2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
47 #include <acpi/cppc_acpi.h>
49 struct cppc_pcc_data
{
50 struct mbox_chan
*pcc_channel
;
51 void __iomem
*pcc_comm_addr
;
52 bool pcc_channel_acquired
;
53 unsigned int deadline_us
;
54 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
56 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc
; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
61 * Lock to provide controlled access to the PCC channel.
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
74 struct rw_semaphore pcc_lock
;
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q
;
78 ktime_t last_cmd_cmpl_time
;
79 ktime_t last_mpar_reset
;
84 /* Array to represent the PCC channel per subspace id */
85 static struct cppc_pcc_data
*pcc_data
[MAX_PCC_SUBSPACES
];
86 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx
);
90 * The cpc_desc structure contains the ACPI register details
91 * as described in the per CPU _CPC tables. The details
92 * include the type of register (e.g. PCC, System IO, FFH etc.)
93 * and destination addresses which lets us READ/WRITE CPU performance
94 * information using the appropriate I/O methods.
96 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
104 (cpc)->cpc_entry.reg.space_id == \
105 ACPI_ADR_SPACE_PLATFORM_COMM)
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 (reg)->address == 0 && \
110 (reg)->bit_width == 0 && \
111 (reg)->bit_offset == 0 && \
112 (reg)->access_width == 0)
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
116 !!(cpc)->cpc_entry.int_value : \
117 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
119 * Arbitrary Retries in case the remote processor is slow to respond
120 * to PCC commands. Keeping it high enough to cover emulators where
121 * the processors run painfully slow.
123 #define NUM_RETRIES 500ULL
126 struct attribute attr
;
127 ssize_t (*show
)(struct kobject
*kobj
,
128 struct attribute
*attr
, char *buf
);
129 ssize_t (*store
)(struct kobject
*kobj
,
130 struct attribute
*attr
, const char *c
, ssize_t count
);
133 #define define_one_cppc_ro(_name) \
134 static struct cppc_attr _name = \
135 __ATTR(_name, 0444, show_##_name, NULL)
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
139 #define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct attribute *attr, char *buf) \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
151 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
152 (u64)st_name.member_name); \
154 define_one_cppc_ro(member_name)
156 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
157 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
158 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
159 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
160 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_freq
);
161 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_freq
);
163 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
164 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
166 static ssize_t
show_feedback_ctrs(struct kobject
*kobj
,
167 struct attribute
*attr
, char *buf
)
169 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
170 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
173 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
177 return scnprintf(buf
, PAGE_SIZE
, "ref:%llu del:%llu\n",
178 fb_ctrs
.reference
, fb_ctrs
.delivered
);
180 define_one_cppc_ro(feedback_ctrs
);
182 static struct attribute
*cppc_attrs
[] = {
184 &reference_perf
.attr
,
185 &wraparound_time
.attr
,
188 &lowest_nonlinear_perf
.attr
,
195 static struct kobj_type cppc_ktype
= {
196 .sysfs_ops
= &kobj_sysfs_ops
,
197 .default_attrs
= cppc_attrs
,
200 static int check_pcc_chan(int pcc_ss_id
, bool chk_err_bit
)
203 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
204 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
205 pcc_ss_data
->pcc_comm_addr
;
207 if (!pcc_ss_data
->platform_owns_pcc
)
211 * Poll PCC status register every 3us(delay_us) for maximum of
212 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214 ret
= readw_relaxed_poll_timeout(&generic_comm_base
->status
, status
,
215 status
& PCC_CMD_COMPLETE_MASK
, 3,
216 pcc_ss_data
->deadline_us
);
219 pcc_ss_data
->platform_owns_pcc
= false;
220 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
225 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
232 * This function transfers the ownership of the PCC to the platform
233 * So it must be called while holding write_lock(pcc_lock)
235 static int send_pcc_cmd(int pcc_ss_id
, u16 cmd
)
238 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
239 struct acpi_pcct_shared_memory
*generic_comm_base
=
