ext4: fix a potential fiemap/page fault deadlock w/ inline_data
[linux/fpc-iii.git] / fs / btrfs / raid56.c
blobb9fa99577bf7a3a4c9b78b0428dc86c3285acdbd
1 /*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
63 enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
79 struct list_head hash_list;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache;
87 * for scheduling work in the helper threads
89 struct btrfs_work work;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list;
108 * flags that tell us if it is safe to
109 * merge with this bio
111 unsigned long flags;
113 /* size of each individual stripe on disk */
114 int stripe_len;
116 /* number of data stripes (no p/q) */
117 int nr_data;
119 int real_stripes;
121 int stripe_npages;
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
128 enum btrfs_rbio_ops operation;
130 /* first bad stripe */
131 int faila;
133 /* second bad stripe (for raid6 use) */
134 int failb;
136 int scrubp;
138 * number of pages needed to represent the full
139 * stripe
141 int nr_pages;
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
148 int bio_list_bytes;
150 int generic_bio_cnt;
152 atomic_t refs;
154 atomic_t stripes_pending;
156 atomic_t error;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page **stripe_pages;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page **bio_pages;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap;
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
210 if (info->stripe_hash_table)
211 return 0;
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
231 h = table->table;
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 if (x)
242 kvfree(x);
243 return 0;
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
252 * once the caching is done, we set the cache ready
253 * bit.
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
257 int i;
258 char *s;
259 char *d;
260 int ret;
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
273 memcpy(d, s, PAGE_CACHE_SIZE);
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
283 * we hash on the first logical address of the stripe
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
287 u64 num = rbio->bbio->raid_map[0];
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
295 * shifting off the lower bits fixes things.
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
306 int i;
307 struct page *s;
308 struct page *d;
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
333 * must be called with dest->rbio_list_lock held
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
356 * check the bit again under the hash table lock.
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
367 spin_lock(&h->lock);
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
373 spin_lock(&rbio->bio_list_lock);
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
401 if (freeit)
402 __free_raid_bio(rbio);
406 * prune a given rbio from the cache
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
416 table = rbio->fs_info->stripe_hash_table;
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
424 * remove everything in the cache
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
432 table = info->stripe_hash_table;
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
441 spin_unlock_irqrestore(&table->cache_lock, flags);
445 * remove all cached entries and free the hash table
446 * used by unmount
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
450 if (!info->stripe_hash_table)
451 return;
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
465 * If the size of the rbio cache is too big, we
466 * prune an item.
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
476 table = rbio->fs_info->stripe_hash_table;
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
492 spin_unlock(&rbio->bio_list_lock);
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
505 spin_unlock_irqrestore(&table->cache_lock, flags);
506 return;
510 * helper function to run the xor_blocks api. It is only
511 * able to do MAX_XOR_BLOCKS at a time, so we need to
512 * loop through.
514 static void run_xor(void **pages, int src_cnt, ssize_t len)
516 int src_off = 0;
517 int xor_src_cnt = 0;
518 void *dest = pages[src_cnt];
520 while(src_cnt > 0) {
521 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
522 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
524 src_cnt -= xor_src_cnt;
525 src_off += xor_src_cnt;
530 * returns true if the bio list inside this rbio
531 * covers an entire stripe (no rmw required).
532 * Must be called with the bio list lock held, or
533 * at a time when you know it is impossible to add
534 * new bios into the list
536 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
538 unsigned long size = rbio->bio_list_bytes;
539 int ret = 1;
541 if (size != rbio->nr_data * rbio->stripe_len)
542 ret = 0;
544 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
545 return ret;
548 static int rbio_is_full(struct btrfs_raid_bio *rbio)
550 unsigned long flags;
551 int ret;
553 spin_lock_irqsave(&rbio->bio_list_lock, flags);
554 ret = __rbio_is_full(rbio);
555 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
556 return ret;
560 * returns 1 if it is safe to merge two rbios together.
561 * The merging is safe if the two rbios correspond to
562 * the same stripe and if they are both going in the same
563 * direction (read vs write), and if neither one is
564 * locked for final IO
566 * The caller is responsible for locking such that
567 * rmw_locked is safe to test
569 static int rbio_can_merge(struct btrfs_raid_bio *last,
570 struct btrfs_raid_bio *cur)
572 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
573 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
574 return 0;
577 * we can't merge with cached rbios, since the
578 * idea is that when we merge the destination
579 * rbio is going to run our IO for us. We can
580 * steal from cached rbio's though, other functions
581 * handle that.
583 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
584 test_bit(RBIO_CACHE_BIT, &cur->flags))
585 return 0;
587 if (last->bbio->raid_map[0] !=
588 cur->bbio->raid_map[0])
589 return 0;
591 /* we can't merge with different operations */
592 if (last->operation != cur->operation)
593 return 0;
595 * We've need read the full stripe from the drive.
596 * check and repair the parity and write the new results.
598 * We're not allowed to add any new bios to the
599 * bio list here, anyone else that wants to
600 * change this stripe needs to do their own rmw.
602 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
603 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
604 return 0;
606 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
607 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
608 return 0;
610 return 1;
614 * helper to index into the pstripe
616 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
618 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
619 return rbio->stripe_pages[index];
623 * helper to index into the qstripe, returns null
624 * if there is no qstripe
626 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
628 if (rbio->nr_data + 1 == rbio->real_stripes)
629 return NULL;
631 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
632 PAGE_CACHE_SHIFT;
633 return rbio->stripe_pages[index];
637 * The first stripe in the table for a logical address
638 * has the lock. rbios are added in one of three ways:
640 * 1) Nobody has the stripe locked yet. The rbio is given
641 * the lock and 0 is returned. The caller must start the IO
642 * themselves.
644 * 2) Someone has the stripe locked, but we're able to merge
645 * with the lock owner. The rbio is freed and the IO will
646 * start automatically along with the existing rbio. 1 is returned.
648 * 3) Someone has the stripe locked, but we're not able to merge.
649 * The rbio is added to the lock owner's plug list, or merged into
650 * an rbio already on the plug list. When the lock owner unlocks,
651 * the next rbio on the list is run and the IO is started automatically.
652 * 1 is returned
654 * If we return 0, the caller still owns the rbio and must continue with
655 * IO submission. If we return 1, the caller must assume the rbio has
656 * already been freed.
