2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
78 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
82 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
84 spin_lock(&tree
->lock
);
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
91 while (!RB_EMPTY_ROOT(&tree
->state
)) {
93 struct extent_state
*state
;
95 node
= rb_first(&tree
->state
);
96 state
= rb_entry(node
, struct extent_state
, rb_node
);
97 rb_erase(&state
->rb_node
, &tree
->state
);
98 RB_CLEAR_NODE(&state
->rb_node
);
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
103 ASSERT(!waitqueue_active(&state
->wq
));
104 free_extent_state(state
);
106 cond_resched_lock(&tree
->lock
);
108 spin_unlock(&tree
->lock
);
111 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
112 struct btrfs_fs_info
*fs_info
)
114 struct btrfs_root
*root
, *tmp
;
116 down_write(&fs_info
->commit_root_sem
);
117 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
119 list_del_init(&root
->dirty_list
);
120 free_extent_buffer(root
->commit_root
);
121 root
->commit_root
= btrfs_root_node(root
);
122 if (is_fstree(root
->objectid
))
123 btrfs_unpin_free_ino(root
);
124 clear_btree_io_tree(&root
->dirty_log_pages
);
127 /* We can free old roots now. */
128 spin_lock(&trans
->dropped_roots_lock
);
129 while (!list_empty(&trans
->dropped_roots
)) {
130 root
= list_first_entry(&trans
->dropped_roots
,
131 struct btrfs_root
, root_list
);
132 list_del_init(&root
->root_list
);
133 spin_unlock(&trans
->dropped_roots_lock
);
134 btrfs_drop_and_free_fs_root(fs_info
, root
);
135 spin_lock(&trans
->dropped_roots_lock
);
137 spin_unlock(&trans
->dropped_roots_lock
);
138 up_write(&fs_info
->commit_root_sem
);
141 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
144 if (type
& TRANS_EXTWRITERS
)
145 atomic_inc(&trans
->num_extwriters
);
148 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
151 if (type
& TRANS_EXTWRITERS
)
152 atomic_dec(&trans
->num_extwriters
);
155 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
158 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
161 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
163 return atomic_read(&trans
->num_extwriters
);
167 * either allocate a new transaction or hop into the existing one
169 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
171 struct btrfs_transaction
*cur_trans
;
172 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
174 spin_lock(&fs_info
->trans_lock
);
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
178 spin_unlock(&fs_info
->trans_lock
);
182 cur_trans
= fs_info
->running_transaction
;
184 if (cur_trans
->aborted
) {
185 spin_unlock(&fs_info
->trans_lock
);
186 return cur_trans
->aborted
;
188 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
189 spin_unlock(&fs_info
->trans_lock
);
192 atomic_inc(&cur_trans
->use_count
);
193 atomic_inc(&cur_trans
->num_writers
);
194 extwriter_counter_inc(cur_trans
, type
);
195 spin_unlock(&fs_info
->trans_lock
);
198 spin_unlock(&fs_info
->trans_lock
);
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
204 if (type
== TRANS_ATTACH
)
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
211 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
213 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
217 spin_lock(&fs_info
->trans_lock
);
218 if (fs_info
->running_transaction
) {
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
223 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
225 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
226 spin_unlock(&fs_info
->trans_lock
);
227 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
231 atomic_set(&cur_trans
->num_writers
, 1);
232 extwriter_counter_init(cur_trans
, type
);
233 init_waitqueue_head(&cur_trans
->writer_wait
);
234 init_waitqueue_head(&cur_trans
->commit_wait
);
235 init_waitqueue_head(&cur_trans
->pending_wait
);
236 cur_trans
->state
= TRANS_STATE_RUNNING
;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 atomic_set(&cur_trans
->use_count
, 2);
242 atomic_set(&cur_trans
->pending_ordered
, 0);
243 cur_trans
->flags
= 0;
244 cur_trans
->start_time
= get_seconds();
246 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
248 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
249 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
250 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
257 if (!list_empty(&fs_info
->tree_mod_seq_list
))
258 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
259 "creating a fresh transaction\n");
260 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
261 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
262 "creating a fresh transaction\n");
263 atomic64_set(&fs_info
->tree_mod_seq
, 0);
265 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
267 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
268 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
269 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
270 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
271 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
272 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
273 mutex_init(&cur_trans
->cache_write_mutex
);
274 cur_trans
->num_dirty_bgs
= 0;
275 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
276 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
277 spin_lock_init(&cur_trans
->dropped_roots_lock
);
278 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
279 extent_io_tree_init(&cur_trans
->dirty_pages
,
280 fs_info
->btree_inode
->i_mapping
);
281 fs_info
->generation
++;
282 cur_trans
->transid
= fs_info
->generation
;
283 fs_info
->running_transaction
= cur_trans
;
284 cur_trans
->aborted
= 0;
285 spin_unlock(&fs_info
->trans_lock
);
291 * this does all the record keeping required to make sure that a reference
292 * counted root is properly recorded in a given transaction. This is required
293 * to make sure the old root from before we joined the transaction is deleted
294 * when the transaction commits
296 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
297 struct btrfs_root
*root
)
299 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
300 root
->last_trans
< trans
->transid
) {
301 WARN_ON(root
== root
->fs_info
->extent_root
);
302 WARN_ON(root
->commit_root
!= root
->node
);
305 * see below for IN_TRANS_SETUP usage rules
306 * we have the reloc mutex held now, so there
307 * is only one writer in this function
309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
311 /* make sure readers find IN_TRANS_SETUP before
312 * they find our root->last_trans update
316 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
317 if (root
->last_trans
== trans
->transid
) {
318 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
321 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
322 (unsigned long)root
->root_key
.objectid
,
323 BTRFS_ROOT_TRANS_TAG
);
324 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
325 root
->last_trans
= trans
->transid
;
327 /* this is pretty tricky. We don't want to
328 * take the relocation lock in btrfs_record_root_in_trans
329 * unless we're really doing the first setup for this root in
332 * Normally we'd use root->last_trans as a flag to decide
333 * if we want to take the expensive mutex.
335 * But, we have to set root->last_trans before we
336 * init the relocation root, otherwise, we trip over warnings
337 * in ctree.c. The solution used here is to flag ourselves
338 * with root IN_TRANS_SETUP. When this is 1, we're still
339 * fixing up the reloc trees and everyone must wait.