240 (struct acpi_pcct_shared_memory
*)pcc_ss_data
->pcc_comm_addr
;
241 unsigned int time_delta
;
244 * For CMD_WRITE we know for a fact the caller should have checked
245 * the channel before writing to PCC space
247 if (cmd
== CMD_READ
) {
249 * If there are pending cpc_writes, then we stole the channel
250 * before write completion, so first send a WRITE command to
253 if (pcc_ss_data
->pending_pcc_write_cmd
)
254 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
256 ret
= check_pcc_chan(pcc_ss_id
, false);
259 } else /* CMD_WRITE */
260 pcc_ss_data
->pending_pcc_write_cmd
= FALSE
;
263 * Handle the Minimum Request Turnaround Time(MRTT)
264 * "The minimum amount of time that OSPM must wait after the completion
265 * of a command before issuing the next command, in microseconds"
267 if (pcc_ss_data
->pcc_mrtt
) {
268 time_delta
= ktime_us_delta(ktime_get(),
269 pcc_ss_data
->last_cmd_cmpl_time
);
270 if (pcc_ss_data
->pcc_mrtt
> time_delta
)
271 udelay(pcc_ss_data
->pcc_mrtt
- time_delta
);
275 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
276 * "The maximum number of periodic requests that the subspace channel can
277 * support, reported in commands per minute. 0 indicates no limitation."
279 * This parameter should be ideally zero or large enough so that it can
280 * handle maximum number of requests that all the cores in the system can
281 * collectively generate. If it is not, we will follow the spec and just
282 * not send the request to the platform after hitting the MPAR limit in
285 if (pcc_ss_data
->pcc_mpar
) {
286 if (pcc_ss_data
->mpar_count
== 0) {
287 time_delta
= ktime_ms_delta(ktime_get(),
288 pcc_ss_data
->last_mpar_reset
);
289 if ((time_delta
< 60 * MSEC_PER_SEC
) && pcc_ss_data
->last_mpar_reset
) {
290 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
295 pcc_ss_data
->last_mpar_reset
= ktime_get();
296 pcc_ss_data
->mpar_count
= pcc_ss_data
->pcc_mpar
;
298 pcc_ss_data
->mpar_count
--;
301 /* Write to the shared comm region. */
302 writew_relaxed(cmd
, &generic_comm_base
->command
);
304 /* Flip CMD COMPLETE bit */
305 writew_relaxed(0, &generic_comm_base
->status
);
307 pcc_ss_data
->platform_owns_pcc
= true;
310 ret
= mbox_send_message(pcc_ss_data
->pcc_channel
, &cmd
);
312 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
313 pcc_ss_id
, cmd
, ret
);
317 /* wait for completion and check for PCC errro bit */
318 ret
= check_pcc_chan(pcc_ss_id
, true);
320 if (pcc_ss_data
->pcc_mrtt
)
321 pcc_ss_data
->last_cmd_cmpl_time
= ktime_get();
323 if (pcc_ss_data
->pcc_channel
->mbox
->txdone_irq
)
324 mbox_chan_txdone(pcc_ss_data
->pcc_channel
, ret
);
326 mbox_client_txdone(pcc_ss_data
->pcc_channel
, ret
);
329 if (cmd
== CMD_WRITE
) {
331 for_each_possible_cpu(i
) {
332 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
336 if (desc
->write_cmd_id
== pcc_ss_data
->pcc_write_cnt
)
337 desc
->write_cmd_status
= ret
;
340 pcc_ss_data
->pcc_write_cnt
++;
341 wake_up_all(&pcc_ss_data
->pcc_write_wait_q
);
347 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
350 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
357 struct mbox_client cppc_mbox_cl
= {
358 .tx_done
= cppc_chan_tx_done
,
359 .knows_txdone
= true,
362 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
364 int result
= -EFAULT
;
365 acpi_status status
= AE_OK
;
366 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
367 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
368 struct acpi_buffer state
= {0, NULL
};
369 union acpi_object
*psd
= NULL
;
370 struct acpi_psd_package
*pdomain
;
372 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
,
373 &buffer
, ACPI_TYPE_PACKAGE
);
374 if (status
== AE_NOT_FOUND
) /* _PSD is optional */
376 if (ACPI_FAILURE(status
))
379 psd
= buffer
.pointer
;
380 if (!psd
|| psd
->package
.count
!= 1) {
381 pr_debug("Invalid _PSD data\n");
385 pdomain
= &(cpc_ptr
->domain_info
);
387 state
.length
= sizeof(struct acpi_psd_package
);
388 state
.pointer
= pdomain
;
390 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
392 if (ACPI_FAILURE(status
)) {
393 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
397 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
398 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
402 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
403 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
407 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
408 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
409 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
410 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
416 kfree(buffer
.pointer
);
421 * acpi_get_psd_map - Map the CPUs in a common freq domain.
