Linux 4.19.133
[linux/fpc-iii.git] / block / partition-generic.c
blob98d60a59b843c47add7e29b73a204944df6c88e3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code extracted from drivers/block/genhd.c
4 * Copyright (C) 1991-1998 Linus Torvalds
5 * Re-organised Feb 1998 Russell King
7 * We now have independent partition support from the
8 * block drivers, which allows all the partition code to
9 * be grouped in one location, and it to be mostly self
10 * contained.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
22 #include "partitions/check.h"
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
29 * disk_name() is used by partition check code and the genhd driver.
30 * It formats the devicename of the indicated disk into
31 * the supplied buffer (of size at least 32), and returns
32 * a pointer to that same buffer (for convenience).
35 char *disk_name(struct gendisk *hd, int partno, char *buf)
37 if (!partno)
38 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 else
42 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
44 return buf;
47 const char *bdevname(struct block_device *bdev, char *buf)
49 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
52 EXPORT_SYMBOL(bdevname);
54 const char *bio_devname(struct bio *bio, char *buf)
56 return disk_name(bio->bi_disk, bio->bi_partno, buf);
58 EXPORT_SYMBOL(bio_devname);
61 * There's very little reason to use this, you should really
62 * have a struct block_device just about everywhere and use
63 * bdevname() instead.
65 const char *__bdevname(dev_t dev, char *buffer)
67 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68 MAJOR(dev), MINOR(dev));
69 return buffer;
72 EXPORT_SYMBOL(__bdevname);
74 static ssize_t part_partition_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
77 struct hd_struct *p = dev_to_part(dev);
79 return sprintf(buf, "%d\n", p->partno);
82 static ssize_t part_start_show(struct device *dev,
83 struct device_attribute *attr, char *buf)
85 struct hd_struct *p = dev_to_part(dev);
87 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
90 ssize_t part_size_show(struct device *dev,
91 struct device_attribute *attr, char *buf)
93 struct hd_struct *p = dev_to_part(dev);
94 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
97 static ssize_t part_ro_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
100 struct hd_struct *p = dev_to_part(dev);
101 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
104 static ssize_t part_alignment_offset_show(struct device *dev,
105 struct device_attribute *attr, char *buf)
107 struct hd_struct *p = dev_to_part(dev);
108 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
111 static ssize_t part_discard_alignment_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
114 struct hd_struct *p = dev_to_part(dev);
115 return sprintf(buf, "%u\n", p->discard_alignment);
118 ssize_t part_stat_show(struct device *dev,
119 struct device_attribute *attr, char *buf)
121 struct hd_struct *p = dev_to_part(dev);
122 struct request_queue *q = part_to_disk(p)->queue;
123 unsigned int inflight[2];
124 int cpu;
126 cpu = part_stat_lock();
127 part_round_stats(q, cpu, p);
128 part_stat_unlock();
129 part_in_flight(q, p, inflight);
130 return sprintf(buf,
131 "%8lu %8lu %8llu %8u "
132 "%8lu %8lu %8llu %8u "
133 "%8u %8u %8u "
134 "%8lu %8lu %8llu %8u"
135 "\n",
136 part_stat_read(p, ios[STAT_READ]),
137 part_stat_read(p, merges[STAT_READ]),
138 (unsigned long long)part_stat_read(p, sectors[STAT_READ]),
139 (unsigned int)part_stat_read_msecs(p, STAT_READ),
140 part_stat_read(p, ios[STAT_WRITE]),
141 part_stat_read(p, merges[STAT_WRITE]),
142 (unsigned long long)part_stat_read(p, sectors[STAT_WRITE]),
143 (unsigned int)part_stat_read_msecs(p, STAT_WRITE),
144 inflight[0],
145 jiffies_to_msecs(part_stat_read(p, io_ticks)),
146 jiffies_to_msecs(part_stat_read(p, time_in_queue)),
147 part_stat_read(p, ios[STAT_DISCARD]),
148 part_stat_read(p, merges[STAT_DISCARD]),
149 (unsigned long long)part_stat_read(p, sectors[STAT_DISCARD]),
150 (unsigned int)part_stat_read_msecs(p, STAT_DISCARD));
153 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
154 char *buf)
156 struct hd_struct *p = dev_to_part(dev);