658 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
660 int bucket = rbio_bucket(rbio);
661 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
662 struct btrfs_raid_bio *cur;
663 struct btrfs_raid_bio *pending;
664 unsigned long flags;
665 DEFINE_WAIT(wait);
666 struct btrfs_raid_bio *freeit = NULL;
667 struct btrfs_raid_bio *cache_drop = NULL;
668 int ret = 0;
669 int walk = 0;
671 spin_lock_irqsave(&h->lock, flags);
672 list_for_each_entry(cur, &h->hash_list, hash_list) {
673 walk++;
674 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
675 spin_lock(&cur->bio_list_lock);
677 /* can we steal this cached rbio's pages? */
678 if (bio_list_empty(&cur->bio_list) &&
679 list_empty(&cur->plug_list) &&
680 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
681 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
682 list_del_init(&cur->hash_list);
683 atomic_dec(&cur->refs);
685 steal_rbio(cur, rbio);
686 cache_drop = cur;
687 spin_unlock(&cur->bio_list_lock);
689 goto lockit;
692 /* can we merge into the lock owner? */
693 if (rbio_can_merge(cur, rbio)) {
694 merge_rbio(cur, rbio);
695 spin_unlock(&cur->bio_list_lock);
696 freeit = rbio;
697 ret = 1;
698 goto out;
703 * we couldn't merge with the running
704 * rbio, see if we can merge with the
705 * pending ones. We don't have to
706 * check for rmw_locked because there
707 * is no way they are inside finish_rmw
708 * right now
710 list_for_each_entry(pending, &cur->plug_list,
711 plug_list) {
712 if (rbio_can_merge(pending, rbio)) {
713 merge_rbio(pending, rbio);
714 spin_unlock(&cur->bio_list_lock);
715 freeit = rbio;
716 ret = 1;
717 goto out;
721 /* no merging, put us on the tail of the plug list,
722 * our rbio will be started with the currently
723 * running rbio unlocks
725 list_add_tail(&rbio->plug_list, &cur->plug_list);
726 spin_unlock(&cur->bio_list_lock);
727 ret = 1;
728 goto out;
731 lockit:
732 atomic_inc(&rbio->refs);
733 list_add(&rbio->hash_list, &h->hash_list);
734 out:
735 spin_unlock_irqrestore(&h->lock, flags);
736 if (cache_drop)
737 remove_rbio_from_cache(cache_drop);
738 if (freeit)
739 __free_raid_bio(freeit);
740 return ret;
744 * called as rmw or parity rebuild is completed. If the plug list has more
745 * rbios waiting for this stripe, the next one on the list will be started
747 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
749 int bucket;
750 struct btrfs_stripe_hash *h;
751 unsigned long flags;
752 int keep_cache = 0;
754 bucket = rbio_bucket(rbio);
755 h = rbio->fs_info->stripe_hash_table->table + bucket;
757 if (list_empty(&rbio->plug_list))
758 cache_rbio(rbio);
760 spin_lock_irqsave(&h->lock, flags);
761 spin_lock(&rbio->bio_list_lock);
763 if (!list_empty(&rbio->hash_list)) {
765 * if we're still cached and there is no other IO
766 * to perform, just leave this rbio here for others
767 * to steal from later
769 if (list_empty(&rbio->plug_list) &&
770 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
771 keep_cache = 1;
772 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
773 BUG_ON(!bio_list_empty(&rbio->bio_list));
774 goto done;
777 list_del_init(&rbio->hash_list);
778 atomic_dec(&rbio->refs);
781 * we use the plug list to hold all the rbios
782 * waiting for the chance to lock this stripe.
783 * hand the lock over to one of them.
785 if (!list_empty(&rbio->plug_list)) {
786 struct btrfs_raid_bio *next;
787 struct list_head *head = rbio->plug_list.next;
789 next = list_entry(head, struct btrfs_raid_bio,
790 plug_list);
792 list_del_init(&rbio->plug_list);
794 list_add(&next->hash_list, &h->hash_list);
795 atomic_inc(&next->refs);
796 spin_unlock(&rbio->bio_list_lock);
797 spin_unlock_irqrestore(&h->lock, flags);
799 if (next->operation == BTRFS_RBIO_READ_REBUILD)
800 async_read_rebuild(next);
801 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
802 steal_rbio(rbio, next);
803 async_read_rebuild(next);
804 } else if (next->operation == BTRFS_RBIO_WRITE) {
805 steal_rbio(rbio, next);
806 async_rmw_stripe(next);
807 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
808 steal_rbio(rbio, next);
809 async_scrub_parity(next);
812 goto done_nolock;
814 * The barrier for this waitqueue_active is not needed,
815 * we're protected by h->lock and can't miss a wakeup.
817 } else if (waitqueue_active(&h->wait)) {
818 spin_unlock(&rbio->bio_list_lock);
819 spin_unlock_irqrestore(&h->lock, flags);
820 wake_up(&h->wait);
821 goto done_nolock;
824 done:
825 spin_unlock(&rbio->bio_list_lock);
826 spin_unlock_irqrestore(&h->lock, flags);
828 done_nolock:
829 if (!keep_cache)
830 remove_rbio_from_cache(rbio);
833 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
835 int i;
837 WARN_ON(atomic_read(&rbio->refs) < 0);
838 if (!atomic_dec_and_test(&rbio->refs))
839 return;
841 WARN_ON(!list_empty(&rbio->stripe_cache));
842 WARN_ON(!list_empty(&rbio->hash_list));
843 WARN_ON(!bio_list_empty(&rbio->bio_list));
845 for (i = 0; i < rbio->nr_pages; i++) {
846 if (rbio->stripe_pages[i]) {
847 __free_page(rbio->stripe_pages[i]);
848 rbio->stripe_pages[i] = NULL;
852 btrfs_put_bbio(rbio->bbio);
853 kfree(rbio);
856 static void free_raid_bio(struct btrfs_raid_bio *rbio)
858 unlock_stripe(rbio);
859 __free_raid_bio(rbio);
863 * this frees the rbio and runs through all the bios in the
864 * bio_list and calls end_io on them
866 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
868 struct bio *cur = bio_list_get(&rbio->bio_list);
869 struct bio *next;
871 if (rbio->generic_bio_cnt)
872 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
874 free_raid_bio(rbio);
876 while (cur) {
877 next = cur->bi_next;
878 cur->bi_next = NULL;
879 cur->bi_error = err;
880 bio_endio(cur);
881 cur = next;
886 * end io function used by finish_rmw. When we finally
887 * get here, we've written a full stripe
889 static void raid_write_end_io(struct bio *bio)
891 struct btrfs_raid_bio *rbio = bio->bi_private;
892 int err = bio->bi_error;
894 if (err)
895 fail_bio_stripe(rbio, bio);
897 bio_put(bio);
899 if (!atomic_dec_and_test(&rbio->stripes_pending))
900 return;
902 err = 0;
904 /* OK, we have read all the stripes we need to. */
905 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
906 err = -EIO;
908 rbio_orig_end_io(rbio, err);
909 return;
913 * the read/modify/write code wants to use the original bio for
914 * any pages it included, and then use the rbio for everything
915 * else. This function decides if a given index (stripe number)
916 * and page number in that stripe fall inside the original bio
917 * or the rbio.
919 * if you set bio_list_only, you'll get a NULL back for any ranges
920 * that are outside the bio_list
922 * This doesn't take any refs on anything, you get a bare page pointer
923 * and the caller must bump refs as required.
925 * You must call index_rbio_pages once before you can trust
926 * the answers from this function.
928 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
929 int index, int pagenr, int bio_list_only)
931 int chunk_page;
932 struct page *p = NULL;
934 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
936 spin_lock_irq(&rbio->bio_list_lock);
937 p = rbio->bio_pages[chunk_page];
938 spin_unlock_irq(&rbio->bio_list_lock);
940 if (p || bio_list_only)
941 return p;
943 return rbio->stripe_pages[chunk_page];
947 * number of pages we need for the entire stripe across all the
948 * drives
950 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
952 unsigned long nr = stripe_len * nr_stripes;
953 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
957 * allocation and initial setup for the btrfs_raid_bio. Not
958 * this does not allocate any pages for rbio->pages.