422 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
424 * Return: 0 for success or negative value for err.
426 int acpi_get_psd_map(struct cppc_cpudata
**all_cpu_data
)
431 cpumask_var_t covered_cpus
;
432 struct cppc_cpudata
*pr
, *match_pr
;
433 struct acpi_psd_package
*pdomain
;
434 struct acpi_psd_package
*match_pdomain
;
435 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
437 if (!zalloc_cpumask_var(&covered_cpus
, GFP_KERNEL
))
441 * Now that we have _PSD data from all CPUs, lets setup P-state
444 for_each_possible_cpu(i
) {
445 pr
= all_cpu_data
[i
];
449 if (cpumask_test_cpu(i
, covered_cpus
))
452 cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
458 pdomain
= &(cpc_ptr
->domain_info
);
459 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
460 cpumask_set_cpu(i
, covered_cpus
);
461 if (pdomain
->num_processors
<= 1)
464 /* Validate the Domain info */
465 count_target
= pdomain
->num_processors
;
466 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
467 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
468 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
469 pr
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
470 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
471 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
473 for_each_possible_cpu(j
) {
477 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
478 if (!match_cpc_ptr
) {
483 match_pdomain
= &(match_cpc_ptr
->domain_info
);
484 if (match_pdomain
->domain
!= pdomain
->domain
)
487 /* Here i and j are in the same domain */
488 if (match_pdomain
->num_processors
!= count_target
) {
493 if (pdomain
->coord_type
!= match_pdomain
->coord_type
) {
498 cpumask_set_cpu(j
, covered_cpus
);
499 cpumask_set_cpu(j
, pr
->shared_cpu_map
);
502 for_each_possible_cpu(j
) {
506 match_pr
= all_cpu_data
[j
];
510 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
511 if (!match_cpc_ptr
) {
516 match_pdomain
= &(match_cpc_ptr
->domain_info
);
517 if (match_pdomain
->domain
!= pdomain
->domain
)
520 match_pr
->shared_type
= pr
->shared_type
;
521 cpumask_copy(match_pr
->shared_cpu_map
,
527 for_each_possible_cpu(i
) {
528 pr
= all_cpu_data
[i
];
532 /* Assume no coordination on any error parsing domain info */
534 cpumask_clear(pr
->shared_cpu_map
);
535 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
536 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
540 free_cpumask_var(covered_cpus
);
543 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
545 static int register_pcc_channel(int pcc_ss_idx
)
547 struct acpi_pcct_hw_reduced
*cppc_ss
;
550 if (pcc_ss_idx
>= 0) {
551 pcc_data
[pcc_ss_idx
]->pcc_channel
=
552 pcc_mbox_request_channel(&cppc_mbox_cl
, pcc_ss_idx
);
554 if (IS_ERR(pcc_data
[pcc_ss_idx
]->pcc_channel
)) {
555 pr_err("Failed to find PCC channel for subspace %d\n",
561 * The PCC mailbox controller driver should
562 * have parsed the PCCT (global table of all
563 * PCC channels) and stored pointers to the
564 * subspace communication region in con_priv.