341 * When this is zero, they can trust root->last_trans and fly
342 * through btrfs_record_root_in_trans without having to take the
343 * lock. smp_wmb() makes sure that all the writes above are
344 * done before we pop in the zero below
346 btrfs_init_reloc_root(trans
, root
);
347 smp_mb__before_atomic();
348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
354 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
355 struct btrfs_root
*root
)
357 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
359 /* Add ourselves to the transaction dropped list */
360 spin_lock(&cur_trans
->dropped_roots_lock
);
361 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
362 spin_unlock(&cur_trans
->dropped_roots_lock
);
364 /* Make sure we don't try to update the root at commit time */
365 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
366 radix_tree_tag_clear(&root
->fs_info
->fs_roots_radix
,
367 (unsigned long)root
->root_key
.objectid
,
368 BTRFS_ROOT_TRANS_TAG
);
369 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
372 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
373 struct btrfs_root
*root
)
375 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
379 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
383 if (root
->last_trans
== trans
->transid
&&
384 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
387 mutex_lock(&root
->fs_info
->reloc_mutex
);
388 record_root_in_trans(trans
, root
);
389 mutex_unlock(&root
->fs_info
->reloc_mutex
);
394 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
396 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
397 trans
->state
< TRANS_STATE_UNBLOCKED
&&
401 /* wait for commit against the current transaction to become unblocked
402 * when this is done, it is safe to start a new transaction, but the current
403 * transaction might not be fully on disk.
405 static void wait_current_trans(struct btrfs_root
*root
)
407 struct btrfs_transaction
*cur_trans
;
409 spin_lock(&root
->fs_info
->trans_lock
);
410 cur_trans
= root
->fs_info
->running_transaction
;
411 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
412 atomic_inc(&cur_trans
->use_count
);
413 spin_unlock(&root
->fs_info
->trans_lock
);
415 wait_event(root
->fs_info
->transaction_wait
,
416 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
418 btrfs_put_transaction(cur_trans
);
420 spin_unlock(&root
->fs_info
->trans_lock
);
424 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
426 if (root
->fs_info
->log_root_recovering
)
429 if (type
== TRANS_USERSPACE
)
432 if (type
== TRANS_START
&&
433 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
439 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
441 if (!root
->fs_info
->reloc_ctl
||
442 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
443 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
450 static struct btrfs_trans_handle
*
451 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
452 unsigned int type
, enum btrfs_reserve_flush_enum flush
)
454 struct btrfs_trans_handle
*h
;
455 struct btrfs_transaction
*cur_trans
;
457 u64 qgroup_reserved
= 0;
458 bool reloc_reserved
= false;
461 /* Send isn't supposed to start transactions. */
462 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
464 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
465 return ERR_PTR(-EROFS
);
467 if (current
->journal_info
) {
468 WARN_ON(type
& TRANS_EXTWRITERS
);
469 h
= current
->journal_info
;
471 WARN_ON(h
->use_count
> 2);
472 h
->orig_rsv
= h
->block_rsv
;
478 * Do the reservation before we join the transaction so we can do all
479 * the appropriate flushing if need be.
481 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
482 qgroup_reserved
= num_items
* root
->nodesize
;
483 ret
= btrfs_qgroup_reserve_meta(root
, qgroup_reserved
);
487 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
489 * Do the reservation for the relocation root creation
491 if (need_reserve_reloc_root(root
)) {
492 num_bytes
+= root
->nodesize
;
493 reloc_reserved
= true;
496 ret
= btrfs_block_rsv_add(root
,
497 &root
->fs_info
->trans_block_rsv
,
503 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
510 * If we are JOIN_NOLOCK we're already committing a transaction and
511 * waiting on this guy, so we don't need to do the sb_start_intwrite
512 * because we're already holding a ref. We need this because we could
513 * have raced in and did an fsync() on a file which can kick a commit
514 * and then we deadlock with somebody doing a freeze.
516 * If we are ATTACH, it means we just want to catch the current
517 * transaction and commit it, so we needn't do sb_start_intwrite().
519 if (type
& __TRANS_FREEZABLE
)
520 sb_start_intwrite(root
->fs_info
->sb
);
522 if (may_wait_transaction(root
, type
))
523 wait_current_trans(root
);
526 ret
= join_transaction(root
, type
);
528 wait_current_trans(root
);
529 if (unlikely(type
== TRANS_ATTACH
))
532 } while (ret
== -EBUSY
);
535 /* We must get the transaction if we are JOIN_NOLOCK. */
536 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
540 cur_trans
= root
->fs_info
->running_transaction
;
542 h
->transid
= cur_trans
->transid
;
543 h
->transaction
= cur_trans
;
548 h
->can_flush_pending_bgs
= true;
549 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
550 INIT_LIST_HEAD(&h
->new_bgs
);
553 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
554 may_wait_transaction(root
, type
)) {
555 current
->journal_info
= h
;
556 btrfs_commit_transaction(h
, root
);
561 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
562 h
->transid
, num_bytes
, 1);
563 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
564 h
->bytes_reserved
= num_bytes
;
565 h
->reloc_reserved
= reloc_reserved
;
569 btrfs_record_root_in_trans(h
, root
);
571 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
572 current
->journal_info
= h
;
576 if (type
& __TRANS_FREEZABLE
)
577 sb_end_intwrite(root
->fs_info
->sb
);
578 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
581 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
584 btrfs_qgroup_free_meta(root
, qgroup_reserved
);
588 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
589 unsigned int num_items
)
591 return start_transaction(root
, num_items
, TRANS_START
,
592 BTRFS_RESERVE_FLUSH_ALL
);
594 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
595 struct btrfs_root
*root
,
596 unsigned int num_items
,
599 struct btrfs_trans_handle
*trans
;
603 trans
= btrfs_start_transaction(root
, num_items
);
604 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
607 trans
= btrfs_start_transaction(root
, 0);
611 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
612 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
613 &root
->fs_info
->trans_block_rsv
,
617 btrfs_end_transaction(trans
, root
);
621 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
622 trans
->bytes_reserved
= num_bytes
;
627 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
628 struct btrfs_root
*root
,
629 unsigned int num_items
)
631 return start_transaction(root
, num_items
, TRANS_START
,
632 BTRFS_RESERVE_FLUSH_LIMIT
);
635 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
637 return start_transaction(root
, 0, TRANS_JOIN
, 0);
640 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