960 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
961 struct btrfs_bio *bbio, u64 stripe_len)
963 struct btrfs_raid_bio *rbio;
964 int nr_data = 0;
965 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
966 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
967 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
968 void *p;
970 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
971 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
972 GFP_NOFS);
973 if (!rbio)
974 return ERR_PTR(-ENOMEM);
976 bio_list_init(&rbio->bio_list);
977 INIT_LIST_HEAD(&rbio->plug_list);
978 spin_lock_init(&rbio->bio_list_lock);
979 INIT_LIST_HEAD(&rbio->stripe_cache);
980 INIT_LIST_HEAD(&rbio->hash_list);
981 rbio->bbio = bbio;
982 rbio->fs_info = root->fs_info;
983 rbio->stripe_len = stripe_len;
984 rbio->nr_pages = num_pages;
985 rbio->real_stripes = real_stripes;
986 rbio->stripe_npages = stripe_npages;
987 rbio->faila = -1;
988 rbio->failb = -1;
989 atomic_set(&rbio->refs, 1);
990 atomic_set(&rbio->error, 0);
991 atomic_set(&rbio->stripes_pending, 0);
994 * the stripe_pages and bio_pages array point to the extra
995 * memory we allocated past the end of the rbio
997 p = rbio + 1;
998 rbio->stripe_pages = p;
999 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1000 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1002 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1003 nr_data = real_stripes - 1;
1004 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1005 nr_data = real_stripes - 2;
1006 else
1007 BUG();
1009 rbio->nr_data = nr_data;
1010 return rbio;
1013 /* allocate pages for all the stripes in the bio, including parity */
1014 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1016 int i;
1017 struct page *page;
1019 for (i = 0; i < rbio->nr_pages; i++) {
1020 if (rbio->stripe_pages[i])
1021 continue;
1022 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1023 if (!page)
1024 return -ENOMEM;
1025 rbio->stripe_pages[i] = page;
1026 ClearPageUptodate(page);
1028 return 0;
1031 /* allocate pages for just the p/q stripes */
1032 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1034 int i;
1035 struct page *page;
1037 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1039 for (; i < rbio->nr_pages; i++) {
1040 if (rbio->stripe_pages[i])
1041 continue;
1042 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043 if (!page)
1044 return -ENOMEM;
1045 rbio->stripe_pages[i] = page;
1047 return 0;
1051 * add a single page from a specific stripe into our list of bios for IO
1052 * this will try to merge into existing bios if possible, and returns
1053 * zero if all went well.
1055 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1056 struct bio_list *bio_list,
1057 struct page *page,
1058 int stripe_nr,
1059 unsigned long page_index,
1060 unsigned long bio_max_len)
1062 struct bio *last = bio_list->tail;
1063 u64 last_end = 0;
1064 int ret;
1065 struct bio *bio;
1066 struct btrfs_bio_stripe *stripe;
1067 u64 disk_start;
1069 stripe = &rbio->bbio->stripes[stripe_nr];
1070 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1072 /* if the device is missing, just fail this stripe */
1073 if (!stripe->dev->bdev)
1074 return fail_rbio_index(rbio, stripe_nr);
1076 /* see if we can add this page onto our existing bio */
1077 if (last) {
1078 last_end = (u64)last->bi_iter.bi_sector << 9;
1079 last_end += last->bi_iter.bi_size;
1082 * we can't merge these if they are from different
1083 * devices or if they are not contiguous
1085 if (last_end == disk_start && stripe->dev->bdev &&
1086 !last->bi_error &&
1087 last->bi_bdev == stripe->dev->bdev) {
1088 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1089 if (ret == PAGE_CACHE_SIZE)
1090 return 0;
1094 /* put a new bio on the list */
1095 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1096 if (!bio)
1097 return -ENOMEM;
1099 bio->bi_iter.bi_size = 0;
1100 bio->bi_bdev = stripe->dev->bdev;
1101 bio->bi_iter.bi_sector = disk_start >> 9;
1103 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1104 bio_list_add(bio_list, bio);
1105 return 0;
1109 * while we're doing the read/modify/write cycle, we could
1110 * have errors in reading pages off the disk. This checks
1111 * for errors and if we're not able to read the page it'll
1112 * trigger parity reconstruction. The rmw will be finished
1113 * after we've reconstructed the failed stripes
1115 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1117 if (rbio->faila >= 0 || rbio->failb >= 0) {
1118 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1119 __raid56_parity_recover(rbio);
1120 } else {
1121 finish_rmw(rbio);
1126 * these are just the pages from the rbio array, not from anything
1127 * the FS sent down to us
1129 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1131 int index;
1132 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1133 index += page;
1134 return rbio->stripe_pages[index];
1138 * helper function to walk our bio list and populate the bio_pages array with
1139 * the result. This seems expensive, but it is faster than constantly
1140 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * reconstruction.
1143 * This must be called before you trust the answers from page_in_rbio
1145 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1147 struct bio *bio;
1148 u64 start;
1149 unsigned long stripe_offset;
1150 unsigned long page_index;
1151 struct page *p;
1152 int i;
1154 spin_lock_irq(&rbio->bio_list_lock);
1155 bio_list_for_each(bio, &rbio->bio_list) {
1156 start = (u64)bio->bi_iter.bi_sector << 9;
1157 stripe_offset = start - rbio->bbio->raid_map[0];
1158 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1160 for (i = 0; i < bio->bi_vcnt; i++) {
1161 p = bio->bi_io_vec[i].bv_page;
1162 rbio->bio_pages[page_index + i] = p;
1165 spin_unlock_irq(&rbio->bio_list_lock);
1169 * this is called from one of two situations. We either
1170 * have a full stripe from the higher layers, or we've read all
1171 * the missing bits off disk.
1173 * This will calculate the parity and then send down any
1174 * changed blocks.
1176 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1178 struct btrfs_bio *bbio = rbio->bbio;
1179 void *pointers[rbio->real_stripes];
1180 int stripe_len = rbio->stripe_len;
1181 int nr_data = rbio->nr_data;
1182 int stripe;
1183 int pagenr;
1184 int p_stripe = -1;
1185 int q_stripe = -1;
1186 struct bio_list bio_list;
1187 struct bio *bio;
1188 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1189 int ret;
1191 bio_list_init(&bio_list);
1193 if (rbio->real_stripes - rbio->nr_data == 1) {
1194 p_stripe = rbio->real_stripes - 1;
1195 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1196 p_stripe = rbio->real_stripes - 2;
1197 q_stripe = rbio->real_stripes - 1;
1198 } else {
1199 BUG();
1202 /* at this point we either have a full stripe,
1203 * or we've read the full stripe from the drive.
1204 * recalculate the parity and write the new results.
1206 * We're not allowed to add any new bios to the
1207 * bio list here, anyone else that wants to
1208 * change this stripe needs to do their own rmw.
1210 spin_lock_irq(&rbio->bio_list_lock);
1211 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1212 spin_unlock_irq(&rbio->bio_list_lock);
1214 atomic_set(&rbio->error, 0);
1217 * now that we've set rmw_locked, run through the
1218 * bio list one last time and map the page pointers
1220 * We don't cache full rbios because we're assuming
1221 * the higher layers are unlikely to use this area of
1222 * the disk again soon. If they do use it again,
1223 * hopefully they will send another full bio.
1225 index_rbio_pages(rbio);
1226 if (!rbio_is_full(rbio))
1227 cache_rbio_pages(rbio);
1228 else
1229 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1231 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232 struct page *p;
1233 /* first collect one page from each data stripe */
1234 for (stripe = 0; stripe < nr_data; stripe++) {
1235 p = page_in_rbio(rbio, stripe, pagenr, 0);
1236 pointers[stripe] = kmap(p);
1239 /* then add the parity stripe */
1240 p = rbio_pstripe_page(rbio, pagenr);
1241 SetPageUptodate(p);
1242 pointers[stripe++] = kmap(p);
1244 if (q_stripe != -1) {
1247 * raid6, add the qstripe and call the
1248 * library function to fill in our p/q
1250 p = rbio_qstripe_page(rbio, pagenr);
1251 SetPageUptodate(p);
1252 pointers[stripe++] = kmap(p);
1254 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1255 pointers);
1256 } else {
1257 /* raid5 */
1258 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1259 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1263 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1264 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1268 * time to start writing. Make bios for everything from the
1269 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1270 * everything else.