566 cppc_ss
= (pcc_data
[pcc_ss_idx
]->pcc_channel
)->con_priv
;
569 pr_err("No PCC subspace found for %d CPPC\n",
575 * cppc_ss->latency is just a Nominal value. In reality
576 * the remote processor could be much slower to reply.
577 * So add an arbitrary amount of wait on top of Nominal.
579 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
580 pcc_data
[pcc_ss_idx
]->deadline_us
= usecs_lat
;
581 pcc_data
[pcc_ss_idx
]->pcc_mrtt
= cppc_ss
->min_turnaround_time
;
582 pcc_data
[pcc_ss_idx
]->pcc_mpar
= cppc_ss
->max_access_rate
;
583 pcc_data
[pcc_ss_idx
]->pcc_nominal
= cppc_ss
->latency
;
585 pcc_data
[pcc_ss_idx
]->pcc_comm_addr
=
586 acpi_os_ioremap(cppc_ss
->base_address
, cppc_ss
->length
);
587 if (!pcc_data
[pcc_ss_idx
]->pcc_comm_addr
) {
588 pr_err("Failed to ioremap PCC comm region mem for %d\n",
593 /* Set flag so that we dont come here for each CPU. */
594 pcc_data
[pcc_ss_idx
]->pcc_channel_acquired
= true;
601 * cpc_ffh_supported() - check if FFH reading supported
603 * Check if the architecture has support for functional fixed hardware
604 * read/write capability.
606 * Return: true for supported, false for not supported
608 bool __weak
cpc_ffh_supported(void)
614 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
616 * Check and allocate the cppc_pcc_data memory.
617 * In some processor configurations it is possible that same subspace
618 * is shared between multiple CPU's. This is seen especially in CPU's
619 * with hardware multi-threading support.
621 * Return: 0 for success, errno for failure
623 int pcc_data_alloc(int pcc_ss_id
)
625 if (pcc_ss_id
< 0 || pcc_ss_id
>= MAX_PCC_SUBSPACES
)
628 if (pcc_data
[pcc_ss_id
]) {
629 pcc_data
[pcc_ss_id
]->refcount
++;
631 pcc_data
[pcc_ss_id
] = kzalloc(sizeof(struct cppc_pcc_data
),
633 if (!pcc_data
[pcc_ss_id
])
635 pcc_data
[pcc_ss_id
]->refcount
++;
641 /* Check if CPPC revision + num_ent combination is supported */
642 static bool is_cppc_supported(int revision
, int num_ent
)
644 int expected_num_ent
;
648 expected_num_ent
= CPPC_V2_NUM_ENT
;
651 expected_num_ent
= CPPC_V3_NUM_ENT
;
654 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
659 if (expected_num_ent
!= num_ent
) {
660 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
661 num_ent
, expected_num_ent
, revision
);
669 * An example CPC table looks like the following.
671 * Name(_CPC, Package()
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
678 * // Highest Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
680 * // Nominal Performance
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
682 * // Lowest Nonlinear Performance
683 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
684 * // Lowest Performance
685 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
686 * // Guaranteed Performance Register
687 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
688 * // Desired Performance Register
689 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
695 * Each Register() encodes how to access that specific register.
696 * e.g. a sample PCC entry has the following encoding:
700 * AddressSpaceKeyword
704 * //RegisterBitOffset
708 * //AccessSize (subspace ID)
715 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
716 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
718 * Return: 0 for success or negative value for err.