642 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
645 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
647 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
651 * btrfs_attach_transaction() - catch the running transaction
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
661 * btrfs_attach_transaction_barrier()
663 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
665 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
669 * btrfs_attach_transaction_barrier() - catch the running transaction
671 * It is similar to the above function, the differentia is this one
672 * will wait for all the inactive transactions until they fully
675 struct btrfs_trans_handle
*
676 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
678 struct btrfs_trans_handle
*trans
;
680 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
681 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
682 btrfs_wait_for_commit(root
, 0);
687 /* wait for a transaction commit to be fully complete */
688 static noinline
void wait_for_commit(struct btrfs_root
*root
,
689 struct btrfs_transaction
*commit
)
691 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
694 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
696 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
700 if (transid
<= root
->fs_info
->last_trans_committed
)
703 /* find specified transaction */
704 spin_lock(&root
->fs_info
->trans_lock
);
705 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
706 if (t
->transid
== transid
) {
708 atomic_inc(&cur_trans
->use_count
);
712 if (t
->transid
> transid
) {
717 spin_unlock(&root
->fs_info
->trans_lock
);
720 * The specified transaction doesn't exist, or we
721 * raced with btrfs_commit_transaction
724 if (transid
> root
->fs_info
->last_trans_committed
)
729 /* find newest transaction that is committing | committed */
730 spin_lock(&root
->fs_info
->trans_lock
);
731 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
733 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
734 if (t
->state
== TRANS_STATE_COMPLETED
)
737 atomic_inc(&cur_trans
->use_count
);
741 spin_unlock(&root
->fs_info
->trans_lock
);
743 goto out
; /* nothing committing|committed */
746 wait_for_commit(root
, cur_trans
);
747 btrfs_put_transaction(cur_trans
);
752 void btrfs_throttle(struct btrfs_root
*root
)
754 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
755 wait_current_trans(root
);
758 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
759 struct btrfs_root
*root
)
761 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
762 btrfs_check_space_for_delayed_refs(trans
, root
))
765 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
768 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
769 struct btrfs_root
*root
)
771 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
776 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
777 cur_trans
->delayed_refs
.flushing
)
780 updates
= trans
->delayed_ref_updates
;
781 trans
->delayed_ref_updates
= 0;
783 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
784 if (err
) /* Error code will also eval true */
788 return should_end_transaction(trans
, root
);
791 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
792 struct btrfs_root
*root
, int throttle
)
794 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
795 struct btrfs_fs_info
*info
= root
->fs_info
;
796 unsigned long cur
= trans
->delayed_ref_updates
;
797 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
799 int must_run_delayed_refs
= 0;
801 if (trans
->use_count
> 1) {
803 trans
->block_rsv
= trans
->orig_rsv
;
807 btrfs_trans_release_metadata(trans
, root
);
808 trans
->block_rsv
= NULL
;
810 if (!list_empty(&trans
->new_bgs
))
811 btrfs_create_pending_block_groups(trans
, root
);
813 trans
->delayed_ref_updates
= 0;
815 must_run_delayed_refs
=
816 btrfs_should_throttle_delayed_refs(trans
, root
);
817 cur
= max_t(unsigned long, cur
, 32);
820 * don't make the caller wait if they are from a NOLOCK
821 * or ATTACH transaction, it will deadlock with commit
823 if (must_run_delayed_refs
== 1 &&
824 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
825 must_run_delayed_refs
= 2;
828 btrfs_trans_release_metadata(trans
, root
);
829 trans
->block_rsv
= NULL
;
831 if (!list_empty(&trans
->new_bgs
))
832 btrfs_create_pending_block_groups(trans
, root
);
834 btrfs_trans_release_chunk_metadata(trans
);
836 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
837 should_end_transaction(trans
, root
) &&
838 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
839 spin_lock(&info
->trans_lock
);
840 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
841 cur_trans
->state
= TRANS_STATE_BLOCKED
;
842 spin_unlock(&info
->trans_lock
);
845 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
847 return btrfs_commit_transaction(trans
, root
);
849 wake_up_process(info
->transaction_kthread
);
852 if (trans
->type
& __TRANS_FREEZABLE
)
853 sb_end_intwrite(root
->fs_info
->sb
);
855 WARN_ON(cur_trans
!= info
->running_transaction
);
856 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
857 atomic_dec(&cur_trans
->num_writers
);
858 extwriter_counter_dec(cur_trans
, trans
->type
);
861 * Make sure counter is updated before we wake up waiters.
864 if (waitqueue_active(&cur_trans
->writer_wait
))
865 wake_up(&cur_trans
->writer_wait
);
866 btrfs_put_transaction(cur_trans
);
868 if (current
->journal_info
== trans
)
869 current
->journal_info
= NULL
;
872 btrfs_run_delayed_iputs(root
);
874 if (trans
->aborted
||
875 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
876 wake_up_process(info
->transaction_kthread
);
879 assert_qgroups_uptodate(trans
);
881 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
882 if (must_run_delayed_refs
) {
883 btrfs_async_run_delayed_refs(root
, cur
,
884 must_run_delayed_refs
== 1);
889 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
890 struct btrfs_root
*root
)
892 return __btrfs_end_transaction(trans
, root
, 0);
895 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
896 struct btrfs_root
*root
)
898 return __btrfs_end_transaction(trans
, root
, 1);
902 * when btree blocks are allocated, they have some corresponding bits set for
903 * them in one of two extent_io trees. This is used to make sure all of
904 * those extents are sent to disk but does not wait on them
906 int btrfs_write_marked_extents(struct btrfs_root
*root
,
907 struct extent_io_tree
*dirty_pages
, int mark
)
911 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
912 struct extent_state
*cached_state
= NULL
;
916 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
917 mark
, &cached_state
)) {
918 bool wait_writeback
= false;
920 err
= convert_extent_bit(dirty_pages
, start
, end
,
922 mark
, &cached_state
, GFP_NOFS
);
924 * convert_extent_bit can return -ENOMEM, which is most of the
925 * time a temporary error. So when it happens, ignore the error
926 * and wait for writeback of this range to finish - because we
927 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
928 * to btrfs_wait_marked_extents() would not know that writeback
929 * for this range started and therefore wouldn't wait for it to
930 * finish - we don't want to commit a superblock that points to
931 * btree nodes/leafs for which writeback hasn't finished yet
932 * (and without errors).