1272 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1273 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1274 struct page *page;
1275 if (stripe < rbio->nr_data) {
1276 page = page_in_rbio(rbio, stripe, pagenr, 1);
1277 if (!page)
1278 continue;
1279 } else {
1280 page = rbio_stripe_page(rbio, stripe, pagenr);
1283 ret = rbio_add_io_page(rbio, &bio_list,
1284 page, stripe, pagenr, rbio->stripe_len);
1285 if (ret)
1286 goto cleanup;
1290 if (likely(!bbio->num_tgtdevs))
1291 goto write_data;
1293 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1294 if (!bbio->tgtdev_map[stripe])
1295 continue;
1297 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1298 struct page *page;
1299 if (stripe < rbio->nr_data) {
1300 page = page_in_rbio(rbio, stripe, pagenr, 1);
1301 if (!page)
1302 continue;
1303 } else {
1304 page = rbio_stripe_page(rbio, stripe, pagenr);
1307 ret = rbio_add_io_page(rbio, &bio_list, page,
1308 rbio->bbio->tgtdev_map[stripe],
1309 pagenr, rbio->stripe_len);
1310 if (ret)
1311 goto cleanup;
1315 write_data:
1316 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1317 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1319 while (1) {
1320 bio = bio_list_pop(&bio_list);
1321 if (!bio)
1322 break;
1324 bio->bi_private = rbio;
1325 bio->bi_end_io = raid_write_end_io;
1326 submit_bio(WRITE, bio);
1328 return;
1330 cleanup:
1331 rbio_orig_end_io(rbio, -EIO);
1335 * helper to find the stripe number for a given bio. Used to figure out which
1336 * stripe has failed. This expects the bio to correspond to a physical disk,
1337 * so it looks up based on physical sector numbers.
1339 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1340 struct bio *bio)
1342 u64 physical = bio->bi_iter.bi_sector;
1343 u64 stripe_start;
1344 int i;
1345 struct btrfs_bio_stripe *stripe;
1347 physical <<= 9;
1349 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1350 stripe = &rbio->bbio->stripes[i];
1351 stripe_start = stripe->physical;
1352 if (physical >= stripe_start &&
1353 physical < stripe_start + rbio->stripe_len &&
1354 bio->bi_bdev == stripe->dev->bdev) {
1355 return i;
1358 return -1;
1362 * helper to find the stripe number for a given
1363 * bio (before mapping). Used to figure out which stripe has
1364 * failed. This looks up based on logical block numbers.
1366 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1367 struct bio *bio)
1369 u64 logical = bio->bi_iter.bi_sector;
1370 u64 stripe_start;
1371 int i;
1373 logical <<= 9;
1375 for (i = 0; i < rbio->nr_data; i++) {
1376 stripe_start = rbio->bbio->raid_map[i];
1377 if (logical >= stripe_start &&
1378 logical < stripe_start + rbio->stripe_len) {
1379 return i;
1382 return -1;
1386 * returns -EIO if we had too many failures
1388 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1390 unsigned long flags;
1391 int ret = 0;
1393 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1395 /* we already know this stripe is bad, move on */
1396 if (rbio->faila == failed || rbio->failb == failed)
1397 goto out;
1399 if (rbio->faila == -1) {
1400 /* first failure on this rbio */
1401 rbio->faila = failed;
1402 atomic_inc(&rbio->error);
1403 } else if (rbio->failb == -1) {
1404 /* second failure on this rbio */
1405 rbio->failb = failed;
1406 atomic_inc(&rbio->error);
1407 } else {
1408 ret = -EIO;
1410 out:
1411 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1413 return ret;
1417 * helper to fail a stripe based on a physical disk
1418 * bio.
1420 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1421 struct bio *bio)
1423 int failed = find_bio_stripe(rbio, bio);
1425 if (failed < 0)
1426 return -EIO;
1428 return fail_rbio_index(rbio, failed);
1432 * this sets each page in the bio uptodate. It should only be used on private
1433 * rbio pages, nothing that comes in from the higher layers
1435 static void set_bio_pages_uptodate(struct bio *bio)
1437 int i;
1438 struct page *p;
1440 for (i = 0; i < bio->bi_vcnt; i++) {
1441 p = bio->bi_io_vec[i].bv_page;
1442 SetPageUptodate(p);
1447 * end io for the read phase of the rmw cycle. All the bios here are physical
1448 * stripe bios we've read from the disk so we can recalculate the parity of the
1449 * stripe.
1451 * This will usually kick off finish_rmw once all the bios are read in, but it
1452 * may trigger parity reconstruction if we had any errors along the way
1454 static void raid_rmw_end_io(struct bio *bio)
1456 struct btrfs_raid_bio *rbio = bio->bi_private;
1458 if (bio->bi_error)
1459 fail_bio_stripe(rbio, bio);
1460 else
1461 set_bio_pages_uptodate(bio);
1463 bio_put(bio);
1465 if (!atomic_dec_and_test(&rbio->stripes_pending))
1466 return;
1468 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1469 goto cleanup;
1472 * this will normally call finish_rmw to start our write
1473 * but if there are any failed stripes we'll reconstruct
1474 * from parity first
1476 validate_rbio_for_rmw(rbio);
1477 return;
1479 cleanup:
1481 rbio_orig_end_io(rbio, -EIO);
1484 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1486 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1487 rmw_work, NULL, NULL);
1489 btrfs_queue_work(rbio->fs_info->rmw_workers,
1490 &rbio->work);
1493 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1495 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1496 read_rebuild_work, NULL, NULL);
1498 btrfs_queue_work(rbio->fs_info->rmw_workers,
1499 &rbio->work);
1503 * the stripe must be locked by the caller. It will
1504 * unlock after all the writes are done
1506 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1508 int bios_to_read = 0;
1509 struct bio_list bio_list;
1510 int ret;
1511 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1512 int pagenr;
1513 int stripe;
1514 struct bio *bio;
1516 bio_list_init(&bio_list);
1518 ret = alloc_rbio_pages(rbio);
1519 if (ret)
1520 goto cleanup;
1522 index_rbio_pages(rbio);
1524 atomic_set(&rbio->error, 0);
1526 * build a list of bios to read all the missing parts of this
1527 * stripe
1529 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1530 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1531 struct page *page;
1533 * we want to find all the pages missing from
1534 * the rbio and read them from the disk. If
1535 * page_in_rbio finds a page in the bio list
1536 * we don't need to read it off the stripe.
1538 page = page_in_rbio(rbio, stripe, pagenr, 1);
1539 if (page)
1540 continue;
1542 page = rbio_stripe_page(rbio, stripe, pagenr);
1544 * the bio cache may have handed us an uptodate
1545 * page. If so, be happy and use it
1547 if (PageUptodate(page))
1548 continue;
1550 ret = rbio_add_io_page(rbio, &bio_list, page,
1551 stripe, pagenr, rbio->stripe_len);
1552 if (ret)
1553 goto cleanup;
1557 bios_to_read = bio_list_size(&bio_list);
1558 if (!bios_to_read) {
1560 * this can happen if others have merged with
1561 * us, it means there is nothing left to read.
1562 * But if there are missing devices it may not be
1563 * safe to do the full stripe write yet.