720 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
722 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
723 union acpi_object
*out_obj
, *cpc_obj
;
724 struct cpc_desc
*cpc_ptr
;
725 struct cpc_reg
*gas_t
;
726 struct device
*cpu_dev
;
727 acpi_handle handle
= pr
->handle
;
728 unsigned int num_ent
, i
, cpc_rev
;
729 int pcc_subspace_id
= -1;
733 /* Parse the ACPI _CPC table for this cpu. */
734 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
736 if (ACPI_FAILURE(status
)) {
741 out_obj
= (union acpi_object
*) output
.pointer
;
743 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
749 /* First entry is NumEntries. */
750 cpc_obj
= &out_obj
->package
.elements
[0];
751 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
752 num_ent
= cpc_obj
->integer
.value
;
754 pr_debug("Unexpected entry type(%d) for NumEntries\n",
758 cpc_ptr
->num_entries
= num_ent
;
760 /* Second entry should be revision. */
761 cpc_obj
= &out_obj
->package
.elements
[1];
762 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
763 cpc_rev
= cpc_obj
->integer
.value
;
765 pr_debug("Unexpected entry type(%d) for Revision\n",
769 cpc_ptr
->version
= cpc_rev
;
771 if (!is_cppc_supported(cpc_rev
, num_ent
))
774 /* Iterate through remaining entries in _CPC */
775 for (i
= 2; i
< num_ent
; i
++) {
776 cpc_obj
= &out_obj
->package
.elements
[i
];
778 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
779 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
780 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
781 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
782 gas_t
= (struct cpc_reg
*)
783 cpc_obj
->buffer
.pointer
;
786 * The PCC Subspace index is encoded inside
787 * the CPC table entries. The same PCC index
788 * will be used for all the PCC entries,
789 * so extract it only once.
791 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
792 if (pcc_subspace_id
< 0) {
793 pcc_subspace_id
= gas_t
->access_width
;
794 if (pcc_data_alloc(pcc_subspace_id
))
796 } else if (pcc_subspace_id
!= gas_t
->access_width
) {
797 pr_debug("Mismatched PCC ids.\n");
800 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
801 if (gas_t
->address
) {
804 addr
= ioremap(gas_t
->address
, gas_t
->bit_width
/8);
807 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
810 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
811 /* Support only PCC ,SYS MEM and FFH type regs */
812 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
817 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
818 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
820 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
824 per_cpu(cpu_pcc_subspace_idx
, pr
->id
) = pcc_subspace_id
;
827 * Initialize the remaining cpc_regs as unsupported.
828 * Example: In case FW exposes CPPC v2, the below loop will initialize
829 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
831 for (i
= num_ent
- 2; i
< MAX_CPC_REG_ENT
; i
++) {
832 cpc_ptr
->cpc_regs
[i
].type
= ACPI_TYPE_INTEGER
;
833 cpc_ptr
->cpc_regs
[i
].cpc_entry
.int_value
= 0;
837 /* Store CPU Logical ID */
838 cpc_ptr
->cpu_id
= pr
->id
;
840 /* Parse PSD data for this CPU */
841 ret
= acpi_get_psd(cpc_ptr
, handle
);
845 /* Register PCC channel once for all PCC subspace id. */
846 if (pcc_subspace_id
>= 0 && !pcc_data
[pcc_subspace_id
]->pcc_channel_acquired
) {
847 ret
= register_pcc_channel(pcc_subspace_id
);
851 init_rwsem(&pcc_data
[pcc_subspace_id
]->pcc_lock
);
852 init_waitqueue_head(&pcc_data
[pcc_subspace_id
]->pcc_write_wait_q
);
855 /* Everything looks okay */
856 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
858 /* Add per logical CPU nodes for reading its feedback counters. */
859 cpu_dev
= get_cpu_device(pr
->id
);
865 /* Plug PSD data into this CPUs CPC descriptor. */
866 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
868 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
871 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
872 kobject_put(&cpc_ptr
->kobj
);
876 kfree(output
.pointer
);
880 /* Free all the mapped sys mem areas for this CPU */
881 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
882 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
890 kfree(output
.pointer
);
893 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
896 * acpi_cppc_processor_exit - Cleanup CPC structs.