933 * We cleanup any entries left in the io tree when committing
934 * the transaction (through clear_btree_io_tree()).
936 if (err
== -ENOMEM
) {
938 wait_writeback
= true;
941 err
= filemap_fdatawrite_range(mapping
, start
, end
);
944 else if (wait_writeback
)
945 werr
= filemap_fdatawait_range(mapping
, start
, end
);
946 free_extent_state(cached_state
);
955 * when btree blocks are allocated, they have some corresponding bits set for
956 * them in one of two extent_io trees. This is used to make sure all of
957 * those extents are on disk for transaction or log commit. We wait
958 * on all the pages and clear them from the dirty pages state tree
960 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
961 struct extent_io_tree
*dirty_pages
, int mark
)
965 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
966 struct extent_state
*cached_state
= NULL
;
969 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
972 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
973 EXTENT_NEED_WAIT
, &cached_state
)) {
975 * Ignore -ENOMEM errors returned by clear_extent_bit().
976 * When committing the transaction, we'll remove any entries
977 * left in the io tree. For a log commit, we don't remove them
978 * after committing the log because the tree can be accessed
979 * concurrently - we do it only at transaction commit time when
980 * it's safe to do it (through clear_btree_io_tree()).
982 err
= clear_extent_bit(dirty_pages
, start
, end
,
984 0, 0, &cached_state
, GFP_NOFS
);
988 err
= filemap_fdatawait_range(mapping
, start
, end
);
991 free_extent_state(cached_state
);
999 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
1000 if ((mark
& EXTENT_DIRTY
) &&
1001 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
1002 &btree_ino
->runtime_flags
))
1005 if ((mark
& EXTENT_NEW
) &&
1006 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
1007 &btree_ino
->runtime_flags
))
1010 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
1011 &btree_ino
->runtime_flags
))
1015 if (errors
&& !werr
)
1022 * when btree blocks are allocated, they have some corresponding bits set for
1023 * them in one of two extent_io trees. This is used to make sure all of
1024 * those extents are on disk for transaction or log commit
1026 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
1027 struct extent_io_tree
*dirty_pages
, int mark
)
1031 struct blk_plug plug
;
1033 blk_start_plug(&plug
);
1034 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
1035 blk_finish_plug(&plug
);
1036 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1045 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1046 struct btrfs_root
*root
)
1050 ret
= btrfs_write_and_wait_marked_extents(root
,
1051 &trans
->transaction
->dirty_pages
,
1053 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1059 * this is used to update the root pointer in the tree of tree roots.
1061 * But, in the case of the extent allocation tree, updating the root
1062 * pointer may allocate blocks which may change the root of the extent
1065 * So, this loops and repeats and makes sure the cowonly root didn't
1066 * change while the root pointer was being updated in the metadata.
1068 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_root
*root
)
1072 u64 old_root_bytenr
;
1074 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1076 old_root_used
= btrfs_root_used(&root
->root_item
);
1079 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1080 if (old_root_bytenr
== root
->node
->start
&&
1081 old_root_used
== btrfs_root_used(&root
->root_item
))
1084 btrfs_set_root_node(&root
->root_item
, root
->node
);
1085 ret
= btrfs_update_root(trans
, tree_root
,
1091 old_root_used
= btrfs_root_used(&root
->root_item
);
1098 * update all the cowonly tree roots on disk
1100 * The error handling in this function may not be obvious. Any of the
1101 * failures will cause the file system to go offline. We still need
1102 * to clean up the delayed refs.
1104 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1105 struct btrfs_root
*root
)
1107 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1108 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1109 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1110 struct list_head
*next
;
1111 struct extent_buffer
*eb
;
1114 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1115 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1117 btrfs_tree_unlock(eb
);
1118 free_extent_buffer(eb
);
1123 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1127 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1130 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1133 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1137 ret
= btrfs_setup_space_cache(trans
, root
);
1141 /* run_qgroups might have added some more refs */
1142 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1146 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1147 next
= fs_info
->dirty_cowonly_roots
.next
;
1148 list_del_init(next
);
1149 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1150 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1152 if (root
!= fs_info
->extent_root
)
1153 list_add_tail(&root
->dirty_list
,
1154 &trans
->transaction
->switch_commits
);
1155 ret
= update_cowonly_root(trans
, root
);
1158 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1163 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1164 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1167 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1172 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1175 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1176 &trans
->transaction
->switch_commits
);
1177 btrfs_after_dev_replace_commit(fs_info
);
1183 * dead roots are old snapshots that need to be deleted. This allocates
1184 * a dirty root struct and adds it into the list of dead roots that need to
1187 void btrfs_add_dead_root(struct btrfs_root
*root
)
1189 spin_lock(&root
->fs_info
->trans_lock
);
1190 if (list_empty(&root
->root_list
))
1191 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1192 spin_unlock(&root
->fs_info
->trans_lock
);
1196 * update all the cowonly tree roots on disk
1198 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1199 struct btrfs_root
*root
)
1201 struct btrfs_root
*gang
[8];
1202 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1207 spin_lock(&fs_info
->fs_roots_radix_lock
);
1209 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1212 BTRFS_ROOT_TRANS_TAG
);
1215 for (i
= 0; i
< ret
; i
++) {
1217 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1218 (unsigned long)root
->root_key
.objectid
,
1219 BTRFS_ROOT_TRANS_TAG
);
1220 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1222 btrfs_free_log(trans
, root
);
1223 btrfs_update_reloc_root(trans
, root
);
1224 btrfs_orphan_commit_root(trans
, root
);
1226 btrfs_save_ino_cache(root
, trans
);
1228 /* see comments in should_cow_block() */
1229 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1230 smp_mb__after_atomic();
1232 if (root
->commit_root
!= root
->node
) {
1233 list_add_tail(&root
->dirty_list
,
1234 &trans
->transaction
->switch_commits
);
1235 btrfs_set_root_node(&root
->root_item
,
1239 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1242 spin_lock(&fs_info
->fs_roots_radix_lock
);
1245 btrfs_qgroup_free_meta_all(root
);
1248 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1253 * defrag a given btree.