1565 goto finish;
1569 * the bbio may be freed once we submit the last bio. Make sure
1570 * not to touch it after that
1572 atomic_set(&rbio->stripes_pending, bios_to_read);
1573 while (1) {
1574 bio = bio_list_pop(&bio_list);
1575 if (!bio)
1576 break;
1578 bio->bi_private = rbio;
1579 bio->bi_end_io = raid_rmw_end_io;
1581 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1582 BTRFS_WQ_ENDIO_RAID56);
1584 submit_bio(READ, bio);
1586 /* the actual write will happen once the reads are done */
1587 return 0;
1589 cleanup:
1590 rbio_orig_end_io(rbio, -EIO);
1591 return -EIO;
1593 finish:
1594 validate_rbio_for_rmw(rbio);
1595 return 0;
1599 * if the upper layers pass in a full stripe, we thank them by only allocating
1600 * enough pages to hold the parity, and sending it all down quickly.
1602 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1604 int ret;
1606 ret = alloc_rbio_parity_pages(rbio);
1607 if (ret) {
1608 __free_raid_bio(rbio);
1609 return ret;
1612 ret = lock_stripe_add(rbio);
1613 if (ret == 0)
1614 finish_rmw(rbio);
1615 return 0;
1619 * partial stripe writes get handed over to async helpers.
1620 * We're really hoping to merge a few more writes into this
1621 * rbio before calculating new parity
1623 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1625 int ret;
1627 ret = lock_stripe_add(rbio);
1628 if (ret == 0)
1629 async_rmw_stripe(rbio);
1630 return 0;
1634 * sometimes while we were reading from the drive to
1635 * recalculate parity, enough new bios come into create
1636 * a full stripe. So we do a check here to see if we can
1637 * go directly to finish_rmw
1639 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1641 /* head off into rmw land if we don't have a full stripe */
1642 if (!rbio_is_full(rbio))
1643 return partial_stripe_write(rbio);
1644 return full_stripe_write(rbio);
1648 * We use plugging call backs to collect full stripes.
1649 * Any time we get a partial stripe write while plugged
1650 * we collect it into a list. When the unplug comes down,
1651 * we sort the list by logical block number and merge
1652 * everything we can into the same rbios
1654 struct btrfs_plug_cb {
1655 struct blk_plug_cb cb;
1656 struct btrfs_fs_info *info;
1657 struct list_head rbio_list;
1658 struct btrfs_work work;
1662 * rbios on the plug list are sorted for easier merging.
1664 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1666 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1667 plug_list);
1668 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1669 plug_list);
1670 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1671 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1673 if (a_sector < b_sector)
1674 return -1;
1675 if (a_sector > b_sector)
1676 return 1;
1677 return 0;
1680 static void run_plug(struct btrfs_plug_cb *plug)
1682 struct btrfs_raid_bio *cur;
1683 struct btrfs_raid_bio *last = NULL;
1686 * sort our plug list then try to merge
1687 * everything we can in hopes of creating full
1688 * stripes.
1690 list_sort(NULL, &plug->rbio_list, plug_cmp);
1691 while (!list_empty(&plug->rbio_list)) {
1692 cur = list_entry(plug->rbio_list.next,
1693 struct btrfs_raid_bio, plug_list);
1694 list_del_init(&cur->plug_list);
1696 if (rbio_is_full(cur)) {
1697 /* we have a full stripe, send it down */
1698 full_stripe_write(cur);
1699 continue;
1701 if (last) {
1702 if (rbio_can_merge(last, cur)) {
1703 merge_rbio(last, cur);
1704 __free_raid_bio(cur);
1705 continue;
1708 __raid56_parity_write(last);
1710 last = cur;
1712 if (last) {
1713 __raid56_parity_write(last);
1715 kfree(plug);
1719 * if the unplug comes from schedule, we have to push the
1720 * work off to a helper thread
1722 static void unplug_work(struct btrfs_work *work)
1724 struct btrfs_plug_cb *plug;
1725 plug = container_of(work, struct btrfs_plug_cb, work);
1726 run_plug(plug);
1729 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1731 struct btrfs_plug_cb *plug;
1732 plug = container_of(cb, struct btrfs_plug_cb, cb);
1734 if (from_schedule) {
1735 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1736 unplug_work, NULL, NULL);
1737 btrfs_queue_work(plug->info->rmw_workers,
1738 &plug->work);
1739 return;
1741 run_plug(plug);
1745 * our main entry point for writes from the rest of the FS.
1747 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1748 struct btrfs_bio *bbio, u64 stripe_len)
1750 struct btrfs_raid_bio *rbio;
1751 struct btrfs_plug_cb *plug = NULL;
1752 struct blk_plug_cb *cb;
1753 int ret;
1755 rbio = alloc_rbio(root, bbio, stripe_len);
1756 if (IS_ERR(rbio)) {
1757 btrfs_put_bbio(bbio);
1758 return PTR_ERR(rbio);
1760 bio_list_add(&rbio->bio_list, bio);
1761 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1762 rbio->operation = BTRFS_RBIO_WRITE;
1764 btrfs_bio_counter_inc_noblocked(root->fs_info);
1765 rbio->generic_bio_cnt = 1;
1768 * don't plug on full rbios, just get them out the door
1769 * as quickly as we can
1771 if (rbio_is_full(rbio)) {
1772 ret = full_stripe_write(rbio);
1773 if (ret)
1774 btrfs_bio_counter_dec(root->fs_info);
1775 return ret;
1778 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1779 sizeof(*plug));
1780 if (cb) {
1781 plug = container_of(cb, struct btrfs_plug_cb, cb);
1782 if (!plug->info) {
1783 plug->info = root->fs_info;
1784 INIT_LIST_HEAD(&plug->rbio_list);
1786 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1787 ret = 0;
1788 } else {
1789 ret = __raid56_parity_write(rbio);
1790 if (ret)
1791 btrfs_bio_counter_dec(root->fs_info);
1793 return ret;
1797 * all parity reconstruction happens here. We've read in everything
1798 * we can find from the drives and this does the heavy lifting of
1799 * sorting the good from the bad.
1801 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1803 int pagenr, stripe;
1804 void **pointers;
1805 int faila = -1, failb = -1;
1806 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1807 struct page *page;
1808 int err;
1809 int i;
1811 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1812 if (!pointers) {
1813 err = -ENOMEM;
1814 goto cleanup_io;
1817 faila = rbio->faila;
1818 failb = rbio->failb;
1820 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1821 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1822 spin_lock_irq(&rbio->bio_list_lock);
1823 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1824 spin_unlock_irq(&rbio->bio_list_lock);
1827 index_rbio_pages(rbio);
1829 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1831 * Now we just use bitmap to mark the horizontal stripes in
1832 * which we have data when doing parity scrub.
1834 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1835 !test_bit(pagenr, rbio->dbitmap))
1836 continue;
1838 /* setup our array of pointers with pages
1839 * from each stripe
1841 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1843 * if we're rebuilding a read, we have to use
1844 * pages from the bio list
1846 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1847 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1848 (stripe == faila || stripe == failb)) {
1849 page = page_in_rbio(rbio, stripe, pagenr, 0);
1850 } else {
1851 page = rbio_stripe_page(rbio, stripe, pagenr);
1853 pointers[stripe] = kmap(page);
1856 /* all raid6 handling here */
1857 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1859 * single failure, rebuild from parity raid5
1860 * style
1862 if (failb < 0) {
1863 if (faila == rbio->nr_data) {
1865 * Just the P stripe has failed, without
1866 * a bad data or Q stripe.