897 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
901 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
903 struct cpc_desc
*cpc_ptr
;
906 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, pr
->id
);
908 if (pcc_ss_id
>=0 && pcc_data
[pcc_ss_id
]) {
909 if (pcc_data
[pcc_ss_id
]->pcc_channel_acquired
) {
910 pcc_data
[pcc_ss_id
]->refcount
--;
911 if (!pcc_data
[pcc_ss_id
]->refcount
) {
912 pcc_mbox_free_channel(pcc_data
[pcc_ss_id
]->pcc_channel
);
913 kfree(pcc_data
[pcc_ss_id
]);
914 pcc_data
[pcc_ss_id
] = NULL
;
919 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
923 /* Free all the mapped sys mem areas for this CPU */
924 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
925 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
930 kobject_put(&cpc_ptr
->kobj
);
933 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
936 * cpc_read_ffh() - Read FFH register
937 * @cpunum: cpu number to read
938 * @reg: cppc register information
939 * @val: place holder for return value
941 * Read bit_width bits from a specified address and bit_offset
943 * Return: 0 for success and error code
945 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
951 * cpc_write_ffh() - Write FFH register
952 * @cpunum: cpu number to write
953 * @reg: cppc register information
954 * @val: value to write
956 * Write value of bit_width bits to a specified address and bit_offset
958 * Return: 0 for success and error code
960 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
966 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
967 * as fast as possible. We have already mapped the PCC subspace during init, so
968 * we can directly write to it.
971 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
974 void __iomem
*vaddr
= 0;
975 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
976 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
978 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
979 *val
= reg_res
->cpc_entry
.int_value
;
984 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
985 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
986 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
987 vaddr
= reg_res
->sys_mem_vaddr
;
988 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
989 return cpc_read_ffh(cpu
, reg
, val
);
991 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
992 val
, reg
->bit_width
);
994 switch (reg
->bit_width
) {
996 *val
= readb_relaxed(vaddr
);
999 *val
= readw_relaxed(vaddr
);
1002 *val
= readl_relaxed(vaddr
);
1005 *val
= readq_relaxed(vaddr
);
1008 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1009 reg
->bit_width
, pcc_ss_id
);
1016 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
1019 void __iomem
*vaddr
= 0;
1020 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1021 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
1023 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
1024 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
1025 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1026 vaddr
= reg_res
->sys_mem_vaddr
;
1027 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
1028 return cpc_write_ffh(cpu
, reg
, val
);
1030 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
1031 val
, reg
->bit_width
);
1033 switch (reg
->bit_width
) {
1035 writeb_relaxed(val
, vaddr
);
1038 writew_relaxed(val
, vaddr
);
1041 writel_relaxed(val
, vaddr
);
1044 writeq_relaxed(val
, vaddr
);
1047 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1048 reg
->bit_width
, pcc_ss_id
);
1057 * cppc_get_perf_caps - Get a CPUs performance capabilities.
1058 * @cpunum: CPU from which to get capabilities info.
1059 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1061 * Return: 0 for success with perf_caps populated else -ERRNO.
1063 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1065 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1066 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
1067 *lowest_non_linear_reg
, *nominal_reg
,
1068 *low_freq_reg
= NULL
, *nom_freq_reg
= NULL
;
1069 u64 high
, low
, nom
, min_nonlinear
, low_f
= 0, nom_f
= 0;
1070 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1071 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1072 int ret
= 0, regs_in_pcc
= 0;
1075 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1079 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
1080 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
1081 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
1082 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1083 low_freq_reg
= &cpc_desc
->cpc_regs
[LOWEST_FREQ
];
1084 nom_freq_reg
= &cpc_desc
->cpc_regs
[NOMINAL_FREQ
];
1086 /* Are any of the regs PCC ?*/
1087 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
1088 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
) ||
1089 CPC_IN_PCC(low_freq_reg
) || CPC_IN_PCC(nom_freq_reg
)) {
1090 if (pcc_ss_id
< 0) {
1091 pr_debug("Invalid pcc_ss_id\n");
1094 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1096 down_write(&pcc_ss_data
->pcc_lock
);
1097 /* Ring doorbell once to update PCC subspace */
1098 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1104 cpc_read(cpunum
, highest_reg
, &high
);
1105 perf_caps
->highest_perf
= high
;
1107 cpc_read(cpunum
, lowest_reg
, &low
);
1108 perf_caps
->lowest_perf
= low
;
1110 cpc_read(cpunum
, nominal_reg
, &nom
);
1111 perf_caps
->nominal_perf
= nom
;
1113 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1114 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1116 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1119 /* Read optional lowest and nominal frequencies if present */
1120 if (CPC_SUPPORTED(low_freq_reg
))
1121 cpc_read(cpunum
, low_freq_reg
, &low_f
);
1123 if (CPC_SUPPORTED(nom_freq_reg
))
1124 cpc_read(cpunum
, nom_freq_reg
, &nom_f
);
1126 perf_caps
->lowest_freq
= low_f
;
1127 perf_caps
->nominal_freq
= nom_f
;
1132 up_write(&pcc_ss_data
->pcc_lock
);
1135 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1138 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1139 * @cpunum: CPU from which to read counters.