157 struct request_queue *q = part_to_disk(p)->queue;
158 unsigned int inflight[2];
160 part_in_flight_rw(q, p, inflight);
161 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
164 #ifdef CONFIG_FAIL_MAKE_REQUEST
165 ssize_t part_fail_show(struct device *dev,
166 struct device_attribute *attr, char *buf)
168 struct hd_struct *p = dev_to_part(dev);
170 return sprintf(buf, "%d\n", p->make_it_fail);
173 ssize_t part_fail_store(struct device *dev,
174 struct device_attribute *attr,
175 const char *buf, size_t count)
177 struct hd_struct *p = dev_to_part(dev);
178 int i;
180 if (count > 0 && sscanf(buf, "%d", &i) > 0)
181 p->make_it_fail = (i == 0) ? 0 : 1;
183 return count;
185 #endif
187 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
188 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
189 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
190 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
191 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
192 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
193 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
194 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
195 #ifdef CONFIG_FAIL_MAKE_REQUEST
196 static struct device_attribute dev_attr_fail =
197 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
198 #endif
200 static struct attribute *part_attrs[] = {
201 &dev_attr_partition.attr,
202 &dev_attr_start.attr,
203 &dev_attr_size.attr,
204 &dev_attr_ro.attr,
205 &dev_attr_alignment_offset.attr,
206 &dev_attr_discard_alignment.attr,
207 &dev_attr_stat.attr,
208 &dev_attr_inflight.attr,
209 #ifdef CONFIG_FAIL_MAKE_REQUEST
210 &dev_attr_fail.attr,
211 #endif
212 NULL
215 static struct attribute_group part_attr_group = {
216 .attrs = part_attrs,
219 static const struct attribute_group *part_attr_groups[] = {
220 &part_attr_group,
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 &blk_trace_attr_group,
223 #endif
224 NULL
227 static void part_release(struct device *dev)
229 struct hd_struct *p = dev_to_part(dev);
230 blk_free_devt(dev->devt);
231 hd_free_part(p);
232 kfree(p);
235 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
237 struct hd_struct *part = dev_to_part(dev);
239 add_uevent_var(env, "PARTN=%u", part->partno);
240 if (part->info && part->info->volname[0])
241 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
242 return 0;
245 struct device_type part_type = {
246 .name = "partition",
247 .groups = part_attr_groups,
248 .release = part_release,
249 .uevent = part_uevent,
252 static void delete_partition_work_fn(struct work_struct *work)
254 struct hd_struct *part = container_of(to_rcu_work(work), struct hd_struct,
255 rcu_work);
257 part->start_sect = 0;
258 part->nr_sects = 0;
259 part_stat_set_all(part, 0);
260 put_device(part_to_dev(part));
263 void __delete_partition(struct percpu_ref *ref)
265 struct hd_struct *part = container_of(ref, struct hd_struct, ref);
266 INIT_RCU_WORK(&part->rcu_work, delete_partition_work_fn);
267 queue_rcu_work(system_wq, &part->rcu_work);
271 * Must be called either with bd_mutex held, before a disk can be opened or
272 * after all disk users are gone.
274 void delete_partition(struct gendisk *disk, int partno)
276 struct disk_part_tbl *ptbl =
277 rcu_dereference_protected(disk->part_tbl, 1);
278 struct hd_struct *part;
280 if (partno >= ptbl->len)
281 return;
283 part = rcu_dereference_protected(ptbl->part[partno], 1);
284 if (!part)
285 return;
287 rcu_assign_pointer(ptbl->part[partno], NULL);
288 rcu_assign_pointer(ptbl->last_lookup, NULL);
289 kobject_put(part->holder_dir);
290 device_del(part_to_dev(part));
293 * Remove gendisk pointer from idr so that it cannot be looked up
294 * while RCU period before freeing gendisk is running to prevent
295 * use-after-free issues. Note that the device number stays
296 * "in-use" until we really free the gendisk.
298 blk_invalidate_devt(part_devt(part));
299 hd_struct_kill(part);
302 static ssize_t whole_disk_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 return 0;
307 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
310 * Must be called either with bd_mutex held, before a disk can be opened or
311 * after all disk users are gone.