1254 * Every leaf in the btree is read and defragged.
1256 int btrfs_defrag_root(struct btrfs_root
*root
)
1258 struct btrfs_fs_info
*info
= root
->fs_info
;
1259 struct btrfs_trans_handle
*trans
;
1262 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1266 trans
= btrfs_start_transaction(root
, 0);
1268 return PTR_ERR(trans
);
1270 ret
= btrfs_defrag_leaves(trans
, root
);
1272 btrfs_end_transaction(trans
, root
);
1273 btrfs_btree_balance_dirty(info
->tree_root
);
1276 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1279 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1280 pr_debug("BTRFS: defrag_root cancelled\n");
1285 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1290 * new snapshots need to be created at a very specific time in the
1291 * transaction commit. This does the actual creation.
1294 * If the error which may affect the commitment of the current transaction
1295 * happens, we should return the error number. If the error which just affect
1296 * the creation of the pending snapshots, just return 0.
1298 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1299 struct btrfs_fs_info
*fs_info
,
1300 struct btrfs_pending_snapshot
*pending
)
1302 struct btrfs_key key
;
1303 struct btrfs_root_item
*new_root_item
;
1304 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1305 struct btrfs_root
*root
= pending
->root
;
1306 struct btrfs_root
*parent_root
;
1307 struct btrfs_block_rsv
*rsv
;
1308 struct inode
*parent_inode
;
1309 struct btrfs_path
*path
;
1310 struct btrfs_dir_item
*dir_item
;
1311 struct dentry
*dentry
;
1312 struct extent_buffer
*tmp
;
1313 struct extent_buffer
*old
;
1314 struct timespec cur_time
= CURRENT_TIME
;
1322 path
= btrfs_alloc_path();
1324 pending
->error
= -ENOMEM
;
1328 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1329 if (!new_root_item
) {
1330 pending
->error
= -ENOMEM
;
1331 goto root_item_alloc_fail
;
1334 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1336 goto no_free_objectid
;
1339 * Make qgroup to skip current new snapshot's qgroupid, as it is
1340 * accounted by later btrfs_qgroup_inherit().
1342 btrfs_set_skip_qgroup(trans
, objectid
);
1344 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1346 if (to_reserve
> 0) {
1347 pending
->error
= btrfs_block_rsv_add(root
,
1348 &pending
->block_rsv
,
1350 BTRFS_RESERVE_NO_FLUSH
);
1352 goto clear_skip_qgroup
;
1355 key
.objectid
= objectid
;
1356 key
.offset
= (u64
)-1;
1357 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1359 rsv
= trans
->block_rsv
;
1360 trans
->block_rsv
= &pending
->block_rsv
;
1361 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1363 dentry
= pending
->dentry
;
1364 parent_inode
= pending
->dir
;
1365 parent_root
= BTRFS_I(parent_inode
)->root
;
1366 record_root_in_trans(trans
, parent_root
);
1369 * insert the directory item
1371 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1372 BUG_ON(ret
); /* -ENOMEM */
1374 /* check if there is a file/dir which has the same name. */
1375 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1376 btrfs_ino(parent_inode
),
1377 dentry
->d_name
.name
,
1378 dentry
->d_name
.len
, 0);
1379 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1380 pending
->error
= -EEXIST
;
1381 goto dir_item_existed
;
1382 } else if (IS_ERR(dir_item
)) {
1383 ret
= PTR_ERR(dir_item
);
1384 btrfs_abort_transaction(trans
, root
, ret
);
1387 btrfs_release_path(path
);
1390 * pull in the delayed directory update
1391 * and the delayed inode item
1392 * otherwise we corrupt the FS during
1395 ret
= btrfs_run_delayed_items(trans
, root
);
1396 if (ret
) { /* Transaction aborted */
1397 btrfs_abort_transaction(trans
, root
, ret
);
1401 record_root_in_trans(trans
, root
);
1402 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1403 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1404 btrfs_check_and_init_root_item(new_root_item
);
1406 root_flags
= btrfs_root_flags(new_root_item
);
1407 if (pending
->readonly
)
1408 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1410 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1411 btrfs_set_root_flags(new_root_item
, root_flags
);
1413 btrfs_set_root_generation_v2(new_root_item
,
1415 uuid_le_gen(&new_uuid
);
1416 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1417 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1419 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1420 memset(new_root_item
->received_uuid
, 0,
1421 sizeof(new_root_item
->received_uuid
));
1422 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1423 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1424 btrfs_set_root_stransid(new_root_item
, 0);
1425 btrfs_set_root_rtransid(new_root_item
, 0);
1427 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1428 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1429 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1431 old
= btrfs_lock_root_node(root
);
1432 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1434 btrfs_tree_unlock(old
);
1435 free_extent_buffer(old
);
1436 btrfs_abort_transaction(trans
, root
, ret
);
1440 btrfs_set_lock_blocking(old
);
1442 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1443 /* clean up in any case */
1444 btrfs_tree_unlock(old
);
1445 free_extent_buffer(old
);
1447 btrfs_abort_transaction(trans
, root
, ret
);
1450 /* see comments in should_cow_block() */
1451 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1454 btrfs_set_root_node(new_root_item
, tmp
);
1455 /* record when the snapshot was created in key.offset */
1456 key
.offset
= trans
->transid
;
1457 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1458 btrfs_tree_unlock(tmp
);
1459 free_extent_buffer(tmp
);
1461 btrfs_abort_transaction(trans
, root
, ret
);
1466 * insert root back/forward references
1468 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1469 parent_root
->root_key
.objectid
,
1470 btrfs_ino(parent_inode
), index
,
1471 dentry
->d_name
.name
, dentry
->d_name
.len
);
1473 btrfs_abort_transaction(trans
, root
, ret
);
1477 key
.offset
= (u64
)-1;
1478 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1479 if (IS_ERR(pending
->snap
)) {
1480 ret
= PTR_ERR(pending
->snap
);
1481 btrfs_abort_transaction(trans
, root
, ret
);
1485 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1487 btrfs_abort_transaction(trans
, root
, ret
);
1491 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1493 btrfs_abort_transaction(trans
, root
, ret
);
