rbio
);