313 struct hd_struct *add_partition(struct gendisk *disk, int partno,
314 sector_t start, sector_t len, int flags,
315 struct partition_meta_info *info)
317 struct hd_struct *p;
318 dev_t devt = MKDEV(0, 0);
319 struct device *ddev = disk_to_dev(disk);
320 struct device *pdev;
321 struct disk_part_tbl *ptbl;
322 const char *dname;
323 int err;
325 err = disk_expand_part_tbl(disk, partno);
326 if (err)
327 return ERR_PTR(err);
328 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
330 if (ptbl->part[partno])
331 return ERR_PTR(-EBUSY);
333 p = kzalloc(sizeof(*p), GFP_KERNEL);
334 if (!p)
335 return ERR_PTR(-EBUSY);
337 if (!init_part_stats(p)) {
338 err = -ENOMEM;
339 goto out_free;
342 seqcount_init(&p->nr_sects_seq);
343 pdev = part_to_dev(p);
345 p->start_sect = start;
346 p->alignment_offset =
347 queue_limit_alignment_offset(&disk->queue->limits, start);
348 p->discard_alignment =
349 queue_limit_discard_alignment(&disk->queue->limits, start);
350 p->nr_sects = len;
351 p->partno = partno;
352 p->policy = get_disk_ro(disk);
354 if (info) {
355 struct partition_meta_info *pinfo = alloc_part_info(disk);
356 if (!pinfo) {
357 err = -ENOMEM;
358 goto out_free_stats;
360 memcpy(pinfo, info, sizeof(*info));
361 p->info = pinfo;
364 dname = dev_name(ddev);
365 if (isdigit(dname[strlen(dname) - 1]))
366 dev_set_name(pdev, "%sp%d", dname, partno);
367 else
368 dev_set_name(pdev, "%s%d", dname, partno);
370 device_initialize(pdev);
371 pdev->class = &block_class;
372 pdev->type = &part_type;
373 pdev->parent = ddev;
375 err = blk_alloc_devt(p, &devt);
376 if (err)
377 goto out_free_info;
378 pdev->devt = devt;
380 /* delay uevent until 'holders' subdir is created */
381 dev_set_uevent_suppress(pdev, 1);
382 err = device_add(pdev);
383 if (err)
384 goto out_put;
386 err = -ENOMEM;
387 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
388 if (!p->holder_dir)
389 goto out_del;
391 dev_set_uevent_suppress(pdev, 0);
392 if (flags & ADDPART_FLAG_WHOLEDISK) {
393 err = device_create_file(pdev, &dev_attr_whole_disk);
394 if (err)
395 goto out_del;
398 err = hd_ref_init(p);
399 if (err) {
400 if (flags & ADDPART_FLAG_WHOLEDISK)
401 goto out_remove_file;
402 goto out_del;
405 /* everything is up and running, commence */
406 rcu_assign_pointer(ptbl->part[partno], p);
408 /* suppress uevent if the disk suppresses it */
409 if (!dev_get_uevent_suppress(ddev))
410 kobject_uevent(&pdev->kobj, KOBJ_ADD);
411 return p;
413 out_free_info:
414 free_part_info(p);
415 out_free_stats:
416 free_part_stats(p);
417 out_free:
418 kfree(p);
419 return ERR_PTR(err);
420 out_remove_file:
421 device_remove_file(pdev, &dev_attr_whole_disk);
422 out_del:
423 kobject_put(p->holder_dir);
424 device_del(pdev);
425 out_put:
426 put_device(pdev);
427 return ERR_PTR(err);
430 static bool disk_unlock_native_capacity(struct gendisk *disk)
432 const struct block_device_operations *bdops = disk->fops;
434 if (bdops->unlock_native_capacity &&
435 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
436 printk(KERN_CONT "enabling native capacity\n");
437 bdops->unlock_native_capacity(disk);
438 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
439 return true;
440 } else {
441 printk(KERN_CONT "truncated\n");
442 return false;
446 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
448 struct disk_part_iter piter;
449 struct hd_struct *part;
450 int res;
452 if (bdev->bd_part_count || bdev->bd_super)
453 return -EBUSY;
454 res = invalidate_partition(disk, 0);
455 if (res)
456 return res;
458 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
459 while ((part = disk_part_iter_next(&piter)))
460 delete_partition(disk, part->partno);
461 disk_part_iter_exit(&piter);
463 return 0;
466 static bool part_zone_aligned(struct gendisk *disk,
467 struct block_device *bdev,
468 sector_t from, sector_t size)
470 unsigned int zone_sectors = bdev_zone_sectors(bdev);
473 * If this function is called, then the disk is a zoned block device
474 * (host-aware or host-managed). This can be detected even if the
475 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
476 * set). In this case, however, only host-aware devices will be seen
477 * as a block device is not created for host-managed devices. Without
478 * zoned block device support, host-aware drives can still be used as
479 * regular block devices (no zone operation) and their zone size will
480 * be reported as 0. Allow this case.
482 if (!zone_sectors)
483 return true;
486 * Check partition start and size alignement. If the drive has a
487 * smaller last runt zone, ignore it and allow the partition to
488 * use it. Check the zone size too: it should be a power of 2 number
489 * of sectors.