1497 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1498 dentry
->d_name
.name
, dentry
->d_name
.len
,
1500 BTRFS_FT_DIR
, index
);
1501 /* We have check then name at the beginning, so it is impossible. */
1502 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1504 btrfs_abort_transaction(trans
, root
, ret
);
1508 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1509 dentry
->d_name
.len
* 2);
1510 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1511 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1513 btrfs_abort_transaction(trans
, root
, ret
);
1516 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1517 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1519 btrfs_abort_transaction(trans
, root
, ret
);
1522 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1523 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1524 new_root_item
->received_uuid
,
1525 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1527 if (ret
&& ret
!= -EEXIST
) {
1528 btrfs_abort_transaction(trans
, root
, ret
);
1533 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1535 btrfs_abort_transaction(trans
, root
, ret
);
1540 * account qgroup counters before qgroup_inherit()
1542 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1545 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1548 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1549 root
->root_key
.objectid
,
1550 objectid
, pending
->inherit
);
1552 btrfs_abort_transaction(trans
, root
, ret
);
1557 pending
->error
= ret
;
1559 trans
->block_rsv
= rsv
;
1560 trans
->bytes_reserved
= 0;
1562 btrfs_clear_skip_qgroup(trans
);
1564 kfree(new_root_item
);
1565 root_item_alloc_fail
:
1566 btrfs_free_path(path
);
1571 * create all the snapshots we've scheduled for creation
1573 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1574 struct btrfs_fs_info
*fs_info
)
1576 struct btrfs_pending_snapshot
*pending
, *next
;
1577 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1580 list_for_each_entry_safe(pending
, next
, head
, list
) {
1581 list_del(&pending
->list
);
1582 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1589 static void update_super_roots(struct btrfs_root
*root
)
1591 struct btrfs_root_item
*root_item
;
1592 struct btrfs_super_block
*super
;
1594 super
= root
->fs_info
->super_copy
;
1596 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1597 super
->chunk_root
= root_item
->bytenr
;
1598 super
->chunk_root_generation
= root_item
->generation
;
1599 super
->chunk_root_level
= root_item
->level
;
1601 root_item
= &root
->fs_info
->tree_root
->root_item
;
1602 super
->root
= root_item
->bytenr
;
1603 super
->generation
= root_item
->generation
;
1604 super
->root_level
= root_item
->level
;
1605 if (btrfs_test_opt(root
, SPACE_CACHE
))
1606 super
->cache_generation
= root_item
->generation
;
1607 if (root
->fs_info
->update_uuid_tree_gen
)
1608 super
->uuid_tree_generation
= root_item
->generation
;
1611 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1613 struct btrfs_transaction
*trans
;
1616 spin_lock(&info
->trans_lock
);
1617 trans
= info
->running_transaction
;
1619 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1620 spin_unlock(&info
->trans_lock
);
1624 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1626 struct btrfs_transaction
*trans
;
1629 spin_lock(&info
->trans_lock
);
1630 trans
= info
->running_transaction
;
1632 ret
= is_transaction_blocked(trans
);
1633 spin_unlock(&info
->trans_lock
);
1638 * wait for the current transaction commit to start and block subsequent
1641 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1642 struct btrfs_transaction
*trans
)
1644 wait_event(root
->fs_info
->transaction_blocked_wait
,
1645 trans
->state
>= TRANS_STATE_COMMIT_START
||
1650 * wait for the current transaction to start and then become unblocked.
1653 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1654 struct btrfs_transaction
*trans
)
1656 wait_event(root
->fs_info
->transaction_wait
,
1657 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1662 * commit transactions asynchronously. once btrfs_commit_transaction_async
1663 * returns, any subsequent transaction will not be allowed to join.
1665 struct btrfs_async_commit
{
1666 struct btrfs_trans_handle
*newtrans
;
1667 struct btrfs_root
*root
;
1668 struct work_struct work
;
1671 static void do_async_commit(struct work_struct
*work
)
1673 struct btrfs_async_commit
*ac
=
1674 container_of(work
, struct btrfs_async_commit
, work
);
1677 * We've got freeze protection passed with the transaction.
1678 * Tell lockdep about it.
1680 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1681 __sb_writers_acquired(ac
->root
->fs_info
->sb
, SB_FREEZE_FS
);
1683 current
->journal_info
= ac
->newtrans
;
1685 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1689 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1690 struct btrfs_root
*root
,
1691 int wait_for_unblock
)
1693 struct btrfs_async_commit
*ac
;
1694 struct btrfs_transaction
*cur_trans
;
1696 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1700 INIT_WORK(&ac
->work
, do_async_commit
);
1702 ac
->newtrans
= btrfs_join_transaction(root
);
1703 if (IS_ERR(ac
->newtrans
)) {
1704 int err
= PTR_ERR(ac
->newtrans
);
1709 /* take transaction reference */
1710 cur_trans
= trans
->transaction
;
1711 atomic_inc(&cur_trans
->use_count
);
1713 btrfs_end_transaction(trans
, root
);
1716 * Tell lockdep we've released the freeze rwsem, since the
1717 * async commit thread will be the one to unlock it.
1719 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1720 __sb_writers_release(root
->fs_info
->sb
, SB_FREEZE_FS
);
1722 schedule_work(&ac
->work
);
1724 /* wait for transaction to start and unblock */
1725 if (wait_for_unblock
)
1726 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1728 wait_current_trans_commit_start(root
, cur_trans
);
1730 if (current
->journal_info
== trans
)
1731 current
->journal_info
= NULL
;
1733 btrfs_put_transaction(cur_trans
);
1738 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1739 struct btrfs_root
*root
, int err
)
1741 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1744 WARN_ON(trans
->use_count
> 1);
1746 btrfs_abort_transaction(trans
, root
, err
);
1748 spin_lock(&root
->fs_info
->trans_lock
);
1751 * If the transaction is removed from the list, it means this
1752 * transaction has been committed successfully, so it is impossible
1753 * to call the cleanup function.