1867 * TODO, we should redo the xor here.
1869 err = -EIO;
1870 goto cleanup;
1873 * a single failure in raid6 is rebuilt
1874 * in the pstripe code below
1876 goto pstripe;
1879 /* make sure our ps and qs are in order */
1880 if (faila > failb) {
1881 int tmp = failb;
1882 failb = faila;
1883 faila = tmp;
1886 /* if the q stripe is failed, do a pstripe reconstruction
1887 * from the xors.
1888 * If both the q stripe and the P stripe are failed, we're
1889 * here due to a crc mismatch and we can't give them the
1890 * data they want
1892 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1893 if (rbio->bbio->raid_map[faila] ==
1894 RAID5_P_STRIPE) {
1895 err = -EIO;
1896 goto cleanup;
1899 * otherwise we have one bad data stripe and
1900 * a good P stripe. raid5!
1902 goto pstripe;
1905 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1906 raid6_datap_recov(rbio->real_stripes,
1907 PAGE_SIZE, faila, pointers);
1908 } else {
1909 raid6_2data_recov(rbio->real_stripes,
1910 PAGE_SIZE, faila, failb,
1911 pointers);
1913 } else {
1914 void *p;
1916 /* rebuild from P stripe here (raid5 or raid6) */
1917 BUG_ON(failb != -1);
1918 pstripe:
1919 /* Copy parity block into failed block to start with */
1920 memcpy(pointers[faila],
1921 pointers[rbio->nr_data],
1922 PAGE_CACHE_SIZE);
1924 /* rearrange the pointer array */
1925 p = pointers[faila];
1926 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1927 pointers[stripe] = pointers[stripe + 1];
1928 pointers[rbio->nr_data - 1] = p;
1930 /* xor in the rest */
1931 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1933 /* if we're doing this rebuild as part of an rmw, go through
1934 * and set all of our private rbio pages in the
1935 * failed stripes as uptodate. This way finish_rmw will
1936 * know they can be trusted. If this was a read reconstruction,
1937 * other endio functions will fiddle the uptodate bits
1939 if (rbio->operation == BTRFS_RBIO_WRITE) {
1940 for (i = 0; i < nr_pages; i++) {
1941 if (faila != -1) {
1942 page = rbio_stripe_page(rbio, faila, i);
1943 SetPageUptodate(page);
1945 if (failb != -1) {
1946 page = rbio_stripe_page(rbio, failb, i);
1947 SetPageUptodate(page);
1951 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1953 * if we're rebuilding a read, we have to use
1954 * pages from the bio list
1956 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1957 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1958 (stripe == faila || stripe == failb)) {
1959 page = page_in_rbio(rbio, stripe, pagenr, 0);
1960 } else {
1961 page = rbio_stripe_page(rbio, stripe, pagenr);
1963 kunmap(page);
1967 err = 0;
1968 cleanup:
1969 kfree(pointers);
1971 cleanup_io:
1972 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1973 if (err == 0)
1974 cache_rbio_pages(rbio);
1975 else
1976 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1978 rbio_orig_end_io(rbio, err);
1979 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1980 rbio_orig_end_io(rbio, err);
1981 } else if (err == 0) {
1982 rbio->faila = -1;
1983 rbio->failb = -1;
1985 if (rbio->operation == BTRFS_RBIO_WRITE)
1986 finish_rmw(rbio);
1987 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1988 finish_parity_scrub(rbio, 0);
1989 else
1990 BUG();
1991 } else {
1992 rbio_orig_end_io(rbio, err);
1997 * This is called only for stripes we've read from disk to
1998 * reconstruct the parity.
2000 static void raid_recover_end_io(struct bio *bio)
2002 struct btrfs_raid_bio *rbio = bio->bi_private;
2005 * we only read stripe pages off the disk, set them
2006 * up to date if there were no errors
2008 if (bio->bi_error)
2009 fail_bio_stripe(rbio, bio);
2010 else
2011 set_bio_pages_uptodate(bio);
2012 bio_put(bio);
2014 if (!atomic_dec_and_test(&rbio->stripes_pending))
2015 return;
2017 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2018 rbio_orig_end_io(rbio, -EIO);
2019 else
2020 __raid_recover_end_io(rbio);
2024 * reads everything we need off the disk to reconstruct
2025 * the parity. endio handlers trigger final reconstruction
2026 * when the IO is done.
2028 * This is used both for reads from the higher layers and for
2029 * parity construction required to finish a rmw cycle.
2031 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2033 int bios_to_read = 0;
2034 struct bio_list bio_list;
2035 int ret;
2036 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2037 int pagenr;
2038 int stripe;
2039 struct bio *bio;
2041 bio_list_init(&bio_list);
2043 ret = alloc_rbio_pages(rbio);
2044 if (ret)
2045 goto cleanup;
2047 atomic_set(&rbio->error, 0);
2050 * read everything that hasn't failed. Thanks to the
2051 * stripe cache, it is possible that some or all of these
2052 * pages are going to be uptodate.
2054 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2055 if (rbio->faila == stripe || rbio->failb == stripe) {
2056 atomic_inc(&rbio->error);
2057 continue;
2060 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2061 struct page *p;
2064 * the rmw code may have already read this
2065 * page in
2067 p = rbio_stripe_page(rbio, stripe, pagenr);
2068 if (PageUptodate(p))
2069 continue;
2071 ret = rbio_add_io_page(rbio, &bio_list,
2072 rbio_stripe_page(rbio, stripe, pagenr),
2073 stripe, pagenr, rbio->stripe_len);
2074 if (ret < 0)
2075 goto cleanup;
2079 bios_to_read = bio_list_size(&bio_list);
2080 if (!bios_to_read) {
2082 * we might have no bios to read just because the pages
2083 * were up to date, or we might have no bios to read because
2084 * the devices were gone.
2086 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2087 __raid_recover_end_io(rbio);
2088 goto out;
2089 } else {
2090 goto cleanup;
2095 * the bbio may be freed once we submit the last bio. Make sure
2096 * not to touch it after that
2098 atomic_set(&rbio->stripes_pending, bios_to_read);
2099 while (1) {
2100 bio = bio_list_pop(&bio_list);
2101 if (!bio)
2102 break;
2104 bio->bi_private = rbio;
2105 bio->bi_end_io = raid_recover_end_io;
2107 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2108 BTRFS_WQ_ENDIO_RAID56);
2110 submit_bio(READ, bio);
2112 out:
2113 return 0;
2115 cleanup:
2116 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2117 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2118 rbio_orig_end_io(rbio, -EIO);
2119 return -EIO;
2123 * the main entry point for reads from the higher layers. This
2124 * is really only called when the normal read path had a failure,
2125 * so we assume the bio they send down corresponds to a failed part
2126 * of the drive.
2128 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2129 struct btrfs_bio *bbio, u64 stripe_len,
2130 int mirror_num, int generic_io)
2132 struct btrfs_raid_bio *rbio;
2133 int ret;
2135 rbio = alloc_rbio(root, bbio, stripe_len);
2136 if (IS_ERR(rbio)) {
2137 if (generic_io)
2138 btrfs_put_bbio(bbio);
2139 return PTR_ERR(rbio);
2142 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2143 bio_list_add(&rbio->bio_list, bio);
2144 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2146 rbio->faila = find_logical_bio_stripe(rbio, bio);
2147 if (rbio->faila == -1) {
2148 BUG();
2149 if (generic_io)
2150 btrfs_put_bbio(bbio);
2151 kfree(rbio);
2152 return -EIO;
2155 if (generic_io) {
2156 btrfs_bio_counter_inc_noblocked(root->fs_info);
2157 rbio->generic_bio_cnt = 1;
2158 } else {
2159 btrfs_get_bbio(bbio);
2163 * Loop retry:
2164 * for 'mirror == 2', reconstruct from all other stripes.