491 if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
492 u32 rem;
494 div_u64_rem(from, zone_sectors, &rem);
495 if (rem)
496 return false;
497 if ((from + size) < get_capacity(disk)) {
498 div_u64_rem(size, zone_sectors, &rem);
499 if (rem)
500 return false;
503 } else {
505 if (from & (zone_sectors - 1))
506 return false;
507 if ((from + size) < get_capacity(disk) &&
508 (size & (zone_sectors - 1)))
509 return false;
513 return true;
516 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
518 struct parsed_partitions *state = NULL;
519 struct hd_struct *part;
520 int p, highest, res;
521 rescan:
522 if (state && !IS_ERR(state)) {
523 free_partitions(state);
524 state = NULL;
527 res = drop_partitions(disk, bdev);
528 if (res)
529 return res;
531 if (disk->fops->revalidate_disk)
532 disk->fops->revalidate_disk(disk);
533 check_disk_size_change(disk, bdev, true);
534 bdev->bd_invalidated = 0;
535 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
536 return 0;
537 if (IS_ERR(state)) {
539 * I/O error reading the partition table. If any
540 * partition code tried to read beyond EOD, retry
541 * after unlocking native capacity.
543 if (PTR_ERR(state) == -ENOSPC) {
544 printk(KERN_WARNING "%s: partition table beyond EOD, ",
545 disk->disk_name);
546 if (disk_unlock_native_capacity(disk))
547 goto rescan;
549 return -EIO;
552 * If any partition code tried to read beyond EOD, try
553 * unlocking native capacity even if partition table is
554 * successfully read as we could be missing some partitions.
556 if (state->access_beyond_eod) {
557 printk(KERN_WARNING
558 "%s: partition table partially beyond EOD, ",
559 disk->disk_name);
560 if (disk_unlock_native_capacity(disk))
561 goto rescan;
564 /* tell userspace that the media / partition table may have changed */
565 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
567 /* Detect the highest partition number and preallocate
568 * disk->part_tbl. This is an optimization and not strictly
569 * necessary.
571 for (p = 1, highest = 0; p < state->limit; p++)
572 if (state->parts[p].size)
573 highest = p;
575 disk_expand_part_tbl(disk, highest);
577 /* add partitions */
578 for (p = 1; p < state->limit; p++) {
579 sector_t size, from;
581 size = state->parts[p].size;
582 if (!size)
583 continue;
585 from = state->parts[p].from;
586 if (from >= get_capacity(disk)) {
587 printk(KERN_WARNING
588 "%s: p%d start %llu is beyond EOD, ",
589 disk->disk_name, p, (unsigned long long) from);
590 if (disk_unlock_native_capacity(disk))
591 goto rescan;
592 continue;
595 if (from + size > get_capacity(disk)) {
596 printk(KERN_WARNING
597 "%s: p%d size %llu extends beyond EOD, ",
598 disk->disk_name, p, (unsigned long long) size);
600 if (disk_unlock_native_capacity(disk)) {
601 /* free state and restart */
602 goto rescan;
603 } else {
605 * we can not ignore partitions of broken tables
606 * created by for example camera firmware, but
607 * we limit them to the end of the disk to avoid
608 * creating invalid block devices
610 size = get_capacity(disk) - from;
615 * On a zoned block device, partitions should be aligned on the
616 * device zone size (i.e. zone boundary crossing not allowed).
617 * Otherwise, resetting the write pointer of the last zone of
618 * one partition may impact the following partition.
620 if (bdev_is_zoned(bdev) &&
621 !part_zone_aligned(disk, bdev, from, size)) {
622 printk(KERN_WARNING
623 "%s: p%d start %llu+%llu is not zone aligned\n",
624 disk->disk_name, p, (unsigned long long) from,
625 (unsigned long long) size);
626 continue;
629 part = add_partition(disk, p, from, size,
630 state->parts[p].flags,
631 &state->parts[p].info);
632 if (IS_ERR(part)) {
633 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
634 disk->disk_name, p, -PTR_ERR(part));
635 continue;
637 #ifdef CONFIG_BLK_DEV_MD
638 if (state->parts[p].flags & ADDPART_FLAG_RAID)
639 md_autodetect_dev(part_to_dev(part)->devt);
640 #endif
642 free_partitions(state);
643 return 0;
646 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
648 int res;
650 if (!bdev->bd_invalidated)
651 return 0;
653 res = drop_partitions(disk, bdev);
654 if (res)
655 return res;
657 set_capacity(disk, 0);
658 check_disk_size_change(disk, bdev, false);
659 bdev->bd_invalidated = 0;
660 /* tell userspace that the media / partition table may have changed */
661 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
663 return 0;
666 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
668 struct address_space *mapping = bdev->bd_inode->i_mapping;
669 struct page *page;
671 page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
672 if (!IS_ERR(page)) {
673 if (PageError(page))
674 goto fail;
675 p->v = page;
676 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
677 fail:
678 put_page(page);
680 p->v = NULL;
681 return NULL;
684 EXPORT_SYMBOL(read_dev_sector);