1755 BUG_ON(list_empty(&cur_trans
->list
));
1757 list_del_init(&cur_trans
->list
);
1758 if (cur_trans
== root
->fs_info
->running_transaction
) {
1759 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1760 spin_unlock(&root
->fs_info
->trans_lock
);
1761 wait_event(cur_trans
->writer_wait
,
1762 atomic_read(&cur_trans
->num_writers
) == 1);
1764 spin_lock(&root
->fs_info
->trans_lock
);
1766 spin_unlock(&root
->fs_info
->trans_lock
);
1768 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1770 spin_lock(&root
->fs_info
->trans_lock
);
1771 if (cur_trans
== root
->fs_info
->running_transaction
)
1772 root
->fs_info
->running_transaction
= NULL
;
1773 spin_unlock(&root
->fs_info
->trans_lock
);
1775 if (trans
->type
& __TRANS_FREEZABLE
)
1776 sb_end_intwrite(root
->fs_info
->sb
);
1777 btrfs_put_transaction(cur_trans
);
1778 btrfs_put_transaction(cur_trans
);
1780 trace_btrfs_transaction_commit(root
);
1782 if (current
->journal_info
== trans
)
1783 current
->journal_info
= NULL
;
1784 btrfs_scrub_cancel(root
->fs_info
);
1786 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1789 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1791 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1792 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1796 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1798 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1799 btrfs_wait_ordered_roots(fs_info
, -1);
1803 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1805 wait_event(cur_trans
->pending_wait
,
1806 atomic_read(&cur_trans
->pending_ordered
) == 0);
1809 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1810 struct btrfs_root
*root
)
1812 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1813 struct btrfs_transaction
*prev_trans
= NULL
;
1814 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1817 /* Stop the commit early if ->aborted is set */
1818 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1819 ret
= cur_trans
->aborted
;
1820 btrfs_end_transaction(trans
, root
);
1824 btrfs_trans_release_metadata(trans
, root
);
1825 trans
->block_rsv
= NULL
;
1827 /* make a pass through all the delayed refs we have so far
1828 * any runnings procs may add more while we are here
1830 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1832 btrfs_end_transaction(trans
, root
);
1836 cur_trans
= trans
->transaction
;
1839 * set the flushing flag so procs in this transaction have to
1840 * start sending their work down.
1842 cur_trans
->delayed_refs
.flushing
= 1;
1845 if (!list_empty(&trans
->new_bgs
))
1846 btrfs_create_pending_block_groups(trans
, root
);
1848 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1850 btrfs_end_transaction(trans
, root
);
1854 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1857 /* this mutex is also taken before trying to set
1858 * block groups readonly. We need to make sure
1859 * that nobody has set a block group readonly
1860 * after a extents from that block group have been
1861 * allocated for cache files. btrfs_set_block_group_ro
1862 * will wait for the transaction to commit if it
1863 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1865 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1866 * only one process starts all the block group IO. It wouldn't
1867 * hurt to have more than one go through, but there's no
1868 * real advantage to it either.
1870 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1871 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1874 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1877 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1880 btrfs_end_transaction(trans
, root
);
1884 spin_lock(&root
->fs_info
->trans_lock
);
1885 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1886 spin_unlock(&root
->fs_info
->trans_lock
);
1887 atomic_inc(&cur_trans
->use_count
);
1888 ret
= btrfs_end_transaction(trans
, root
);
1890 wait_for_commit(root
, cur_trans
);
1892 if (unlikely(cur_trans
->aborted
))
1893 ret
= cur_trans
->aborted
;
1895 btrfs_put_transaction(cur_trans
);
1900 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1901 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1903 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1904 prev_trans
= list_entry(cur_trans
->list
.prev
,
1905 struct btrfs_transaction
, list
);
1906 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1907 atomic_inc(&prev_trans
->use_count
);
1908 spin_unlock(&root
->fs_info
->trans_lock
);
1910 wait_for_commit(root
, prev_trans
);
1911 ret
= prev_trans
->aborted
;
1913 btrfs_put_transaction(prev_trans
);
1915 goto cleanup_transaction
;
1917 spin_unlock(&root
->fs_info
->trans_lock
);
1920 spin_unlock(&root
->fs_info
->trans_lock
);
1923 extwriter_counter_dec(cur_trans
, trans
->type
);
1925 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1927 goto cleanup_transaction
;
1929 ret
= btrfs_run_delayed_items(trans
, root
);
1931 goto cleanup_transaction
;
1933 wait_event(cur_trans
->writer_wait
,
1934 extwriter_counter_read(cur_trans
) == 0);
1936 /* some pending stuffs might be added after the previous flush. */
1937 ret
= btrfs_run_delayed_items(trans
, root
);
1939 goto cleanup_transaction
;
1941 btrfs_wait_delalloc_flush(root
->fs_info
);
1943 btrfs_wait_pending_ordered(cur_trans
);
1945 btrfs_scrub_pause(root
);
1947 * Ok now we need to make sure to block out any other joins while we
1948 * commit the transaction. We could have started a join before setting
1949 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1951 spin_lock(&root
->fs_info
->trans_lock
);
1952 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1953 spin_unlock(&root
->fs_info
->trans_lock
);
1954 wait_event(cur_trans
->writer_wait
,
1955 atomic_read(&cur_trans
->num_writers
) == 1);
1957 /* ->aborted might be set after the previous check, so check it */
1958 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1959 ret
= cur_trans
->aborted
;
1960 goto scrub_continue
;
1963 * the reloc mutex makes sure that we stop
1964 * the balancing code from coming in and moving
1965 * extents around in the middle of the commit
1967 mutex_lock(&root
->fs_info
->reloc_mutex
);
1970 * We needn't worry about the delayed items because we will
1971 * deal with them in create_pending_snapshot(), which is the
1972 * core function of the snapshot creation.
1974 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1976 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1977 goto scrub_continue
;
1981 * We insert the dir indexes of the snapshots and update the inode
1982 * of the snapshots' parents after the snapshot creation, so there
1983 * are some delayed items which are not dealt with. Now deal with
1986 * We needn't worry that this operation will corrupt the snapshots,
1987 * because all the tree which are snapshoted will be forced to COW
1988 * the nodes and leaves.