2165 * for 'mirror_num > 2', select a stripe to fail on every retry.
2167 if (mirror_num > 2) {
2169 * 'mirror == 3' is to fail the p stripe and
2170 * reconstruct from the q stripe. 'mirror > 3' is to
2171 * fail a data stripe and reconstruct from p+q stripe.
2173 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2174 ASSERT(rbio->failb > 0);
2175 if (rbio->failb <= rbio->faila)
2176 rbio->failb--;
2179 ret = lock_stripe_add(rbio);
2182 * __raid56_parity_recover will end the bio with
2183 * any errors it hits. We don't want to return
2184 * its error value up the stack because our caller
2185 * will end up calling bio_endio with any nonzero
2186 * return
2188 if (ret == 0)
2189 __raid56_parity_recover(rbio);
2191 * our rbio has been added to the list of
2192 * rbios that will be handled after the
2193 * currently lock owner is done
2195 return 0;
2199 static void rmw_work(struct btrfs_work *work)
2201 struct btrfs_raid_bio *rbio;
2203 rbio = container_of(work, struct btrfs_raid_bio, work);
2204 raid56_rmw_stripe(rbio);
2207 static void read_rebuild_work(struct btrfs_work *work)
2209 struct btrfs_raid_bio *rbio;
2211 rbio = container_of(work, struct btrfs_raid_bio, work);
2212 __raid56_parity_recover(rbio);
2216 * The following code is used to scrub/replace the parity stripe
2218 * Note: We need make sure all the pages that add into the scrub/replace
2219 * raid bio are correct and not be changed during the scrub/replace. That
2220 * is those pages just hold metadata or file data with checksum.
2223 struct btrfs_raid_bio *
2224 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2225 struct btrfs_bio *bbio, u64 stripe_len,
2226 struct btrfs_device *scrub_dev,
2227 unsigned long *dbitmap, int stripe_nsectors)
2229 struct btrfs_raid_bio *rbio;
2230 int i;
2232 rbio = alloc_rbio(root, bbio, stripe_len);
2233 if (IS_ERR(rbio))
2234 return NULL;
2235 bio_list_add(&rbio->bio_list, bio);
2237 * This is a special bio which is used to hold the completion handler
2238 * and make the scrub rbio is similar to the other types
2240 ASSERT(!bio->bi_iter.bi_size);
2241 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2243 for (i = 0; i < rbio->real_stripes; i++) {
2244 if (bbio->stripes[i].dev == scrub_dev) {
2245 rbio->scrubp = i;
2246 break;
2250 /* Now we just support the sectorsize equals to page size */
2251 ASSERT(root->sectorsize == PAGE_SIZE);
2252 ASSERT(rbio->stripe_npages == stripe_nsectors);
2253 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2255 return rbio;
2258 /* Used for both parity scrub and missing. */
2259 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2260 u64 logical)
2262 int stripe_offset;
2263 int index;
2265 ASSERT(logical >= rbio->bbio->raid_map[0]);
2266 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2267 rbio->stripe_len * rbio->nr_data);
2268 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2269 index = stripe_offset >> PAGE_CACHE_SHIFT;
2270 rbio->bio_pages[index] = page;
2274 * We just scrub the parity that we have correct data on the same horizontal,
2275 * so we needn't allocate all pages for all the stripes.
2277 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2279 int i;
2280 int bit;
2281 int index;
2282 struct page *page;
2284 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2285 for (i = 0; i < rbio->real_stripes; i++) {
2286 index = i * rbio->stripe_npages + bit;
2287 if (rbio->stripe_pages[index])
2288 continue;
2290 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2291 if (!page)
2292 return -ENOMEM;
2293 rbio->stripe_pages[index] = page;
2294 ClearPageUptodate(page);
2297 return 0;
2301 * end io function used by finish_rmw. When we finally
2302 * get here, we've written a full stripe
2304 static void raid_write_parity_end_io(struct bio *bio)
2306 struct btrfs_raid_bio *rbio = bio->bi_private;
2307 int err = bio->bi_error;
2309 if (bio->bi_error)
2310 fail_bio_stripe(rbio, bio);
2312 bio_put(bio);
2314 if (!atomic_dec_and_test(&rbio->stripes_pending))
2315 return;
2317 err = 0;
2319 if (atomic_read(&rbio->error))
2320 err = -EIO;
2322 rbio_orig_end_io(rbio, err);
2325 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2326 int need_check)
2328 struct btrfs_bio *bbio = rbio->bbio;
2329 void *pointers[rbio->real_stripes];
2330 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2331 int nr_data = rbio->nr_data;
2332 int stripe;
2333 int pagenr;
2334 int p_stripe = -1;
2335 int q_stripe = -1;
2336 struct page *p_page = NULL;
2337 struct page *q_page = NULL;
2338 struct bio_list bio_list;
2339 struct bio *bio;
2340 int is_replace = 0;
2341 int ret;
2343 bio_list_init(&bio_list);
2345 if (rbio->real_stripes - rbio->nr_data == 1) {
2346 p_stripe = rbio->real_stripes - 1;
2347 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2348 p_stripe = rbio->real_stripes - 2;
2349 q_stripe = rbio->real_stripes - 1;
2350 } else {
2351 BUG();
2354 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2355 is_replace = 1;
2356 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2360 * Because the higher layers(scrubber) are unlikely to
2361 * use this area of the disk again soon, so don't cache
2362 * it.
2364 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2366 if (!need_check)
2367 goto writeback;
2369 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2370 if (!p_page)
2371 goto cleanup;
2372 SetPageUptodate(p_page);
2374 if (q_stripe != -1) {
2375 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2376 if (!q_page) {
2377 __free_page(p_page);
2378 goto cleanup;
2380 SetPageUptodate(q_page);
2383 atomic_set(&rbio->error, 0);
2385 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2386 struct page *p;
2387 void *parity;
2388 /* first collect one page from each data stripe */
2389 for (stripe = 0; stripe < nr_data; stripe++) {
2390 p = page_in_rbio(rbio, stripe, pagenr, 0);
2391 pointers[stripe] = kmap(p);
2394 /* then add the parity stripe */
2395 pointers[stripe++] = kmap(p_page);
2397 if (q_stripe != -1) {
2400 * raid6, add the qstripe and call the
2401 * library function to fill in our p/q
2403 pointers[stripe++] = kmap(q_page);
2405 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2406 pointers);
2407 } else {
2408 /* raid5 */
2409 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2410 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2413 /* Check scrubbing pairty and repair it */
2414 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2415 parity = kmap(p);
2416 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2417 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2418 else
2419 /* Parity is right, needn't writeback */
2420 bitmap_clear(rbio->dbitmap, pagenr, 1);
2421 kunmap(p);
2423 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2424 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2427 __free_page(p_page);
2428 if (q_page)
2429 __free_page(q_page);
2431 writeback:
2433 * time to start writing. Make bios for everything from the
2434 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2435 * everything else.