1140 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1142 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1144 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1146 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1147 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1148 *ref_perf_reg
, *ctr_wrap_reg
;
1149 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1150 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1151 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1152 int ret
= 0, regs_in_pcc
= 0;
1155 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1159 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1160 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1161 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1162 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1165 * If refernce perf register is not supported then we should
1166 * use the nominal perf value
1168 if (!CPC_SUPPORTED(ref_perf_reg
))
1169 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1171 /* Are any of the regs PCC ?*/
1172 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1173 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1174 if (pcc_ss_id
< 0) {
1175 pr_debug("Invalid pcc_ss_id\n");
1178 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1179 down_write(&pcc_ss_data
->pcc_lock
);
1181 /* Ring doorbell once to update PCC subspace */
1182 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1188 cpc_read(cpunum
, delivered_reg
, &delivered
);
1189 cpc_read(cpunum
, reference_reg
, &reference
);
1190 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1193 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1194 * performance counters are assumed to never wrap during the lifetime of
1197 ctr_wrap_time
= (u64
)(~((u64
)0));
1198 if (CPC_SUPPORTED(ctr_wrap_reg
))
1199 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1201 if (!delivered
|| !reference
|| !ref_perf
) {
1206 perf_fb_ctrs
->delivered
= delivered
;
1207 perf_fb_ctrs
->reference
= reference
;
1208 perf_fb_ctrs
->reference_perf
= ref_perf
;
1209 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1212 up_write(&pcc_ss_data
->pcc_lock
);
1215 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1218 * cppc_set_perf - Set a CPUs performance controls.
1219 * @cpu: CPU for which to set performance controls.
1220 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1222 * Return: 0 for success, -ERRNO otherwise.
1224 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1226 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1227 struct cpc_register_resource
*desired_reg
;
1228 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1229 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1233 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1237 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1240 * This is Phase-I where we want to write to CPC registers
1241 * -> We want all CPUs to be able to execute this phase in parallel
1243 * Since read_lock can be acquired by multiple CPUs simultaneously we
1244 * achieve that goal here
1246 if (CPC_IN_PCC(desired_reg
)) {
1247 if (pcc_ss_id
< 0) {
1248 pr_debug("Invalid pcc_ss_id\n");
1251 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1252 down_read(&pcc_ss_data
->pcc_lock
); /* BEGIN Phase-I */
1253 if (pcc_ss_data
->platform_owns_pcc
) {
1254 ret
= check_pcc_chan(pcc_ss_id
, false);
1256 up_read(&pcc_ss_data
->pcc_lock
);
1261 * Update the pending_write to make sure a PCC CMD_READ will not
1262 * arrive and steal the channel during the switch to write lock
1264 pcc_ss_data
->pending_pcc_write_cmd
= true;
1265 cpc_desc
->write_cmd_id
= pcc_ss_data
->pcc_write_cnt
;
1266 cpc_desc
->write_cmd_status
= 0;
1270 * Skip writing MIN/MAX until Linux knows how to come up with
1273 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1275 if (CPC_IN_PCC(desired_reg
))
1276 up_read(&pcc_ss_data
->pcc_lock
); /* END Phase-I */
1278 * This is Phase-II where we transfer the ownership of PCC to Platform
1280 * Short Summary: Basically if we think of a group of cppc_set_perf
1281 * requests that happened in short overlapping interval. The last CPU to
1282 * come out of Phase-I will enter Phase-II and ring the doorbell.