1990 ret
= btrfs_run_delayed_items(trans
, root
);
1992 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1993 goto scrub_continue
;
1996 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1998 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1999 goto scrub_continue
;
2002 /* Reocrd old roots for later qgroup accounting */
2003 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
2005 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2006 goto scrub_continue
;
2010 * make sure none of the code above managed to slip in a
2013 btrfs_assert_delayed_root_empty(root
);
2015 WARN_ON(cur_trans
!= trans
->transaction
);
2017 /* btrfs_commit_tree_roots is responsible for getting the
2018 * various roots consistent with each other. Every pointer
2019 * in the tree of tree roots has to point to the most up to date
2020 * root for every subvolume and other tree. So, we have to keep
2021 * the tree logging code from jumping in and changing any
2024 * At this point in the commit, there can't be any tree-log
2025 * writers, but a little lower down we drop the trans mutex
2026 * and let new people in. By holding the tree_log_mutex
2027 * from now until after the super is written, we avoid races
2028 * with the tree-log code.
2030 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2032 ret
= commit_fs_roots(trans
, root
);
2034 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2035 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2036 goto scrub_continue
;
2040 * Since the transaction is done, we can apply the pending changes
2041 * before the next transaction.
2043 btrfs_apply_pending_changes(root
->fs_info
);
2045 /* commit_fs_roots gets rid of all the tree log roots, it is now
2046 * safe to free the root of tree log roots
2048 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2051 * Since fs roots are all committed, we can get a quite accurate
2052 * new_roots. So let's do quota accounting.
2054 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2056 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2057 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2058 goto scrub_continue
;
2061 ret
= commit_cowonly_roots(trans
, root
);
2063 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2064 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2065 goto scrub_continue
;
2069 * The tasks which save the space cache and inode cache may also
2070 * update ->aborted, check it.
2072 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2073 ret
= cur_trans
->aborted
;
2074 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2075 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2076 goto scrub_continue
;
2079 btrfs_prepare_extent_commit(trans
, root
);
2081 cur_trans
= root
->fs_info
->running_transaction
;
2083 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2084 root
->fs_info
->tree_root
->node
);
2085 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2086 &cur_trans
->switch_commits
);
2088 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2089 root
->fs_info
->chunk_root
->node
);
2090 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2091 &cur_trans
->switch_commits
);
2093 switch_commit_roots(cur_trans
, root
->fs_info
);
2095 assert_qgroups_uptodate(trans
);
2096 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2097 ASSERT(list_empty(&cur_trans
->io_bgs
));
2098 update_super_roots(root
);
2100 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2101 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2102 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2103 sizeof(*root
->fs_info
->super_copy
));
2105 btrfs_update_commit_device_size(root
->fs_info
);
2106 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2108 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2109 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2111 btrfs_trans_release_chunk_metadata(trans
);
2113 spin_lock(&root
->fs_info
->trans_lock
);
2114 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2115 root
->fs_info
->running_transaction
= NULL
;
2116 spin_unlock(&root
->fs_info
->trans_lock
);
2117 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2119 wake_up(&root
->fs_info
->transaction_wait
);
2121 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2123 btrfs_std_error(root
->fs_info
, ret
,
2124 "Error while writing out transaction");
2125 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2126 goto scrub_continue
;
2129 ret
= write_ctree_super(trans
, root
, 0);
2131 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2132 goto scrub_continue
;
2136 * the super is written, we can safely allow the tree-loggers
2137 * to go about their business
2139 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2141 btrfs_finish_extent_commit(trans
, root
);
2143 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2144 btrfs_clear_space_info_full(root
->fs_info
);
2146 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2148 * We needn't acquire the lock here because there is no other task
2149 * which can change it.
2151 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2152 wake_up(&cur_trans
->commit_wait
);
2154 spin_lock(&root
->fs_info
->trans_lock
);
2155 list_del_init(&cur_trans
->list
);
2156 spin_unlock(&root
->fs_info
->trans_lock
);
2158 btrfs_put_transaction(cur_trans
);
2159 btrfs_put_transaction(cur_trans
);
2161 if (trans
->type
& __TRANS_FREEZABLE
)
2162 sb_end_intwrite(root
->fs_info
->sb
);
2164 trace_btrfs_transaction_commit(root
);
2166 btrfs_scrub_continue(root
);
2168 if (current
->journal_info
== trans
)
2169 current
->journal_info
= NULL
;
2171 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2173 if (current
!= root
->fs_info
->transaction_kthread
&&
2174 current
!= root
->fs_info
->cleaner_kthread
)
2175 btrfs_run_delayed_iputs(root
);
2180 btrfs_scrub_continue(root
);
2181 cleanup_transaction
:
2182 btrfs_trans_release_metadata(trans
, root
);
2183 btrfs_trans_release_chunk_metadata(trans
);
2184 trans
->block_rsv
= NULL
;
2185 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2186 if (current
->journal_info
== trans
)
2187 current
->journal_info
= NULL
;
2188 cleanup_transaction(trans
, root
, ret
);
2194 * return < 0 if error
2195 * 0 if there are no more dead_roots at the time of call
2196 * 1 there are more to be processed, call me again
2198 * The return value indicates there are certainly more snapshots to delete, but
2199 * if there comes a new one during processing, it may return 0. We don't mind,
2200 * because btrfs_commit_super will poke cleaner thread and it will process it a
2201 * few seconds later.
2203 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2206 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2208 spin_lock(&fs_info
->trans_lock
);
2209 if (list_empty(&fs_info
->dead_roots
)) {
2210 spin_unlock(&fs_info
->trans_lock
);
2213 root
= list_first_entry(&fs_info
->dead_roots
,
2214 struct btrfs_root
, root_list
);
2215 list_del_init(&root
->root_list
);
2216 spin_unlock(&fs_info
->trans_lock
);
2218 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2220 btrfs_kill_all_delayed_nodes(root
);
2222 if (btrfs_header_backref_rev(root
->node
) <
2223 BTRFS_MIXED_BACKREF_REV
)
2224 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2226 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2228 return (ret
< 0) ? 0 : 1;
2231 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2236 prev
= xchg(&fs_info
->pending_changes
, 0);
2240 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2242 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2245 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2247 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2250 bit
= 1 << BTRFS_PENDING_COMMIT
;
2252 btrfs_debug(fs_info
, "pending commit done");
2257 "unknown pending changes left 0x%lx, ignoring", prev
);