2437 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2438 struct page *page;
2440 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2441 ret = rbio_add_io_page(rbio, &bio_list,
2442 page, rbio->scrubp, pagenr, rbio->stripe_len);
2443 if (ret)
2444 goto cleanup;
2447 if (!is_replace)
2448 goto submit_write;
2450 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2451 struct page *page;
2453 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2454 ret = rbio_add_io_page(rbio, &bio_list, page,
2455 bbio->tgtdev_map[rbio->scrubp],
2456 pagenr, rbio->stripe_len);
2457 if (ret)
2458 goto cleanup;
2461 submit_write:
2462 nr_data = bio_list_size(&bio_list);
2463 if (!nr_data) {
2464 /* Every parity is right */
2465 rbio_orig_end_io(rbio, 0);
2466 return;
2469 atomic_set(&rbio->stripes_pending, nr_data);
2471 while (1) {
2472 bio = bio_list_pop(&bio_list);
2473 if (!bio)
2474 break;
2476 bio->bi_private = rbio;
2477 bio->bi_end_io = raid_write_parity_end_io;
2478 submit_bio(WRITE, bio);
2480 return;
2482 cleanup:
2483 rbio_orig_end_io(rbio, -EIO);
2486 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2488 if (stripe >= 0 && stripe < rbio->nr_data)
2489 return 1;
2490 return 0;
2494 * While we're doing the parity check and repair, we could have errors
2495 * in reading pages off the disk. This checks for errors and if we're
2496 * not able to read the page it'll trigger parity reconstruction. The
2497 * parity scrub will be finished after we've reconstructed the failed
2498 * stripes
2500 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2502 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2503 goto cleanup;
2505 if (rbio->faila >= 0 || rbio->failb >= 0) {
2506 int dfail = 0, failp = -1;
2508 if (is_data_stripe(rbio, rbio->faila))
2509 dfail++;
2510 else if (is_parity_stripe(rbio->faila))
2511 failp = rbio->faila;
2513 if (is_data_stripe(rbio, rbio->failb))
2514 dfail++;
2515 else if (is_parity_stripe(rbio->failb))
2516 failp = rbio->failb;
2519 * Because we can not use a scrubbing parity to repair
2520 * the data, so the capability of the repair is declined.
2521 * (In the case of RAID5, we can not repair anything)
2523 if (dfail > rbio->bbio->max_errors - 1)
2524 goto cleanup;
2527 * If all data is good, only parity is correctly, just
2528 * repair the parity.
2530 if (dfail == 0) {
2531 finish_parity_scrub(rbio, 0);
2532 return;
2536 * Here means we got one corrupted data stripe and one
2537 * corrupted parity on RAID6, if the corrupted parity
2538 * is scrubbing parity, luckly, use the other one to repair
2539 * the data, or we can not repair the data stripe.
2541 if (failp != rbio->scrubp)
2542 goto cleanup;
2544 __raid_recover_end_io(rbio);
2545 } else {
2546 finish_parity_scrub(rbio, 1);
2548 return;
2550 cleanup:
2551 rbio_orig_end_io(rbio, -EIO);
2555 * end io for the read phase of the rmw cycle. All the bios here are physical
2556 * stripe bios we've read from the disk so we can recalculate the parity of the
2557 * stripe.
2559 * This will usually kick off finish_rmw once all the bios are read in, but it
2560 * may trigger parity reconstruction if we had any errors along the way
2562 static void raid56_parity_scrub_end_io(struct bio *bio)
2564 struct btrfs_raid_bio *rbio = bio->bi_private;
2566 if (bio->bi_error)
2567 fail_bio_stripe(rbio, bio);
2568 else
2569 set_bio_pages_uptodate(bio);
2571 bio_put(bio);
2573 if (!atomic_dec_and_test(&rbio->stripes_pending))
2574 return;
2577 * this will normally call finish_rmw to start our write
2578 * but if there are any failed stripes we'll reconstruct
2579 * from parity first
2581 validate_rbio_for_parity_scrub(rbio);
2584 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2586 int bios_to_read = 0;
2587 struct bio_list bio_list;
2588 int ret;
2589 int pagenr;
2590 int stripe;
2591 struct bio *bio;
2593 ret = alloc_rbio_essential_pages(rbio);
2594 if (ret)
2595 goto cleanup;
2597 bio_list_init(&bio_list);
2599 atomic_set(&rbio->error, 0);
2601 * build a list of bios to read all the missing parts of this
2602 * stripe
2604 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2605 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2606 struct page *page;
2608 * we want to find all the pages missing from
2609 * the rbio and read them from the disk. If
2610 * page_in_rbio finds a page in the bio list
2611 * we don't need to read it off the stripe.
2613 page = page_in_rbio(rbio, stripe, pagenr, 1);
2614 if (page)
2615 continue;
2617 page = rbio_stripe_page(rbio, stripe, pagenr);
2619 * the bio cache may have handed us an uptodate
2620 * page. If so, be happy and use it
2622 if (PageUptodate(page))
2623 continue;
2625 ret = rbio_add_io_page(rbio, &bio_list, page,
2626 stripe, pagenr, rbio->stripe_len);
2627 if (ret)
2628 goto cleanup;
2632 bios_to_read = bio_list_size(&bio_list);
2633 if (!bios_to_read) {
2635 * this can happen if others have merged with
2636 * us, it means there is nothing left to read.
2637 * But if there are missing devices it may not be
2638 * safe to do the full stripe write yet.
2640 goto finish;
2644 * the bbio may be freed once we submit the last bio. Make sure
2645 * not to touch it after that
2647 atomic_set(&rbio->stripes_pending, bios_to_read);
2648 while (1) {
2649 bio = bio_list_pop(&bio_list);
2650 if (!bio)
2651 break;
2653 bio->bi_private = rbio;
2654 bio->bi_end_io = raid56_parity_scrub_end_io;
2656 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2657 BTRFS_WQ_ENDIO_RAID56);
2659 submit_bio(READ, bio);
2661 /* the actual write will happen once the reads are done */
2662 return;
2664 cleanup:
2665 rbio_orig_end_io(rbio, -EIO);
2666 return;
2668 finish:
2669 validate_rbio_for_parity_scrub(rbio);
2672 static void scrub_parity_work(struct btrfs_work *work)
2674 struct btrfs_raid_bio *rbio;
2676 rbio = container_of(work, struct btrfs_raid_bio, work);
2677 raid56_parity_scrub_stripe(rbio);
2680 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2682 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2683 scrub_parity_work, NULL, NULL);
2685 btrfs_queue_work(rbio->fs_info->rmw_workers,
2686 &rbio->work);
2689 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2691 if (!lock_stripe_add(rbio))
2692 async_scrub_parity(rbio);
2695 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2697 struct btrfs_raid_bio *
2698 raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2699 struct btrfs_bio *bbio, u64 length)
2701 struct btrfs_raid_bio *rbio;
2703 rbio = alloc_rbio(root, bbio, length);
2704 if (IS_ERR(rbio))
2705 return NULL;
2707 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2708 bio_list_add(&rbio->bio_list, bio);
2710 * This is a special bio which is used to hold the completion handler
2711 * and make the scrub rbio is similar to the other types
2713 ASSERT(!bio->bi_iter.bi_size);
2715 rbio->faila = find_logical_bio_stripe(rbio, bio);
2716 if (rbio->faila == -1) {
2717 BUG();
2718 kfree(rbio);
2719 return NULL;
2722 return rbio;
2725 static void missing_raid56_work(struct btrfs_work *work)
2727 struct btrfs_raid_bio *rbio;
2729 rbio = container_of(work, struct btrfs_raid_bio, work);
2730 __raid56_parity_recover(rbio);
2733 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2735 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2736 missing_raid56_work, NULL, NULL);
2738 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2741 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2743 if (!lock_stripe_add(rbio))
2744 async_missing_raid56(rbio);