1284 * We have the following requirements for Phase-II:
1285 * 1. We want to execute Phase-II only when there are no CPUs
1286 * currently executing in Phase-I
1287 * 2. Once we start Phase-II we want to avoid all other CPUs from
1289 * 3. We want only one CPU among all those who went through Phase-I
1292 * If write_trylock fails to get the lock and doesn't transfer the
1293 * PCC ownership to the platform, then one of the following will be TRUE
1294 * 1. There is at-least one CPU in Phase-I which will later execute
1295 * write_trylock, so the CPUs in Phase-I will be responsible for
1296 * executing the Phase-II.
1297 * 2. Some other CPU has beaten this CPU to successfully execute the
1298 * write_trylock and has already acquired the write_lock. We know for a
1299 * fact it(other CPU acquiring the write_lock) couldn't have happened
1300 * before this CPU's Phase-I as we held the read_lock.
1301 * 3. Some other CPU executing pcc CMD_READ has stolen the
1302 * down_write, in which case, send_pcc_cmd will check for pending
1303 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1304 * So this CPU can be certain that its request will be delivered
1305 * So in all cases, this CPU knows that its request will be delivered
1306 * by another CPU and can return
1308 * After getting the down_write we still need to check for
1309 * pending_pcc_write_cmd to take care of the following scenario
1310 * The thread running this code could be scheduled out between
1311 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1312 * could have delivered the request to Platform by triggering the
1313 * doorbell and transferred the ownership of PCC to platform. So this
1314 * avoids triggering an unnecessary doorbell and more importantly before
1315 * triggering the doorbell it makes sure that the PCC channel ownership
1316 * is still with OSPM.
1317 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1318 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1319 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1320 * case during a CMD_READ and if there are pending writes it delivers
1321 * the write command before servicing the read command
1323 if (CPC_IN_PCC(desired_reg
)) {
1324 if (down_write_trylock(&pcc_ss_data
->pcc_lock
)) {/* BEGIN Phase-II */
1325 /* Update only if there are pending write commands */
1326 if (pcc_ss_data
->pending_pcc_write_cmd
)
1327 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1328 up_write(&pcc_ss_data
->pcc_lock
); /* END Phase-II */
1330 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1331 wait_event(pcc_ss_data
->pcc_write_wait_q
,
1332 cpc_desc
->write_cmd_id
!= pcc_ss_data
->pcc_write_cnt
);
1334 /* send_pcc_cmd updates the status in case of failure */
1335 ret
= cpc_desc
->write_cmd_status
;
1339 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1342 * cppc_get_transition_latency - returns frequency transition latency in ns
1344 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1345 * transition latency for perfromance change requests. The closest we have
1346 * is the timing information from the PCCT tables which provides the info
1347 * on the number and frequency of PCC commands the platform can handle.
1349 unsigned int cppc_get_transition_latency(int cpu_num
)
1352 * Expected transition latency is based on the PCCT timing values
1353 * Below are definition from ACPI spec:
1354 * pcc_nominal- Expected latency to process a command, in microseconds
1355 * pcc_mpar - The maximum number of periodic requests that the subspace
1356 * channel can support, reported in commands per minute. 0
1357 * indicates no limitation.
1358 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1359 * completion of a command before issuing the next command,
1362 unsigned int latency_ns
= 0;
1363 struct cpc_desc
*cpc_desc
;
1364 struct cpc_register_resource
*desired_reg
;
1365 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu_num
);
1366 struct cppc_pcc_data
*pcc_ss_data
;
1368 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1370 return CPUFREQ_ETERNAL
;
1372 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1373 if (!CPC_IN_PCC(desired_reg
))
1374 return CPUFREQ_ETERNAL
;
1377 return CPUFREQ_ETERNAL
;
1379 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1380 if (pcc_ss_data
->pcc_mpar
)
1381 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_ss_data
->pcc_mpar
);
1383 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_nominal
* 1000);
1384 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_mrtt
* 1000);
1388 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);